Funktionentheorie, Lebesguetheorie und Gewöhnliche DGL

— Blatt 1 —

(Tutoriumsblatt)

Aufgabe 0 (zur Vorbereitung)

- (a) Begründen Sie, dass für jede beschränkte Teilmenge $A \subseteq \mathbb{R}^n$ jeweils $v^-(A) \leq v^+(A)$ gilt.
- (b) Zeigen Sie, dass jeder kompakte und jeder offene Quader im \mathbb{R}^n Jordan-messbar ist, und dass das Volumen im Sinne von § 3 mit dem ursprünglich definierten Volumen übereinstimmt.
- (c) Geben Sie die Querschnitte des Zylinders $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, z \in [0, 1]\}$ mit den affinen Unterräumen orthogonal zur x-Achse an.
- (d) Stellen Sie das Jordan-Volumen des Zylinders Z auf drei verschiedene Arten als Integral dar.

Aufgabe 1

Berechnen Sie die Integrale

(a)
$$\int_A x^2 y \, d(x, y)$$
 (b) $\int_B (x + y^2) \, d(x, y)$

wobei $A \subseteq \mathbb{R}^2$ die obere Hälfte des Kreises vom Radius 2 um den Nullpunkt und $B \subseteq \mathbb{R}^2$ das Dreieck mit den Eckpunkten (0,0), (1,0) und (0,1) bezeichnet.

Aufgabe 2

(a) Seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}_+$ eine stetige Funktion. Beweisen Sie mit Hilfe des Cavalierischen Prinzips, dass das Jordan-Volumen des *Rotationskörpers*

$$R(f) = \{(x,y,z) \mid a \le x \le b \mid y^2 + z^2 \le f(x)^2\}$$
durch $v_3(R(f)) = \pi \int_a^b f(x)^2 dx$ gegeben ist.

(b) Zeigen Sie, dass für alle $a, b \in \mathbb{R}^+$ das Ellipsoid

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} \le 1 \right\}$$

das Volumen $v_3(E) = \frac{4}{3}\pi ab^2$ besitzt.

Aufgabe 3

- (a) Zeigen Sie: Ist $A \subseteq \mathbb{R}^n$ eine Jordan-messbare Teilmenge, dann ist auch der Abschluss \bar{A} Jordan-messbar, und es gilt $v(A) = v(\bar{A})$.
- (b) Seien $A \subseteq \mathbb{R}^m$ und $B \subseteq \mathbb{R}^n$ beliebige Teilmengen. Zeigen Sie, dass der Rand von $A \times B \subseteq \mathbb{R}^{m+n}$ durch $\partial(A \times B) = (\partial A \times \bar{B}) \cup (\bar{A} \times \partial B)$ gegeben ist.

Hinweis: Ohne Beweis darf verwendet werden, dass für jeden Punkt $(x,y) \in \mathbb{R}^m \times \mathbb{R}^n$ eine Teilmenge der Form $M \times N$ mit $M \subseteq \mathbb{R}^m$ und $N \subseteq \mathbb{R}^n$ genau dann eine offene Umgebung von (x,y) ist, wenn M eine offene Umgebung von x und N eine offene Umgebung von y ist, und das jede offene Umgebung von (x,y) ein Produkt $M \times N$ dieser Form enthält.

Dieses Blatt wird vom 2. bis zum 5. Mai 2022 im Tutorium bearbeitet.

Funktionentheorie, Lebesguetheorie und Gewöhnliche DGL

— Blatt 1 —

(Globalübungsblatt)

Aufgabe 1 (10 Punkte)

Berechnen Sie die Integrale

(a)
$$\int_{A} (x^2 + y^2) d(x, y)$$
 (b) $\int_{B} xy d(x, y)$

wobei $A \subseteq \mathbb{R}^2$ das Dreieck mit den Eckupunkten (0,0), (1,0) und $(\frac{1}{2},\frac{1}{2})$ und $B \subseteq \mathbb{R}^2$ den Bereich im ersten Quadranten (x,y>0) zwischen y=x und $y=x^2$ bezeichnet.

Aufgabe 2 (10 Punkte)

Sei $h \in \mathbb{R}^+$. Berechnen Sie das Volumen

- (a) des *elliptischen Paraboloids*, das nach unten begrenzt wird durch die Fläche mit der definierenden Gleichung $z = x^2 + y^2$ und nach oben durch die Ebene z = h,
- (b) des einschaligen Hyperboloids ("Kühlturm"), das begrenzt wird durch die Ebenen z=0, z=h und die Fläche mit der definierenden Gleichung $x^2+y^2-z^2=1$,
- (c) der oberen Hälfte des zweischaligen Hyperboloids, das nach unten begrenzt wird durch die Fläche mit der definierenden Gleichung $x^2 + y^2 z^2 = -1$ und nach oben durch die Ebene z = h, wobei h > 1 ist.

Aufgabe 3 (10 Punkte)

Zeigen Sie: Sind $A \subseteq \mathbb{R}^m$ und $B \subseteq \mathbb{R}^n$ Jordan-messbare Teilmengen, dann ist auch $A \times B \subseteq \mathbb{R}^{m+n}$ Jordan-messbar, und es gilt $v_{m+n}(A \times B) = v_m(A)v_n(B)$.

Hinweis: Verwenden Sie das Ergebnis aus Tutoriumsaufgabe 3 (b).

Abgabe: Dienstag, 10. Mai 2022, 14:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.