§ 3. Stetigkeit

Definition (3.1)

Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ wird stetig in einem Punkt $a \in X$ bezüglich der Metriken d_X und d_Y genannt, wenn für jede Folge $(x^{(n)})_{n \in \mathbb{N}}$ die Implikation

$$\lim_{n\to\infty} x^{(n)} = a \text{ in } (X, d_X) \quad \Rightarrow \quad \lim_{n\to\infty} f(x^{(n)}) = f(a) \text{ in } (Y, d_Y)$$

gilt. Wir bezeichnen f insgesamt als stetig, wenn f in jedem Punkt $x \in X$ stetig ist.

Stetigkeit der Koordinatenfunktionen

Proposition (3.4)

Für jedes $i \in \{1, ..., m\}$ ist die *i*-te Koordinatenfunktion

$$\pi_i: \mathbb{R}^m \to \mathbb{R}$$
 , $(x_1, ..., x_m) \mapsto x_i$

eine stetige Funktion.

ε - δ -Kriterium für metrische Räume

Satz (3.5)

Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ ist genau dann stetig im Punkt a bezüglich d_X und d_Y , wenn für jedes $\varepsilon \in \mathbb{R}^+$ ein $\delta \in \mathbb{R}^+$ existiert, so dass die Implikation

$$d_X(a,x) < \delta \quad \Rightarrow \quad d_Y(f(a),f(x)) < \varepsilon$$

für alle $x \in X$ erfüllt ist.

Stetigkeit \mathbb{R}^d -wertiger Funktionen

Proposition (3.6)

Sei (X, d_X) ein metrischer Raum, $r \in \mathbb{N}$ und $f: X \to \mathbb{R}^d$ eine Funktion mit den Komponenten $f_1, ..., f_d: X \to \mathbb{R}$, so dass also $f(x) = (f_1(x), ..., f_d(x))$ für alle $x \in X$ gilt. Genau dann ist f in einem Punkt $a \in X$ stetig, wenn die Funktionen $f_1, ..., f_d$ alle in a stetig sind.

Bowas on Pop (36). geg metr. Raum (X, dx) ud eni Abl f: X - Rd B soion fr. ... ld: X = R gog durch f(x) = (f,(x). ... fl(x)) tre Rd Serve X. Beh. Patchagina - Pr. . Pd stetrag in a Wir fewersen die Aquiv. 62 gl. des durch II II wurderzierten Motele do and Rd " Sei EE IR+ Pi..., Pd stotzy in a -> 78,..., 8, E Rt, so doss tx EX jeweils $d_{\mathbf{x}}(a,\mathbf{x}) < \delta_i \Rightarrow |f_i(a) - f_i(\mathbf{x})| < \varepsilon \ (1 \leq i \leq d)$ Sei Men 8 = min (81, ..., 8d | Sei x e X mit

dx (a,x) < 8 = dx (a,x) < & far 1515 d 50 1 fila)-filx) < E für 1=1=d \Rightarrow dw(f(a), f(x)) = ||f(x) - f(a)||\infty = max { | (x(x)-f, (a)), ..., | f(x) - f(a) |] < E Pant ist das E-8-Krit. Pir f in a vertical -" Sei iell, ... d7, voifizione das E-8-kurt für fi Sei EE Rt longeg. I sleting in a = 7 SE Rt mit $d_X(a_{1x}) < 8 \Rightarrow d_{\infty}(f(a), f(x)) < \varepsilon \forall x \in X$ See hun $x \in X$ mit $dx(a_1x) < \delta \Rightarrow d_{\infty}(f(a), f(x)) < \varepsilon \Rightarrow d_{\infty}(f(a), f(a)) < \varepsilon \Rightarrow d_{\infty}(f(a), f(a))$

Also gilt wist recht |fi(x)-f(a) | = E => E-S-tait birti ist ofilled >> li ist stelly in a Bop. 8. R2-> R2 (x,y) -> (x2+y, x4(xy)) Komponenten Pol. Pr. R2 -> R (x,y) >> x2+y {z, R2 -> R (x,y) -> sm(xy) Um zu zeigen, dass f stetzg ist, genigt es, die Stetigbeit von fr und fz zu beweisen

Stegtigkeit zusammengesetzter Funktionen

Proposition (3.7)

Die folgenden Abbildungen $\alpha: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x+y$, $\mu: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto xy$ und $\delta: \mathbb{R} \times \mathbb{R}^\times \to \mathbb{R}$, $(x,y) \mapsto \frac{x}{y}$ sind stetig.

Folgerung (3.8)

Sei (X, d_X) ein metrischer Raum, und seien $f, g: X \to \mathbb{R}$ stetige Funktionen. Dann sind auch die Funktionen

$$(f+g)(x) = f(x) + g(x)$$
 und $(fg)(x) = f(x)g(x)$ stetig.

Gilt zusätzlich $g(x) \neq 0$ für alle $x \in X$, dann ist auch (f/g)(x) = f(x)/g(x) stetig.

Bow wor Prop (37); zeigenw, dass K: R2- R. (x,y) +> x+y storig ist Su (x,y) & R2 wrgeg and ((xn,yn)) new one Folge in 122 du gegen (x,y) konvegiert, togl uner bel induzierten Metrik bekannt Aus him (xn,yn) = (x,y) folgt $\lim_{n\to\infty} x_n = x , \lim_{n\to\infty} y_n = y = 0$ $\lim_{n\to\infty} x_n = x , \lim_{n\to\infty} y_n = y = 0$ $\lim_{n\to\infty} \alpha(x_n, y_n) = \lim_{n\to\infty} (x_n + y_n) = x + y = \alpha(x_n, y_n)$

Buses on Folgeong (3.8): zerge: (X, d) noticely Raum, f, g: X - R story - ftg stedig P. g stetig Prop. (3.6) (f,g): X -> R2, x -> (fk),g(4) sterlig => x o (f,g): X-R storing Dabu gelt « (f.g) = f+g, denn $(\alpha \circ (f,g))(x) = \alpha((f,g)(x)) = \alpha(f(x),g(x))$ $= f(x) + g(x) = (f+g)(x) \forall x \in X$

Ein Anwendungsbeispiel

Proposition (3.9)

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \frac{x^3y + 5xy}{x^2 + y^4 + 1}$ ist stetig.

Bow. on Rop. (3.9): Bogsinding de Stehighert ion f: 122 - 12 (x,y) -> x3y+5x4 (x,y) => x, (x,y) => y and stelly (koordinaterful) Product stetrge Flet stetry => (x1y) -> x3y stetry, elease (x,y) >> x2, (x,y) >> y4 (x,y) >> 5 stetig als konstante Flet., (xiy) -> xy stetig >(x,y) -> 5xy stering Summe steleper Flot. Stering => (x,y) => x3y + 5xy Stetrig (x,y) > x2+y4+1 tetrig entroprecland fir Quotienten x2+y4+1+0 Kx,yER > f stetrig

Die Stetigkeit der Normfunktion

Lemma (3.10)

Sei $(V, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum. Dann gilt

$$|||v|| - ||w||| \le ||v - w||$$
 für alle $v, w \in V$.

Folgerung (3.11)

Sei $(V, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum. Dann ist $V \to \mathbb{R}$, $x \mapsto \|x\|$ eine stetige Funktion.

Mosprote the hur du este flucting.
Boweis con Lemma (310): (V, 1 11) norsierter 12-
Vektorraum, V, W ∈ V, 2 = 1111-11111 < 11 v - W
11/11 = 11/2-w+w1 = 11/21 + 11/11
>> v - w \le v-w genouso: w - v \le v-w
1 sqesant: 1 v 1 - 1 w 1 = 1 v - W 1
Barreis von Folgerng (3.11): 12 N N + 64 steta
So: VE / and (VIN) and ever tolge in V hut
lim v(n) (x) V begl Sei E e 12t vorgeg
(3.10) V (10) -
1
The state of the s

//

1000

Homömorphismen zwischen metrischen Räumen

Definition (3.12)

Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen (X, d_X) und (Y, d_Y) wird Homöomorphismus genannt, wenn sie bijektiv, stetig und die Umkehrabbildung $f^{-1}: Y \to X$ ebenfalls stetig ist. Metrische Räume, zwischen denen ein Homöomorphismus existiert, nennt man homöomorph.

Das folgende Beispiel zeigt, dass Homöomorphismen auch zwischen Räumen ganz unterschiedlicher Gestalt existieren können.

Proposition (3.13)

Sei $\|\cdot\|$ eine beliebige Norm auf $V=\mathbb{R}^n$. Dann ist der offene Ball $B_1(0_V)$ vom Radius 1 um den Ursprung homöomorph zum \mathbb{R}^n .

Ben Lon Prop. (3.13): 11 11 Norm and R", B, (OR") = 1 x & 12" | 11x11<1] Belo. f: B, (0pm) - 1Rm, x 13 1-1x11 x g Rn > B1 (015,) x > 1 + 11x11x said stetzy and znemander invers Borde Abb sind steting, well thre tromporenten At our stetingen, R-westigen Abb. Ensummen gesetet sind, u.a. noch zu überprifen YxEB(ORA). (90p) (x)=x ous de Normfunktion. Uberprife hier nur die este Gleiching

Sex
$$\times \in B_{\Lambda}(O_{\mathbb{R}^{N}})$$
 $(g \circ f)(x) = g(f(x)) =$

$$g(\frac{1}{1-|x||} \times) = \frac{1}{1+||\frac{1}{1-|x||} \times||\frac{1}{1-|x||} \times||} \times =$$

$$\frac{1-||x||}{1-||x||} + \frac{1}{||x||} = \frac{1}{1-||x||} \times = x$$
Voanschauliching des Blas boordinatenable.

Part

To to to

Definition der Polarkoordinaten

Satz (3.14)

- (i) Die Abbildung $\phi: \mathbb{R} \to \mathbb{R}^2$ gegeben durch $\varphi \mapsto (\cos(\varphi), \sin(\varphi))$ ist stetig, und für jedes halboffene Intervall I der Länge 2π ist die eingeschränkte Abbildung $\varphi|_I$ eine stetige Bijektion auf ihre Bildmenge.
- (ii) Die Abbildung $ho_{
 m pol}: \mathbb{R}^+ imes \mathbb{R}^2$, $(r, arphi) \mapsto (r\cos(arphi), r\sin(arphi))$ wird Polarkoordinaten-Abbildung genannt. Für jedes Intervall I wie unter (i) ist auch $ho_{
 m pol}|_{\mathbb{R}^+ imes I}$ eine stetige Bijektion auf ihre Bildmenge.

Stetigkeit und Bijektivität nicht hinreichend für Homöomorphismus

- Wie soeben gezeigt, ist die Abbildung $\phi:[0,2\pi[\to\mathbb{R}^2,\ \varphi\mapsto(\cos(\varphi),\sin(\varphi))$ stetig und eine Bijektion auf ihre Bildmenge, den Einheitskreis.
- Die Abbildung ist aber kein Homöomorphismus, denn die Umkehrabbildung ist nicht stetig!

Reh S' = { (x,y) = 122 | 1 (x,y) |2 = 1} micht steting ist Sa ((xa. ya)) new geg. dwch (xn. ya) = (cos(2T-1), su(2T-1))

Lump (kn. ya) = 2T - 1 = lump (kn. ya) = 2T lin (x1, yn) = (lim cos(2T-1) sin(2T-1) aber lin (x1, y1) = (lim cos(27-1), Sm (27-1) also. lim \$ \(\(\chi_n, y_n \) \ = \$ \(\frac{1}{n-\infty} \(\chi_n \chi_n \chi_n \) => \$ 1 unstehing in (1,0)

Definition der Zylinder- und Kugelkoordinaten

Satz (3.15)

Sei I ein halboffenes Intervall der Länge 2π .

- (i) Die Abbildung $ho_{\mathrm{zyl}}: \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^3$, $(r, \varphi, h) \mapsto (r \cos(\varphi), r \sin(\varphi), h)$ ist stetig, und die Einschränkung $\rho_{\mathrm{zyl}}|_{M_I}$ auf $M_I = \mathbb{R}^+ \times I \times \mathbb{R}$ ist eine stetige Bijektion auf ihre Bildmenge.
- (ii) Die Abbildung $ho_{\mathrm{kug}}:\mathbb{R}_+ imes\mathbb{R} imes\mathbb{R} o\mathbb{R}^3$ gegeben durch

$$(r, \theta, \varphi) \mapsto (r \sin(\theta) \cos(\varphi), r \sin(\theta) \sin(\varphi), r \cos(\theta))$$

ist ebenfalls stetig, und die Einschränkung $\rho_{\mathrm{kug}}|_{N_I}$ auf $N_I = \mathbb{R}^+ \times]0, \pi[\times I$ ist eine stetige Bijektion auf ihre Bildmenge.

Die Abbildung ρ_{zyl} wird Zylinderkoordinaten-Abbildung, die Abbildung ρ_{kug} Kugelkoordinaten-Abbildung genannt.