§ 2. Konvergenz in metrischen Räumen

Definition (2.1)

Sei (X, d) ein metrischer Raum, $(x^{(n)})_{n \in \mathbb{N}}$ eine Folge in X und $a \in X$ ein Punkt. Man sagt, die Folge konvergiert in (X, d) gegen a und schreibt

$$\lim_{n\to\infty} x^{(n)} = a ,$$

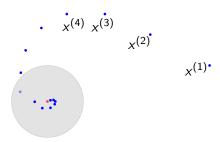
wenn für jedes $\varepsilon \in \mathbb{R}^+$ ein $N \in \mathbb{N}$ existiert, so dass $x \in B_{\varepsilon}(a)$ für alle $n \geq N$ gilt. Der Punkt a wird in diesem Fall ein Grenzwert der Folge genannt. Eine Folge, die gegen keinen Punkt von X konvergiert, bezeichnet man als divergent.

Nach Definition ist die Bedingung $x \in B_{\varepsilon}(a)$ äquivalent zu $d(x,a) < \varepsilon$. Die Konvergenz der Folge $(x^{(n)})_{n \in \mathbb{N}}$ ist also äquivalent dazu, dass

$$\lim_{n \to \infty} d(x^{(n)}, a) = 0 \quad \text{gilt.}$$

Frinnerng: (xn) new Folge in R. a & R lin xn = q => YEER+ INEN: YNON: . Abstand Eurslen xn ind a" $x \in B_{\varepsilon}(a) \longrightarrow d(a,x) < \varepsilon$ offene Bill wom Radius E uma

Konvergenz in der Ebene



Eindeutigkeit des Grenzwerts

Proposition (2.2)

Jede Folge in einem metrischen Raum hat höchstens einen Grenzwert.

Proposition (2.3)

Sei X eine beliebige Menge. Eine Folge $(x^{(n)})_{n\in\mathbb{N}}$ im metrischen Raum (X,δ_X) ausgestattet mit der diskreten Topologie konvergiert genau dann gegen einen Punkt $a\in X$, wenn ein $N\in\mathbb{N}$ mit $x^{(n)}=a$ für alle n>N existiert.

Boneis on Rop (22) geg. (X,d) metrisher Raum a (xm) NEN Folge in X Ang, a, b (X sind twee vershieden Pulete, gegen die die Folge konvergiert. Sei E=d(a,b)>0 a = lim xm = Thien mit d(a,xm) < 1 = 7 × × × × × 1- lum ×(n) - 7 Nz∈N mt d(d,×(n)) < 1 € H × Nz See $N = \max_{A} \Lambda_{A_1, N_2} \uparrow = \varepsilon = d(a, b) \leq d(a, x^{(N)}) + d(x^{(N)}, b)$ $= d(a, x^{(N)}) + d(b, x^{(N)}) \leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \implies \varepsilon \leq 0, \Omega$ $= d(a, x^{(N)}) + d(b, x^{(N)}) \leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \implies \varepsilon \leq 0, \Omega$

gleichbedentend: The IN: YnzN: 1x(n)-a11' < E
Sewers for Prop. (2.3) X trenge. δx distribute tretribute and λ' , $a \in X$ $(x^{(n)})$ new Folge in λ' 2.29: Lim $x^{(n)} = a$ $\Longrightarrow \exists N \in \mathbb{N} : \forall n \ge N : x^{(n)} = a$ N=300 Sei $\epsilon \in \mathbb{R}^+$ Dum gelt $\forall n \ge N : \delta(a, x^{(n)}) = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$ $d(a, a) = 0 < \epsilon \implies \lim_{n \to \infty} x^{(n)} = a$

$\ddot{\mathsf{A}}\mathsf{quivalente}\ \mathsf{Normen} \Rightarrow \mathsf{gleicher}\ \mathsf{Konvergenzbegriff}$

Proposition (2.4)

Sei V ein \mathbb{R} -Vektorraum mit zwei äquivalenten Normen $\|\cdot\|$ und $\|\cdot\|'$, und seien d,d' die beiden von den Normen induzierten Metriken. Sei $a\in V$ und $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge. Genau dann konvergiert die Folge $(x^{(n)})_{n\in\mathbb{N}}$ gegen a im metrischen Raum (V,d), wenn sie im metrischen Raum (V,d') gegen a konvergiert.

Baweis Lon Prop (2.4) geg IR-Vektorraum V, 11, 11 1 ognivalente Norman July 18 = 1 8 - 81 = 1 1 1 1 8 = 1 1 1 1 4 = V fue d, d'induzierte Metsilsen, geg durch $d(\mathbf{v}, \mathbf{\omega}) = \|\mathbf{\omega} - \mathbf{v}\|, d'(\mathbf{v}, \mathbf{\omega}) = \|\mathbf{\omega} - \mathbf{v}\|$ (x00) new Folge in V, a ∈ V zu zugen linx(")= a in (Vid) = linx(")= ain (Vid') Bew: Mr 11 => " Vor: lun x (11) = a in (V,d) Sei EER+ 229: FNEN: d'(a,xm) < E Ykz N gleidbedenland: JNEIN: YNZN: 1x102-a11'E

lin x = a in (Vid) - 7 NEIN $\|x^{(n)} - a\| = d(a, x^{(n)}) < \frac{\varepsilon}{8} \quad \forall n \ge N \Rightarrow$ $\|x^{(n)} - a\|' \le 8 |x^{(n)} - a| < 8 = \varepsilon \quad \forall n \ge N \Box$

Konvergenz im \mathbb{R}^m

Satz (2.5)

Sei $m \in \mathbb{N}$. Eine Folge $(x^{(n)})_{n \in \mathbb{N}}$ im \mathbb{R}^m konvergiert genau dann gegen einen Punkt $a \in \mathbb{R}^m$, wenn $\lim_{n \to \infty} x_k^{(n)} = a_k$ für $1 \le k \le m$ erfüllt ist.

Buispiel: Konvergenz in 1R2: behachte $x^{(n)} = (1 + \frac{1}{n}, \frac{2n-1}{n})$, $n \in \mathbb{N}$ Satz (25) = lim x (n) = (lim (1+1), lim 2n-1) Hoolgas (1, 2) $\lim_{n\to\infty} \frac{2n-1}{n} = \lim_{n\to\infty} (2-\frac{1}{n})$ Beweis won Sate (2.5) gra Folge (x'm) ne N in RM, x')=(x(",...,x'n))

lim x (n) = a bedontet Konvergenz beziglish einer ion and beliebigen Norm indusistes Metrik het entschuiden uns für dos(v,w) = Iv- hrllos Frinong: IVII = max (14) ... |vm] , -> " Vor lun x (n) = a in (R", do) (x) Sei kell, ..., m ? zzq .. lim xh = ax in R SQEER+ W(*) = FNEN: YNON: $\| \times^{(\omega)} - \alpha \|_{\infty} = d_{\infty}(\alpha, \times^{(n)}) \leq \varepsilon$ max { |x" - a1 | , |x" - a2 | , ... , |x" - am | } < E Fuz N' = |x(n) - ak | < E Yn > N = lim xk = ak

/ \s. lim x = ak, 1 ≤ k ≤ m 229: lim x (m) = a in (R", dos) Sciee R+ Vor = For jedes kell.... mf grift es ein Nx EN, so dass |x (m) - ak | < E Ynz Nx Sei N= max / Ny, Nk] Dann gilt 1xk-akles AnsN 4 ked11,...,m] = whalte \text{Vn ? N jowals dx(a,x")} = 1x"-a1x = max { |x1-a1 , |x2-a2 | , |xm-am] } < E

Cauchyfolgen in metrischen Räumen

Definition (2.6)

Eine Folge $(x^{(n)})_{n\in\mathbb{N}}$ ein einem metrischen Raum (X,d) wird Cauchyfolge genannt, wenn für jedes $\varepsilon\in\mathbb{R}^+$ ein $N\in\mathbb{N}$ existiert, so dass $d(x^{(m)},x^{(n)})<\varepsilon$ für alle $m,n\in\mathbb{N}$ mit $m,n\geq N$ gilt.

Proposition (2.7)

Sei V ein \mathbb{R} -Vektorraum mit zwei äquivalenten Normen $\|\cdot\|$ und $\|\cdot\|'$, und seien d,d' die beiden von den Normen induzierten Metriken. Sei $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge. Genau dann ist die Folge $(x^{(n)})_{n\in\mathbb{N}}$ eine Cauchyfolge in (V,d), wenn sie eine Cauchyfolge in (V,d') ist.

Vollständige metrische Räume

Definition (2.8)

Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchyfolge in (X,d) konvergiert. Ein normierter \mathbb{R} -Vektorraum, der vollständig bezüglich der induzierten Metrik ist, wird Banachraum genannt.

Anmerkungen:

- Jede konvergente Folge in einem metrischen Raum ist eine Cauchyfolge.
- Es gibt Cauchyfolgen in metrischen Räumen, die nicht konvergieren.

geg. mehrischer Raum (X,d), a EX, (x) new tolq in X mit lin x M) = a in (X, d 22g. (x (n)) new ist Cauchyfolige in (x,d) Si se Rt lorges Voi = 7 NEN: Yn > N: d(a,xm) < 1 s. Fin alle m,n > N gold dann $d(x^{(n)},x^{(n)}) \leq d(x^{(n)},a) + d(a,x^{(n)}) < \frac{1}{2} \leq + \frac{1}{2} \leq = \leq$ 1, 14 141 1414

Vollständigkeit in endlicher Dimension

Satz (2.9)

Jeder normierte, endlich-dimensionale \mathbb{R} -Vektorraum $(V,\|\cdot\|)$ ist ein Banachraum.

Zeige no die Vollslandholdert von (R. dos) Sei (x'm) NEN one Candryfolge in RM 2.29. lin x(n) = a in (12m, do), for ein a & 12m Beh. (x) new ist Couchyfolge in R fin 15 E = m Serkell.... m] and EER+ (x') new Caudyfolgy = 7NEN: Yn, n'3N: 11×(n)-×(n) 11x < E => \(\n' > N \, \| \times_k^{(n')} - \times_k^{(n)} \| < \varepsilon \] \(\varepsilon \) \(\varepsi Analysis and Vas. -> lim x = ak fin an ak ER, fin 15 ksy

