Lineare Algebra

— Lösung Blatt 11 —

(Tutoriumsblatt)

Aufgabe 0

zu (a)
$$(35) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 5 & 4 & 3 & 6 & 7 \end{pmatrix}$$

zu (b) Laut Vorlesung hat jede Transposition das Signum -1, also gilt auch $\operatorname{sgn}(\sigma) = -1$. Ist $\sigma \in S_n$ ein beliebig vorgegebenes Element, dann stellt man σ zunächst als Produkt von Transpositionen dar. Ist r die Anzahl der Faktoren in dieser Produktdarstellung, dann gilt $\operatorname{sgn}(\sigma) = (-1)^r$.

zu (c) Die Leibniz-Formel für die Determinante einer Matrix $A \in \mathcal{M}_{n,K}$ lautet $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{k=1}^n a_{k\sigma(k)}$. Da $\sigma = (2\ 5)$ eine Transposition ist, gilt $\operatorname{sgn}(\sigma) = -1$. Außerdem gilt $a_{1\sigma(1)} = a_{11} = 2$, $a_{2\sigma(2)} = a_{25} = 7$, $a_{3\sigma(3)} = a_{33} = 6$, $a_{4\sigma(4)} = a_{44} = 8$ und $a_{5\sigma(5)} = a_{52} = 7$. Insgesamt erhalten wir $s_{\sigma} = (-1) \cdot 2 \cdot 7 \cdot 6 \cdot 8 \cdot 7 = -4704$.

zu (d) Die ersten beiden Regeln sind im Allgemeinen falsch. Setzt man zum Beispiel

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{und} \quad B = E^{(2)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

dann gilt $det(A) = 1 \cdot 4 - 3 \cdot 2 = -2$, $det(B) = 1 \cdot 1 - 0 \cdot 0 = 1$, aber

$$\det(A+B) = \det\begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix} = 2 \cdot 5 - 3 \cdot 2 = 4 \neq \det(A) + \det(B)$$

und

$$\det(-A) = \det\begin{pmatrix} -1 & -2 \\ -3 & -4 \end{pmatrix} = (-1)(-4) - (-3)(-2) = -2 \neq -\det(A).$$

(Die Determinantenfunktion verhält sich additiv in jeder einzelnen Zeile, aber nicht additiv bezüglich der gesamten Matrix.)

Die dritte Regel ist richtig. Dies kann man sich zum Beispiel anhand der Leibniz-Formel

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{k=1}^n a_{k\sigma(k)}$$

klarmachen: Ist die ℓ -te Zeile von A gleich Null, dann ist in jedem Produkt $\prod_{k=1}^n a_{k\sigma(k)}$ der Faktor $a_{\ell\sigma(\ell)}=0$, also auch die gesamte Summe. Nehmen wir nun an, dass die ℓ -te Spalte von A gleich Null ist. Für jedes $\sigma\in S_n$ muss es auf Grund der Bijektivität ein $j\in\{1,...,n\}$ mit $\sigma(j)=\ell$ geben. Im Produkt $\prod_{k=1}^n a_{k\sigma(k)}$ ist dann der Faktor $a_{j\sigma(j)}=a_{j\ell}$ gleich Null.

Aufgabe 1

zu (a) Die Sarrus-Regel liefert

$$\det(B) = \bar{1} \cdot \bar{0} \cdot \bar{1} + \bar{2} \cdot \bar{1} \cdot \bar{0} + \bar{0} \cdot \bar{2} \cdot \bar{1} - \bar{0} \cdot \bar{0} \cdot \bar{0} - \bar{1} \cdot \bar{1} \cdot \bar{1} - \bar{1} \cdot \bar{2} \cdot \bar{2} = \bar{0} + \bar{0} + \bar{0} - \bar{0} - \bar{1} - \bar{1} = -\bar{2} = \bar{1}.$$

zu (b) Hier ergibt sich die Determinante der Matrix aus der Rechnung

$$\det(A) = \det\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ \bar{0} & \bar{2} & \bar{0} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{1} & \bar{1} & \bar{0} & \bar{4} \end{pmatrix} = \det\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ \bar{0} & \bar{2} & \bar{0} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{4} \end{pmatrix} + \det\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ \bar{0} & \bar{2} & \bar{0} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{4} \end{pmatrix} + \bar{0} = \bar{2} \cdot \det\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{4} \end{pmatrix} = \bar{6} \cdot \det\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} \\ \bar{0} & \bar{0} & \bar{1} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{1} \end{pmatrix} = \bar{24} = \bar{3}.$$

Aufgabe 2

zu (a)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 3 & 4 & 2 & 1 & 9 & 7 & 6 & 8 & 11 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 3 & 4 & 2 & 5 & 9 & 7 & 6 & 8 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 2 & 4 & 3 & 5 & 9 & 7 & 6 & 8 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 2 & 3 & 4 & 5 & 9 & 7 & 6 & 8 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 8 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 & 9 \end{pmatrix} \begin{pmatrix} 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 & 9 \end{pmatrix} \begin{pmatrix} 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 11 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 & 9 \end{pmatrix} \begin{pmatrix} 8 & 9 \end{pmatrix} \begin{pmatrix} 8 & 9 \end{pmatrix} \begin{pmatrix} 10 & 11 \end{pmatrix}$$

zu (b) Die Elemente von A_4 sind genau die Elemente der S_4 mit positivem Signum. Es gibt in der A_4 genau halb so viele Elemente wie in der S_4 , also genau $\frac{1}{2} \cdot (4!) = \frac{1}{2} \cdot 24 = 12$. Eines davon ist die Identität, laut Vorlesung besitzt außerdem jedes Produkt aus zwei Transpositionen das Signum $(-1)^2 = 1$. Wir versuchen, durch Bildung solcher Produkte 12 verschiedene Elemente zusammenzubekommen. Um sicherzugehen, dass die Elemente wirklich verschieden voneinander sind, rechnen wir die Elemente jeweils

in Tabellenschreibweise aus.

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad (12)(34) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$(13)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad (14)(23) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$(12)(23) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \qquad (23)(12) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

$$(12)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \qquad (24)(12) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

$$(13)(34) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \qquad (34)(13) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$(23)(34) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \qquad (34)(23) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

Aufgabe 3

zu (a) Für jedes $\sigma \in S_4$ mit $\sigma(1) \in \{1,2\}$ gilt $s_{\sigma} = 0$, denn in diesem Fall enthält s_{σ} einen Faktor der Form $a_{1,j}$ mit $j \in \{1,2\}$, und diese Einträge in der Matrix sind gleich Null. Aus demselben Grund ist $s_{\sigma} = 0$ in den Fällen $\sigma(2) \in \{1,2\}$, $\sigma(3) \in \{3,4\}$ und $\sigma(4) \in \{3,4\}$. Für ein $\sigma \in S_4$ ist also nur dann $s_{\sigma} \neq 0$, wenn $\sigma(1), \sigma(2) \in \{3,4\}$ und $\sigma(3), \sigma(4) \in \{1,2\}$ gilt. Dabei ist σ durch die Wahl von $\sigma(1)$ und $\sigma(3)$ bereits festgelegt. Denn auf Grund der Bijektivität von σ muss $\sigma(1) \neq \sigma(2)$ und $\sigma(3) \neq \sigma(4)$ gelten, und damit bleibt für $\sigma(2)$ und $\sigma(4)$ nur noch jeweils eine Möglichkeit. Für die Wahl der Bilder $\sigma(1)$ und $\sigma(3)$ gibt es jeweils zwei Möglichkeiten (nämlich 3,4 bzw. 1,2), somit existieren höchstens $2 \cdot 2 = 4$ Elemente σ mit $s_{\sigma} \neq 0$.

zu (b) Das eindeutig bestimmte Element $\sigma_1 \in S_4$ mit $\sigma_1(1) = 3$ und $\sigma_1(3) = 2$ ist gegeben durch

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (1 \ 3) \cdot (2 \ 4).$$

Die drei anderen Möglichkeiten $(\sigma(1), \sigma(3)) = (4, 3), (3, 4), (4, 3)$ liefern entsprechend die drei Elemente

$$\sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = (1 & 4) \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = (1 & 4) \circ (2 & 3) \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$
$$= (1 & 4) \circ (2 & 3) \circ (3 & 4)$$

$$\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} = (1 & 3) \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} = (1 & 3) \circ (2 & 4) \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$
$$= (1 & 3) \circ (2 & 4) \circ (3 & 4)$$
$$\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (1 & 4) \circ (2 & 3).$$

Auf Grund der Anzahl der Transpositionen ist das Signum der vier Elemente gegeben durch $\operatorname{sgn}(\sigma_1) = (-1)^2 = 1$, $\operatorname{sgn}(\sigma_2) = (-1)^3 = -1$, $\operatorname{sgn}(\sigma_3) = (-1)^3 = -1$ und $\operatorname{sgn}(\sigma_4) = (-1)^2 = 1$. Die zu den vier Elementen gehörenden Summanden sind also gegeben durch

$$\begin{array}{rclcrcl} s_{\sigma_1} & = & 1 \cdot 4 \cdot 5 \cdot 8 & = & 160 \\ \\ s_{\sigma_2} & = & (-1) \cdot 2 \cdot 3 \cdot 5 \cdot 8 & = & -240 \\ \\ s_{\sigma_3} & = & (-1) \cdot 1 \cdot 4 \cdot 6 \cdot 7 & = & -168 \\ \\ s_{\sigma_4} & = & 2 \cdot 3 \cdot 6 \cdot 7 & = & 252. \end{array}$$

Für die Determinante erhalten wir den Wert det(A) = 160 + (-240) + (-168) + 252 = 4.