Analysis einer Variablen

— Blatt 4 —

(Tutoriumsblatt)

Aufgabe 0

- zu (a) Die Verknüpfungen + und · erfüllen jeweils das Assoziativ- und das Kommutativgesetz erfüllen. Außerdem erfüllen + und · gemeinsam das Distributivgesetz. Es gibt spezielle Elemente $0_{\mathbb{K}}$ und $1_{\mathbb{K}}$ mit $0_{\mathbb{K}} + a = a$ und $1_{\mathbb{K}} \cdot a = a$ für alle $a \in \mathbb{K}$. Für jedes $a \in \mathbb{K}$ gibt es ein $b \in \mathbb{K}$ mit $a + b = 0_{\mathbb{K}}$. Es ist $0_{\mathbb{K}} \neq 1_{\mathbb{K}}$, und für jedes $a \in \mathbb{K}$ mit $a \neq 0_{\mathbb{K}}$ gibt es ein $b \in \mathbb{K}$ mit $ab = 1_{\mathbb{K}}$.
- zu (b) Das Element -a ist das eindeutig bestimmte Körperelement mit der Eigenschaft $a + (-a) = 0_{\mathbb{K}}$. Nach Definition ist a - b = a + (-b).
- zu (c) Eine Halbordnung \leq auf einer Menge X ist eine Relation auf X, die reflexiv ($\forall x \in X : x \leq x$), antisymmetrisch ($\forall x, y \in X : x \leq y \land y \leq x \Rightarrow x = y$) und transitiv ($\forall x, y, z \in X : x \leq y \land y \leq z \Rightarrow x \leq z$) ist. Gilt für alle $x, y \in X$ zusätzlich $x \leq y$ oder $y \leq x$, dann spricht man von einer Totalordnung.
- zu (d) Ist \mathbb{K}^+ eine Anordnung, dann ist durch $x \leq y \Leftrightarrow y x \in \mathbb{K}^+ \cup \{0_{\mathbb{K}}\}$ eine Totalordnung \leq auf \mathbb{K} definiert.

Aufgabe 1

Weil 0 das Nullelement von \mathbb{K} ist, gilt $0+0=0,\ 0+1=1$ und 0+a=a, ebenso 1+0=1 und a+0=a. Damit sind fünf Einträge in der Verknüpfungstabelle von + bereits festgelegt. Nun bestimmen wir das Element 1+a. Angenommen, es ist 1+a=1. Addition von -1 auf beiden Seiten liefert a=0, im Widerspruch dazu, dass 0,1,a drei verschiedene Elemente von \mathbb{K} sind. Wäre 1+a=a, dann würde Addition von -a die Gleichung 1=0 liefern, was ebenfalls ausgeschlossen ist. Also bleibt nur 1+a=0, und aus der Kommutativität von + folgt a+1=0.

Bestimmen wir nun das Element 1+1. Aus 1+1=1 würde 1=0 folgen. Ebenso ist 1+1=0 nicht möglich, denn dies würde bedeuten, dass das Element 1 sein eigenes Negatives ist. Aber wegen 1+a=0 ist a das Negative von 1. Also muss 1+1=a gelten. Als letzten Eintrag der Verknüpfungstabelle müssen wir a+a bestimmen. Aus a+a=a würde a=0 folgen. Im Fall a+a=0 wäre a sein eigenes Negatives, aber wegen 1+a=0 ist das Negative von a gleich 1. Also bleibt nur a+a=1.

Nun bestimmen wir die Verknüpfungstabelle von ·. Aus der Vorlesung ist bekannt (Proposition (5.2)(ii)), dass die Multiplikation des Nullelements mit beliebigen Körperelementen jeweils Null liefert. Es gilt also $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot a = 0$, und $1 \cdot 0 = 0$, $a \cdot 0 = 0$ auf Grund der Kommutativität. Weil 1 das Einselement von \mathbbm{K} ist, gilt $1 \cdot 1 = 1$ und $1 \cdot a = a$ sowie $a \cdot 1 = a$ nach dem Kommutativgesetz. Als einziger Eintrag muss noch $a \cdot a$ bestimmt werden. Der Fall $a \cdot a = 0$ kann nicht eintreten, weil laut Vorlesung das Produkt von zwei Körperelementen ungleich Null wieder ungleich Null ist. Wäre $a \cdot a = a$ gelten, dann könnte diese Gleichung mit a^{-1} multipliziert werden. Dies würde a = 1 ergeben, im Widerspruch zu $a \neq 1$. Also muss $a \cdot a = 1$ gelten.

Die vollständen Verknüpfungstabellen sind also gegeben durch

+	0	1	a	,		0	1	a
0	0	1	a		0	0	0	0
1	1	a	0		1	0	1	a
a	a	0	1		a	0	a	1

Aufgabe 2

zu (a) Die Aussage ist wahr. Zum Beweis sei $a \in \mathbb{K}$ vorgegeben. Zu zeigen ist, dass ein $b \in \mathbb{K}$ mit b > a existiert. Laut Vorlesung gilt $1_{\mathbb{K}} > 0_{\mathbb{K}}$, und daraus folgt $a + 1_{\mathbb{K}} > a + 0_{\mathbb{K}}$, also $a + 1_{\mathbb{K}} > a$. Das Element $b = a + 1_{\mathbb{K}}$ hat also die gewünschte Eigenschaft.

zu (b) Die Aussage ist falsch. Nehmen wir an, $a \in \mathbb{K}$ ein Element mit der Eigenschaft, dass $\forall b \in \mathbb{K} : b > a$ gültig ist. Dann gilt insbesondere a > a, im Widerspruch zu a = a.

zu (c) Die Aussage ist falsch. Wäre sie wahr, dann wäre insbesondere die Aussage

$$\exists b \in \mathbb{K} : \forall c \in \mathbb{K} : 0_{\mathbb{K}} < b < c$$

gültig. Es gäbe dann ein $b \in \mathbb{K}$, so dass $\forall c \in \mathbb{K} : 0_{\mathbb{K}} < b < c$ erfüllt ist. Insbesondere würde dann $0_{\mathbb{K}} < b < 0_{\mathbb{K}}$ gelten. Daraus würde $0_{\mathbb{K}} < 0_{\mathbb{K}}$ folgen, was $0_{\mathbb{K}} = 0_{\mathbb{K}}$ widerspricht.

Aufgabe 3

zu (a) Weil \mathbb{K} nur endlich viele verschiedene Elemente besitzt, gibt es natürliche Zahlen $r, s \in \mathbb{N}$ mit r < s und $r1_{\mathbb{K}} = s1_{\mathbb{K}}$. Es gibt also ein $n \in \mathbb{N}$ mit s = r + n, und daraus folgt $r1_{\mathbb{K}} = s1_{\mathbb{K}} = r1_{\mathbb{K}} + n1_{\mathbb{K}}$. Addieren wir $-r1_{\mathbb{K}}$ auf beiden Seiten, dann erhalten wir $n1_{\mathbb{K}} = 0_{\mathbb{K}}$. Dies zeigt, dass jedenfalls ein $n \in \mathbb{N}$ mit $n1_{\mathbb{K}} = 0_{\mathbb{K}}$ existiert.

Sei nun $n \in \mathbb{N}$ minimal mit der Eigenschaft $n1_{\mathbb{K}} = 0_{\mathbb{K}}$, und nehmen wir an, n ist keine Primzahl. Dann gilt entweder n = 1, oder es gibt natürliche Zahlen r, s mit n = rs und 1 < r, s < n. Im Fall n = 1 wäre $1_{\mathbb{K}} = 0_{\mathbb{K}}$; in Körpern ist aber ausgeschlossen, dass Null- und Einselement zusammenfallen. Im zweiten Fall wäre $r_{\mathbb{K}}s_{\mathbb{K}} = n_{\mathbb{K}} = 0_{\mathbb{K}}$, und da \mathbb{K} ein Körper ist, würde daraus nach Proposition (5.2)(iv) $r_{\mathbb{K}} = 0_{\mathbb{K}}$ oder $s_{\mathbb{K}} = 0_{\mathbb{K}}$ folgen. Aber wegen r, s < n stehen beide Gleichungen im Widerspruch zur Minimalität von n. Die Annahme, dass n keine Primzahl ist, war also falsch.

zu (b) Sei \mathbb{K} ein endlicher Körper, und nehmen wir an, dass auf \mathbb{K} eine Anordnung \mathbb{K}^+ existiert. Nach Aufgabenteil (a) gibt es ein $n \in \mathbb{N}$ mit $n_{\mathbb{K}} = 0_{\mathbb{K}}$. Nach Proposition (5.8)(ii) ist $n_{\mathbb{K}}$ ein positives Element. Aber durch die Anordnungsaxiome in Definition (5.5) wird ausgeschlossen, dass $0_{\mathbb{K}}$ ein positives Element ist. Also kann auf \mathbb{K} keine Anordnung existieren.