Analysis einer Variablen

— Lösung Blatt 3 —

(Tutoriumsblatt)

Aufgabe 0

zu (a) Nach Satz (3.10) (i) folgt aus der Injektivität von f die Existenz einer Abbildung $g: Y \to X$ mit $g \circ f = \mathrm{id}_X$. Nach Satz (3.10) (ii) ist diese Abbildung g surjektiv.

zu (b) Nach Definition der Mächtigkeit gibt es eine bijektive Abbildung $\phi: M_{42} \to A$. Im Fall $n \leq 42$ gilt $M_n \subseteq M_{42}$; die Einschränkung $\phi|_{M_n}$ ist dann eine Abbildung $M_n \to A$. Die eingeschränkte Abbildung ist zudem injektiv, weil die Einschränkung einer injektiven Abbildung offenbar stets injektiv ist.

Im Fall $n \geq 42$ ist $M_{42} \subseteq M_n$. Die Abbildung $M_{42} \to M_n$, $a \mapsto a$ ist offenbar injektiv, und nach Teil (a) existiert deshalb eine surjektive Abbildung $\psi : M_n \to M_{42}$. Weil die Komposition zweier surjektiver Abbildungen surjektiv ist, handelt es sich bei $\phi \circ \psi$ um eine surjektive Abbildung $M_n \to A$.

Gäbe es eine bijektive Abbildung $\alpha: A \to M_{43}$, dann wäre α^{-1} eine Bijektion $M_{43} \to A$, und es würde |A| = 43 folgen. Aber nach Voraussetzung gilt |A| = 42, und die Mächtigkeit einer endlichen Menge ist laut Vorlesung eindeutig bestimmt.

zu (c) Ist r keine Quadratzahl, dann gilt $f^{-1}(\{r\}) = \emptyset$. (Dies gilt insbesondere für alle negativen ganzen Zahlen.) Ist r eine Quadratzahl ungleich Null, $r = n^2$ für ein $n \in \mathbb{N}$, dann gilt $f^{-1}(\{n^2\}) = \{n, -n\}$. Außerdem ist $f^{-1}(\{0\}) = \{0\}$.

Dass zwei verschiedene Teilmengen A, B von \mathbb{Z} dieselbe Bildmenge haben, ist durchaus möglich. Setzen wir beispielsweise $A = \{1\}$ und $B = \{1, -1\}$, dann ist $A \neq B$, aber $f(A) = \{f(1)\} = \{1^2\} = \{1\}$ und zugleich $f(B) = \{f(1), f(-1)\} = \{1^2, (-1)^2\} = \{1, 1\} = \{1\}$.

Aufgabe 1

zu (a) Seien $x, x' \in X$ mit f(x) = f(x') vorgegeben. Dann folgt g(f(x)) = g(f(x')), also $(g \circ f)(x) = (g \circ f)(x')$. Weil $g \circ f$ injektiv ist, folgt daraus x = x'.

zu (b) Sei $z \in Z$ vorgegeben. Wir müssen zeigen, dass ein $y \in Y$ mit g(y) = z existiert. Weil $g \circ f$ surjektiv ist, gibt es ein $x \in X$ mit $(g \circ f)(x) = z$. Setzen wir y = f(x), dann erhalten wir $g(y) = g(f(x)) = (g \circ f)(x) = z$ wie gewünscht.

Aufgabe 2

zu (a) Für jedes $x \in X$ gilt die Äquivalenz

$$x \in f^{-1}(C \cap D) \quad \Leftrightarrow \quad f(x) \in C \cap D \quad \Leftrightarrow \quad (f(x) \in C) \wedge (f(x) \in D) \quad \Leftrightarrow \quad (x \in f^{-1}(C)) \wedge (x \in f^{-1}(D)) \quad \Leftrightarrow \quad x \in f^{-1}(C) \cap f^{-1}(D)$$

wobei im ersten und in dritten Schritt die Definition der Urbildmenge verwendet wurde. Aus der Äquivalenz folgt $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ wie gewünscht.

zu (b) Die Gleichung ist im Allgemeinen falsch, denn selbst wenn die Teilmengen A und B disjunkt sind, also $A \cap B = \emptyset$ gilt, können ein Element $a \in A$ und ein Element $b \in B$ dasselbe Bild haben. Dieses Bild liegt dann in $f(A) \cap f(B)$. Setzen wir beispielsweise $X = \{1, 2\}$, $Y = \{1\}$, $A = \{1\}$ und $B = \{2\}$, und sei $f: X \to Y$ gegeben durch f(1) = f(2) = 1. Dann gilt $A \cap B = \emptyset$ und somit auch $f(A \cap B) = \emptyset$. Andererseits gilt $f(A) = \{f(1)\} = \{1\}$ und ebenso $f(B) = \{f(2)\} = \{1\}$, also $f(A) \cap f(B) = \{1\}$.

Aufgabe 3

zu (a) Nach Definition ist die Einschränkung $f|_{A'}$ zunächst eine Abbildung $A' \to B$. Als erstes überprüfen wir, dass $f(A') \subseteq B'$ gilt, so dass es sich bei $f|_{A'}$ also auch um eine Abbildung $A' \to B'$ handelt. Nehmen wir an, $f(A') \subseteq B'$ ist nicht erfüllt. Dann gibt es ein $a' \in A'$ mit f(a') = b. Andererseits gilt auch f(a) = b, und wegen $a' \in A'$, $a \notin A'$ gilt $a \neq a'$. Aber wegen f(a) = b = f(a') widerspricht dies dann der Injektivität von f. Also muss $f(A') \subseteq B'$ gelten.

Als Einschränkung einer injektiven Abbildung ist $f|_{A'}$ ebenfalls injektiv. Sind nämlich $a_1, a_2 \in A'$ mit $(f|_{A'})(a_1) = (f|_{A'})(a_2)$ vorgegeben, dann folgt $f(a_1) = f(a_2)$ und damit $a_1 = a_2$ auf Grund der Injektivität von f. Zum Nachweis der Surjektivität sei $b_1 \in B'$ vorgegeben. Weil f surjektiv ist, gibt es ein $a_1 \in A$ mit $f(a_1) = b_1$. Wegen $f(a) = b \notin B'$ muss $a_1 \neq a$ gelten. Also liegt a_1 in A', und es gilt $(f|_{A'})(a_1) = f(a_1) = b$.

zu (b) Induktionsanfang: Im Fall n=0 gilt $A=B=\varnothing$. In diesem Fall ist \varnothing die einzige Abbildung zwischen A und B (die "leere" Abbildung), und diese ist nach Definition bijektiv. Es gilt also genau 0!=1 bijektive Abbildungen zwischen A und B.

Induktionsschritt: Sei $n \in \mathbb{N}_0$, und setzen wir die Aussage für n voraus. Seien A und B endliche Mengen mit |A| = |B| = n + 1, und sei S die Menge der bijektiven Abbildungen $A \to B$. Zu zeigen ist |S| = (n+1)!. Sei $a \in A$ ein beliebig gewähltes Element, und für jedes $b \in B$ sei S_b die Menge der bijektiven Abbildungen $f: A \to B$ mit f(a) = b. Offenbar ist jedes $f \in S$ in genau einem S_b enthalten. Wir können S also als disjunkte Vereinigung $S = \bigcup_{b \in B} S_b$ schreiben, und dementsprechend gilt $|S| = \sum_{b \in B} |S_b|$.

Sei $A' = A \setminus \{a\}$. Nach Teil (a) ist durch $f \mapsto f|_{A'}$ eine Abbildung zwischen S_b und der Menge T_b der bijektiven Abbildungen $A' \to B \setminus \{b\}$ definiert. Es ist |A'| = n und $|B \setminus \{b\}| = n$, nach Induktionsvoraussetzung gilt also jeweils $|T_b| = n!$. Wir überprüfen, dass die Abbildung

$$\phi_b: \mathcal{S}_b \longrightarrow \mathcal{T}_b \qquad , \qquad f \mapsto f|_{A'}$$

bijektiv ist. Zum Nachweis der Injektivität von ϕ seien $f,g \in \mathcal{S}_b$ mit $\phi(f) = \phi(g)$ vorgegeben. Wegen f(a) = b = g(a) und $f|_{A'} = \phi(f) = \phi(g) = g|_{A'}$ gilt f(x) = g(x) für alle $x \in A$ und somit f = g. Zum Nachweis der Surjektivität sei $h \in \mathcal{T}_b$ vorgegeben. Wir definieren eine neue Abbildung $\hat{h}: A \to B$ durch $\hat{h}(a') = h(a')$ für alle $a' \in A'$ und $\hat{h}(a) = b$. Wir müssen zeigen, dass \hat{h} in \mathcal{S}_b liegt und überprüfen dafür die Bijektivität. Nach Definition gilt $h|_{A'} = h$. Die Abbildung h ist surjektiv. Ist nämlich $b_1 \in B$ vorgegeben, dann gilt $\hat{h}(a) = b_1$ im Fall $b = b_1$, und andernfalls gibt es auf Grund der Surjektivität von h ein $a_1 \in A$ mit $\hat{h}(a_1) = h(a_1) = b_1$. Die Abbildung h ist auch injektiv. Seien nämlich a_1, a_2 mit $\hat{h}(a_1) = \hat{h}(a_2)$ vorgegeben. Dann gilt entweder $\hat{h}(a_1) = b = \hat{h}(a_2)$ oder $\hat{h}(a_1) = \hat{h}(a_2) \in B \setminus \{b\}$. Im ersten Fall folgt $a_1 = a = a_2$, im zweiten $h(a_1) = h(a_2)$ und daraus $a_1 = a_2$, auf Grund der Injektivität von h. Also ist \hat{h} tatsächlich ein Element von \mathcal{S}_b , und es gilt $\phi_b(\hat{h}) = \hat{h}|_{A'} = h$.

Damit ist die Surjektivität von ϕ_b bewiesen. Insgesamt ist ϕ_b für jedes $b \in B$ bijektiv. Daraus folgt $|\mathcal{S}_b| = |\mathcal{T}_b| = n!$ für alle $b \in B$. Wegen |B| = n + 1 folgt

$$|\mathcal{S}| = \sum_{b \in B} |\mathcal{S}_b| = \sum_{b \in B} |\mathcal{T}_b| = |B||\mathcal{T}_b| = (n+1)n! = (n+1)!$$
.