Schnitte senkrecht zu den Koordinatenachsen

Definition (8.6)

Sei C C Q; x Qy eine beliebige Teilmenge, x € 21 und y € Q5.
Dann definieren wir

Gt = {yeQ|(xy)eCt und C = {xe|(x,y)€C}

Wir nennen C! bzw. C}? einen Schnitt durch C senkrecht zur x-
bzw. zur y-Achse.

.

Notation:
Fiir jedes C € o7 definieren wir die Funktion

Sc: Ql — IR.,_,X — ,UQ(C;}).



Existenz des ProduktmaBes

Es gibt auf @4 ® 9% ein eindeutig bestimmtes MaB p mit
H(Al X Ag) = ,u,l(Al)/LQ(Az) fur alle A € Jfl ; A € JZ72

Dabei gilt

W(O) = [ (€ din) = [ 1a(CP) draty)

fir alle C € 94 ® o%. Das MaB p ist ebenfalls o-endlich. Wir
bezeichnen es als das ProduktmaB w1 ® po von py und po.

Die Gleichungen fiir u(C) bezeichnet man auch als Cavalierisches
Prinzip.
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Messbarkeit entlang von Koordinatenachsen

Notation:

e Seien (Q1, .97, p1) und (Q2, 9%, p12) zwei MaBraume. Es sei
(', ") ein weiterer Messraum und f : Q1 x Qp — Q' eine
Abbildung.

o Fiir jedes x € Q1 bezeichnen wir mit £} die Funktion gegeben
durch £ : Qo — Q. y = f(x,y).

@ Entsprechend sei fiir jedes y € €, die Funktion fy2 Q= QO
gegeben durch fyz(x) = f(x,y) fur alle x € Q.

Lemma (8.12)

Sei f: Q1 x Qp — Q eine (A ® o4)-o/'-messbare Funktion.
Dann gilt
(i) Die Funktion £} ist .o-<7'-messbar fiir jedes x € Q.
(ii) Die Funktion £2 ist «7-</'-messbar fiir jedes y € Qo.
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Der Satz von Tonelli

Sei f: Q1 x Qp — Ry eine (9 ® h)-messbare Funktion.
Dann gilt

(i) Die Abbildung Q> — R, y — [ £2 dpy ist a/>-messbar.
(i) Die Abbildung Q1 — Ry, x — [ £} duy ist <71-messbar.

(i) Es gilt /f d(p ® pp) =

/(/fyz dul) dua(y) = /(/ F1 d,@) e
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Der Satz von Fubini

Satz (8.14)

Sei f: Q1 x Q — R eine 1 @ pp-integrierbare Funktion.

Dann gilt
(i) Die Funktion £} ist fiir ui-fast alle x € Q1 po-integrierbar.
(i) Die Funktion fy2 ist fiir uo-fast alle y € Qo pi-integrierbar.

(iii) Die u1-fast iiberall definierte Funktion x — [ £} dpuo ist
p1-integrierbar, und die po-fast iiberall definierte Funktion

y — [ 2 dpy ist po-integrierbar. Es gilt

/fd(m@uz) =/ (/ £ du1> dpa(y) =/ </ fy duz) dp(x).




Anwendung: Stetige Funktionen auf Rechtecken

Folgerung (8.15)

Seien a,b,c,d € R mit a < bund c < d, sei Q = [a, b] X [c, d],
und sei f : @ — R eine stetige Funktion. Dann ist f
Lebesgue-integrierbar, die Funktion [c,d] — R, y — f(x,y) ist fir
jedes x € [a, b] Riemann-integrierbar, und es gilt

/Qfdug _ /ab</cdf(x,y)dy> .
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