
§8. Produktmaße und Satz von Fubini

Seien (Ωk ,Ak) Messräume für k ∈ {1, 2}, außerdem Ω = Ω1 ×Ω2,
und es bezeichen π1 : Ω → Ω1 und π2 : Ω → Ω2 die zugehörigen
Projkektionsabbildungen.

Definition (8.1)

Als Produkt A = A1 ⊗ A2 der beiden σ-Algebren A1 und A2

bezeichnet man die von dem System{
π−1
k (A) | k ∈ {1, 2} , A ∈ Ak

}
erzeugte σ-Algebra. Das Paar (Ω,A ) wird dann das Produkt der
beiden Messräume (Ω1,A1) und (Ω2,A2) genannt.

Man sieht unmittelbar, dass A1 ⊗ A2 die kleinste σ-Algebra in
Ω1 × Ω2 ist, bezüglich der die beiden Projektionsabbildungen
π1, π2 messbar sind.



Erzeugendensystem vom Produktmaßen

Satz (8.2)

Für k = 1, 2 sei Ek jeweils ein Erzeugendensystem von Ak , wobei
wir zusätzlich annehmen, dass in Ek jeweils eine monoton
wachsende Folge mit (Ekm)m∈N mit

⋃
m∈N Ekm = Ωk exstiert.

Dann bilden die Mengen der Form E1 × E2 mit E1 ∈ E1 und
E2 ∈ E2 ein Erzeugendensystem von A = A1 ⊗ A2.

Der Satz zeigt auch, dass unter der angegebenen Voraussetzung
die Mengen der Form A1 × A2 mit Ak ∈ Ak für k ∈ {1, 2} in A
enthalten sind und ein Erzeugendensystem dieser σ-Algebra bilden.







Die Borelsche σ-Algebra als Produktmaß

Wie man sich leicht überzeugt, kann das Produkt der Messräume
von zwei auf endlich viele Faktoren ausgedehnt werden.

Folgerung (8.3)

Für jedes n ∈ N stimmt die Borelsche σ-Algebra Bn in Rn stimmt
mit der σ-Algebra

⊗n
k=1 B1 überein.



Zur Eindeutigkeit des Produktmaßes

Satz (8.4)

Für k = 1, 2 sei Ek jeweils ein ∩-stabiles Erzeugendensystem von
Ak , das eine monoton wachsende Folge (Ekm)m∈N mit⋃∞

m=1 Ekm = Ωk und µk(Ekm) < +∞ für alle m ∈ N enthält.
Dann gibt es höchstens ein Maß µ auf (Ω,A ) mit

µ(E1×E2) = µ1(E1)µ2(E2) für alle E1 ∈ E1 und E2 ∈ E2.









Zur Eindeutigkeit des Produktmaßes (Forts.)

Folgerung (8.5)

Ist µk für 1 ≤ k ≤ n jeweils ein σ-endliches Maß auf Ak , dann gibt
es höchstens ein Maß µ auf

⊗n
k=1 Ak mit

µ(A1× ...×An) =
n∏

k=1

µk(Ak) für Ak ∈ Ak , 1 ≤ k ≤ n.



Schnitte senkrecht zu den Koordinatenachsen

Von nun an setzen wir voraus, dass (Ω1,A1, µ1) und (Ω2,A2, µ2)
zwei Maßräume mit σ-endlichen Maßen µ1, µ2 sind.

Definition (8.6)

Sei C ⊆ Ω1 × Ω2 eine beliebige Teilmenge, x ∈ Ω1 und y ∈ Ω2.
Dann definieren wir

C 1
x = {y ∈ Ω2 | (x , y) ∈ C} und C 2

y = {x ∈ Ω1 | (x , y) ∈ C}.

Wir nennen C 1
x bzw. C 2

y einen Schnitt durch C senkrecht zur x-
bzw. zur y -Achse.





Schnitte und Mengenoperationen

Lemma (8.7)

Sei C ⊆ Ω1 × Ω2 und (Cm)m∈N eine Folge in Ω1 × Ω2. Dann
gelten für alle x ∈ Ω1 die Gleichungen (Ω \ C )1x = Ω2 \ C 1

x und(⋃
m∈N Cm

)1
x
=

⋃
m∈N(Cm)

1
x . Analoge Gleichungen gelten auch für

die Schnitte senkrecht zur y -Achse.

Lemma (8.8)

Sei C ∈ A . Dann ist für jedes x ∈ Ω1 die Menge C 1
x in A2

enthalten. Ebenso gilt C 2
y ∈ A1 für alle y ∈ Ω2.





Maß der Schnittmengen als Funktion der Koordinate

Notation:
Für jedes C ∈ A definieren wir die Funktion

sC : Ω1 → R̄+, x 7→ µ2(C
1
x ).

Lemma (8.9)

Die Abbildungen sC erfüllen wir alle C ∈ A und alle x ∈ Ω1 die
folgenden Rechenregeln.

(i) sΩ(x) = µ2(Ω2)

(ii) sΩ\C (x) = µ2(Ω2)− sC (x).

(iii) Gilt C =
⋃∞

n=1 Cn für eine Folge (Cn)n∈N in A bestehend
aus paarweise disjunkten Mengen, dann folgt
sC (x) =

∑∞
n=1 sCn(x).

(iv) Ist A1 ∈ A1 und A2 ∈ A2, dann gilt sA1×A2 = µ2(A2) · 1A1









Messbarkeitseigenschaft von sC

Erinnerung:
Ein Dynkin-System in einer Menge Ω ist ein Mengensystem D mit
∅ ∈ D , dass abgeschlossen unter Komplementen und abzählbaren
disjunkten Vereinigungen ist.

Lemma (8.10)

Sei C ∈ A . Dann gilt

(i) Die Funktion sC : Ω1 → R̄+, x 7→ µ2(C
1
x ) ist A1-messbar.

(ii) Die Funktion s ′C : Ω2 → R̄+, y 7→ µ1(C
2
y ) ist A2-messbar.



Beweis von Lemma 8.10, nur Teil (i) (Skizze)

Zunächst überprüft man mit Hilfe der Regeln (i), (ii) und (iii) aus
Lemma 8.9, dass das Mengensystem

D = {C ∈ Ω1 | sC ist A1-messbar }

ein Dynkin-System ist. Auf Grund der Regel (iv) ist das System

E = {A1 × A2 | A1 ∈ A1,A2 ∈ A2}

in D enthalten. Daraus folgt δ(E ) ⊆ D . Außerdem ist es ∩-stabil,
und nach Satz 4.3 folgt daraus σ(E ) = δ(E ). Wegen σ(E ) = A
folgt daraus wiederum D = A . Dies bedeutet, dass sC für jedes
C ∈ A eine messbare Funktion ist.



Existenz des Produktmaßes

Satz (8.11)

Es gibt auf A1 ⊗ A2 ein eindeutig bestimmtes Maß µ mit

µ(A1 × A2) = µ1(A1)µ2(A2) für alle A1 ∈ A1 , A2 ∈ A2.

Dabei gilt

µ(C ) =

∫
µ2(C

1
x ) dµ1(x) =

∫
µ1(C

2
y ) dµ2(y)

für alle C ∈ A1 ⊗ A2. Das Maß µ ist ebenfalls σ-endlich. Wir
bezeichnen es als das Produktmaß µ1 ⊗ µ2 von µ1 und µ2.

Die Gleichungen für µ(C ) bezeichnet man auch als Cavalierisches
Prinzip.



Historische Anwendung des Cavalierischen Prinzips

(Erläuterung auf der nächsten Seite)



Das Ziel ist der Nachweis, dass die Kugel mit Radius r das
Volumen 4

3πr
3 besitzt.

Für diesen Nachweis setzte Cavalieri neben eine Halbkugel H
vom Radius r einen Zylinder Z der Höhe r mit Grundflächen-
radius r . In den Zylinder setzte er einen auf der Spitze stehen-
den Kegel K , ebenfalls mit Höhe r und Grundflächenradius r .

Bereits bekannt waren die Volumina µ3(Z ) = πr3 und
µ3(K ) = 1

3πr
3 besitzt. Das Komplement Z \ K des Kegels

innerhalb des Zylinders hat also das Volumen
v3(Z \ K ) = πr3 − 1

3πr
3 = 2

3πr
3.



Cavalieris Idee bestand nun darin, sowohl H als auch Z \ K in
jeder Höhe h ∈ [0, r ] mit einer Ebene parallel zur xy -Ebene zu
schneiden. Aus der Halbkugel wird ein Kreis vom Radius√
r2 − h2 ausgeschnitten, wie man durch Anwendung des

Satzes des Pythagoras leicht erkennt. Dieser Kreis hat den
Flächeninhalt π(r2 − h2).

Dieselbe Ebene schneidet aus Z einen Kreis vom Radius r aus,
und aus dem Kegel einen Kreis vom Radius h (weil der Radius
dieses Kreises linear anwächst, wenn h von 0 nach r läuft).
Die Differenz dieser beiden Kreise ist ein Kreisring vom
Flächeninhalt π(r2 − h2).

Aus der Tatsache, dass aus H und Z \ K auf jeder Höhe eine
gleich größe Fläche ausgeschnitten wird, konnte Cavalieri
schließen, dass v3(H) = v3(Z \ K ) = 2

3πr
3 gilt.


