Satz von Lebesgue iiber die majorisierte Konvergenz

Sei (fm)men eine Folge p-integierbarer Funktionen £, : Q — R, die
fast iiberall gegen eine Funktion f : 2 — R konvergiert. Sei ferner
g : Q — Ry eine p-integrierbare Funktion mit der Eigenschaft,
dass pu-fast iiberall jeweils |f| < g erfiillt ist, fiir jedes m € IN.
Dann ist auch f , und es gilt




Differenzierbarkeit parameterabhangiger Integrale

Sei | C R ein offenes Intervall und f : Q x I — R eine Abbildung,
so dass folgende Bedingungen erfiillt sind.

(i) Fiir jedes t € [ ist Q — R, x — f(x, t) eine &/-messbare
Funktion.

(ii) Es gibt ein tp € /, so dass Q — R, x — f(x, tp)
p-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich Q x [ existiert die
partielle Ableitung %

(iv) Es gibt eine p-integrierbare Funktion g : Q — R, so dass
fiir alle t € / jeweils |9£(x, t)| < g(x) fiir p-fast alle x € Q
erfiillt ist.

Dannist F: | — R, t — [ f(x,t)du(x) eine reellwertige, auf
ganz | definierte und differenzierbare Funktion, und es gilt
fir alle t € [.
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Partielle Ableitung unter dem Integralzeichen

Folgerung (7.5)
Seien m,n € IN, A C R™ eine Lebesgue-messbare und U C R"
eine offene Teilmenge, und sei f : A x U — R eine Funktion mit
folgenden Eigenschaften.
(i) Fir jedes y € U ist die Funktion A — R, a+— f(a,y)
Lebesgue-integrierbar.

(i) Fiir jeden Punkt a € A existieren die partiellen Ableitungen
0jf; mit 1 < j < n auf ganz U, wobei f, : U — R durch
fa(x) = f(a, x) definiert ist.

(iii) Es gibt eine u-integrierbare Funktion g : A — R, so dass
|0fa] < g(a) fiir 1 < j < n gilt.

Dann ist die Funktion F: U = R, x — [, f(a,x) dpu(a) partiell

differenzierbar, und es gilt

fur alle x € U.
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Erinnerung: Definition des Riemann-Integrals

@ gegeben: a,b € R mit a< b, f: [a, b] = R beschrankt

@ Zerlegung von [a, b] = endliche Teilmenge
¥ = {Xl,...,X,,,l} - ]a, b[

@ Setze ¢, = inf f([xk—1,xk]) und dix = sup f([xk—1,x«])
firl <k <n.
@ Definition von Unter- und Obersumme

n

() =) ala—xa-1)  FF(L) = dlxa—xu-1)
k=1 k=1



Erinnerung: Definition des Riemann-Integrals

@ Die Funktion f ist Riemann-integrierbar genau dann, wenn fiir
jedes e € R™ eine Zerlegung 2 existiert mit

IHL) - S (Z) < e.

o Fiir das Riemann-Integral gilt dann

b
S(Z) < / f(x)dx < SH(2).



Beziehung zur Lebesgueschen Integrationstheorie

o Sei u die Einschrankung des Lebesgue-MaBes 1 auf (), 4-
o Fiir jede Zerlegung % definiere die Funktionen

fg}:(X) = Z Ck 1]Xk—1,><k[ + Z f(Xk) ) ]‘{Xk}
k=1 k=0

und

fgt(X) = Z dk . 1]Xk71,Xk[ + Z f(Xk) . 1{Xk}'
k=1 k=0

e Offenbar gilt dann f,; < f < f.

@ Beziehung zwischen Integral und Unter- bzw. Obersumme

/ff; dpy = 5 (Z) und /ff}T du = S(2)



Riemannsche und Lebesguesche Integrierbarkeit

Sei f : [a, b] — R eine beschrankte Funktion.

(i) Ist f , dann auch

und es gilt
b
/fd,u = / f(x) dx.
a

(i) Die Funktion f ist genau dann Riemann-integrierbar, wenn
die Menge N = {x € [a, b] | f unstetig in x} eine
Lebesguesche Nullmenge ist.
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Korrektur: In der letzten Zeile muss .%;" (Z:,) stehen, und an
Stelle des Gleichheitszeichens am Ende ein Implikationspfeil ,,=".
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