
Satz von Lebesgue über die majorisierte Konvergenz

Satz (7.2)

Sei (fm)m∈N eine Folge µ-integierbarer Funktionen fm : Ω → R, die
fast überall gegen eine Funktion f : Ω → R konvergiert. Sei ferner
g : Ω → R+ eine µ-integrierbare Funktion mit der Eigenschaft,
dass µ-fast überall jeweils |fm| ≤ g erfüllt ist, für jedes m ∈ N.
Dann ist auch f µ-integrierbar, und es gilt∫

f dµ = lim
m→∞

∫
fm dµ.



Differenzierbarkeit parameterabhängiger Integrale

Satz (7.4)

Sei I ⊆ R ein offenes Intervall und f : Ω× I → R eine Abbildung,
so dass folgende Bedingungen erfüllt sind.

(i) Für jedes t ∈ I ist Ω → R, x 7→ f (x , t) eine A -messbare
Funktion.

(ii) Es gibt ein t0 ∈ I , so dass Ω → R, x 7→ f (x , t0)
µ-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich Ω× I existiert die
partielle Ableitung ∂f

∂t .

(iv) Es gibt eine µ-integrierbare Funktion g : Ω → R̄+, so dass
für alle t ∈ I jeweils

∣∣∂f
∂t (x , t)

∣∣ ≤ g(x) für µ-fast alle x ∈ Ω
erfüllt ist.

Dann ist F : I → R, t 7→
∫
f (x , t) dµ(x) eine reellwertige, auf

ganz I definierte und differenzierbare Funktion, und es gilt
F ′(t) =

∫
∂f
∂t (x , t) dµ(x) für alle t ∈ I .











Partielle Ableitung unter dem Integralzeichen

Folgerung (7.5)

Seien m, n ∈ N, A ⊆ Rm eine Lebesgue-messbare und U ⊆ Rn

eine offene Teilmenge, und sei f : A× U → R eine Funktion mit
folgenden Eigenschaften.

(i) Für jedes y ∈ U ist die Funktion A → R, a 7→ f (a, y)
Lebesgue-integrierbar.

(ii) Für jeden Punkt a ∈ A existieren die partiellen Ableitungen
∂j fa mit 1 ≤ j ≤ n auf ganz U, wobei fa : U → R durch
fa(x) = f (a, x) definiert ist.

(iii) Es gibt eine µ-integrierbare Funktion g : A → R̄+, so dass
|∂j fa| ≤ g(a) für 1 ≤ j ≤ n gilt.

Dann ist die Funktion F : U → R, x 7→
∫
A f (a, x) dµ(a) partiell

differenzierbar, und es gilt

∂jF (x) =

∫
A
∂j fa(x) dµ(a) für alle x ∈ U.







Erinnerung: Definition des Riemann-Integrals

gegeben: a, b ∈ R mit a < b, f : [a, b] → R beschränkt

Zerlegung von [a, b] = endliche Teilmenge
Z = {x1, ..., xn−1} ⊆ ]a, b[

Setze ck = inf f ([xk−1, xk ]) und dk = sup f ([xk−1, xk ])
für 1 ≤ k ≤ n.

Definition von Unter- und Obersumme

S −
f (Z ) =

n∑
k=1

ck(xk−xk−1) , S +
f (Z ) =

n∑
k=1

dk(xk−xk−1)



Erinnerung: Definition des Riemann-Integrals

Die Funktion f ist Riemann-integrierbar genau dann, wenn für
jedes ε ∈ R+ eine Zerlegung Z existiert mit

S +
f (Z )− S −

f (Z ) < ε.

Für das Riemann-Integral gilt dann

S −
f (Z ) <

∫ b

a
f (x) dx < S +

f (Z ).



Beziehung zur Lebesgueschen Integrationstheorie

Sei µ die Einschränkung des Lebesgue-Maßes µ1 auf (A1)[a,b].

Für jede Zerlegung Z definiere die Funktionen

f −Z (x) =
n∑

k=1

ck · 1]xk−1,xk [ +
n∑

k=0

f (xk) · 1{xk}

und

f +Z (x) =
n∑

k=1

dk · 1]xk−1,xk [ +
n∑

k=0

f (xk) · 1{xk}.

Offenbar gilt dann f −Z ≤ f ≤ f +Z .

Beziehung zwischen Integral und Unter- bzw. Obersumme∫
f −Z dµ1 = S −

f (Z ) und

∫
f +Z dµ1 = S +

f (Z )



Riemannsche und Lebesguesche Integrierbarkeit

Satz (7.6)

Sei f : [a, b] → R eine beschränkte Funktion.

(i) Ist f Riemann-integrierbar, dann auch Lebesgue-integrierbar,
und es gilt ∫

f dµ =

∫ b

a
f (x) dx .

(ii) Die Funktion f ist genau dann Riemann-integrierbar, wenn
die Menge N = {x ∈ [a, b] | f unstetig in x} eine
Lebesguesche Nullmenge ist.







Korrektur: In der letzten Zeile muss S +
f (Zm) stehen, und an

Stelle des Gleichheitszeichens am Ende ein Implikationspfeil
”
⇒“.










