Erinnerung:

Monotone Konvergenz nichtnegativer Funktionen

Sei (fn)neN eirle monoton wachsende Folge .o7-messbarer Funktio-
nen f, : Q — R, und sei f = supf,. Dann ist auch f eine &7-
messbare Funktion, und es gilt

/fdu = sup/f,,d,u.




Satz von Beppo Levi iiber die monotone Konvergenz

Satz (7.1)

Sei (fm)men eine Folge von p-fast iiberall monoton wachsenden,
p-integrierbaren Funktionen f,, : Q@ — R mit der Eigenschaft, dass
die Folge der Integral [ fndpin R ist. Dann existiert
eine p-integrierbare Funktion f :  — R mit der Eigenschaft, dass
(fm)men punktweise p-fast iiberall gegen f konvergiert, und es gilt

limp, [ fmdu = [ fdpu.

Anmerkungen:

@ Der Satz von Beppo Levi gilt auch fiir monoton fallende
Folgen p-integrierbarer Funktionen.

e Fiir Riemann-integrierbare Funktionen ist eine entsprechende
Aussage falsch.
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Satz von Lebesgue iiber die majorisierte Konvergenz

Sei (fm)men eine Folge p-integierbarer Funktionen £, : Q — R, die
fast iiberall gegen eine Funktion f : 2 — R konvergiert. Sei ferner
g : Q — Ry eine p-integrierbare Funktion mit der Eigenschaft,
dass pu-fast iiberall jeweils |f| < g erfiillt ist, fiir jedes m € IN.
Dann ist auch f , und es gilt
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Stetigkeit parameterabhangiger Integrale

Sei (T, d) ein metrischer Raum.

Satz (7.3)
Sei f: Qx T — R eine Funktion mit den folgenden Eigenschaften.

(i) Fir jedes t € T ist Q — R, x — f(x, t) eine o/-messbare
Funktion.
(i) Es gibt ein tg € T, so dass T — R, t — f(x, t) fiir pu-fast
alle x € Q in ty stetig ist.
(iii) Es gibt eine Umgebung U C T von to und eine
p-integrierbare Funktion g : Q — R4, so dass fiir alle t € U
jeweils |f(x, t)| < g(x) fiir u-fast alle x € Q erfiillt ist.

Dannist F: U — R, eine auf ganz U
definierte, reellwertige, in ty stetige Funktion.
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Differenzierbarkeit parameterabhangiger Integrale

Sei | C R ein offenes Intervall und  : Q x I — R eine Abbildung,
so dass folgende Bedingungen erfiillt sind.

(i) Fiir jedes t € [ ist Q — R, x — f(x, t) eine &/-messbare
Funktion.

(ii) Es gibt ein tp € /, so dass Q — R, x — f(x, tp)
p-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich Q x [ existiert die
partielle Ableitung %

(iv) Es gibt eine p-integrierbare Funktion g : Q — R, so dass
fiir alle t € / jeweils |95 (x, t)| < g(x) fiir p-fast alle x € Q
erfiillt ist.

Dannist F: | — R, t — [ f(x,t)du(x) eine reellwertige, auf
ganz | definierte und differenzierbare Funktion, und es gilt
fir alle t € [.




Anwendungsbeispiel zu Satz 7.4

Betrachte die Funktion f : [0,1] x R — R gegeben durch
f(x,t) = xt. Dann ist die zugehdrige Integralfunktion Funktion
F : R — R gegeben durch

N[

1 1
F(t) = /Of(x,t)dx = /oxtdx = [%txﬂé —

AuBerdem ist th(x t) = x fiir alle (x,t) € [0,1] x R, also gilt
tatsachlich

1
[ orwne = [xac = B = 3 = PO
0

fiir alle t € R. (Bei der Rechnung haben wir schon als bekannt
vorausgesetzt, dass bei einer Riemann-integrierbaren Funktion auf
einem endlichen abgeschlossenen Intervall [a, b] das Riemann- und
das Lebesgue-Integral iibereinstimmen.)



