
Erinnerung:
Monotone Konvergenz nichtnegativer Funktionen

Satz (6.12)

Sei (fn)n∈N eine monoton wachsende Folge A -messbarer Funktio-
nen fn : Ω → R̄+, und sei f = sup fn. Dann ist auch f eine A -
messbare Funktion, und es gilt∫

f dµ = sup

∫
fn dµ.



Satz von Beppo Levi über die monotone Konvergenz

Satz (7.1)

Sei (fm)m∈N eine Folge von µ-fast überall monoton wachsenden,
µ-integrierbaren Funktionen fm : Ω → R̄ mit der Eigenschaft, dass
die Folge der Integral

∫
fm dµ in R beschränkt ist. Dann existiert

eine µ-integrierbare Funktion f : Ω → R mit der Eigenschaft, dass
(fm)m∈N punktweise µ-fast überall gegen f konvergiert, und es gilt
limm

∫
fm dµ =

∫
f dµ.

Anmerkungen:

Der Satz von Beppo Levi gilt auch für monoton fallende
Folgen µ-integrierbarer Funktionen.

Für Riemann-integrierbare Funktionen ist eine entsprechende
Aussage falsch.











Satz von Lebesgue über die majorisierte Konvergenz

Satz (7.2)

Sei (fm)m∈N eine Folge µ-integierbarer Funktionen fm : Ω → R, die
fast überall gegen eine Funktion f : Ω → R konvergiert. Sei ferner
g : Ω → R+ eine µ-integrierbare Funktion mit der Eigenschaft,
dass µ-fast überall jeweils |fm| ≤ g erfüllt ist, für jedes m ∈ N.
Dann ist auch f µ-integrierbar, und es gilt∫

f dµ = lim
m→∞

∫
fm dµ.













Stetigkeit parameterabhängiger Integrale

Sei (T , d) ein metrischer Raum.

Satz (7.3)

Sei f : Ω×T → R eine Funktion mit den folgenden Eigenschaften.

(i) Für jedes t ∈ T ist Ω → R, x 7→ f (x , t) eine A -messbare
Funktion.

(ii) Es gibt ein t0 ∈ T , so dass T → R, t 7→ f (x , t) für µ-fast
alle x ∈ Ω in t0 stetig ist.

(iii) Es gibt eine Umgebung U ⊆ T von t0 und eine
µ-integrierbare Funktion g : Ω → R̄+, so dass für alle t ∈ U
jeweils |f (x , t)| ≤ g(x) für µ-fast alle x ∈ Ω erfüllt ist.

Dann ist F : U → R, t 7→
∫
f (x , t) dµ(x) eine auf ganz U

definierte, reellwertige, in t0 stetige Funktion.









Differenzierbarkeit parameterabhängiger Integrale

Satz (7.4)

Sei I ⊆ R ein offenes Intervall und f : Ω× I → R eine Abbildung,
so dass folgende Bedingungen erfüllt sind.

(i) Für jedes t ∈ I ist Ω → R, x 7→ f (x , t) eine A -messbare
Funktion.

(ii) Es gibt ein t0 ∈ I , so dass Ω → R, x 7→ f (x , t0)
µ-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich Ω× I existiert die
partielle Ableitung ∂f

∂t .

(iv) Es gibt eine µ-integrierbare Funktion g : Ω → R̄+, so dass
für alle t ∈ I jeweils

∣∣∂f
∂t (x , t)

∣∣ ≤ g(x) für µ-fast alle x ∈ Ω
erfüllt ist.

Dann ist F : I → R, t 7→
∫
f (x , t) dµ(x) eine reellwertige, auf

ganz I definierte und differenzierbare Funktion, und es gilt
F ′(t) =

∫
∂f
∂t (x , t) dµ(x) für alle t ∈ I .



Anwendungsbeispiel zu Satz 7.4

Betrachte die Funktion f : [0, 1]×R→ R gegeben durch
f (x , t) = xt. Dann ist die zugehörige Integralfunktion Funktion
F : R→ R gegeben durch

F (t) =

∫ 1

0
f (x , t) dx =

∫ 1

0
xt dx =

[
1
2 tx

2
]1
0

= 1
2 t.

Außerdem ist ∂
∂tF (x , t) = x für alle (x , t) ∈ [0, 1]×R, also gilt

tatsächlich∫ 1

0

∂

∂t
F (x , t) dx =

∫ 1

0
x dx =

[
1
2x

2
]1
0

= 1
2 = F ′(t)

für alle t ∈ R. (Bei der Rechnung haben wir schon als bekannt
vorausgesetzt, dass bei einer Riemann-integrierbaren Funktion auf
einem endlichen abgeschlossenen Intervall [a, b] das Riemann- und
das Lebesgue-Integral übereinstimmen.)


