Das pu-Integral einer nichtnegativen messbaren Funktion

Definition (6.10)

Sei f: Q — R, eine o7-messbare Funktion und (f,),c eine
monoton wachsende Folge in E(£,.27) mit sup f, = f. Dann ist
das p-Integral von f definiert durch

/fdu = sup/fndu.




p-Integrierbarkeit reellwertiger Funktionen

Definition (6.13)

Eine Funktion f : Q — R wird p-integrierbar genannt, wenn f eine
«/-messbare Funktion und die Integrale [ f* dpu, [~ du
sind. In diesem Fall nennt man

/fd,u = /f+du—/f_du

das p-Integral von f.

.

Ist der MaBraum gegeben durch (R9, .7, 1), dann nennt man die
lg-integrierbaren Funktionen auch Lebesgue-integrierbar und
spricht vom Lebesgue-Integral der Funktion.



Charakterisierung der integrierbaren Funktionen

Fiir eine /-messbare Funktion sind die folgenden Aussagen
dquivalent.
(i) Die Funktion f ist u-integrierbar.
(ii) Es gibt p-integrierbare Funktionen g, h: Q — R,
mit f = g — h.
(iii) Es gibt eine u-integrierbare Funktion g1 : Q — R
mit |f| < g1.
(iv) Die Funktion |f] ist u-integrierbar.
Ist Bedingung (ii) mit den Funktionen g und h erfiillt, dann gilt
Jfdu=[gdu—[hdpu




Rechenregeln fiir das p-Integral

Seien f,g : Q — R zwei p-integrierbare Funktionen und a € R.
Dann sind auch die Funktionen f + g, af, min{f, g} und
max{f, g}, sofern sie auf ganz Q definiert sind, jeweils
p-integrierbar. Es gilt dann

/(f+g)du—/fdu+/gdﬂ
/(ozf)du:a/fd,u.

Die reellwertigen pu-integrierbaren Funktionen bilden also einen
, den wir mit .Z*(1) bezeichnen.




Integration liber messbare Teilmengen

Definition (6.18)

Sei f : Q — R eine p-integrierbare Funktion und A € &7. Dann ist
das p-Integral von f iiber A definiert durch

/fd,u = /f-lAd,u.
A

Rechenregel:



Einschrankung integrierbarer Funktionen

Notation:

Ist (2,27, 1) ein MaBraum und B € o/, dann setzen wir
%B:{AQB’AG%}

und g = fi]ozg -

Lemma (6.19)

Sei f : Q — R eine p-integrierbare Funktion und B € .«7. Dann ist
die Einschrankung f|g eine upg-integrierbare Funktion, und es gilt

/(f\s) dug = /Bf dp.
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Sprechweise und Notation

Sei (Q,.97, 1) ein MaBraum, B € o7 und f : B — R.

@ Man bezeichnet f : B — R als p-integrierbar, wenn f auf dem
MaBraum (B, <7g, ug) eine ppg-integrierbare Funktion ist.

@ Man setzt dann [ fdu= [fdug.

@ Aus dem Lemma folgt, dass fiir jede p-integrierbare Funktion
g : Q2 — R und jedes B € o auch die Einschriankung g|g eine
p-integrierbare Funktion ist und dann [p g dp = [5(glg) du

gilt.



Die Nullfortsetzung einer Funktion

Definition (6.20)
SeiBc o/, f: B— Rund fg: Q — R definiert durch

7o) f(x) firxeB
X ==
? 0 firx¢B.

Dann nennen wir 7/‘;3 die Nullfortsetzung von f auf Q.




Eigenschaften der Nullfortsetzung

Sei Be o/ und f : B — R eine Funktion.

(i) Ist f nicht-negativ und </g-messbar, dann ist fg eine
</ -messbare Funktion.

(i) Ist f p-integrierbar, dann gilt dasselbe fiir fg, und es gilt
Jgf du= [fg dpu.

A




Nullmengen und fast iiberall existierende Eigenschaften

Definition (6.22)

Sei (2, 47, 1) ein MaBraum. Wir bezeichnen eine Teilmenge N C Q
als Nullmenge, wenn gilt.

Sprechweise:

Eine Funktion f : Q — R besitzt eine Eigenschaft u-fast iiberall,
wenn eine Nullmenge N C Q existiert, so dass die Eigenschaft fiir
alle erfiillt ist.



Beispiele fiir fast iiberall existierende Eigenschaften

o Wir sagen, zwei Funktionen f, g : Q — R sind p-fast iiberall
gleich, falls eine Nullmenge N C Q existiert, so dass
f(x) = g(x) fir alle x € Q\ N gilt.

@ Insbesondere sagt man, die Funktion f verschwindet pu-fast

iiberall, wenn f p-fast iiberall mit der Nullfunktion
iibereinstimmt.

@ Eine Funktion f : Q — R ist yu-fast iiberall endlich, falls eine
Nullmenge N C Q existiert, so dass |f(x)| < +oo fiir alle
x € Q\ N erfiillt ist.



Fast tiberall verschwindende Funktionen

Sei f: Q — R, eine ./-messbare Funktion. Genau dann ist
Jf du=0, wenn f p-fast iiberall verschwindet.

Folgerung (6.24)

Sei f: Q — R eine «7-messbare Funktion und N C Q eine
Nullmenge. Dann ist f iiber N u-integrierbar, und es gilt

fo du = 0.
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Fast iiberall gleiche Funktionen

Seien f,g : Q — R ./-messbare Funktionen, die p-fast iiberall
iibereinstimmen.
(i) Sind f, g beide nicht-negativ, dann gilt [ f du= [ g dpu.
(i) Ist f eine p-integrierbare Funktion, dann gilt dasselbe fiir g,
und esist [ du= [g dp.

.

Folgerung (6.26)

Seien f,g : Q — R zwei o/-messbare Funktionen, und es gelte
|f| < g p-fast iiberall. Ist g eine p-integrierbare Funktion, dann
gilt dasselbe fiir f.




Endlichkeitseigenschaft integrierbarer Funktionen

Definition

Sei (2, o/, p) ein MaBraum. Wir sagen, eine Menge B € & besitzt
ein o-endliches MaB, wenn ug : @/ — R ein o-endliches MaB ist.

Sei f : Q — R eine p-integrierbare Funktion. Dann gilt

(i) Die Funktion f nimmt pu-fast iiberall endliche Werte an.
(i) Die Menge {x € Q| f(x) # 0} besitzt ein o-endliches MaB.
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p-fast tiberall definierte Funktionen

Sprechweise:

o Sei (Q, <7, ;1) ein MaBraum. Man sagt, eine R-wertige
Funktion f ist u-fast iiberall auf €2 definiert, wenn f auf einer
Menge M C Q definiert ist, deren Komplement in einer
Nullmenge enthalten ist.

@ Man sagt, die Funktion f ist p-integrierbar, wenn eine
p-integrierbare Funktion g : Q — R mit g|y = f existiert.

@ Das p-Integral einer solchen Funktion f ist dann definiert

durch
/f du = /g du.



Satz von Beppo Levi iiber die monotone Konvergenz

Satz (7.1)

Sei (fm)men eine Folge von p-fast iiberall monoton wachsenden,
p-integrierbaren Funktionen f,, : Q@ — R mit der Eigenschaft, dass
die Folge der Integral [ fndpin R ist. Dann existiert
eine f : Q2 — R mit der Eigenschaft, dass
(fm)men punktweise p-fast iiberall gegen f konvergiert, und es gilt
limp, [ fmdu = [ fdpu.

Anmerkungen:

@ Der Satz von Beppo Levi gilt auch fiir monoton fallende
Folgen p-integrierbarer Funktionen.

e Fiir Riemann-integrierbare Funktionen ist eine entsprechende
Aussage falsch.
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