
Das µ-Integral einer nichtnegativen messbaren Funktion

Definition (6.10)

Sei f : Ω → R̄+ eine A -messbare Funktion und (fn)n∈N eine
monoton wachsende Folge in E (Ω,A ) mit sup fn = f . Dann ist
das µ-Integral von f definiert durch∫

f dµ = sup

∫
fn dµ.



µ-Integrierbarkeit reellwertiger Funktionen

Definition (6.13)

Eine Funktion f : Ω → R̄ wird µ-integrierbar genannt, wenn f eine
A -messbare Funktion und die Integrale

∫
f + dµ,

∫
f − dµ endlich

sind. In diesem Fall nennt man∫
f dµ =

∫
f + dµ−

∫
f − dµ

das µ-Integral von f .

Ist der Maßraum gegeben durch (Rd ,Ad , µd), dann nennt man die
µd -integrierbaren Funktionen auch Lebesgue-integrierbar und
spricht vom Lebesgue-Integral der Funktion.



Charakterisierung der integrierbaren Funktionen

Satz (6.14)

Für eine A -messbare Funktion sind die folgenden Aussagen
äquivalent.

(i) Die Funktion f ist µ-integrierbar.

(ii) Es gibt µ-integrierbare Funktionen g , h : Ω → R̄+

mit f = g − h.

(iii) Es gibt eine µ-integrierbare Funktion g1 : Ω → R̄+

mit |f | ≤ g1.

(iv) Die Funktion |f | ist µ-integrierbar.

Ist Bedingung (ii) mit den Funktionen g und h erfüllt, dann gilt∫
f dµ =

∫
g dµ−

∫
h dµ.



Rechenregeln für das µ-Integral

Satz (6.15)

Seien f , g : Ω → R̄ zwei µ-integrierbare Funktionen und α ∈ R.
Dann sind auch die Funktionen f + g , αf , min{f , g} und
max{f , g}, sofern sie auf ganz Ω definiert sind, jeweils
µ-integrierbar. Es gilt dann∫

(f + g) dµ =

∫
f dµ+

∫
g dµ

und ∫
(αf ) dµ = α

∫
f dµ.

Die reellwertigen µ-integrierbaren Funktionen bilden also einen
R-Vektorraum, den wir mit L 1(µ) bezeichnen.



Integration über messbare Teilmengen

Definition (6.18)

Sei f : Ω → R̄ eine µ-integrierbare Funktion und A ∈ A . Dann ist
das µ-Integral von f über A definiert durch∫

A
f dµ =

∫
f · 1A dµ.

Rechenregel:∫
A∪B

f dµ+

∫
A∩B

f dµ =

∫
A
f dµ+

∫
B
f dµ



Einschränkung integrierbarer Funktionen

Notation:

Ist (Ω,A , µ) ein Maßraum und B ∈ A , dann setzen wir

AB = {A ∩ B | A ∈ A }

und µB = µ|AB
.

Lemma (6.19)

Sei f : Ω → R̄ eine µ-integrierbare Funktion und B ∈ A . Dann ist
die Einschränkung f |B eine µB -integrierbare Funktion, und es gilt∫

(f |B) dµB =

∫
B
f dµ.















Sprechweise und Notation

Sei (Ω,A , µ) ein Maßraum, B ∈ A und f : B → R̄.

Man bezeichnet f : B → R̄ als µ-integrierbar, wenn f auf dem
Maßraum (B,AB , µB) eine µB -integrierbare Funktion ist.

Man setzt dann
∫
B f dµ =

∫
f dµB .

Aus dem Lemma folgt, dass für jede µ-integrierbare Funktion
g : Ω → R̄ und jedes B ∈ A auch die Einschränkung g |B eine
µ-integrierbare Funktion ist und dann

∫
B g dµ =

∫
B(g |B) dµ

gilt.



Die Nullfortsetzung einer Funktion

Definition (6.20)

Sei B ∈ A , f : B → R̄ und f̂B : Ω → R̄ definiert durch

f̂B(x) =

{
f (x) für x ∈ B

0 für x /∈ B.

Dann nennen wir f̂B die Nullfortsetzung von f auf Ω.



Eigenschaften der Nullfortsetzung

Lemma (6.21)

Sei B ∈ A und f : B → R̄ eine Funktion.

(i) Ist f nicht-negativ und AB -messbar, dann ist f̂B eine
A -messbare Funktion.

(ii) Ist f µ-integrierbar, dann gilt dasselbe für f̂B , und es gilt∫
B f dµ =

∫
f̂B dµ.



Nullmengen und fast überall existierende Eigenschaften

Definition (6.22)

Sei (Ω,A , µ) ein Maßraum. Wir bezeichnen eine Teilmenge N ⊆ Ω
als Nullmenge, wenn µ(N) = 0 gilt.

Sprechweise:

Eine Funktion f : Ω → R̄ besitzt eine Eigenschaft µ-fast überall,
wenn eine Nullmenge N ⊆ Ω existiert, so dass die Eigenschaft für
alle x ∈ Ω \ N erfüllt ist.



Beispiele für fast überall existierende Eigenschaften

Wir sagen, zwei Funktionen f , g : Ω → R̄ sind µ-fast überall
gleich, falls eine Nullmenge N ⊆ Ω existiert, so dass
f (x) = g(x) für alle x ∈ Ω \ N gilt.

Insbesondere sagt man, die Funktion f verschwindet µ-fast
überall, wenn f µ-fast überall mit der Nullfunktion
übereinstimmt.

Eine Funktion f : Ω → R̄ ist µ-fast überall endlich, falls eine
Nullmenge N ⊆ Ω existiert, so dass |f (x)| < +∞ für alle
x ∈ Ω \ N erfüllt ist.



Fast überall verschwindende Funktionen

Satz (6.23)

Sei f : Ω → R̄+ eine A -messbare Funktion. Genau dann ist∫
f dµ = 0, wenn f µ-fast überall verschwindet.

Folgerung (6.24)

Sei f : Ω → R̄ eine A -messbare Funktion und N ⊆ Ω eine
Nullmenge. Dann ist f über N µ-integrierbar, und es gilt∫
N f dµ = 0.







Fast überall gleiche Funktionen

Satz (6.25)

Seien f , g : Ω → R̄ A -messbare Funktionen, die µ-fast überall
übereinstimmen.

(i) Sind f , g beide nicht-negativ, dann gilt
∫
f dµ =

∫
g dµ.

(ii) Ist f eine µ-integrierbare Funktion, dann gilt dasselbe für g ,
und es ist

∫
f dµ =

∫
g dµ.

Folgerung (6.26)

Seien f , g : Ω → R̄ zwei A -messbare Funktionen, und es gelte
|f | ≤ g µ-fast überall. Ist g eine µ-integrierbare Funktion, dann
gilt dasselbe für f .



Endlichkeitseigenschaft integrierbarer Funktionen

Definition

Sei (Ω,A , µ) ein Maßraum. Wir sagen, eine Menge B ∈ A besitzt
ein σ-endliches Maß, wenn µB : AB → R̄+ ein σ-endliches Maß ist.

Satz (6.27)

Sei f : Ω → R̄ eine µ-integrierbare Funktion. Dann gilt

(i) Die Funktion f nimmt µ-fast überall endliche Werte an.

(ii) Die Menge {x ∈ Ω | f (x) ̸= 0} besitzt ein σ-endliches Maß.







µ-fast überall definierte Funktionen

Sprechweise:

Sei (Ω,A , µ) ein Maßraum. Man sagt, eine R̄-wertige
Funktion f ist µ-fast überall auf Ω definiert, wenn f auf einer
Menge M ⊆ Ω definiert ist, deren Komplement in einer
Nullmenge enthalten ist.

Man sagt, die Funktion f ist µ-integrierbar, wenn eine
µ-integrierbare Funktion g : Ω → R̄ mit g |M = f existiert.

Das µ-Integral einer solchen Funktion f ist dann definiert
durch ∫

f dµ =

∫
g dµ.



Satz von Beppo Levi über die monotone Konvergenz

Satz (7.1)

Sei (fm)m∈N eine Folge von µ-fast überall monoton wachsenden,
µ-integrierbaren Funktionen fm : Ω → R̄ mit der Eigenschaft, dass
die Folge der Integral

∫
fm dµ in R beschränkt ist. Dann existiert

eine µ-integrierbare Funktion f : Ω → R mit der Eigenschaft, dass
(fm)m∈N punktweise µ-fast überall gegen f konvergiert, und es gilt
limm

∫
fm dµ =

∫
f dµ.

Anmerkungen:

Der Satz von Beppo Levi gilt auch für monoton fallende
Folgen µ-integrierbarer Funktionen.

Für Riemann-integrierbare Funktionen ist eine entsprechende
Aussage falsch.






