Der Zerlegungssatz

Zwei Polynome $f,g \in K[x]$ werden teilerfremd genannt, wenn es kein Polynom $h \in K[x]$ vom Grad ≥ 1 gibt, dass sowohl f als auch g teilt.

Satz (15.21)

Sei V ein endlich-dimensionaler K-Vektorraum und $\phi \in \operatorname{End}_K(V)$. Seien $f,g \in K[x]$ teilerfremde Polynome mit $\mu_\phi = fg$. Dann gilt $\ker f(\phi) = \operatorname{im} g(\phi)$, $\operatorname{im} f(\phi) = \ker g(\phi)$ und

$$V = \operatorname{im} f(\phi) \oplus \operatorname{im} g(\phi) = \ker f(\phi) \oplus \ker g(\phi).$$

Definition der Haupträume

Definition (15.22)

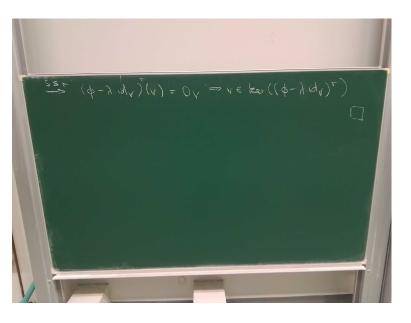
Sei V ein endlich-dimensionaler K-Vektorraum, $\phi \in \operatorname{End}_K(V)$ und $\lambda \in K$. Dann wird

$$\operatorname{Hau}(\phi, \lambda) = \bigcup_{r=0}^{\infty} \ker((\phi - \lambda \operatorname{id}_{V})^{r})$$

der Hauptraum zum Wert λ genannt.

Anmerkung:

Der Hauptraum $\operatorname{Hau}(\phi,\lambda)$ ist ein Untervektorraum von V.


Berechnung der Haupträume

Proposition (15.23)

Seien die Bezeichnungen wie in Definiton 15.22 gewählt, und sei r die Vielfachheit von λ als Nullstelle von μ_ϕ . Dann gilt

$$\operatorname{Hau}(\phi, \lambda) = \ker((\phi - \lambda \operatorname{id}_V)^r).$$

gog endl-dim K-Velstorrann V DE End K (V) => SEF Mov(4)(v) = 0 => (4-7 Wy)3(v) = 0,

Kerne als invariante Untervektorräume

Lemma (15.24)

Sei V ein endlich-dimensionaler K-Vektorraum, $\phi \in \operatorname{End}_K(V)$, $f \in K[x]$ und $U = \ker f(\phi)$. Dann gilt $\phi(U) \subseteq U$.

Beweis for Lemma 15,24	B
geg. Vendl-din K-Veltorraum, pe Endk (V)	V
f ∈ K[x], N = kor f(φ)	V
Reh & (4) & U	7
Behrachte g = x.f & gilt g(\$) = \$0 f(\$)	h
= f(p) . p Sei v = U, z.zq. p(v) = U	Se
νε U → β(φ)(ν) = 0ν → β(φ)(φ(ν))	Be
$= (\xi(\phi) \circ \phi)(v) = (\phi \circ \xi(\phi))(v) =$	din
$\phi(\ell(\emptyset)(N) = \phi(0) = 0 $	Sel
$\phi(v) \in \text{lev } \beta(\phi) \Rightarrow \phi(v) \in \mathcal{U}.$	Slov

Die Hauptraumzerlegung

Satz (15.25)

Sei V ein endlich-dimensionaler K-Vektorraum und $\phi \in \operatorname{End}_K(V)$ ein Endomorphismus mit der Eigenschaft, dass das charakteristische Polynom $\chi_\phi \in K[x]$ oder das Minimalpolynom μ_ϕ in Linearfaktoren zerfällt. Dann gilt

$$V = \operatorname{Hau}(\phi, \lambda_1) \oplus ... \oplus \operatorname{Hau}(\phi, \lambda_r)$$
,

wobei $\lambda_1,...,\lambda_r$ die verschiedenen Eigenwerte von ϕ bezeichnen.

Beweis ion Salz 15.25 (Skizze) Vendl-den K-Veztorraum, DE Endr (V) Vor: My sofall in Lucar faltoren d. h. mit My = (x-//) 21. (x-/+) 20 Beh: V = Han (\$, h) \$ -- \$ Han (\$, h) dum V = 0 V= 10v7, miles 2 2g Sakse non dim V > 0 and die Gultigheet de Aussige Rie Velstorranne blenerer Dinen-

und g = [[(-)] ed f.g sind terlofround Fedgrapate $V = \ker(\beta(\phi)) \oplus \ker(\beta(\phi))$ Prop. 15.23 = U= ker (f(p)) trume mut den Hampfraum Ham (\$, 21) wherein Setze W= ker (3(4)) Nach Lemana 15.24 gill p(U) & U und p(W) & W Setze 4 = \$1w -> 4 & Endk (W) Wegen V= U D W and dim U> O gold dim W < dim V. - Ind-V. it and Y an wendfrow . Werprise noch: My = g = TT (x-2) 24. Die Jul - V. Refert

 $W = \bigoplus_{\delta=2}^{\infty} Hou(\Upsilon, \lambda_{\delta}) \quad \text{liboprife noch} :$ $Hom(\Upsilon, \lambda_{\delta}) = Hom(\Phi, \lambda_{\delta}) \text{ for } 2 \leq \delta \leq \Gamma$ $ansetzen \implies V = U \oplus W = Hom(\Phi, \lambda_{\delta}) \oplus \left(\bigoplus_{\delta=2}^{\infty} Hom(\Phi, \lambda_{\delta})\right)$

$Han(\Upsilon, \lambda_{\delta}) = Han(\phi, \lambda_{\delta}) $ for $2 \leq j \leq r$
Frincency: Bilinearform out einem k -Vektorrown V = Abbilding $b: V \times V \rightarrow k$ but do Eigenschaft $f(v+v', \omega) = f(v, \omega) + f(v', \omega), f(v, \omega+\omega') = f(v, \omega) + f(v, \omega'),$
$b(\lambda v, \omega) = b(v, \lambda \omega) = \lambda b(v, \omega)$ faille $v, v', \omega, \omega' \in V$ and alle $\lambda \in K$

Die Darstellungsmatrix einer Bilinearform

Definition (16.1)

Sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum, $\mathcal{B}=(v_1,...,v_n)$ eine geordnete Basis und b eine Bilinearform auf V. Dann nennt man die reelle $n\times n$ -Matrix $A=(a_{ij})$ mit den Einträgen

$$a_{ij} = b(v_i, v_j)$$
 für $1 \le i, j \le n$

die Darstellungsmatrix $M_{\mathcal{B}}(b)$ von b bezüglich \mathcal{B} .

Buspiele fix Darstellingsmatrizen un Bilmenfornen (i) V = 1R" & V × V - 1R entirelistos Standard -Skalasproduset, & = (e.,...en) Einheitsbasis

For 151, j = n gilot b(el,ej) = (el,ej) = Sij - De Eintrag ion ME(6) ande Bestron (1, 1) ion

juveils Sig. Es gild also ME(6) = E("), dh die Dorstellingsmakix it die Einheitsmakerx

(it)
$$V = \mathbb{R}^3$$
 to use order (i), $\mathcal{B} = (v_1, v_2, v_3)$ and $v_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$,

$$v_2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \quad \begin{cases} (v_1, v_1) = \langle v_1, v_1 \rangle = 1^2 + 0^2 + 2^2 = 5 \end{cases}$$

Dorstellingsmaker it die Eigheitsmakerx
(ii) $V = \mathbb{R}^3$ by the when (i) $\mathbb{B} = (v_1, v_2, v_3)$ and $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
b(v2, v2) = 19, b(v3, v3) = 30, b(v, v2) = 1.3+0 3+2 (-1)
= 1 = b(v2, v2), b(v1, v2) = 9 = b(v3, v1), b(v2, v3) = 10 = b(6, v2) 2 b id approximation
$ \mathcal{M}_{\mathcal{B}}(\mathcal{C}) = \begin{pmatrix} 3 & 10 & 30 \\ 1 & 13 & 10 \\ 5 & 1 & 3 \end{pmatrix} $
1) V = R-162torraum du Polymont underboren com Good 5/
1 VXV = R debased duch G(F,g) - 1 F(x)gh) and
$B = (1, x)$ $f(1, 1) = \int_{0}^{1} 1 dx = [x]_{0}^{1} = 1 - 0 = 1$
$\delta_0(1,x) = \int_0^1 1 \cdot dx = \int_0^1 x dx = \left(\frac{1}{2}x^2\right)_0^1 = \frac{1}{2}$
$C(1,x) = \int_{0}^{1} x dx = \int_{0}^{1} x dx = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$
$\delta(\mathbf{x},\mathbf{x}) = \int_0^1 \mathbf{x} \cdot \mathbf{d}\mathbf{x} = \int_0^1 \mathbf{x}^2 d\mathbf{x} = \left(\frac{1}{2}x^2\right)_0^1 = \frac{1}{2}$

Existenz und Eindeutigkeit von Bilinearformen

Satz (16.2)

Sei V ein n-dimensionaler \mathbb{R} -Vektorraum und $\mathcal{B}=(v_1,...,v_n)$ eine geordnete Basis von V. Dann existiert für jede Matrix $A\in\mathcal{M}_{n,\mathbb{R}}$ eine eindeutig bestimmte Bilinearform b auf V mit $M_{\mathcal{B}}(b)=A$.

Beweis von Satz 162	An
geg. ne M, n-dum. R- Vektorraum V,	Sei
B=(v1, vn) geordnete Basis box V,	per 0
A=(ai) EMn.R Beh	Sei.
Es gift are evidential best winte Bilinear - form b and V mit $M_B(G) = A$.	fg=
Endantistand: Ang, & & sind Bilinear -	&(f,g) = 5/2-
Gomen and V mit MB(B) = MB(B') = A(X)	Berechn
229: b = 6', gamingt & (v, w) = b'(v, w)	nateribel
fair alle v. w e V	g = (-7)
	1

Wegen (*) gilt ((vi, vi) = aij and = = & (v, w)

Berechnung der Werte einer Bilinearform

Proposition (16.3)

Unter den angegebenen Voraussetzungen gilt für alle $v,w\in V$ jeweils

$$b(v, w) = {}^{\mathrm{t}}\Phi_{\mathcal{B}}(v)\mathcal{M}_{\mathcal{B}}(b)\Phi_{\mathcal{B}}(w).$$

Amoundingsbeispul on Prop. 163 Sei V der R-Velstorraum aus Beispiel (iii) to oben, and auch B and b was oben defriced Seif=2x+5, 9=3x-7, G(f,g)=0 fg=(2x+5)(3x-7)=6x2+x-35 $\&(\xi,g) = \int (6x^2 + x - 35) dx = \left[2x^3 + \frac{1}{2}x^2 - 35x\right]$ Berechnung was 6(1,9) mit den Foordinaturebluen $f = 5.1 + 2.x \Rightarrow \Phi_{R}(f) = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ $g = (-7) \cdot 1 + 3 \times \Rightarrow \Phi_{R}(g) = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$

Rop. 16.3 =>
$$\ell(\ell,g) = {}^{t} \Phi_{\mathcal{B}}(\ell) M_{\mathcal{B}}(\ell) \Phi_{\mathcal{B}}(g)$$

= $(5 \ 2) {}^{t} {}^{t}$

229:
$$e(v, w) = {}^{t} \overline{p}_{B}(v) M_{B}(e) \overline{p}_{B}(w)$$
 (*)
Seren $v, w \in V$ and as seien aij (150, $j \leq k$) die Einträge

Seren
$$V, w \in V$$
 and as seven any $(1 \le v \ne \le k)$ due Eintrage on $A = M_{\mathbb{R}}(\mathbb{R})$. Some $\tilde{V} = \binom{2v}{kn} = \overline{\Phi}_{\mathbb{R}}(V)$, $\tilde{W} = \binom{m}{kn} = \overline{\Phi}_{\mathbb{R}}(W)$

Von
$$A = M_{\mathbb{B}}(\mathbb{R})$$
. Soien $\tilde{V} = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix} = \bigoplus_{\mathcal{B}} |V|$, $\tilde{W} = \begin{pmatrix} M_1 \\ M_n \end{pmatrix} = \bigoplus_{\mathcal{B}} |W|$

Fix $1 \le k \le N$ is der $n - k$ Einlang ion $M_{\mathbb{B}}(\mathbb{R}) \bigoplus_{\mathcal{B}} |U| = A \tilde{W}$

gog durch $(A \tilde{W})_k = \sum_{j=1}^{n} \alpha_{k,j} M_{\mathbb{B}} = \sum_{j=1}^{n} \alpha_{k,j} M_{\mathbb{B}}(\mathbb{R}) - \bigoplus_{\mathcal{B}} |U|$

$$= \sum_{j=1}^{n} \lambda_k (A \tilde{W})_k = \sum_{j=1}^{n} \alpha_{k,j} M_{\mathbb{B}}(\mathbb{R}) - \bigoplus_{j=1}^{n} |W|$$

Non
$$A = M_{\mathbb{R}}(\mathcal{C})$$
. Soien $\tilde{V} = \begin{pmatrix} \tilde{v}_1 \\ \tilde{v}_1 \end{pmatrix} = \tilde{\Phi}_{\mathbb{R}}(V)$, $\tilde{W} = \begin{pmatrix} \tilde{w}_1 \\ \tilde{v}_1 \end{pmatrix} = \tilde{\Phi}_{\mathbb{R}}(W)$.

Fix $1 \leq k \leq N$ for der $N - k$ Eicherg for $M_{\mathbb{R}}(\tilde{V})$ $\tilde{\Phi}_{\mathbb{R}}(u) = A \tilde{w}$
 $q_{\mathbb{R}} = d_{\mathbb{R}}(V) \cdot M_{\mathbb{R}}(V) \cdot \tilde{\Phi}_{\mathbb{R}}(u)$
 $= \sum_{k=1}^{\infty} \lambda_k (A \tilde{w})_k = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} a_{i,k} \lambda_k M_{\mathbb{R}}(V)$

Wegen $\tilde{V} = \oint_{\mathcal{B}} (v_i) gilt V = \sum_i \lambda_i V_i$ und aus in = DE(w) folgot w = E My Also strinnen die linko und rechte Sente was 1x ilerein.