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Zusammenfassung

Bereits im ersten Semester haben wir das Riemann-Integral fiir beschrénkte Funktionen einer Variablen,
definiert auf einem endlichen, abgeschlossenen Intervall, kennengelernt. Das Ziel dieses Vorlesungsab-
schnitts besteht nun darin, den Integralbegriff auf Funktionen mehrerer Variablen zu verallgemeinern.
Das Riemann-Integral kann auf naheliegende Weise auf hohere Dimensionen iibertragen werden, aller-
dings erweist sich dieses Konzept fiir moderne Anwendungen als nicht flexibel genug. Beispielsweise
hat man es haufig mit Funktionen auf unendlich ausgedehnten Definitionsbereichen zu tun, und oft ist
auch der Wertebereich der Funktionen unbeschrankt.

Um einen moglichst vielseitig einsetzbaren Zugang zum Integralbegriff zu erhalten, entwickelt man
zunichst eine Theorie der Mafse, mit denen man Teilmengen einer gewissen Grundmenge, in der Regel
des R", ein ,,Volumen” zuordnen kann. Das am haufigsten verwendete MafSauf dem IR" ist das Lebesgue-
Maf3, mit dessen Konstruktion wir uns als erstes beschiftigen werden. Basierend auf dem Maf3begriff
kann man anschliefend gewissen reellwertigen Funktionen auf der Grundmenge ein Integral zuord-
nen. Im Fall des Lebesgue-Males erhélt man das sogenannte Lebesgue-Integral, das eine Verallgemei-
nerung des Riemann-Integrals darstellt. Nachdem wir die wichtigsten grundlegenden Eigenschaften
und elementare Rechenregeln fiir Integrale hergeleitet haben, befassen wir uns noch mit einigen fort-
geschrittenen Integrationstechniken. Mit dem Satz von Fubini kann beispielsweise die Integration von
Funktionen in hoher Dimension auf kleinere Dimension zuriickgefiihrt werden, und die Transformati-
onsformel stellt eine weitreichende Verallgemeinerung der eindimensionalen Substitutionsregel dar. Im
einzelnen behandeln wir die folgenden Themen:

e Inhalte und MaRe, Konstruktion des Lebesgue-Malf3es
e messbare und integrierbare Funktionen
e Konvergenzsitze

Produktmalfde und Satz von Fubini

Bildmalf3e und die Transformationsformel
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§ 1. Die Unlosbarkeit des MafSproblems

Im gesamten Text bezeichnet R die Menge der reellen, R* die Menge der positiven und R, die Menge der nicht-
negativen reellen Zahlen. Ist X eine beliebige Menge, dann bezeichnet 3(X) ihre Potenzmenge, also die Menge aller
Teilmengen A C X.

Ein wichtiges Ziel der Maf3theorie besteht darin, auf einer moglichst grof3en Klasse & von Teilmengen des R" eine
Abbildung u : K — R, U {+00} zu definieren, so dass fiir jedes A € K die Zahl u(A) dem entspricht, was wir intuitiv
unter dem ,,Volumen“ von A verstehen wiirden. Bevor wir uns {iberlegen, welche Eigenschaften eine solche Abbildung
haben sollte, erinnern wir zunéchst an die folgende Definition.

Definition 1.1 Eine Abbildung v : R" — R" wird Bewegung genannt, wenn eine orthogonale
Matrix A € O(n) und ein Vektor v € R" existieren, so dass Y(x) = v + Ax fiir alle v € R" gilt.

Die Bewegungen der Form 7, : R® — R", x — v + x bezeichnet man als Translationen. Weitere Beispiele fiir
Bewegungen sind Spiegelungen an Hyperebenen oder Rotationen um beliebige (n — 2)-dimensionale Drehachsen.
Man kann zeigen, dass die Bewegungen genau die Abbildungen 1) : R" — R" mit der Eigenschaft ||y (x)—yY(y)ll, =
[|x—y]|, fur alle x, y € R" sind, wobei || - ||, die gew6hnliche euklidische Norm bezeichnet. Man spricht deshalb auch
von abstands-erhaltenden Abbildungen. Sei Teilmengen X,V C R" werden kongruent genannt, und man schreibt
X 2£Y, wenn eine Bewegung 1 des R" mit 1(X) =Y existiert.

Folgende Eigenschaften wiirde man nun fiir eine ,,verniinftige* Volumenfunktion u naheliegenderweise voraussetzen.
Sind A, B Elemente des Definitionsbereichs K von u, dann sollte dies auch fiir AUB, AN B und A\ B gelten. Weitere
natiirliche Bedingungen an u lauten

1) w(@)=0und u(R") =+oo (falls R" in K liegt)

(i) (Normierungsbedingung)
Die n-dimensionalen abgeschlossenen Quader der Form [a;, b;] x ... X [a,,, b,] mit a;, b; € R und a; < b; sind
in K enthalten, und es gilt u(Q) = n;zl(bj —a;).

(iii) (Bewegungsinvarianz)
IstAe K und ¢ : R" - R" eine Bewegung, dann liegt 1(A) in K,
und es gilt u(y(A)) = u(A).

(iv) (endliche Additivitdt)
Sind A, B € K disjunkt (also ANB = @), dann gilt AUB € K und u(AUB) = u(A) + u(B).

Bereits aus (i) und (iv) lassen sich weitere, ,intuitiv naheliegende“ Eigenschaften einer solchen Funktion u herleiten.




Lemma 1.2 Seienr € Nyund A, B,A, ...,A, Elemente aus K, auf denen die Funktion u endliche
Werte annimmt.

(1) Unter der Voraussetzung A C B gilt u(A) < w(B).
(ii) Esist u(AUB) = u(A)+ u(B)— u(ANB).

(iii) Sind die Mengen Ay, ...,A, € K paarweise disjunkt, dann gilt

UAkGIC und u(UAk) = Zu(Ak).
k=1 k=1 k=1

(Dabei bedeutet r = 0, dass die Vereinigung U;::1Ak leer ist. Die Summe auf der rechten
Seiten ist dann gleich Null.)

Beweis: zu (i) Die Menge B kann disjunkt in die Teilmengen A und B \ A zerlegt werden, also gilt u(A) < u(A) +
u(B\A) = u(B).

zu (ii) Die Menge AU B besitzt eine disjunkte Zerlegung in die Teilmengen A\ B, B\ A und AN B. Durch wiederholte
Anwendung der endlichen Additivitit erhalten wir

u(AuB) = wA\B)+u(B\A)+u(AnB) =

U(A\B) + W(ANB) + u(B\A) + u(ANB)—u(ANB) = wu(A)+u(B)—u(ANB).

zu (iii) Auf Grund der Voraussetzung u(@) = 0 ist die Gleichung in den Fillen r = 0, 1 offensichtlich, und auf Grund
der endlichen Additivitat gilt sie auch fiir r = 2. Sei nun r > 2 und die Gleichung fiir alle kleineren Zahlen bereits
bewiesen. Seien Ay, ...,A, € K paarweise disjunkte Mengen. Setzen wir B = A;U...UA,_;, dann gilt u(B) = Z;;ll u(Ag)
nach Induktionsvoraussetzung. Weil B und A, disjunkt sind, erhalten wir weiter

r r—1 r
u(UAk) = wBUA) = uB)+p@A) = D p@Ad+uA) = D A, =
k=1 k=1 k=1

Die Eigenschaft (i) aus dem Lemma, die hdufig als Monotonie bezeichnet wird, ist fiir Volumenberechnungen interes-
sant. Bereits durch die Beschéftigung mit dem Riemann-Integral ist deutlich geworden, dass sich das Volumen vieler
elementar-geometrischer Objekte (wie Kugeln, Pyramiden, Kegel, Zylinder) approximieren l4sst, wenn man diese
durch hinreichend kleine rechteckige Quader ausschopft bzw. einschlief3t. Genauer bedeutet dies, dass man fiir jedes
solche geometrische Objekt O endliche Vereinigungen A, B von ,kleinen“ Quadern bilden kann, so dassA € O C B
und w(A) ~ w(B) gilt. Auf Grund der Monotonie muss dann auch u(O) ungefihr gleich u(A) sein. Dies zeigt, dass
eine Volumenfunktion y mit den Eigenschaften (i) bis (iv) unserer anschaulichen Vorstellung von einem Volumen
wirklich sehr nahe kommt. Aus Griinden, die hauptsichlich auf Anwendungen in der Analysis zuriickgehen, und die
erst im weiteren Verlauf der Vorlesung klar werden, verscharft man die Bedingung (iv) haufig zu

(iv)’ Ist (A, )men €ine abzédhlbare Folge von paarweise disjunkten Elementen aus K, dann gilt

U A,€K und ,u( U Am) = i,u(Am).
m=1

melN melN




Man spricht in diesem Fall von abzdhlbarer Additivitdt oder o-Additivitdt. Diese Eigenschaft impliziert die endliche
Additivitét, denn sind A, ..., A, endlich viele, paarweise disjunkte Mengen aus K, dann kénnen wirA,, =@ firm > r
setzen und erhalten wegen u(@) = 0 die Gleichung unter (iv) zuriick.

Unsere Hauptaufgabe in diesem Kapitel wird darin bestehen, eine Abbildung u mit den Eigenschaften (i), (ii), (iii)
und (iv)’ auf einer moglichst groen Menge K zu konstruieren. Ideal wére es natiirlich, wenn man K = 3(R") setzen,
also jeder Teilmenge des R" ein Volumen zuordnen konnte. Das Problem, eine solche Zuordnung zu bestimmen, wird
als MafSproblem bezeichnet. Seit langem ist jedoch bekannt, dass diese Problem nicht l6sbar ist.

Satz 1.3 (Guiseppe Vitali, 1905)

Fiir keine nattiirliche Zahl n existiert eine Abbildung u : P(R™) — R, U {+o0} mit den Eigen-
schaften (i), (ii), (iii) und (iv)’.

Beweis: Wir definieren auf R" eine Relation ~ durch x ~ y & x —y € Q". Man {iberpriift unmittelbar, dass es
sich dabei um eine Aquivalenzrelation handelt. Jede Aquivalenzklasse besitzt einen Reprisentanten innerhalb des
Einheitswiirfels [0, 1]", da fiir jedes s € R" sogar ein r € Z" mit 0 <s; —r; < 1 fiir 1 < i < n existiert. Auf Grund des
Auswahlaxioms der Mengenlehre kann also innerhalb von [0,1]" ein Reprisentantensystem der Aquivalenzklassen
von ~ gewéihlt werden, also eine Teilmenge A € [0, 1]" mit der Eigenschaft, dass jedes fiir jedes s € R" ein eindeutig
bestimmtes a € A mit s ~ a existiert.

SeinunB=[—1,1]"NQ"und C = UreB(r +A). Bei C handelt es sich um eine disjunkte, abzdihlbare Vereinigung von
Teilmengen des R". Die Abzahlbarkeit ist klar, da B als Teilmenge der abzidhlbaren Menge Q" abzahlbar ist. Seien nun
r,r’ € B so gewihlt, dass r +A und r’ +A nicht disjunkt sind. Dann gibt es Elemente a,a’ € Amit r+a = r’+a’. Nach
Definition unserer Aquivalenzrelation folgt a ~ a’ und damit a = a’, weil A ein Reprisentantensystem der Relation
ist. Dies wiederum bedeutet r = r’, also ist die Vereinigung tatsichlich disjunkt.

Nun beweisen wir die Inklusionen [0,1]" € C € [—1,2]". Ists € [0,1]", dann gibt es (auf Grund der Eigenschaft von
A, Reprasentantensystem zu sein) Elemente a c Aund r €e Q" mits =r+a. Firl1 <i<nistr;=s;—q; €[—1,1]
und somit r € [—1,1]". Es folgt s = r + a € C. Ist nun s € C vorausgesetzt, dann gibt es Elemente r € B C [—1,1]"
unda€AC[0,1]"mits=r+a. Aus—1<r;<1lund0<gq; <1lfolgt—1<s; <2fir1 <i<n.

Nehmen wir nun an, g : PB(R") — R, U {+o00} ist eine Abbildung mit den Eigenschaften (i) bis (iv)’. Aus der
Monotonie folgt dann 1 = u([0,1]") < u(C) < w([—1,2]") = 3". Die Eigenschaft (iv’), die Bewegungsinvarianz
sowie die Darstellung von C als disjunkte, abzéhlbare Vereinigung liefern

p©) = Dur+A) = D uA).

r€B reB

Aus Y. _p u(A) = u(C) = 1 folgt u(A) > 0 und somit ), _, u(A) = +00. Dies aber steht im Widerspruch zur zweiten
Ungleichung u(C) < 3". O




Wird an Stelle von (iv)’ nur die schwéchere Bedingung (iv) gefordert, so spricht man vom Inhaltsproblem. Dass auch
dieses Problem i.a. unlosbar ist, wird eindrucksvoll belegt durch das

Satz 1.4 (Banach-Tarski-Paradoxon)

Seien X und Y beschrinkte Teilmengen von R® mit einem nichtleeren Inneren. Dann gibt es eine
natiirliche Zahl n € IN und disjunkte Zerlegungen

X=X,U..UX, und Y=Y,U..UY, ,

so dass X; =Y; fir 1 < j < n erfiillt ist.

Beweis: Ein elementarer Beweis wird in [Str] beschrieben. O

Beispielsweise sind X = [0,1]° und Y = [0,2]® Teilmengen des R> mit einem nichtleeren Inneren, auf welche
folglich die Aussage des Banach-Tarski-Paradoxons angewendet werden kann. Nehmen wir nun an, dass es sich
bei u : P(R™) — R, U {+00} um eine Abbildung mit den Eigenschaften (i) bis (iv) handelt. Sind X1, ...,X,, und
Yy, ..., Y, die Mengen aus der im Banach-Tarski-Paradoxon angegebenen disjunkten Zerlegung, dann liefern diese
Eigenschaften den Widerspruch

1 = wpl01P) = wpX) = Dux) = dur) =
i=1 i=1
uwy) = wp(o2P) = s

Auch im R" fiir n > 4 ist das Inhaltsproblem unlésbar. Fiir n = 1, 2 gibt es {iberraschenderweise Losungen, aber diese
sind nicht eindeutig bestimmt (fiir Beweise siehe [Wa]).




§2. Der Jordansche Inhalt

Zusammenfassung. Um die Konstruktion des Lebesgue-Males vorzubereiten, beschéftigen wir uns in diesem
Abschnitt zunédchst mit den Inhalten auf Mengenringen. Bei Letzteren handelt es sich um Mengensysteme, die
unter gewissen Operationen abgeschlossen sind, unter anderem beziiglich endlicher Vereinigungen. Erstere
ordnen den Mengen in einem solchen System Werte zu, die man als ,,Volumen“ dieser Mengen interpretieren
kann.

Um einen Volumenbegriff zu erhalten, der der anschaulichen Vorstellung nahekommt, betrachten wir zunéchst
den Mengenring der Figuren. Dies sind endliche Vereinigungen von Quadern, denen man auf naheliegende
Weise ein Volumen zuordnen kann. Dieses bezeichnet man als den Jordan-Inhalt der Figur. AnschlieBend wer-
den wir die Definition des Jordan-Inhalt auf eine moglichst grof3e Klasse von Teilmengen des R" fortsetzen.

Wichtige Grundbegriffe

— Mengenhalbring und Mengenhalbalgebra
— Mengenring und Mengenalgebra

— Inhalt auf einem Mengenhalbring

— erzeugter Mengenring

— inneres und dufleres MaR eines Inhalts

— Intervall, Quader, Figar

— Volumen eines Quaders

— Jordan-Messbarkeit und Jordan-Inhalt

Wie wir im letzten Abschnitt gesehen haben, wird es uns nicht gelingen, beliebigen Teilmengen des R" auf sinnvolle
Weise ein Volumen zuzuordnen. Unser erstes Ziel ist daher die Definition von Mengensystemen, auf denen eine
geeignete Volumenfunktion existiert. In den folgenden Abschnitten bezeichnet  stets eine beliebige Menge.

Definition 2.1 FEine Teilmenge H C B(Q2) wird Mengenhalbring in Q2 genannt, wenn @& € H
gilt und aullerdem folgende Bedingungen erfiillt sind.

(i) Sind A,B € H, dann liegt auch AN B in H.

(ii) Fir alle A,B € H gibt es ein r € IN;, und Mengen Cj, ..., C, € H, so dass A\ B als disjunkte
Vereinigung A\ B = C; U ... U C, dargestellt werden kann.

Gilt zusatzlich Q € H, dann nennt man # eine Halbalgebra.

Im ersten Semester haben wir die Intervalle eingefiihrt als Teilmengen I C R mit der Eigenschaft, dass fiir alle
a,b € I mit a < b auch jedes ¢ € R mit a < ¢ < b in I enthalten ist. Die Intervalle sind also genau die konvexen




Teilmengen von R. Es ist leicht zu sehen, dass die Intervalle einen Mengenhalbring in R bilden. Auch die endlichen
Intervalle bilden einen Mengenhalbring.

Satz 2.2 Seien H, H' zwei Mengenhalbringe in Q bzw. '. Dann ist auch das Mengensystem

{AxA |Ae H,A € H'} ein Mengenhalbring.

Beweis: Wir bezeichnen das angegebene System von Teilmengen von Q x Q' mit H”. Zunéchst gilt @ =@ x € H”.
Seien nun A x A’, B x B’ zwei Elemente in %", mit A,B € # und A',B’ € H'. Weil H und H’ Halbringe sind, gilt
ANBeHund A NB’ € H . Esfolgt (AxA)N(B xB’) =(ANB) x (A'NB’) € #”. Wir haben damit Bedingung (i) der
Halbring-Eigenschaft verifiziert.

Nun zeigen wir, dass (Ax A’) \ (B x B') fiir #” die Bedingung (ii) in Definition erfiillt. Weil # und H’ Halbringe
sind, gibt es r,5 € IN, und Mengen Cy, ...,C, € H, C;,...,C, € H', so dass A\ B und A"\ B’ als disjunkte Vereinigungen

A\B=C,U..UC, und  A'\B'=Cju..uUC

dargestellt werden kénnen. Die Menge (A x A') \ (B x B”) zerfillt disjunkt in die Teilmengen
(ANB) x (A’\ B), (A\B) x (A’ nB") und (A\ B) x (A" \ B). Es gilt

S

(ANB)x (A'\B') = U(AnB)xCJf , (A\B)x(AnB) = UCix(A’ﬂB’)
j i=1

j=1

und

Samtliche Vereinigungen sind disjunkt, und die in den Vereinigungen vorkommenden Mengen sind alle in H” ent-
halten. Damit ist die Halbring-Eigenschaft (ii) nachgewiesen. |

Als Quaderim R" bezeichnen wir im Folgenden ein kartesisches Produkt I; x ... x I,, von endlichen Intervallen. Nach
Satz[2.2)bilden die Quader einen Mengenhalbring im R".

Definition 2.3 Ein Mengenring ist eine Teilmenge R C PB(2) mit den Eigenschaften, dass
@ € R gilt und mit A,B € R auch AUB und A\ B in R liegen. Gilt zusatzlich 2 € R, dann spricht
man von einer Mengenalgebra.

Sind A, B Elemente eines Mengenrings R, dann sind auch die symmetrische Differenz A definiert durch AAB =
(A\B)U(B\A) und der Durchschnitt ANB = (AUB) \ (AA B) in R enthalten. Insbesondere ist jeder Mengenring ein
Mengenhalbring. Man kann leicht iiberpriifen, dass R mit A als Addition und N als Multiplikation ein Ring im Sinne
der Algebra ist, allerdings ohne Einselement. Der anderorts definierte Begriff der Algebra als Vektorraum mit einer
zusétzlichen multiplikativen Verkniipfung steht allerdings mit unserem Begriff in keinem Zusammenhang.




Wir werden nun sehen, wie aus einem Mengenhalbring auf natiirliche Weise ein Mengenring gewonnen werden
kann.

Definition 2.4 Wir sagen, ein Mengenring R wird von einer beliebigen Teilmenge £ C B(Q2)
erzeugt, wenn R 2 £ gilt und fiir jeden Ring S in Q mit S D £ auch S O R erfiillt ist.

Offenbar ist der von einer Menge £ erzeugte Ring eindeutig bestimmt. Sind ndmlich R, R, zwei von £ erzeugte
Ringe, dann gilt nach Definition R; € R, und R, € R, insgesamt also R; = R,. Wir bezeichnen den von £ erzeugten
Ring mit R(&). Ist £ ein Halbring, dann lassen sich die Elemente von R(£) folgendermalfien charakterisieren.

Satz 2.5 Sei H C‘B(2) ein Halbring. Dann gilt

(i) Die Elemente von R(#) sind die endlichen Vereinigungen von Mengen aus .

(ii) Die Elemente von R(#) sind die endlichen disjunkten Vereinigungen von Mengen aus H.

Beweis: Wir beweisen zunichst die Eigenschaft (ii). Dass R(#) alle endlichen disjunkten Vereinigungen von Men-
gen aus H enthilt, beweist man unmittelbar durch vollstdndige Induktion unter Verwendung der Voraussetzungen
H C R(H) und A,B € R(H) = AUB € R(H). Es bleibt zu zeigen, dass die Menge R; der endlichen disjunkten Ver-
einigungen von Mengen aus # ein Ring ist. Zunéachst gilt @ € R, da auch & nach unserer Konvention eine endliche
Vereinigung (bestehend aus null Mengen) ist. Seien nun A, B€ R; und A=P; U...UP,, B=Q; U...UQ, von A und
B als disjunkte Vereinigungen von Mengen P;,Q; € H. Flir AN B existiert die Darstellung als disjunkte Vereinigung

anB = [JU@nQ) .
i=1j=1

j=

und auf Grund der Halbring-Eigenschaft von # gilt P,NQ; € H fir 1 <i <r, 1 < j <s. Daraus folgt AN B € R,. Fiir
die Differenz erhalten wir die Darstellung als disjunkte Vereinigung

r

A\B = [J®\B) = U(ﬂm\qj)).
i=1 j=1

i=1

Wir haben bereits gezeigt, dass R, abgeschlossen unter Durchschnitten ist, deshalb geniigt es zu tiberpriifen, dass
die Mengen P; \ Q; in R, enthalten sind. Dies folgt aber wiederum aus der Halbring-Eigenschaft von #, denn auf
Grund dessen ist P; \ Q; eine disjunkte Vereinigung von Mengen aus #. SchlieBlich liegt auch AU B in R,, denn wir
konnen AU B als disjunkte Vereinigung der Mengen AN B, A\ B und B \ A darstellen, die (wie bereits gezeigt) in R,
enthalten sind. Damit ist der Beweis von Aussage (ii) abgeschlossen.

Zum Beweis von (i) bemerken wir zunéachst, dass R(#) auf Grund der Ringeigenschaft sdmtliche endlichen Vereini-
gungen von Elementen aus H enthélt. Umgekehrt ist jedes Element aus R(#), wie wir schon gezeigt haben, sogar
eine endliche disjunkte Vereinigung von Mengen aus H. m|




Definition 2.6 Eine Figur im R" ist eine endliche Vereinigung von Quadern, also eine Teil-
menge F € R" der Form F =Q, U...UQ,, mit r € IN, und Quadern Qy, ...,Q, im R".
(ImFallr =0ist F =@&.)

Aus Satz folgt unmittelbar, dass die Figuren im R" einen Ring bilden. Wir kommen nun zur Einfithrung eines
geeigneten Volumenbegriffs.

Definition 2.7 FEin Inhalt auf einem Halbring # ist eine Abbildung ¢ : H — R, mit ¢(&) =0

und
.

c(AU..UA) = D c(A)
i=1
fiir r € IN, und paarweise disjunkte Mengen A, ...,A, € H mit der Eigenschaft, das auch die
Vereinigung A; U ... UA, in H enthalten ist. Man bezeichnet diese Eigenschaft als endliche Ad-
ditivitit.

Der Begriff des Inhalts ist auf Mengenringen genauso definiert wie auf Mengenhalbringen, d.h. eine Abbildung
¢ : R — R, auf einem Mengenring R ist genau dann ein Inhalt, wenn sie die beiden in Definition genann-
ten Eigenschaften besitzt. Zum Nachweis der Inhaltseigenschaft geniigt es bei Ringen allerdings, die Giiltigkeit der
Gleichung c(A;UA,) = c(A;)+c(A,) fiir zwei disjunkte A;,A, € R zu nachzuweisen. Die Aussage fiir beliebiges r € IN,,
erhélt man dann durch vollstdndige Induktion. Fiir Mengenhalbringen # ist dies in dieser Form nicht moéglich: Der In-
duktionsschritt funktioniert nicht, denn aus der Voraussetzung, dass A; U...UA,; in H liegt, darf nicht ohne weiteres
geschlossen werden, dass auch A; U...UA, in # liegt, selbst dann nicht, wenn A; € H fiir 1 < j < r +1 vorausgesetzt
ist.

Proposition 2.8 Seic:# — R, ein Inhalt auf einem Mengenhalbring .

(i) FirA,B € H mit A C B gilt c(A) < ¢(B).
(Diese Eigenschaft bezeichnet man als Monotonie.)

(ii) Ist H ein Mengenring, dann gilt c(AUB) < c(A) + ¢(B) fiir alle A,B € H.
(Diese Eigenschaft wird Subadditivitéit genannt.)

Beweis: zu (i) Auf Grund der Halbring-Eigenschaft existiert eine disjunkte Zerlegung B\A= C; U...UC, mit r € IN,,
und C; € H fiir 1 < j < r. Dies liefert eine disjunkte Zerlegung von B in AUC; U...UC,, und auf Grund der Additivitat
erhalten wir

cB) = cA)+c(C)+...+c(C) = c(A.

zu (ii) Die Vereinigungsmenge AUB kann als disjunkte Vereinigung der drei Mengen A\ B, B\ A und ANB dargestellt
werden. Daraus folgt

c(AuB) = c¢(A\B)+c(B\A)+c(ANnB) =
(c(A\B)+c(ANB))+ (c(B\A)+c(AnB))—c(ANB) = cA)+c(B)—c(AnB) < c(A)+c(B). O




Unser néchstes Ziel besteht darin, auf dem Mengenhalbring der Quader im R" einen Inhalt einzufithren. Dazu legen
wir die folgende Notation fest: Ist f : R — R eine beliebige Funktion, dann bezeichnet man den Abschluss der Menge
{x € R | f(x) # 0} als Trdger supp(f) von f. Ist der Trager von f in einem endlichen, abgeschlossenen Intervall
[a, b] enthalten und f auf [a, b] Riemann-integrierbar, dann definieren wir

b
J flx)dx = f f(x)dx.
R a

Man iiberpriift leicht, dass dieses Integral von der Wahl des Intervalls [a, b] unabhingig ist. Sind die Tréger von f
und g in einem endlichen, abgeschlossenen Intervall enthalten, dann gilt dasselbe auch fiir supp(f + g), und es ist

f(f"‘g)(x)dx = ff(x) dx+f g(x) dx.
R R R

Fiir jedes endliche Intervall I € IR mit den Grenzen a, b € R, wobei a < b ist, bezeichnen wir ¢;(I) =£¢(I) = b—a als
die Linge des Intervalls.

Wenden wir uns nun den hoheren Dimensionen zu. Ist Q ein Quader im R" und kartesisches Produkt der Intervalle
I1,...,I,,, so bezeichnen wir ¢,(Q) = l_[;lzl £(I;) als das Volumen des Quaders. Wir verwenden von nun an #,, als
Bezeichnung fiir den Halbring der Quader im R", und R, fiir den Ring der Figuren. Ist A C R™'! eine beliebige
Teilmenge, dann definieren wir

A, = {yeR"|(x,y)eA} fiirjedes x<€R.
Ist X eine Menge und A C X eine beliebige Teilmenge, dann bezeichnen wir die Abbildung

1 falls x€A

14: X —{0,1} , 1,(x)=
4 4 0 falls x¢A

als Indikatorfunktion der Menge A. Ist I C R ein endliches Intervall, dann gilt offenbar

fl,(x)dx = o) = ),
R

insbesondere ist das Integral definiert. Dies iiberpriift man unmittelbar, indem man die moglichen Fille fiir das In-
tervall I einzeln durchgeht.

Lemma 2.9 Sein € N und A € H,,,. Dann ist der Trager der Funktion auf R gegeben
durch x — ¢,(A,) in einem abgeschlossenen Intervall enthalten, die Funktion ist dort Riemann-
integrierbar, und es gilt

J A ) dx = cpa(A).
R

Beweis: Da A ein Quader in R™"! ist, gibt es nach Definition ein endliches Intervall I und einen Quader Q C R", so
dass A=1 x Q ist. Es gilt dann

flir xel c fir xelI
A, = Q , also c (A) = Q)
@ fir x¢I 0 fir x¢lI.




Der Triger der Funktion x — c,,(A, ) ist also im Abschluss I von I enthalten. Dabei ist I ein endliches, abgeschlossenes
Intervall der Form [a, b], und es gilt £(I) = £(I) = b — a. Da die Funktion x > c,(A,) auf I konstant ist, ist sie auf I
Riemann-integrierbar. Fiir den Wert des Integrals erhalten wir

b
fcn(Ax)dx = Jcn(Ax)dx = ((Dc,(Q) = cuIxQ) = cq1(A). O
R a

Satz 2.10 Durch die Volumenfunktion ¢, : %, — R, ist ein Inhalt auf dem Mengenhalbring
H,, gegeben.

Beweis: Nach Definition gilt ¢, (&) = O fiir alle n € IN. Die zweite Eigenschaft einer Inhalts-Abbildung beweisen wir
durch vollstdandige Induktion iiber n. Sei zundchst n = 1, r € N, und seien A4, ...,A, € H, paarweise disjunkt und
nichtleer mit der Eigenschaft, dass auch A=A; U...UA, in H; liegt. Weil die Mengen A, ...,A, paarweise disjunkt
sind, gilt 1,(x) = >, 1, (x) fiir alle x € R, und es folgt

r

qw==JLMMx= quv)z ZJM@sz > la@).
R R i=1JR

i=1 i=1

Sei nun n € IN und die Inhalts-Eigenschaft fiir n bereits bewiesen. Seien A4, ...,A, € H,,; paarweise disjunkt mit
A=A U...UA, € H,. MitA4,...,A, sind auch die n-dimensionalen Quader (4;), fiir alle x € R jeweils disjunkt. Es
gilt A, = (A;), U...U(A,), fiir jedes x € R, denn fiir alle y € R" gilt die Aquivalenz

yeA, & (xy)eA & 3Fie{l,.,r}:(x,y)eld <
r
Jie{l,..r}:ye@), < yelJa,
i=1

Durch Anwendung von Lemma und der Induktionsvoraussetzung erhalten wir somit

Cn+1(A) = J Cn(Ax) dx = f Cn (O(AL)X) dx = f zr:c((Al)x) dx
R R i=1 R i=1

- Zr:f cn((A)) dx = ch+1(Ai)- O
i=1JR

i=1

Der soeben eingefiihrte Inhalt soll nun auf den Ring der Figuren fortgesetzt werden.

Satz 2.11 Sei A ein Halbring in 2 und R der von H erzeugte Ring. Dann gibt es fiir jeden
Inhalt ¢ : # — R, einen eindeutig bestimmten Inhalt ¢ auf R mit ¢|,, = ¢ (also eine Fortsetzung
von ¢ auf R).




Beweis: Zunéchst beweisen wir die Eindeutigkeit. Sei ¢ eine beliebige Fortsetzung von ¢ zu einem Inhalt auf R und
A€ R.Ist A=P; U...UP. eine beliebige Darstellung von A als disjunkte Vereinigung von Mengen P; € #, dann gilt

r r

(W) = P = D). 2.1)
i=1 i=1
Zum Nachweis der Existenz wéhlen wir fiir jedes A € R eine Darstellung als disjunkte Vereinigung P; U ... U P, mit
P; € H und definieren é(A) durch (2.1). Nach Definition gilt dann é(&) = @. Ersetzt man in die Mengen P; durch
eine beliebige andere Darstellung von A als disjunkte Vereinigung Q; U ... U Q; mit Q; € H, so erhélt man denselben
Wert. Jedes P; kann ndmlich disjunkt in

P, = (PNQU..UPNQ)

zerlegt werden. Die Elemente P; N Q; liegen in #, und weil ¢ ein Inhalt auf # ist, gilt

r

ZC(Pi) = Zr:ZS:C(Pi nQ;).

i=1 i=1 j=1

Ebenso beweist man die Gleichung
S

de@) = D> PnQ)

j=1 i=1 j=1

womit die Unabhéngigkeit von der Wahl der Zerlegung von A bewiesen ist. Nun zeigen wir, dass ¢(AUB) = ¢(A)+¢(B)
fiir disjunkte A,B € R gilt. Selen A= P, U...UP, und B =Q; U...UQ, die zu Beginn gewéhlten Darstellungen von
A, B als disjunkte Vereinigungen von Mengen P;,Q; € H. Dann kann (auf Grund der bewiesenen Unabhéngigkeit)
der Wert ¢(AUB) mit Hilfe der disjunkten Zerlegung P; U...UP,UQ; U...UQ, ausgerechnet werden, und wir erhalten

r

GAUB) = > cP)+y.cQ) = HA)+EB). O

i=1 j=1

Aus Satz folgt unmittelbar die Existenz eines Inhalts ¢, : R,, — R, auf dem Ring R, der Figuren im R". Als
néichstes beschéftigen wir uns nun mit der Frage, wie Inhaltsfunktionen auf beliebige Teilmengen des R" fortgesetzt
werden konnen.

Definition 2.12 Sei R einRingin 2, ¢ : R — R, ein Inhalt und A € Q eine beliebige Teilmenge.
Dann sind das innere Maf3 c,(A) bzw. das duBere MaR c*(A) von A beziiglich ¢ definiert durch

c,(A) = sup{c(B) | B€ R,B C A} und c*(A) = inf{c(B) | B€ R,B 2 A}.

Sowohl beim inneren als auch beim dulleren MaR ist auch der Wert +0o moglich. Beim inneren Maf c,(A) tritt
dieser Fall ein, wenn die Menge {c(B) | B € R,B € A} in R, unbeschrankt ist, und beim duferen MaR c*(A), wenn
{c(B) | B€ R,B 2 A} die leere Menge ist.

Beim folgenden Lemma setzen wir voraus, dass (entsprechend der iiblichen Konvention) fiir alle a,b € RU {+ o0}
die Abschitzung a < +00 und im Fall a = +00 oder b = + 00 die Gleichung a + b = + 00 erfiillt ist.




Lemma 2.13 Sei R ein Ring in Q, ¢ : R — R, ein Inhalt, und seien A, B C Q2 beliebig.

(i) Aus A C B folgt c,(A) < ¢,(B) und c*(A) < c*(B).
(ii) Allgemein gilt c*(AU B) < c¢*(A) + ¢*(B).
(iii) Sind A und B disjunkt, dann gilt ¢, (AU B) > c,(A) + c.(B).

Beweis: zu (i) Die Menge M; = {c(C) | C € R,C C A} istin M, = {c(C) | C € R,C C B} enthalten, weil fiir jedes
C € Rmit C CAauch C C B gilt. Im Fall ¢, (B) = +00 ist ¢,(A) < c,(B) offenbar erfiillt. Ansonsten ist c,(B) = sup(M,)
eine obere Schranke von M;. Weil c,(A) = sup(M,) die kleinste obere Schranke von M, ist, folgt c,(A) < c.(B). Der
Beweis der Abschatzung c*(A) < c*(B) lduft analog.

zu (ii) Wir konnen davon ausgehen, dass c¢*(A) und c¢*(B) beide endlich sind, denn ansonsten ist die Ungleichung
offensichtlich. Sei ¢ € R* vorgegeben. Nach Definition des duferen MafRes gibt es Mengen A;,B; € R mit A; D A,
B; 2 B mit c(4;) < ¢*(A) + %e und ¢(B;) < ¢*(B) + %8. Wegen AUB C A; UB; liegt c(A; U B;) in der Menge
{c(C) | € € R,C 2 AU B}. Weil c*(AU B) eine untere Schranke dieser Menge ist, gilt c*(AUB) < c(A; UB;) <
c(Ay) +c(By) < c*(A) + c*(B) + £. Weil ¢ beliebig vorgegeben war, folgt c*(AU B) < c*(A) + c*(B).

zu (iii) Wir setzen voraus, dass c,(AU B) endlich ist. Nach Teil (i) und wegen A,B C AU B sind dann auch c,(A)
und c,(B) endlich. Fiir vorgegebenes ¢ € R, finden wir Ay,B, € R mit A 2 Ay, B 2 B, und c(4,) = ¢, (A) — %8,
c(By) = ¢ (B)— %s. Mit A, B sind auch Ay, B, disjunkt. Zusammen mit der Inklusion A, U B, € AU B folgt daraus
¢.(AUB) = c(ApUBy) = c(Ag) +c(By) = ¢, (A) +c,(B)—e. Lassen wir ¢ gegen Null laufen, so erhalten wir ¢, (AUB) >
c.(A) +c.(B). O

Lemma 2.14 Fiir jede Teilmenge A C Q gilt ¢, (A) < c*(A).

Beweis: Zunéchst betrachten wir den Fall, dass c,(A) unendlich ist. Angenommen, c¢*(A) ist endlich. Nach Definition
des Infimums existiert dann ein B € R mit B 2 A und ¢(B) < c¢*(A) + 1. Wegen c,(A) = +o00o finden wir ein C € R mit
C € Amit ¢(C) > c(B). Wegen C C A C B muss andererseits c(C) < c(B) gelten, wir erhalten also einen Widerspruch.
Also muss c*(A) = +oo gelten.

Seien nun c*(A) und c,(A) beide endlich, aber c,(A) > c*(A). Nach Definition des Infimums finden wir ein B € R mit
B 2 A und ¢(B) < c,(A). Nach Definition des Supremums gibt es andererseits ein C € A und ¢(C) > c¢(B). Wiederum
ergibt sich wegen C C A C B ein Widerspruch zur Monotonie. m|

Lemma 2.15 Sei R ein Ring in Q und ¢ : R — R, ein Inhalt. Dann gilt c,(A) = c*(A) = c(A)
fiir alle Ae R.

Beweis: Die Zahl c(A) ist in der Menge {c(B) | B C A} enthalten. Weil das Supremum eine obere Schranke dieser
Menge ist, gilt c(A) < c,(A). Nehmen wir an, dass c(A) < c,(A) ist. Dann gibt es ein B € R mit B € A und c,(A) >
¢(B) > c(A), was aber der Monotonie der Inhaltsfunktion ¢ widerspricht. Also muss c(A) = c,(A) gelten.

Fiir das duflere Maf verlduft der Beweis vollig analog. Die Zahl c(A) ist ein Element der Menge {c(B) | B 2 A}, nach
Definition des Infimums gilt also c(A) > c*(A). Durch die Annahme c(A) > c¢*(A) erhilt man ein B € R mit B 2 A und
c*(A) < ¢(B) < c(A), was aber auf Grund der Monotonie von ¢ unmdéglich ist. Also gilt auch c(A) = c¢*(A). O




Definition 2.16 Sind die Werte c,(A) und c*(A) beide endlich und gilt c,(A) = c*(A), dann
bezeichnen wir A als c-messbar und definieren c(A) = c*(A). Die c,-messbaren Teilmengen E C
RR™ werden auch als Jordan-messbar bezeichnet, und man nennt c,(E) den Jordan-Inhalt der
Teilmenge E.

Lemma 2.17 Sei R ein Ring in Q und ¢ : R — R, ein Inhalt. Sei ¢ € R, E C Q beliebig und
A€ R mit c*(AAE) < %8. Dann gibt es Mengen A’,B’ € R mit A’ CE C B/, A CA C B’ und der
Abschitzung c¢(B' \ A) < ¢.

Beweis: Nach Definition des duleren MaRes existiert ein B € R mit B 2 AAE und ¢(B) < ¢. Auf Grund der
Ringeigenschaft liegen B = AUB und A’ = A\ B beide in R, und es gilt B\ A’ = B, also ¢(B' \ A’) = ¢(B) < &.
AuRerdem ist A = A\B CA\(AAE) CEund E CAU(AAE) C AUB = B’. Die Inklusionen A’ C A C B’ sind
offensichtlich. |

Satz 2.18 Sei R ein Ring in 2 und ¢ : R — R, ein Inhalt. Fiir eine Teilmenge E C 2 sind die
folgenden Aussagen dquivalent.

(i) Die Menge E ist c-messbar.
(ii) Fiir jedes ¢ € R* gibt esA,B€ R mit AC E C B und c(B \A) < &.
(iii) Fiir jedes ¢ € R* gibt es ein A€ R mit c*(AAE) < ¢.

Beweis: (i) = (i)“ Sei ¢ € R* vorgegeben. Nach Definition von c*(E) existiert ein B € R mit E C B und
c(B) < c*(E) + %8. Ebenso finden wir ein A € R mit A C E und c(A) > ¢, (E) — %8. Weil E messbar beziiglich c ist,
gilt ¢(E) = c,(E) = ¢*(E), und die disjunkte Zerlegung von B in A und B \ A liefert ¢(B) = c(A) + c¢(B \ A). Insgesamt
erhalten wir ¢(B \ A) = c¢(B) —c(A) < (c(E) + %8) —(c(E)— %e) =e.

L(i) = (0)“ Sei e € R* vorgegeben. Auf Grund der Voraussetzung existieren Elemente A,B € R mit AC E C B und
c(B\A) < ¢. Es folgt ¢*(E) — c,(E) < c(B) —c(A) = c¢(B\A) < ¢. Weil £ € R* beliebig gewihlt war, bedeutet dies
c*(E) =c,(E), d.h. E ist messbar beziiglich c.

L) = (ii)“ Sei e € R* vorgegeben. Nach Voraussetzung finden wir Elemente A, B € R mit A C E C B und
c(B\A) <e.Esgiltdann AAE =E\ACB\Aund somit c*(AAE) < c*(B\A)=c(B\A) <e.

,(iil) = (ii)“ Zuvorgegebenem ¢ € R* wihlen wir einA € R mit c*(AAE) < %s. Nach Lemma gibtesA’,B'e R
mit A CECB, A CACB und ¢(B' \A) <¢. O

Folgerung 2.19 Sei R ein Ring in , ¢ : R — R, ein Inhalt auf R und E C Q eine c-messbare
Menge. Dann gibt es eine Folge (A, ) en in R mit lim, c*(A, AE) = 0 und fiir jede solche Folge
gilt lim,, c(A,,) = c(E).




Beweis: Fiir jedes n € IN gibt es nach Satz ein A, € R mit c*(A, AE) < % Dadurch ist die Existenz einer Folge
(An)nelN mit

lim c*(A,AE) = 0 bewiesen.

n—oQ

Sei nun (A,),en €ine beliebige Folge mit dieser Eigenschaft und ¢ € R, vorgegeben. Sei N € IN so gewéhlt, dass
¢*(A, AE) < i fiir alle n > N erfiillt ist. Sei nun n € IN mit n > N. Nach Lemma gibt es Mengen A’, B’ € R mit
A CECB und A’ CA, C B’ sowie c(B’ \A) < ¢. Nun gilt

cA)—c(E) = cA)—c"(E) < cB)—c"A) = cB)—c@) = cB\A) < ¢

und ebenso c(E) —c(A,) = c*(E) —c*(A,) < c*(B") —c*(A) = c(B’) — c(A') = c¢(B' \ A) < ¢, so dass wir insgesamt
|c(A,) — c(E)| < ¢ erhalten. Damit ist auch die Gleichung lim,, c(A,) = c(E) bewiesen. |

Satz 2.20 Sei R einRingin Q und c : R — R, ein Inhalt. Dann bilden die c-messbaren Mengen
einen Ring R, der R als Teilmenge enthélt. Durch A — c(A) ist ein Inhalt auf R, definiert.

Beweis: Nach Lemma gilt R C R. Wegen @ € R ist @ nach Lemma eine c-messbare Menge. Seien nun A, B
zwei c-messbare Mengen. Zu zeigen ist, dass auch AU B und A \ B messbar sind. Sei dazu ¢ € R* vorgegeben. Nach
Satz gibt es Mengen Ay,A; € R mit Ay CACA; und c(A; \Ay) < %8. Ebenso finden wir Mengen By, B; € R mit
By €B € B; und ¢(B; \ By) < %8. Setzen wir Cy = Ay, U B, C; =A; UB;, dann gilt
Ci\C = (AUB)\(AUBy) < (A;\AgU(B;\By).

und somit ¢(C; \ Cy) < c(A; \Ag) +¢(B; \ By) < %8 + %s = ¢. Wegen C, € AU B C (; zeigt dies nach Satz die
c-Messbarkeit von AU B. Zum Nachweis, dass auch A\ B eine c-messbare Menge ist, setzen wir D, = A, \ B; und
D; =A;\ By. Es gilt dann Dy CA\ B € D; und

D;1\Dy, = (A1\Bo)\(A\By) <& (A;\Ap)U(B;\By).
Wie zuvor erhalten wir ¢(D; \ Dy) < €. Die Messbarkeit von A \ B ist damit nachgewiesen.

Nun zeigen wir noch, dass durch ¢ ein Inhalt auf R, definiert ist. Nach Lemma gilt ¢(@) = c*(@) =0, denn die
leere Menge ist nach Definition in R enthalten. Seien nun A, B € R, zwei disjunkte Mengen; dann liegt auch AUB in
R.. Nach Lemmal[2.13| gilt die Aussagen c(AUB) = c¢*(AUB) < ¢*(A) +c*(B) = c(A) +c(B) und c(AUB) = ¢,(AUB) >
c,(A)Uc,(B) =c(A) + c(B), insgesamt also Gleichheit. O

Speziell fiir den Jordan-Inhalt notieren wir an diese Stelle als wichtige Eigenschaft die Bewegungsinvarianz, die wir
bereits im Einfithrungsabschnitt erwdhnt haben. Wir werden diese Eigenschaft spater unter allgemeineren Voraus-
setzungen herleiten.

Satz 2.21 SeiA C R" eine beliebige Teilmenge und 1) : R" — R" eine Bewegung. Genau dann
ist A Jordan-messbar, wenn 1)(A) Jordan-messbar ist, und in diesem Fall gilt c, (3 (A)) = c,(A).




Das folgende Beispiel zeigt, dass bereits auf recht einfache Weise definierte Mengen nicht Jordan-messbar sein
konnen.

Satz 2.22 Fir jedes n € IN ist die Menge A = [0, 1]" N Q" nicht Jordan-messbar.

Beweis: Wir beweisen die Gleichungen c,(A) = 0 und c¢*(A) = 1. Zum Beweis der ersten Gleichung nehmen wir an,
dass c,(A) > 0 ist und somit eine Figur F mit F € A und c¢(F) > 0 existiert. Stellen wir F als disjunkte Vereinigung
Q,U...UQ, von Quadern da, so gilt ¢(Q;) > O fiir ein i mit 1 < i < r. Schreiben wir Q; als Produkt von Intervallen,
Q; =1I; x ... x I, dann haben alle Intervalle positive Linge. In jedem Intervall liegt somit eine irrationale Zahl, d.h.
es existiert ein Punkt a € Q; \ Q". Aber dies widerspricht den Annahmen Q; CF CAC Q".

Nehmen wir nun an, dass c*(A) < 1 gilt. Dann existiert eine Figur F 2 A mit ¢(F) < 1. Wir kénnen F C [0,1]"
annehmen (ansonsten ersetze F durch F N[0,1]"). Wegen ¢([0,1]") =1 ist G =[0,1]"\ F eine Figur mit ¢(G) > 0.
Indem wir G wie im vorherigen Absatz als Vereinigung von Quadern darstellen, finden wir einen Quader Q € G mit
c(Q) > 0.Ist Q = I; x ... x I, die Darstellung von Q als kartesisches Produkt von Intervallen, so hat jedes Intervall
positive Lange und enthélt eine rationale Zahl. Somit liegt in Q ein Punkt aus [0,1]" N Q" = A, was der Annahme
QS GC[0,1]"\F €[0,1]"\ A widerspricht. |

Auch Koordinantenhyperebenen wie z.B. {(0, x5, ...,x,,) | x; € Rfiir2 < i < n} € R" sind nicht Jordan-messbar
(Nachweis als Ubung).

Wir werden im néachsten Abschnitt den Jordanschen Inhalt zum Lebesgue-Malf3 verallgemeinern. Bei der Konstruktion
wird die folgende Charakterisierung der c-messbaren Mengen, die ohne den Begriff des inneren MaRes auskommt,
fiir uns hilfreich sein.

Proposition 2.23 Sei R ein Ring und ¢ : R — R, ein Inhalt. Sei A € P(Q) eine beliebig
vorgegebene Menge.

(i) Ist F € R mit F 2 A, dann gilt ¢, (A) = c(F)—c*(F \ A).
(ii) Genau dann ist A c-messbar, wenn c¢(F) = ¢*(A) + ¢*(F \ A) gilt.

Beweis: zu (i) Wir miissen die Gleichung c(F)—c*(F\A) =sup{c(B) | B € A, B € R} herleiten. Zum Nachweis, dass
die Zahl auf der linken Seite eine obere Schranke fiir die Menge rechts ist, sei B € R mit B C A vorgegeben. Dann
gilt F\ B 2 F \ A und somit ¢*(F \ A) < ¢*(F \ B) = c¢(F \ B), also ¢(F) —c*(F \ A) = ¢(F)—c(F \ B) = ¢(B). Nehmen
wir nun an, dass € € R* und c(F) — c*(F \ A) — ¢ ebenfalls eine obere Schranke der Menge ist. Nach Definition des
duleren MaRes gibt es ein B’ € R mit B’ 2 F\Aund c(B’) < ¢c*(F \A)+ €. Es gilt A=F \ (F \A) 2 F \ B'. Setzen wir
B=F\B/,danngilt also B€ R, A2 B und ¢(B) = c(F)—c(B’) > c(F) — c*(F \ A) — &, was der Eigenschaft dieser
Zahl, obere Schranke der Menge {c(B) | B € A,B € R} zu sein, widerspricht.

zu (i) ,=“ Ist die Menge A c-messbar, dann gilt c,(A) = c*(A), also c(F) — c*(F \ A) = ¢*(A) und somit c¢(F) =
c*(A)+ c*(F\A). ,<“Auf Grund der Voraussetzung und der Subadditivitit von c¢* gilt ¢(F) = c¢*(A) + c*(F \ A). Es
folgt c,(A) = c(F) —c*(F \ A) = c*(A), d.h. A ist c-messbar. m|




§3. o-Algebren und Maf3e

Zusammenfassung. Wahrend wir im letzten Kapitel lediglich endliche Mengenoperationen zugelassen haben,
erweitern wir die Strukturen dahingehend, dass auch abzdhlbar unendliche Mengenoperationen und Grenz-
wertprozesse zugelassen sind. Dies fiihrt auf die beiden zentralen Begriffe der Mal3theorie, die o-Algebren und
die MafSe. Unser Hauptergebnis wird der Fortsetzungssatz von Carathéodory sein, welcher besagt, dass unter
gewissen Bedingungen ein Inhalt auf einem Ring zu einem Mal? auf einer o-Algebra fortgesetzt werden kann.
Dies ermoglicht uns die Erweiterung des Jordan-Inhalts zum bekannten Lebesgue-Mays.

Wichtige Grundbegriffe Zentrale Sdtze

- o-Ring und o-Algebra — o-Additivitit des Jordan-Inhalts

— Borelsche o-Algebra — Erzeugendensysteme der Borelschen o-Algebra
— o-additiver Inhalt — Satz iiber die u*-Messbarkeit

— Mal} auf einer o-Algebra, Ma3raum — Fortsetzungssatz von Carathéodory

— dulleres MaR auf einer Menge

— Messbarkeit beziiglich eines dulseren MalRes
(u*-Messbarkeit)

— Lebesgue-messbare Mengen und Lebesgue-Mal3

Definition 3.1 Ein Inhalt ¢ auf einem Mengenring R wird als o-additiv oder auch abzéhl-
bar additiv bezeichnet, wenn fiir jede Folge (A,,).eiv paarweise disjunkter A,, € R mit A =
USe Ay € R jeweils c(A) = > | c(A,,) erfiillt ist.

Unser erstes Ziel in diesem Kapitel besteht darin, die o-Additivat des Jordan-Inhalts auf dem Ring R, der Figuren

nachzuweisen.

Lemma 3.2 Sei(A,,) e €ine monoton fallende Folge nichtleerer kompakter Teilmengen A,,, €
R", es gelte also A,, 2 A,,,; 2 O fiir alle m € N. Dann ist die Schnittmenge A = (o, A,,
nichtleer.

Beweis: Nehmen wir an, dass A = @ gilt. Dann ist die Folge (B,,)men gegeben durch B, = A; \ A,, eine beziiglich

der Relativtopologie in A; offene Uberdeckung von A;, d.h. es gilt U;ozl B,, =A,;. Weil A; kompakt ist, existiert eine
endliche Teiltiberdeckung, also iy, ...,i, € N mit i; <... <1, und Ule B; =A;. Wir erhalten

p

p p
A, = (a4, = (@\B) = Al\(UBij) = A\A = O
j j=1 j=1

j=1

im Widerspruch zur Voraussetzung.




Lemma 3.3 Sein € IN und ¢ der Jordan-Inhalt auf dem Ring R der Figuren im R™. Ist (A,,)men
eine monoton fallende Folge in R mit ﬂ;ozlAm = @, dann gilt lim,,, ¢(4,,) = 0.

Beweis: Weil die Folge (c(A,,;)) e monoton fallend und nach unten durch 0 beschrénkt ist, existiert der Grenzwert
6 = lim,, ¢,(A,,) auf jeden Fall als Wert in R, . Nehmen wir an, dass 6 > 0 ist. Dann ist jedes A, nichtleer. Nach
Satz angewendet auf den Halbring der Quader, kann jedes A,, als endliche, disjunkte Vereinigung von Quadern
dargestellt werden. Indem wir jeden Quader durch einen geringfiigig kleineren Quader ersetzen, finden wir jeweils
eine Figur B,, mit

B, CA, und c(A,)—c(B,)<2"5.
Dabei bezeichnet B,, jeweils den topologischen Abschluss von B,,, also eine disjunkte Vereinigung abgeschlossener
Quader. Definieren wir nun

C, = B;Nn..nB, ,

dann ist (C,,),,ey €ine monoton fallende Folge kompakter Teilmengen in R". Nach Lemmagilt also ﬂ:;l C, # @,
sofern C,, # @ fiir alle m € IN erfiillt ist. Wegen C,, C A,, ist dann erst recht ﬂ;ozlAm # @, im Widerspruch zur
Voraussetzung. Wir beweisen C,, # @ fiir alle m € IN, indem wir die Abschitzung

cCp) = cA,)—06(1-2"") firalle meNN

durch vollstdndige Induktion herleiten. Betrachten wir zunéchst den Fall m = 1. Nach Wahl von B, gilt die Unglei-
chung c(A;) —c(B;) < %5, also

c(C)) = cB) = c(AD—1i56 = c@A)-5(1-27N.

Sei nun m € IN und die Aussage fiir m bereits bewiesen. Wegen gilt C,,,; = B,,,.41 N Cy, gilt ¢(B,11 UC,,) = c(Bpy) +
c(C,)—c(C,yy1)- Zusammen mit der Inklusion B,,,; U C,, € A1 UA,, =A,, folgt daraus

C(Cm+1) = C(Bm+1)+c(cm)_C(Bm+l Ucm) = C(Bm+1)+c(cm)_c(Am)-

Nach Induktionsvoraussetzung gilt die Abschétzung c(C,,) = c(A,,) —6(1 —27™), aullerdem c(A,11) — c(Bpy1) <
27m 5 was zu ¢(Byyq) = c(Ayp1) — 27§ umgestellt werden kann. Durch Einsetzen erhalten wir

Crs) 2 (c(Api) =27 8) + (c(A,) —5(1-27™) — c(Ay)
= (A, )—2""s5—5(1—2"") = c(A,,)—6(1—2"mD),

Insgesamt erhalten wir damit fiir alle m € IN jeweils ¢(C,,) = c(4,,) —6(1—2"")=>6—-6(1—27")=62""> 0. Es
gilt also C,, # @, damit erst recht C,, # @ fiir alle m € IN. |

Satz 3.4 Sein € N und R der Ring der Figuren im R". Dann ist der Jordan-Inhalt ¢ auf R ein
o-additiver Inhalt.

Beweis:  Sei (A;,)men €ine Folge paarweise disjunkter Figuren mit der Eigenschaft, dass auch A = U;;Am in R,
enthalten ist. Definieren wir B,, = A\ (A4; U...UA,,) fiir alle m € N, dann ist (B,,),ey €ine monoton fallende Folge
;ozl B,, = @. Auf Grund der Definition von B,, gilt jeweils c(B,,) = c(A) — Zzlzl c(Ay) fiar
alle m € IN. Die soeben bewiesene Hilfsaussage liefert die Gleichung lim,, ¢(B,,) = 0. Damit erhalten wir nun

von Figuren, und es gilt )

) = lim (c(Bm)+Zc(Ak)) = lm c(B,)+ D c(A,) = 0+ c(4,) = D c(A,). O
k=1 m=1 m=1 m=1




Definition 3.5 Sei(2 eine Menge. Ein o-Ringin 2 ist ein Ring R, der nicht nur unter endlichen,
sondern auch unter abzdhlbaren Vereinigungen abgeschlossen ist. Ist also (A,,)men €ine Folge
in R, dann muss auch U;o:lAm in R liegen. Man nennt R eine o-Algebra, wenn R zugleich
o-Ring und Algebra ist.

Aus der Definition ergibt sich unmittelbar

Proposition 3.6 Ein Mengensystem .A in Q ist genau dann eine o-Algebra, wenn @ € A gilt,
fiir jedes A € A auch das Komplement Q \ A in A liegt, und wenn fiir jede Folge (A,,) e in A
auch | J°7 | A, in A enthalten ist.

Jede o-Algebra A ist auch abgeschlossen unter abzdhlbaren Durchschnitten. Ist ndmlich (A,,)e €ine Folge in A,
dann sind auch die Mengen B,, = 2\ A, in A enthalten, und mit ihnen auch

Us. = U@\a,) = n\(ﬂBm).
m=1 m=1 m=1

Dies zeigt, dass auch ﬂ;o:l B,, in A enthalten ist.

Ebenso wie Mengenringe konnen auch o-Algebren durch Angabe eines Erzeugendensystems defininiert werden. Man
sagt, eine o-Algebra A wird durch ein System £ C 3(2) erzeugt, wenn A 2 £ gilt und jede o-Algebra A’ mit A’ 2 £
auch A’ 2 A erfiillt. Wie bei den Ringen zeigt man, dass jede o-Algebra durch die Angabe eines Erzeugendensystems
eindeutig bestimmt ist.

Definition 3.7 Die eindeutig bestimmte o-Algebra B, die von den Quadern im R" erzeugt
wird, nennt man die Borelsche o-Algebra. Thre Elemente bezeichnet man als Borelmengen.

Fiir die o-Algebra B, lassen sich viele weitere Erzeugendensysteme angeben.

Satz 3.8 Die Borelsche o-Algebra wird auler von den Quadern noch von folgenden Mengen-
systemen erzeugt.
(i) dem Ring der Figuren im R"
(ii) dem System aller offenen Teilmengen von R"
(iii) dem System aller abgeschlossenen Teilmengen von R"

(iv) dem System aller kompakten Teilmengen von R"




Beweis: zu (i) Jede o-Algebra, welche die Menge aller Quader enthilt, besitzt auch alle Figuren als Elemente,
denn jede Figur ist nach Definition als Vereinigung von Quadern darstellbar. Umgekehrt enthéilt jede o-Algebra mit
den Figuren auch alle Quader, denn nach Definition ist jeder Quader eine Figur.

zu (ii) Sei A eine o-Algebra, die alle offenen Teilmengen von R" enthéilt. Dann liegen auch alle abgeschlossenen
Teilmengen (als Komplemente der offenen Mengen) in .A. Dies bedeutet, dass insbesondere alle abgeschlossenen
Quader in A enthalten sind. Man iiberpriift unmittelbar, dass jeder Quader Q relativ-offen in seinem topologischen
Abschluss Q ist. Deshalb kann Q als Durchschnitt von Q mit einer geeigneten offenen Teilmenge U C R dargestellt
werden und ist somit ebenfalls in .A enthalten.

Sei nun A eine o-Algebra, die alle Quader enthélt und U C R" eine offene Menge. Wir miissen zeigen, dass U in A
enthalten ist. Dazu betrachten wir die (abzéhlbare) Menge Ug=UnNnQ" und bilden fiir jeden Punkt a € Uq den Wert

65, = sup{6 eR"|Bs(a)CU}

wobei Bs(a) = {x € R" | ||x—a]|lsc < 6} den offenen Ball um a vom Radius 6 beziiglich der Maximums-Norm auf R"
bezeichnet; dabei handelt es sich um den Wiirfel der Kantenlédnge 26 mit a als Zentrum. Weil U offen ist, gilt 5, > 0
fiir alle a € Ug. Unser Ziel U € A nachzuweisen ist erreicht, sobald wir die Gleichung
v o= [JBs@
aclUqy

bewiesen haben. Zunéchst zeigen wir die Inklusion ,,2 und nehmen an, dass ein a € Ug mit Bs (a) € U existiert.
Sei x € B5 (a) \ U. Dann gilt §’ = [|x —a||os < &, und bereits jede Zahl §” mit 6’ < §” < §, erfiillt die Bedingung
Bs.(a) € U nicht mehr. Dies widerspricht aber der Definition von §,. Zum Nachweis von ,,.C“ sei x, € U vorgegeben.
Sei 56 € R™ so gewahlt, dass Bs(x,) in U enthalten ist und a € Ug mit [la — x¢|loo < %5. Auf Grund der Dreiecksun-
gleichung gilt dann 3%5(a) C Bs(xo) € U (denn aus ||x —al|e < %6 folgt ||x — xglloo < lIx —alloo + lla — xglloe <
%5 + %5 = §) und somit %5 < 6, nach Definition von &,. Daraus wiederum folgt x, € B _(a), d.h. x, ist in der
Menge auf der rechten Seite unserer Gleichung enthalten.

zu (iii) Dies folgt direkt aus (ii), weil die abgeschlossenen Teilmengen die Komplemente der offenen sind.

zu (iv) Jede o-Algebra, die alle abgeschlossenen Teilmengen von R" enthélt, enthilt auch alle kompakten, denn die
kompakten Teilmengen sind gerade die beschrankten und abgeschlossenen Teilmengen von R". Sei nun umgekehrt
A eine o-Algebra, die alle kompakten Teilmengen von R" enthélt, und sei V C R" abgeschlossen. Dann ist V,, =
[—m,m]" NV fiir jedes m € IN kompakt, also in A enthalten. Damit liegt dann aber auch die abzahlbare Vereinigung

oo oo

U V, = (U [—m,m]”) nv = R'nv =V in der o-Algebra A. |
m=1 m=1

Fiir den weiteren Verlauf definieren wir die Bezeichnung R = R U {—00, +00}, wobei —oco und +oo zwei nicht in

der Menge R enthaltene Elemente bezeichnen und die Totalordnung < auf R durch die Festlegung —00 < a < +00

fiir alle a € R definiert ist. AuRerdem setzen wir R, = R, U {+00}.

Definition 3.9 Sei A eine o-Algebra. Eine Funktion u : A — R,, die den Bedingungen
w(@) =0 und ,u(U::lAm) = Z:f:l w(A,,) fiir jede Folge (A,,)men Paarweise disjunkter Mengen
in A gentigt, wird als Maf8 auf A bezeichnet. Ein Tripel (£2, 4, u) bestehend aus einer Menge 2,
einer o-Algebra A in Q2 und einem Mal3 u auf A wird MafSraum genannt.




Insbesondere ist jeder o-additive Inhalt auf einer o-Algebra ein Maf3. Der einzige Unterschied besteht darin, dass
der Inhalt seine Werte nur in R, annimmt, der Wert {+ 00} also ausgeschlossen ist. Wir betrachten einige Beispiele
fiir Maf3e.

(i) Sei Q eine Menge. Dann bezeichnet man die Abbildung v : B(Q2) — IN, U {+00} gegeben durch v(A) = |A]
als Zdhlmaf auf Q. (Wie im ersten Semester definiert wurde, ist |A| = n € IN,, falls eine Bijektion zwischen
M, ={1,2,...,n} und A existiert, und |A| = + 00, falls kein n € IN, mit einer solchen Bijektion existiert.)

(ii) Sei n € IN und Q eine Menge mit n Elementen. Dann ist durch u : B(Q) - R, A — %IAI ein Mal$ auf
Q definiert, fiir das u(Q2) = 1 gilt. Allgemein bezeichnet man ein Maf$ u in einem Mafsraum (Q, A, 1) mit
der Eigenschaft u(2) = 1 als Wahrscheinlichkeitsmaf3. In dem hier vorliegenden Fall kann u(A) jeweils als
Wabhrscheinlichkeit dafiir interpretiert werden, dass ein zufallig gewéahltes Element x € Q in A enthalten ist.

(iii) Sei (92, A, u) ein MafSraum. Existiert ein x € 2, so dass fiir alle A € A jeweils

) = 1 fallsxe€A
g 0 fallsx¢A

erfiillt ist, dann bezeichnet man u als das Dirac-Maf3 5, im Punkt x.

Im weiteren Verlauf beschéftigen wir uns nun mit der Konstruktion von Maf3en und insbesondere mit der Frage, wie
man MafRe aus Inhalten gewinnen kann.

Definition 3.10 Eine Abbildung u* : () — R, wird ein duBeres Maf auf 2 genannt, wenn
uw*(@) = 0 gilt, die Abbildung monoton ist (aus A C B also u*(A) < u*(B) folgt) und fiir jede
Folge (A, men in B(2) die Abschatzung

u (G An) < i u*(A,) erfillt ist.

= n=1

Die zuletzt angegebene Eigenschaft des dufieren MalRes bezeichnet man als abzidhlbare Subadditivitit. Man sagt
auch, das dufSere Mal} ist o -subadditiv.

Satz 3.11 Sei R C P(Q) ein Mengenring und ¢ : R — R, ein Inhalt. Fiir jedes A C Q definieren

wir -
w@ = inf{Zc(An)

n=1

oo
(A)nen Folge in R,AC UAn} ,
n=1

wobei inf(&) = + 00 gesetzt wird. Dann ist durch u; ein dufleres Maf} auf Q definiert.




Beweis: Zuniéchst gilt @ € R und offenbar u’ (@) = c(&) = 0. Fiir jedes A C Q bezeichnen wir mit s(A) die Menge
aller Summen 2;21 c(A,,), die durch Folgen (A,),en in R mit U;o:lAm D A zu Stande kommen. Sind A, B € P(2)
mit A € B vorgegeben, dann gilt s(B) € s(A), denn eine Folge, die B iiberdeckt, iiberdeckt auch die Menge A. Die
untere Schranke u*(A) = infs(A) ist somit auch eine untere Schranke von B, und nach Definition des Infimums folgt
u;(B) = infs(B) = u:(A). Damit haben wir die Monotonie nachgewiesen.

Zum Nachweis der dritten Bedingung sei (A,,),c €ine beliebige Folge in B(Q) und A = U:il A,. Wir kénnen u’(A,) <
+oo fiir alle n € IN annehmen, da ansonsten die Ungleichung

pA) < DA, 3.1)
m=1

offensichtlich erfiillt ist. Ist ¢ € R* beliebig vorgegeben, so finden wir fiir jedes n € IN eine Folge (A, )ken in R mit
A, U A und D02 c(An) < pi(A,) + 27" Es folgt

oo o0
acl A
n=1k=1

und somit
HOBESDY (Z c(Ank)) < Dm@)+2) <
n=1 \k=1 n=1
(o] (o] oo
DAY+ 2 < > (A +e
n=1 n=1 n=1
Weil ¢ € R, beliebig gewéhlt war, erhalten wir die Abschétzung (3.1). O

Definition 3.12 Das zum Jordan-Inhalt ¢, auf dem Ring R, der Figuren im R" gehorende
auflere Mals u? wird 4ulleres Lebesgue-MaR3 genannt. Wir bezeichnen es mit uy.

Fiir die Bestimmung des dul’eren Malles geniigt es, abzdhlbare Vereinigungen von Quadern (an Stelle von Figuren)
zu betrachten, da jede Figur nach Definition endliche Vereinigung von Quadern ist.

In Definition hatten wir bereits jedem Inhalt ¢ auf einem Ring ein dulieres Mald c* zugeordnet. Fiir beliebige
Teilmengen A € Q gilt im Allgemeinen c*(A) > u?(A), aber nicht Gleichheit. Der Grund dafiir ist, dass fiir jede solche
Teilmenge jeweils

{C(B) ‘ BER,B QA} > {ic(An)

n=1

oo
(A;)nen Folgein R,AC UA“} gilt,

n=1
die Mengen aber nicht iibereinzustimmen brauchen. Bezogen auf den Jordan-Inhalt und das dulsere Lebesgue-Mal3
gilt fiir A=[0,1]" N Q" beispielsweise u;(A) = 0 im Gegensatz zu c;(A) = 1. Ist H die erste Koordinatenhyperebene,
also H = {(0, x5, ..., x,) | x; € R fiir 2 < i < n}, dann gilt u(H) =0 und c;(H) = +00.

Im allgemeinen braucht ein duferes Mafd aber nicht wie in Satz durch einen Inhalt auf einem Ring induziert zu
sein; es gibt auch andere Moglichkeiten, ein duf3eres Mafd auf einer Menge zu definieren. Die folgende Definition ist
durch Proposition motiviert.




Definition 3.13 Sei u* : P(Q) — R, ein duleres MaR. Wir bezeichnen eine Menge A C Q als
w*-messbar, wenn fiir alle F C Q die Ungleichung

u*(F) = u*(FNnA)+u*(F\A) erfiillt ist.

Man beachte, dass die angegebene Ungleichung auf Grund der Subadditivitat von dulieren Maf3en dquivalent zur
Gleichheit ist.

Satz 3.14 Sei u* : P(Q2) — R, ein duleres MaR und A,. die Gesamtheit der u*-messbaren
Mengen. Dann ist A,,. eine o-Algebra, und durch i = u*| A4, istein MaR auf A,. definiert.

Beweis: Offenbar ist & in A,,. enthalten, denn es gilt u*(F N @) = u*(&) = 0 und u*(F \ @) = u*(F). Mit A ist auch
A; = Q\Ain A,. enthalten. Denn fiir jede Teilmenge F C  gilt dann u*(F) = u*(F N A) + u*(F \ A), und wegen
FNA;=FN(Q\A) =F\Aund F\A; =F\ (Q\A)=FnAgilt auch u*(F) = u*(F NA;) + u*(F \ A;).

Seien nun A, B € A,,. vorgegeben. Um zu zeigen, dass auch AUB in A,,. liegt, miissen wir die Messbarkeits-Bedingung
fiir ein beliebiges F C Q verifizieren. Weil die Menge A u*-messbar ist, gilt u*(F) = u*(F NA) + u*(F \ A), und die
u*-Messbarkeit von B liefert

p(F\A) = u((F\ANB)+u"(F\(AUB)).
Es folgt dann
p(F) = uEFnA+u(F\A) = p'EFENA)+u (F\ANB)+u'(F\(AUB)) =
p((FNAU(F\A)NB)+u(FN\(AUB)) = w(FN(AUB))+u"(FN\(AUB)) ,

wobei im letzten Schritt die Mengengleichung
(FNAUWF\ANB) = (FNAUFNANB)U((F\A)NB) = (FNAU(FNB) = FnN(AUB)

verwendet wurde. Wir haben somit gezeigt, dass \A,,. eine Algebra ist.

Im zweiten Teil beweisen wir nun, dass A,,. eine o-Algebra, und dass durch i = u*| A,. €in MaR auf A,,. definiert ist.
Nach Definition eines dufReren MaRes gilt ((@) = u*(@) = 0. Seien nun A, B € A, disjunkt. Fiir alle F C Q gilt auf
Grund der Messbarkeit von A die Gleichung

u(FNAUB)) = u'(FNAUB)NA)+u*(FNn(AuB))\A) = u*(FnA)+u*(FnNB).

Durch vollstdndige Induktion erhalten wir

p(FN(A U...UA,)) = Z,u*(FnAk) (3.2)
k=1




fiir alle r € IN und paarweise disjunkte Mengen A, ...,A, € A,.. Sei nun (A,),cn eine Folge paarweise disjunkter
Mengen in A,,.. Wegen UZ:lAk € A, und auf Grund der soeben bewiesenen Gleichung gilt

@ = (o)) (1 (Us))
= kz:lzu*(FmAkHu*(F\(gAkD.

Lassen wir n gegen unendlich laufen, dann erhalten wir auf Grund der Monotonie von u* und der Inklusionsbeziehung
Uiy Ax € U2 A, die Ungleichung

WE) 2 Y ENA) (Fﬂ\(UAn)) (3.3)
n=1 n=1

o (o0 (0]

wobei wir im zweiten Schritt die o-Subadditivitdt des dufleren Mafles u* verwendet haben. Also ist U:?;An in A,
enthalten. Ist (A,),c eine beliebige (nicht notwendig disjunkte) Folge in A,., dann definieren wir eine disjunkte
Folge (B,)nen durch B; =A; und B,;; =A,,; \ (B, U...UB,). Es gilt | J o, A, = 2, By, also ist mit (4,),cn auch
U2, A, in A,. enthalten.

Ist (A,)ney NUN wiederum eine disjunkte Folge in A,,., dann kénnen wir in die Ungleichung (3.3) die Menge F =
Ure, Ax einsetzen. Wegen A, N (|2, Ac) =A, und A, \ (U2, Ac) = @ fiir alle n € IN gilt

u*(UAn) > Y@@ = YA
n=1 n=1 n=1

Zusammen mit der abzdhlbaren Subadditivitat von u* erhalten wir Gleichheit. Dies zeigt, dass die Einschrankung
von u* auf A,,. tatsdchlich ein Maf liefert. m|

Definition 3.15 Sein € IN und u; das duRere Lebesgue-Maf} auf dem R". Dann bezeichnet
man die Elemente der o-Algebra 4 ,. als die Lebesgue-messbaren Teilmengen des R", und das
entsprechende Mal} als Lebesgue-MaR.

Fiir die o-Algebra A,,. verwenden wir die einfachere Bezeichnung A, und w,, fiir das Lebesgue-MaB auf A,,.

Unsere nichste Aufgabe besteht in dem Nachweis, dass es sich beim Lebesgue-Maf3 u, um eine Fortsetzung des
Jordan-Inhalts ¢, : R, — R, handelt. Ausschlaggebend ist hierbei die in Satz3.4|festgestellte o-Additivitit von c,,.

Satz 3.16 (Fortsetzungssatz von Carathéodory)

Sei R ein Ring in Q, ¢ : R — R, ein o-additiver Inhalt und uy P - R, das zu c gehérende
auBere Maf3. Mit der Notation aus Satz gilt dann R € A, und auBerdem u’|r =c, d.h. c
wird durch u? fortgesetzt.




Beweis: Wir bemerken vorweg, dass aus der o-Additivitdt von ¢ die abzédhlbare Subadditivitat folgt. Sei namlich
(B )men €ine Folge in R mit der Eigenschaft, dass auch B = U:;l B, in R enthalten ist. Dann konnen wir dieser Folge
wie im Beweis von Satzeine Folge paarweise disjunkter Mengen (C,,)en mit C,, € B,,, und U;nzl B, = UIT=1 Cy
fiir alle m € IN zuordnen, und wegen B = U;ozl C,, gilt dann

c(B) = c(GCm) = ic(cm) < ic(Bm).

m=1 m=1 m=1
Fiir ein beliebig vorgegebenes A € R beweisen wir nun zunéchst die Gleichung c(A) = u(A). Definieren wir die Folge
(A)nenw in R durch A; =Aund A, = @ fiir n > 2, dann gilt wegen U:;An 2 A nach Definition des duf3eren Malf3es
die Ungleichung u}(A) < Z:Zl c(A,), und die Summe ist offenbar gleich c(A); insbesondere ist u*(A) also endlich.
Sei nun (A,),e €ine beliebige Folge in R mit

oo oo
AC UAn und Zc(An)<+oo ;
n=1 n=1

dass es mindestens eine solche Folge gibt, haben wir soeben nachgewiesen. Die abzédhlbare Subadditivitat von ¢ und
die Gleichung A= J 2, (ANA,) liefern

c(Ad) = C(G(AﬂAn)) < ic(AﬂAn) < ic(An).
n=1 n=1 n=1

Bilden wir das Infimum iiber alle Folgen (A,),en in R mit A € U:il A,, dann erhalten wir c(A) < u;(A), insgesamt
also Gleichheit.
Nun beweisen wir die Inklusion R € A,,.. Fiir gegebene A€ R und F < 2 miissen wir die Ungleichung

u(F) = p(FNnA)+ui(F\A) nachweisen.

Im Fall u;(F) = 400 ist nichts zu zeigen; wir kénnen also davon ausgehen, dass eine Folge (A;),cn in R mit F C
UsilAn und Zsil c(A,) < +00 existiert. Die Mengen A, N A bilden eine Uberdeckung von F N A, und die Mengen
A, \ A eine Uberdeckung von F \ A durch Elemente aus R. Wir erhalten somit die Abschitzung

WFNA)+E(F\A) < D c(4,nA)+ D c(A,\A)
n=1 n=1
= DA nA)+c(A,N\A) = D c(4,) <+oo.
n=1 n=1

Durch Ubergang zum Infimum iiber alle Folgen (A,),cn in R mit F C U:;An erhalten wir die gewiinschte Ab-
schétzung u!(F NA) + u’(F \ A) < u’(F). Also ist A in A,,. enthalten. |

Folgerung 3.17 Der Ring R, der Figuren im R" ist in der o-Algebra A, der Lebesgue-
messbaren Mengen enthalten. Damit ist auch die Borel-Algebra B, im R" eine Teilmenge von
A, (denn dies ist nach Definition die kleinste o-Algebra, die R enthélt). Das Lebesgue-Maf3 u,,
stimmt auf R,, mit dem Jordan-Inhalt {iberein.

Im néchsten Kapitel werden wir zeigen, dass auch der in § 2 definierte Ring der Jordan-messbaren Teilmengen in A,
enthalten ist, und dass der Jordan-Inhalt ¢, auf diesem Ring mit dem Lebesgue-Mal} u,, ibereinstimmt.
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§4. Eindeutigkeit der Fortsetzung und Vollstandigkeit

Zusammenfassung. Nach dem Fortsetzungssatz von Carathéodory aus dem letzten Kapitel kann jeder o-
additive Inhalt c auf einem Ring R zu einem Mal} auf einer gewissen o-Algebra A,,. fortgesetzt werden kann.
Dadurch erhalten wir auch eine Fortsetzung von ¢ zu einem Maf$ auf der von R erzeugten o-Algebra o(R).
Mit Hilfe des Konzepts der Dynkin-Systeme werden wir in diesem Kapitel zeigen, dass diese Fortsetzung unter
der Voraussetzung, dass ¢ nicht nur o-additiv, sondern auch o-endlich ist, eindeutig bestimmt ist.

Eine o-Algebra A wird als vollstdndig beziiglich eines Malfdes u bezeichnet, wenn jede Teilmenge einer u-
Nullmenge (also einer Menge N € A mit u(N) = 0) ebenfalls in .4 enthalten ist. Auf jeden Fall kann A stets
zu einer vollstdndigen o-Algebra erweitert werden; diesen Vorgang bezeichnet man als Vervollstindigung.
Wir zeigen, dass fiir einen o-additiven, o-endlichen Inhalt auf einem Ring R die o-Algebra A,. aus dem
Fortsetzungssatz eine Vervollstindigung von o (R) darstellt. Insbesondere ist die o-Algebra A, der Lebesgue-
messbaren Mengen eine Vervollstindigung der Borelschen o-Algebra 5,,.

Wichtige Grundbegriffe Zentrale Sditze
— Dynkin-System — Eindeutigkeit der Fortsetzung o-endlicher Inhalte
— N-stabiles Mengensystem — p*-Kriterium fiir die Messbarkeit in vollstindigen

Maldraumen
— o-endlicher Inhalt

— Lebesgue-messbare Mengen als Vervollstindigung

— vollstandiger MaBraum, Vervollstdndigung der Borelschen o-Algebra

— innere und duflerer Regularitét des Lebesgue-MaRes

In diesem Kapitel soll ein hinreichendes Kriterium dafiir ermittelt werden, dass die Fortsetzung von einem Inhalt auf
eine o-Algebra eindeutig bestimmt ist. Der folgende Begriff wird fiir den Beweis dieses Eindeutigkeitsresultats eine
wichtige Rolle spielen.

Definition 4.1 Eine Teilmenge D C ‘B(2) heilt Dynkin-System in 2, wenn folgende Bedin-
gungen erfiillt sind.

(i) Esgilt @ eD.
(ii) Fiir jedes D € D liegt auch Q\ D in D.

(iii) Ist (D,),en eine Folge paarweise disjunkter Mengen in D, dann ist auch die Vereinigungs-
menge | J 2, D, in D enthalten.

Auch endliche disjunkte Vereinigungen von Elementen aus einem Dynkin-System D sind wieder in D enthalten; man
betrachtet dazu Folgen, in denen alle bis auf endliche viele Mengen leer sind. Sind D, E € D mit D C E, dann liegt
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auch die Menge E\D = EN(Q\D) =Q\(DU(2\E)) in D. Die Definition des Dynkin-Systems bleibt erhalten, wenn
man die Bedingungen (i), (ii) durch

G QeD
()’ D,EED,DCE=E\D€ED

ersetzt, denn es gilt @ = Q\ Q fiir alle D € D.

Nach Definition ist eine o-Algebra in Q ein Mengensystem A mit & € A, dass unter Komplementbildung und ab-
zdhlbaren Vereinigungen beliebiger Mengen abgeschlossen ist. Somit ist jede o-Algebra auch ein Dynkin-System. Es
stellt sich die Frage, welche zusétzliche Eigenschaft ein Dynkin-System benotigt, um zu einer o-Algebra zu werden.
Allgemein bezeichnen wir ein Mengensystem & C B(Q2) als N-stabil, wenn fiir alle A,B € £ auch ANB in & liegt.

Satz 4.2 Ein Dynkin-System ist genau dann eine o-Algebra, wenn es N-stabil ist.

Beweis: Jede o-Algebra ist N-stabil und (wie wir bereits festgestellt haben) ein Dynkin-System. Sei nun D ein N-
stabiles Dynkin-System; wir zeigen, dass D eine o-Algebra ist. Zunéchst gilt nach Definition @ € D. Sind A,B € D
vorgegeben, dann liegt nach Voraussetzung auch ANB in D, damit auch A\ B =A\ (ANB) wegen ANB C A nach (ii)’
und AUB = (A\ B)UB wegen (A\ B)NB = @ nach (iii). Es bleibt zu zeigen, dass D abgeschlossen unter abzdhlbaren
Vereinigungen ist. Sei dazu (A,),en eine beliebige Folge in D. Definieren wir Ay = @ und A}, = A/ UA,,, fiir alle
n € N, dann gilt

oo oo
U = U@\
n=1 n=1

Die Inklusion ,2“ ist offensichtlich. Ist x ein Element der Menge auf der linken Seite, dann wéhlen wir n € N,
minimal mit x € A,;; und erhalten x € A’ _, \ A’. Wir haben bereits gezeigt, dass D abgeschlossen unter endlichen
Vereinigungen und Differenzbildung ist. Deshalb sind die Mengen A’ ud A’ _, \ A, in D enthalten. Auflerdem sind die

Mengen A’ | \ A’ paarweise disjunkt; dies zeigt, dass auch die Vereinigungsmenge US;AH in D liegt. O

Ist £ C PB(Q) ein beliebiges Mengensystem, dann bezeichnen wir von nun an mit o(€) die von £ erzeugte o-Algebra
und mit §(&) das von £ erzeugte Dynkin-System, also das kleinste Dynkin-System in 2, dass £ als Teilmenge enthalt.
Der folgende Satz spielt fiir die Konstruktion von o-Algebren eine wichtige Rolle.

Satz 4.3 Fiir jedes N-stabile Mengensystem £ € P(Q) gilt 6(&) = o (&).

Beweis: Jede o-Algebra ist ein Dynkin-System, insbesondere auch o (£). Weil §(€) nach Definition das kleinste
Dynkin-System ist, das £ umfasst, gilt 6(£) € o(€). Wir zeigen nun, dass §(&) eine o-Algebra ist und beweisen
auf diesem Wege die Ubereinstimmung 6(€) = o(€). Wegen Satz geniigt es zu zeigen, dass 6(€) ein N-stabiles
Mengensystem ist. Fiir jedes D € §(&) definieren wir das Mengensystem

Dy = {QeP)IQNDes(&)}




und tiiberpriifen, dass es sich jeweils um ein Dynkin-System handelt: Wegen QN D = D € () ist zunéchst Q € Dy,
also Bedingung (i)’ erfiillt. Sind Q,R € D, mit Q € R, dann liegen QN D und RN D in §(&). Es gilt QN D € RN D und
somit (R\Q)ND = (RN D)\ (QND) e §(&E), weil 6(£) ein Dynkin-System ist. Also ist auch R \ Q in D}, enthalten
und somit Eigenschaft (ii)’ bewiesen. Sei nun (D,),cy eine Folge paarweise disjunkter Mengen D,, € D,. Dann gilt
D,ND e §(&) fiir alle n € IN. Weil die Mengen D, N D paarweise disjunkt und §(&) ein Dynkin-System ist, folgt

(GDn)mD = D(DnnD) €é6(8)
n=1 n=1

und damit U:ﬁl D, € Dj. Damit ist auch die Eigenschaft (iii) nachgewiesen. Nun beweisen wir die N-Stabilitdt von
6(€) in drei Schritten.

1. Schritt: AB€E £ =>ANBe6(E)
Die Aussage ist klar, denn wegen der N-Stabilitit liegt AN B in £ und damit auch in 6(£).

2. Schritt: A€ 6(£),BEE=>ANBe6(E)

Sei B € & beliebig vorgegeben. Nach Schritt 1 gilt A€ £ = AN B € §(&) fiir beliebiges A, also £ C Dy. Weil Dy ein
Dynkin-System ist, folgt 6(€) € Dy, also ANB € §(&) fiir alle A € §(&). Weil B beliebig gewahlt war, erhalten wir die
gewiinschte Aussage.

3. Schritt: AAB€ 6(£) =ANB € 6(E)
Sei A € 5(&) beliebig vorgegeben. Nach Schritt 2 gilt £ € D, und somit 6(&) € D,, weil D, ein Dynkin-System ist. Es
folgt ANB € 56(&) fiir alle B € 6(&). Weil A beliebig gewéhlt war, ist damit die N-Stabilitat von 6(&) bewiesen. O

Wir kénnen nun den Beweis des Eindeutigkeitssatzes in Angriff nehmen.

Proposition 4.4 Sei A eine o-Algebra in Q, £ ein N-stabiles Erzeugendensystem von .4, und
sei (E,)pen eine Folge in £ mit U:il E, = Q. Sind u,, u, Malle auf A mit u,(E) = u,(E) fiir alle
E € &, und nehmen beide auf den Elementen der Folge (E, ), nur endliche Werte an, dann

folgt py = .

Beweis: Sei &, die Menge aller E € £ mit u,(E), u,(E) < +00; nach Voraussetzung gilt E,, € &, fiir alle n € IN. Fiir
jedes E € &, definieren wir
Dy = {DeAlu(END)=uy(END)}.

Wir iiberpriifen, dass durch Dy dann jeweils ein Dynkin-System gegeben ist. Wegen u,(EN @) = u(@) = 0 =
U5 (D) = u,(ENG) ist @ in Dy enthalten. Sei nun D € Dy vorgegeben. Dann gilt u,(END) = u,(END). Wir erhalten
wENQ@\D)) = mENEND)) = wE)—w(END) = uy(E)—p(END)

= W(E\(END)) = w(En(Q\D))

und somit Q2 \ D € Dg, wobei im zweiten und vierten Schritt der Rechnung zu beachten ist, dass wegen E € €&,
mit u,(E), uy(E) auch die Werte u,(E N D), u,(E N D) endlich sind. Sei schlief3lich (D,),c eine Folge paarweise
disjunkter Mengen in Dg. Dann gilt u,(E N D,)) = u,(E N D,) fiir alle n € IN. Setzen wir D = U:il D,, dann folgt aus
der o-Additivitdt der Mafde u; und u, die Gleichheit

wEND) = > w(END) = D w(END) = w(END)
n=1 n=1

und somit D € Dg. Damit sind alle Eigenschaften eines Dynkin-Systems fiir D nachgerechnet.




Im néchsten Schritt zeigen wir nun, dass Dy = A fiir jedes E € &, gilt. Sei E € £, vorgegeben. Ist A € £, dann gilt
ANE € & auf Grund der N-Stabilitédt von £. Es folgt (AN E) = uy,(AN E) und somit A € Dy. Damit ist die Inklusion
& C Dg nachgewiesen. Weil Dy ein Dynkin-System ist, gilt sogar 6(&) € Dy. Weil £ ein N-stabiles Mengensystem ist,
gilt 5(&) = 0(€) = A nach Satz[4.3] Zusammen mit 5(&) € Dy € A folgt Dy = A.

Seinun A € A ein beliebiges Element. Wegen Dy = A gilt u,(E NA) = u,(E NA) fiir alle E € £,. Weil die Folge (E,,), e
nach Voraussetzung in &, enthalten ist, gilt auch p,(E, NA) = u,(E, NA) fiir alle n € IN. Sei nun die Folge (F,,),en
definiert durch F; = E; und F,,; = E,,; \ (E; U...UE,) fiir alle n € IN. Dann sind die Mengen F, paarweise disjunkt,
und es gilt | J°2, F, = J°, E, = Q. Wegen F, NA € A gilt auRerdem

Ml(Fn nA) = ;U'I(EannmA) = HZ(EnnFn mA) = MZ(FH nA)

fiir alle n € IN. Mit Hilfe der disjunkten Zerlegung A = QNA = U:il(Fn NA) und der o-Additivitdt von u; und u,
erhalten wir

oo oo
m@ = Y mEnA) = D FnA) = pyA).
n=1 n=1
Also stimmen die Maf3e u; und u, auf der gesamten o-Algebra A {iberein. |

Definition 4.5 Sei R ein Ring in Q. Einen Inhalt u : R — R, bezeichnet man als o-endlich,
wenn eine monoton wachsende Folge (A,),e in R mit 2 = U::;An und u(4,) < +oo fiir alle
n € IN existiert.

Die Bedingung ,,monoton wachsend“ kann auch weggelassen werden, da man eine gegebene Folge (A, ), in R mit
den Eigenschaften Q = U:;An und u(A,) < +oo immer durch die Folge (B,,),en mit B, =A; U...UA, flirne N
ersetzen kann.

Satz 4.6 (Eindeutigkeitssatz)

Sei R ein Mengenring. Dann kann jeder o-additive und o-endliche Inhalt ¢ : R — R, auf
einem Ring R auf eindeutige Weise zu einem Malf$ auf o(R), der von R erzeugten o-Algebra,
fortgesetzt werden.

Beweis: Nach Satz existiert eine Fortsetzung von ¢ zu einem MaR (i auf einer o-Algebra A,. mit A, 2 R.
Weil o(R) die kleinste o-Algebra ist, die R umfasst, gilt c(R) S A,.. Damit ist die Existenz bewiesen. Seien nun
U1, Uy : 0(R) — R, zwei verschiedene Fortsetzungen von u auf R. Als Ring ist R stabil unter Durchschnitten,
auBerdem ein Erzeugendensystem von o (R). Durch die o-Endlichkeit ist gewéhrleistet, dass wir Proposition auf
£ = R anwenden konnen. Es folgt u; = u,. |

Ist R4 der Ring der Figuren im R¢, dann gibt es also genau eine Méglichkeit, den Jordan-Inhalt c; von R4 zu einem
Mal? auf der Borelschen o-Algebra B, fortzusetzen, und zwar durch das Lebesgue-Mal3, eingeschrinkt auf B;.




Definition 4.7 Sei A eine o-Algebra und u : A — R, ein MaR. Wir nennen A vollstindig
beziiglich u, wenn jede Teilmenge A einer Menge B € A mit u(B) = 0 ebenfalls in A enthalten ist.
Wir bezeichnen u in diesem Fall als vollstindiges Maf8 und das Tripel (9, A, u) als vollstidndigen
MaBraum.

Satz 4.8 Seiu*: P(Q) — R, ein duBeres MaB und i : A,. — R, das in Satz konstruierte
zugehorige Mal3. Dann ist (92, A, i) ein vollstdndiger Maf3raum.

Beweis: SeiB € A, mit {i(B) =0 und A € B. Zu zeigen ist, dass A in A,,. liegt, dass also u*(F) = u*(F NA)+u*(F \A)
fiir alle F C Q gilt. Sei also F € PB(N) beliebig vorgegeben. Auf Grund der Monotonie des dufleren MafSes gilt
uw*(F\A) < u*(F) und u*(F NA) < u*(B) = 0. Insgesamt erhalten wir tatsdchlich u*(F NA) + u*(F \A) < u*(F). O

Durch den folgenden Satz wird die Aussage aus Folgerung erweitert.

Satz 4.9 Sei (2, A, u) ein vollstindiger Mafraum und u* : B(Q2) — R, das dem Inhalt nach
Satz zugeordnete dufdere MaB. Ist A C Q eine Teilmenge und (A,),c eine Folge in A mit
w(A,) < +oo fiir alle n € IN und

lim u*(AAA,) = 0 ,
n—oo

dann gilt A€ A und lirg<> w(A,) = u(A).

Beweis: Wegen A\A,,A, \ACAAA, fir alle n € IN gilt auch lim u*(A\A,) = lim uw*(A, \A) = 0. Fiir jedesn € IN
finden wir also ein B, € A, B, 2 A\ A, so dass lim u(B,) = O gllt Setzen w1r C = A, UB,, dann ist A C C, fiir
alle n € IN. Aulerdem gilt C, \ A = (4, \A)U(B_)\A) € (A, \A)UB,, also u*(C, \ A) < u*(A, \ A) + u*(B,) und
somit nll)rgo u*(C, \ A) = 0. Setzen wir C = mn=1 C,, dann gilt C 2 Aund 0 < u*(C \ A) < u*(C, \ A); durch den
Grenziibergang n — oo erhilt man u*(C \ A) =

mit M 2 C\ A, auBBerdem gilt u(M) < u(M,) < L fiir alle n € IN und damlt w(M) = 0. Auf Grund der Vollstandigkeit
von A beziiglich y ist damit auch C \ A in A enthalten. Damit ist auch A= C \ (C \ A) ein Element der o-Algebra A.
Firallen e IN gilt AU(A,\A) = AUA, =A,U(A\A,). Zusammen mit lilgo uwA,\A) = linolo u(A\A,) = 0 folgt daraus

Wir wihlen nun fiir jedes n € N ein M,, € A mit Mn D C\Aund u(M,) < =, Dannist M = ﬂ M,, ein Element in A

ua) = lim (uA)+pla\A) = lim (ulA,) +pA\A,)) = lim u(Ay). |

Folgerung 4.10 Jede Jordan-messbare Teilmenge E C R ist in A, enthalten, und es gilt
jeweils uy(E) = c4(E), d.h. der Jordan-Inhalt stimmt mit dem Lebesgue-Maf3 von A iiberein.




Beweis: Ist E C RY Jordan-messbar, dann existiert nach Folgerung eine Folge (A,),en von Figuren, die die
Bedingung lim, c;(A, AE) = 0 erfiillt. Wie wir im Anschluss an Definition bemerkt haben, gilt u}(A) < c;(A)
fiir beliebige Teilmengen A C R%. Deshalb gilt auch lim,, u;(A, AE) =0, und aullerdem u(A, AE) < cj(A, AE) <
ci(E) < +oo fiir alle n € IN. Durch Anwendung von Satz folgt E € A4, und zusammen mit Folgerung
erhalten wir uy(E) = lim,, u4(A,) = lim, c;(A,) = c4(E), wobei wir im zweiten Schritt verwendet haben, dass u; den
Jordan-Inhalt vom Ring R, der Figuren auf A, fortsetzt. m|

Sei (2, A, u) ein Malraum. Ein weiteres MaR (£, B, v) wird Erweiterung von (£, A, u) genannt, wenn 4 € B und
v| 4 = u gilt. Wir werden nun zeigen, dass jeder Mallraum eine eindeutig bestimmte minimale vollstdndige Erweite-
rung besitzt.

Proposition 4.11  Sei (2, A, u) ein Mafraum. Dann ist
A = {AUN|A€A,NeP(Q),IMeA:u(M)=0AN C M}

eine o-Algebra mit A 2 A.

Beweis: Die Inklusion A C A ist wegen @& € A offensichtlich, damit auch @& € A. Sei nun B € A vorgegeben. Dann
gibt es ein M € A mit u(M) = 0 und eine Teilmenge N € M mit B=AUN. Nun gilt

Q\B = Q\(AuN) = (@\An@Q\N) = @\An((M\N)u(@\M)) =
(@\AnM\N)u(@\An@\M) = (2\ANM\N)U(Q\AUM)).

Die Menge (2 \ A)N (M \ N) ist enthalten in der Menge M mit u(M) = 0. Die Menge Q2 \ (AU M) ist ein Element von
A, weil A eine o-Algebra ist. Nach Definition ist Q \ B damit ein Element aus A.

Sei nun (B,,),c eine Folge in A. Dann gibt es fiir jedes n € IN jeweils Mengen A,,, M,, € A und Teilmengen N,, € M,,,
so dass u(M,) =0 und B,, = A, UN, erfiillt ist. Es gilt

oo oo
Us. = (UAH) U (U Nn).
nelN n=1 n=1

Die Menge U:;An liegt in A, weil A eine o-Algebra ist. Auch die Menge M = U:il M, liegt in A, und auf Grund
der o-Additivitit von u gilt u(M) = 0. Ferner ist N = U:il N, eine Teilmenge von M. Insgesamt haben wir damit
nachgewiesen, dass U:Zl B, in A enthalten ist. Damit sind fiir A alle Eigenschaften einer o-Algebra verifiziert. O

Proposition 4.12 Es gibt auf 4 eine Funktion fi : A — IR, mit der folgenden Eigenschaft:
Ist B € A, und sind A,M € A Mengen mit u(M) = 0 und N € M mit B = AUN, dann gilt
A(B) = u(A).

Beweis: Nach Definition von A kénnen wir fiir jedes B € A jeweils Elemente Ag, My der o-Algebra A mit u(Mgz) = 0
und eine Teilmenge Nz € My wihlen, so dass B = Az U Nj erfiillt ist. Wir definieren dann jeweils {i(B) = u(Ag). Zu
iiberpriifen ist, dass i die im Satz angegebene Eigenschaft besitzt. Wir bezeichnen mit u* das dem Inhalt u nach Satz
zugeordnete dullere MaR. Nach Satz gilt u*(A) = u(A) fiir alle A € A.




Sei nun B € A vorgegeben, und seien A,M € Aund N C M, so dass die Bedingungen B = AUN und u(M) = 0 erfiillt
sind. Zu zeigen ist {i(B) = u(A). Es gilt

a(B) = wlAg) = wAg) =< wu(AguUNg) = u'(B) = wu'(AuN) < u'(AuM)
= wAUM) < pA)+uM) = wA+0 = u(A).

Ebenso erhilt man

puad) = p'A) < wp'(AUN) = pu'(B) = wp(AgUNg) <
wAgUMp) = u(Ag)+u(M) = wlp)+0 = wu(Az) = a(B).
Insgesamt gilt also tatsichlich fi(B) = u(A). O

Proposition 4.13 Durch die Funktion [ ist ein vollstindiges MaR auf A definiert.

Beweis: Nach Definition gilt i(@) = u(@) = 0. Sei nun (B,),c eine Folge paarweise disjunkter Mengen in .4 und
B=|J, B, Zu zeigenist > - ji(B,) = i(B).

Nach Definition von A gibt es fiir jedes n € IN jeweils A,,, M,, € A und Teilmengen N,, € M,,, so dass B, =A, UN, und
u(M,) = 0 erfiillt ist. Setzen wir A=~ A,, N =|Jo, N, und M = J2, M, dann gilt B=AUN, N € M, und
aullerdem u(M) = Z:Zl w(M,) = Z;Zl 0 = 0. Auf Grund der Definition von [ folgt daraus {i(B) = u(A), und ebenso
gilt (i(B,)) = u(A,) fiir alle n € IN. Weil auch A= U:;An eine disjunkte Vereinigung ist, erhalten wir insgesamt

AB) = p@A = du@) = > AlB,).
n=1 n=1

Nun iiberpriifen wir noch, dass A vollstindig beziiglich i ist. Sei B € A mit fi(B) =0 und F € B; dann ist F € A zu
zeigen. Wegen B € A gibt es A, M € A mit u(M) = 0 und eine Teilmenge N € M mit B = AU N. Nach Definition
gilt (B) = u(A). Es folgt 0 < u(AU M) < u(A) + u(M) = u(A) + 0 = @(B) = 0 und damit u(AU M) = 0. Nach
Voraussetzung ist F € B € AUM. Schreiben wir F also in der Form @UF, dann ist F nach Definition in der o-Algebra
A enthalten. O

Man bezeichnet den Mafraum (2, A, i) als Vervolistindigung von (£, A, u). Der folgende Satz besagt, dass es sich
um die kleinste vollstindige Erweiterung von (£, A, u) handelt.

Satz 4.14 Sei (2, A, u) ein MaBraum und (€2, B, v) eine beliebige vollstindige Erweiterung.
Dann ist (€, B, v) auch eine Erweiterung von (2, A, ii).

Beweis: Zunichst iiberpriifen wir, dass A C B gilt. Sei B € A. Dann gibt es A,M € A und eine Teilmenge N C M,
so dass w(M) = 0 und B = AUN erfiillt ist. Wegen A C B gilt M € B. Auf Grund der Vollstdndigkeit von B und
wegen v(M) = u(M) = 0 gilt auch N € B. Zusammen mit A € B folgt B=AUN € B. AuRerdem gilt v(A) < »(B) <
v(A) + v(N) < v(A) + v(M) = v(A) und somit ¥(B) = v(A) = u(A) = fi(B). Dies zeigt, dass v| ; = fi erfiillt ist. |




Satz 4.15 Sei R ein Ring, u: R — R, ein o-endliches PrimaR und (Q,A,, i) der in Satzm
konstruierte Mafraum. Dann ist dieser Maf3raum eine Vervollstandigung von (22, o(R), il (r))s
wobei o(R) die von R erzeugte o-Algebra bezeichnet.

Beweis: Nach Satz ist (Q,A,:, i) ein vollstdndiger Mafraum. Nach Satz ist R in A,,. enthalten, und damit
gilt auch A,. 2 o(R). Nach Satz enthilt A, damit auch die Vervollstindigung 6(R) von o(R). Es geniigt
also zu zeigen, dass A,. im Mengensystem G (R) enthalten ist. Zundchst zeigen wir, dass jede Menge A € A,,. mit
u*(A) < +00 auch in 6(R) liegt. Nach Definition von u* gibt es fiir jedes n € IN ein B,, € o(R) mit B, 2 A und
w(B,) < u*(A)+ % Definieren wir B = ﬂ::l B,, dann gilt B€ o(R), A< B und
pa) < wB) < wB) < p@+i;.

Lassen wir n gegen unendlich laufen, erhalten wir u*(A) = u*(B), also u*(B \ A) = u*(B) — u*(A) = 0. Setzen wir
C, =B, \ A, dann gilt also B\ A C C, und u*(C,) < % fiir alle n € IN. Sei C = ﬂzl C,€0(R).Dann gilt C 2 B\ A

und u*(C) = u*(B\A) =0. Aus C 2 B\ Afolgt B\ C C A und somitA= (B\C)U(ANC). Aus B\ C € o(R) und
ANC C C, u*(C) =0 folgt wiederum A € 5(R).

Sei nun A € A,,., wobei nun auch u(A) = +00 zugelassen ist. Weil das Prémaf} u nach Voraussetzung o-endlich ist,
gibt es eine Folge (S,),en in R mit @ =2, S, und u(S,) < +oo fiir alle n € N. Es folgt A= J°° (AN S,). Wegen
ANS, € A, und u*(ANS,) < +oo folgt ANS, € G(R) auf Grund des bereits bewiesenen Teils. Weil es sich bei 6(R)
um eine o-Algebra handelt, ist damit auch A in 6(R) enthalten. O

Folgerung 4.16 Fiir jedes d € IN ist der Lebesguesche Mafraum (R9, Ay, u4) die Vervollstindi-
gung von (R%, By, ugls ), wobei B; die Borelsche o-Algebra in R? bezeichnet. Ist A € R¢ und
gibt es eine Folge (A, ), in Lebesgue-messbarer Mengen in R?, so dass

lir(r)lo ui(AAA) = O und uq(A,) <+oo firallene N
n—

mit dem dulBeren Lebesgue-Mal} u; gilt, dann ist auch A Lebesgue-messbar, und man erhélt das
Lebesgue-MafR von A durch g (A) = lim uy(A,)-
n—oo

Beweis: Dies sind die Spezialfalle der Sétze [4.15|und angewendet auf das Lebesgue-Maf. O

Wir beenden den Abschnitt mit einem Satz, der die Beziehung zwischen den Lebesgue-messbaren Mengen und der
Borel-Algebra weiter verdeutlicht.

Lemma 4.17 IstA € A; und (A,,)en eine Folge in Ay mit A,, € A,,,; fiir alle m € IN und
A= UronozlAm, dann folgt lim,, g (A,,) = tq(A).

Beweis: Setzen wir By = Aund B,,;1 = Ap41 \A, fiir jedes m € IN, dann ist (B,,) e €ine Folge disjunkter Teilmengen
in Ay mitA= U;il B,,. Auflerdem gilt A,, = B; U...UB,, fiir alle m € IN. Auf Grund der o-Additivitat des Lebesgue-
Maf3es folgt

m oo
Jim po(an) = lim kZud(Bk) = 2B = w. 0
=1 m=




Satz 4.18 (Regularitdt des Lebesgue-Mafses)
Sei d € IN. Fiir alle Lebesgue-messbaren Teilmengen A C R? gilt

@) wpg(A) =inf{uy(U) | U C R offen, U 2 A}
(i) pg(A) =sup{uy(K)| K € RY kompakt, K C A}

Beweis: zu (i) Dass es sich bei p;3(A) eine untere Schranke der Menge rechts handelt, ist offensichtlich. Zu zeigen
bleibt, dass es die grofite untere Schranke ist. Es geniigt, den Fall u (A) < +00 zu betrachten, weil die Menge
rechts ansonsten keine endlichen Werte enthélt und die Aussage somit offensichtlich ist. Sei ¢ € R* vorgegeben. Zu
zeigen ist, dass eine offene Menge U 2 A mit uy(U) < uy(A) + ¢ existiert. Nach Definition des (dul3eren) Lebesgue-
Mal3es gibt es eine Folge (Q,) ey von Quadern mit A € U:Zl Q, und Z:; wa(Qn) < pg(A)+ %8. Durch geringfiigige
VergréRerung jedes Quaders Q,, und Ubergang zum offenen Inneren erhalten wir eine Folge (P,),cn offener Quader
mit pg(P,) < ug(Q,) + 5o fiir alle n € IN. Definieren wir U = | J -, P,, dann ist U offen, es gilt U 2 Aund

ua(U) = .Ud([jpn) < ZMd(Pn) < Z(‘ud(Qn)"'%) =
n=1 n=1

n=1

Zd(Qn)—F%e < ud(A)+%s+%e = pgA)+e.

n=1

zu (ii) Wir betrachten zunichst den Fall, dass A eine beschrinkte Teilmenge des R ist. Dann ist u,(A) endlich und
offenbar eine obere Schranke der Menge rechts. Um nachzuweisen, dass u;(A) die kleinste obere Schranke ist, sei
¢ € R* vorgegeben. Wir miissen zeigen, dass eine kompakte Teilmenge C C A mit u;(C) > uy(A) — ¢ existiert. Sei
M C R eine kompakte Teilmenge, die A enthélt. Nach Teil (i) existiert eine offene Teilmenge U C RimitUD M \A
und py(U) < ug(M \ A) + ¢. Setzen wir C = M \ U, dann ist C kompakt, und wir erhalten

ua(C) = pugM)—pgMNU) = psM)—p(U) = pg(M\A)+pgA)—pg(U) =
ug(M\A) +e+pug(A)—ug(U)—e > pg(U)+pg(A)—ug(U)—e = pg(A)—e.

Betrachten wir nun den Fall, dass A unbeschrankt ist. Dann definieren wir A,,, = [—m, m]? N A fiir alle m € IN. Wegen
A= U:;l A,, und auf Grund von Lemma gilt lim,, tq(An) = uq(A), und jede der Teilmengen A,, ist beschrankt
und in A4, enthalten. Setzen wir nun zunéchst u;(A) = +00 voraus. Dann gilt lim,,, u4(A,,) = +00, und auf Grund
des bereits behandelten Falls fiir jedes m € IN eine kompakte Teilmenge C,, mit C,, € A,,, mit u;(C,) > uq(4,,) — 1.
Es ist dann (C,,) e €ine Folge kompakter Teilmengen von A mit lim,,, u4(C,,) = +00. Damit ist die Gleichung unter
(ii) in diesem Fall nachgewiesen.

Nehmen wir nun an, dass u;(A) endlich ist. Ist ¢ € R* beliebig vorgegeben, dann existiert ein m € IN mit u4(4A,,) >
uq(A)— %8. Da A,, beschrankt ist, finden wir eine kompakte Teilmenge C € A,,, mit u (C) > ug(A,) — %e. Damit ist
C auch eine kompakte Teilmenge von A, und es ist uz(C) > uy(A,,) — %8 > ug(A)— %8 - %e = ugy(A) —e. Also ist die
Gleichung unter (ii) auch in diesem Fall giiltig. m|

Ist allgemein (£2,7) ein topologischer Raum und B die Borelsche o-Algebra, also die o-Algebra erzeugt von den
offenen Teilmengen, dann wird ein Maf$ u auf B als von auf8en regulér bezeichnet, wenn es die Eigenschaft (i)
besitzt. Die MafRe mit der Eigenschaft (ii) bezeichnet man als von innen regulér.




§5. Messbare Funktionen

Zusammenfassung. Eine reellwertige Funktion f auf einem Mal3raum (£2, .4, u) wird messbar genannt, wenn
das Urbild jeder Borelschen Teilmenge Teilmenge von R in .A enthalten ist. Die Messbarkeit einer Funktion ist
ein notwendige Bedingung fiir die Integrierbarkeit, die wir im néchsten Kapitel behandeln. Das Hauptanliegen
dieses Kapitels besteht in dem Nachweis, dass die Messbarkeit von Funktionen unter bestimmten Operationen
(zum Beispiel punktweiser Addition, Multiplikation...) erhalten bleibt.

Wichtige Grundbegriffe Zentrale Sdtze

— Messraum — Borel-Messbarkeit stetiger Funktionen

— messbare Abbildung — Messbarkeits-Kriterium anhand der Teilmengen A*(f, a)
— A-messbare und Borel-messbare Funktion =~ — Erhaltung der Messbarkeit unter punktweiser Addition,

Subtraktion und Multiplikation

— Erhaltung der Messbarkeit unter Infimums- und Supre-
mumsbildung

Im folgenden bezeichnen wir als Messraum ein Paar (£2,.4) bestehend aus einer nichtleeren Menge Q und einer
o-Algebra A in Q. Ein Maraum (£, .4, u) besteht also aus einem Messraum (£2,.4) und einem Maf} u auf dem
Messraum.

Im weiteren Verlauf wird es sich als niitzlich herausstellen, auch neben reellwertigen Funktionen auf einem Messraum
auch Funktionen mit Werten in R = R U {£ o0} zuzulassen. Dazu definieren wir

B, = {ACR|ANREeB}.

Man iiberpriift leicht, dass es sich bei 3; um eine o-Algebra mit 3; C /3; handelt.

Definition 5.1 Seien (Q,.4) und (£, A’) Messraume. Eine Abbildung f : Q — Q’ wird messbar
beziiglich A und A’ genannt, wenn f~}(A’) € A fiir alle A’ € A’ erfiillt ist. Ist speziell (', A’) =
(R, B;), dann sprechen wir von einer A-messbaren Funktion. Ist dariiber hinaus 2 € R? und
A={ANnQ | A € B}, dann nennen wir die bezliglich .A messbaren Funktionen auch Borel-
messbar.

Ist beispielsweise f : 2 — Q' konstant, dann ist f messbar. Ist ndmlich ¢ € Q' der konstante Wert von f und A’ € A/,
so gilt f1(A") = Q falls c € A’ und f'(A") = @ sonst. In jedem Fall ist f "!(A") ein Element von A.




Proposition 5.2 Die Komposition messbarer Abbildungen ist messbar. Genauer: Sind (£2, .A),
(&, A’) und (", A”) drei Messrdume, ist f : Q — Q' messbar beziiglich 4, 4’ und g : ' — Q"
messbar beziiglich A’, A”, dann ist g o f : Q — Q" messbar beziiglich .A und A”.

Beweis: Ist A” € A”, dann gilt A’ = g7 }(A”) € A und (go f) 1 A) =f (g '(A") = f1(A) € A O

Proposition 5.3 Seien die Bezeichnungen wie in Definition gewdhlt. Ist £ ein Erzeu-
gendensystem von A’ als o-Algebra, so ist f genau dann messbar beziiglich A und A’, wenn
FUE") € Afiir alle E’ € &’ erfiillt ist.

Beweis: Die Implikation ,,=* ist offensichtlich, denn jedes E’ € &’ ist auch ein Element aus A’. Fiir die Richtung
,<" liberpriifen wir, dass das System B = {4’ C Q' | f'(4’) € A} eine o-Algebra ist. Wegen f (@) = @ € A und
FH) =Q € Asind @ und Q' in B enthalten. Ist B € B, dann gilt f}(B) € A. Weil A eine o-Algebra ist, liegt
damit auch f~}(Q\B) = Q\ f}(B) in A und somit Q' \ B in B. Sei schlieRlich (B,),c eine Folge in B. Dann gilt
f1(B,) € A fiir alle n € IN. Setzen wir B = U:il B,,, dann erhalten wir

/@) = Urie) e A,
n=1

weil A eine o-Algebra ist. Daraus folgt B € 3. Nach Voraussetzung ist nun &’ eine Teilmenge von B. Weil A’ = o (&)
nach Definition die kleinste o-Algebra ist, die £ umfasst, erhalten wir A’ C B. Daraus wiederum folgt f 1(4’) € A
fiir alle A’ € A'. O

Proposition 5.4 Sei (9, .4) ein Messraum und A € Q eine Teilmenge. Die Indikatorfunktion
1, : © — IR von A definiert durch

L) 1 fallsxeA
X =
4 0 fallsx¢A

ist genau dann messbar beziiglich A, wenn A € A gilt.

Beweis: ,=“ Die einelementige Menge {1} liegt in ;. Auf Grund der Messbarkeit von 1, ist 1;1({1}) =Aalso in
A enthalten. ,<“ Ist A€ A, dann liegt auch Q \ A in A. Sei nun U € B, beliebig vorgegeben. Im Fall 0,1 ¢ U gilt
') =g, fir0eU,1¢ Uist 1, (U)=Q\A, fir0¢ U,1€Uist 1,;'(U) =Aund im Fall 0,1 € U ist 1,'(U) = Q.
Also ist die Urbildmenge 1;1(U) in jedem Fall ein Element der o-Algebra A, und 1, ist messbar. |

Proposition 5.5 Sei Q2 CR?und f : Q — R eine stetige Funktion. Dann ist f Borel-messbar.

Beweis: Sei A= {ANQ | A € B;}. Nach Satz[3.8|wird B, von den offenen Teilmengen U C R erzeugt. Nach Proposition
gem’igt es deshalb, die Bedingung f 1 (U) € A fiir diese Mengen U zu iiberpriifen. Sei also U C R offen. Auf Grund
der Stetigkeit von f ist f ~}(U) offen in Q. Es gibt also eine offene Teilmenge A € RY mit AN = f~1(U). Als offene
Menge ist A in B, enthalten. Also gilt f~}(U) € A. |




Satz 5.6 Sei (£, A) ein Messraum. Eine Funktion f : Q — R ist genau dann messbar beziiglich
A, wenn fiir jedes a € R die Menge

A(f,a) = {xeQ|f(x)=>a} in Aliegt.

Beweis: ,=“ Die Borelsche o-Algebra B; enthilt fiir jedes a € R die Menge [a, +0o[, weil diese in IR abgeschlossen
ist. Damit ist nach Definition die Menge [a,+00] in B; enthalten. Weil f messbar beziiglich A ist, folgt A*(f,a) =
f ([a,+o0]) € A.

L= Sei @ CP(R) die von den Teilmengen der Form [a, + 00 ] mit a € R erzeugte o-Algebra. Wir zeigen zunichst,
dass Q = B, gilt. Wie wir im ersten Teil des Beweises bereits festgestellt haben, gilt [a, +00] € B3, fiir alle « € R
und damit Q € ;. Zeigen wir nun, dass B; in Q enthalten ist. Dafiir geniigt es zu zeigen, dass samtliche endlichen
Intervalle in Q liegen, denn /3, wird von den endlichen Intervallen erzeugt. Es gilt R\[a, +00] = [—00, a[, auRerdem

D}

[—00,a] = [—oco,a+i[ und Ja,+00] = R\[-00,a].

Il
i

n

Sind nun a, 8 € R, a < B, dann gilt [a, ] = [—o0,B]N[a,+00] € Q, und auf dhnliche Weise erhilt man auch
[a,B[, ]a, f]und ]Ja, B[ als Elemente von Q. Wegen

(coo}=(Jl=co,—n] und  {+oo}=[|in+oo]
n=1 n=1

sind auch {—o0} und {+ o0} in Q enthalten. Weil jede Menge in B; durch Vereinigung einer Menge aus B; mit einer
Teilmenge von {—00,+0c0} zu Stande kommt, ist damit das gesamte System B; in Q enthalten. Wir haben damit
nachgewiesen, dass die Mengen [a, +00] ein Erzeugendensystem von 5, bilden. Nach Proposition geniigt es fiir
die Messbarkeit von f beziiglich A nachzuweisen, dass die Urbilder f ~*([a, +00]) dieser Mengen in A liegen. Dies
ist durch die Voraussetzung A™(f, a) € A fiir alle a € R gewihrleistet. O

Folgerung 5.7 Sei (2, A) ein Messraum und f : Q@ — R. Dann ist die .A-Messbarkeit von f zu
jeder der folgenden Aussagen dquivalent.
(i) Fiirjedesa € R gilt AT(f,a)={x € Q| f(x)>a} € A.
(ii) FirjedesacRgilt A= (f,a)={x< Q| f(x)<a}e A
(iii) Fiir jedes a € R gilt A~ (f,a) ={x € Q| f(x) < a} € A.

Beweis: Nach Satz geniigt es zu zeigen, dass jede der drei Bedingungen dazu Aquivalent ist, dass AT(f,a) € A
fiir alle a € R erfiillt ist. Fiir die Bedingung (i) gilt dies auf Grund der Gleichungen

A (f,a) =

e

Matd  wd  AG@ = [)AGa-b.
n=1




und der Tatsache, dass die o-Algebra .4 unter abzéhlbaren Vereinigungen und Durchschnitten abgeschlossen ist. Die
Mengengleichungen wiederum ergeben sich aus den fiir alle x € Q giiltigen Aquivalenzen f(x) > a & In € N :
f(x)2a+,—1l undf(x)Za(:)Vne]N:f(x)>a—%.

Fiir die Bedingung (ii) iiberpriift man zunichst, dass fiir jedes a € R jeweils A™(f,a) = Q\ A*(f, a) gilt. Die
Aquivalenz folgt dann aus der Tatsache, dass die o-Algebra A auch unter Komplementbildung abgeschlossen ist. Auf
dieselbe iiberpriift man, dass Bedingung (iii) zu Bedingung (i) d4quivalent ist. |

Folgerung 5.8 Sind f, g : Q — R messbar beziiglich .4, dann sind die Mengen

@ {xeQlflx)<gl)} G {xeQ|flx)<gb)} G {xeQff(x)=g(x)}
(iv) {xeq]|f(x)#g(x)}

in A enthalten.

Beweis: Weil die Menge Q in R dicht liegt, gibt es fiir jedes x € Q mit f(x) < g(x) ein a € Q mit f(x) < a < g(x).
Wir erhalten somit fiir die unter (i) angegebene Menge

{xeQ|flx)<gt)} = [J{xeqlflx)<a<g()}
acQ

= JUxealf@<anixenlgk)>a).
acQ

Auf Grund der Abzahlbarkeit von @ und der Messbarkeit von f und g ist diese Menge in der o-Algebra A enthalten.
Dass die Mengen unter (ii), (iii) und (iv) auch in A liegen, folgt nun unmittelbar aus den beiden Mengengleichungen

{xeqlf(x)<gx)}=a\{xeq|g(x)<f(x)}und
xealf(x)=g(x)} = {xeQ|f(x)<gl)}n{xeq]f(x)=g(x)}

sowie {x € Q| f(x) # g(x)} =2\ {x € Q| f(x) = g(x)}. O

Im weiteren Verlauf werden wir auch zulassen, dass R-wertige Funktionen punktweise addiert, subtrahiert und mul-
tipliziert werden. Dabei kann sich allerdings der Definitionsbereich der Funktion verkleinern, weil die Werte a £ b
und ab nicht fiir alle a, b € R definiert sind. Wir legen fiir die Addition und Multiplikation folgende Konvention fest.

| + [ —oo [beR]| +oo | [ = ] —oo [beR]| +oo |
—00 —oco0 | —oo | undef. —o0o || undef. | —oco0 | —o0
a€R| —oco |[a+b | +oo aeR|| 400 | a—b | —o0
+0o || undef. | +00 | +o0 +00 +00 | +0o | undef.

—oo | b<0|[b=0|b>0]+00

—00 || +00 | +00 0 —00 | —00
a<0| +oc0 | ab 0 ab | —oo
a=0 0 0 0 0 0

a>0| —oco | ab 0 ab | +o0
+00 || —oo | —o0 0 +00 | +00




Proposition 5.9 Ist g : Q — R A-messbar, dann auch die Funktion a + bg fiir alle a, b € R.

Beweis: Ist b > 0, dann gilt fiir alle a € R jeweils
{(xeQ|a+bg(x)>a} = {xeQ|gx)=>b(a—a)} ,
und diese Menge liegt auf Grund der Messbarkeit von g in A. Fiir b < 0 kommt man durch die Gleichung {x € Q |

a+bg(x)>a}={xeQ|g(x) < b }(a—a)} zum selben Ergebnis. Im Fall b = 0 ist die Funktion a + bg, sofern sie
iiberall definiert ist, konstant und damit ebenfalls messbar. O

Satz 5.10 Sind f,g : Q — R zwei A-messbare Funktionen, dann sind auch die Funktion f + g
und f g messbar beziiglich A, sofern sie auf ganz Q definiert sind.

Beweis: Sei a € R beliebig vorgegeben. Auf Grund der Messbarkeit von g und Proposition [5.9|ist a — g messbar,
und mit Folgerung [5.8] erhalten wir

{xeQ|lf)+glx)za} = {xeQ|f(x)za—gx)} € A
Daraus folgt die Messbarkeit von f + g. Ebenso ist auf Grund der Proposition die Funktion —g messbar, und wir

erhalten damit die Messbarkeit von f +(—g) = f — g.

Beim Beweis der Messbarkeit von f g beschrédnken wir uns zunéchst auf den Fall, dass f g nur endliche Werte an-
nimmt. Wegen f g = %(f +g)°— %(f — g)? geniigt es, den Fall f = g zu betrachten und die Messbarkeit von f?2 zu
beweisen. Sei dazu a € R vorgegeben. Ist a < 0, dann gilt

xeQ|f(x)*=a} = Q € A
Im Fall a > 0 gilt
{xeQ|f(x)’=a} = {xeQlf(x)=valu{xeq|f(x)<—va} ,

und auf Grund der Messbarkeit sind diese beiden Mengen ebenfalls in A enthalten. Damit ist die Messbarkeit im
eingeschrinkten Fall bewiesen, und wir betrachten nun die Situation, dass f g auch unendliche Werte annimmt.
Dazu definieren wir die Mengen

QT ={xeQ|f()g(x)=+0} , QO ={xeQ|f(x)g(x)=—0c0} und OQ=0Q\(Q'uUQ).

Es gilt x € Q% genau dann, wenn f(x) = 400, g(x) > 0 oder f(x) = —o0, g(x) < 0 gilt, oder wenn eine dieser
Bedingungen mit vertauschten Rollen von f und g erfiillt ist. Wir erhalten

Qt = ({xeQ|f(x)=+oc0}n{xe|g(x)>0HuU
({xe|f(x)=—oco}n{xeq]g(x) <0}y
({xe|f(x)>0tn{x Q| g(x)=+oc0}u
({xelf(x)<0in{xen|g(x)=—0o0}) ,

und diese Gleichung zeigt, dass Q" in .4 liegt. Ebenso beweist man Q~ € A, und es folgt 2 € A.




Sei A = {A € A | A C Q}; wie man leicht iiberpriift, handelt es sich um eine o-Algebra beziiglich der Menge ().
Weil f und g messbar beziiglich A sind, sind die Funktionen f; = f|s und g; = g|; messbar beziiglich A, denn fiir
jede Menge B € B, gilt f7'(B) = f}(B) N1 € A, ebenso fiir die Funktion g;. Das Produkt f;g; nimmt auf seinem
Definitionsbereich nur endliche Werte an, ist also auf Grund der bereits gezeigten Aussage ebenfalls A-messbar. Ist
nun B € B; vorgegeben, so gilt (fg)"1(B) = (f;g1) ' (B) € A im Fall +00,—00 ¢ B, ansonsten ist (f g)"!(B) gleich
einer der Mengen (f;g;) (B)UQ™,(f121) 1 (B)UQ™ oder (f;g1) 1 (B)UQTUQ ™. Wegen A C Aund QF, Q0 € Aliegt
(f£)7}(B) in jedem Fall in der o-Algebra A. O

Wir erinnern an die folgende Definition aus der Analysis einer Variablen: Ist (a,,),cn €ine Folge reeller Zahlen (oder
allgemeiner, eine Folge von Elementen aus R), dann sind der limes superior und limes inferior der Folge definiert
durch

limsupa, = ,7111330 sup{a, | n>m} und liminfa, = H}Lrgo inf{a, | n = m}.

Beide kénnen Werte in ganz R annehmen. Ist (f,),cn eine Folge von Funktionen f, : Q — R, dann bezeichnen
wir mit sup f,, die Funktion gegeben durch (sup f,)(x) = sup{f,(x) | n € IN} fiir alle x € £, und mit limsup f,, die
Funktion x — limsup f,,(x). Ebenso sind die Funktionen inf f, und liminf f, definiert.

Satz 5.11 Sei (f,) e eine Folge von A-messbaren Funktionen. Dann sind auch die Funktionen
sup f,, inf f,,, limsup f,, und liminf f,, messbar beziiglich A.

Beweis: Fiir jedes a € R gilt {x € Q| (supf,)(x) < a} = ﬂ:il{x € Q| f,(x) < a}, denn fiir jedes x € Q ist a genau
dann eine obere Schranke von {f,(x) | n € N}, wenn a = sup{f,(x) | n € IN} erfiillt ist. Weil f, messbar beziiglich A
ist, liegt die Menge {x € Q | f,(x) < a} in A, fiir jedes n € IN. Dies zeigt, dass auch {x € Q | (sup f,)(x) < a} in A
liegt, und wir erhalten die .A-Messbarkeit von sup f,,. Die .A-Messbarkeit von inf f,, beweist man analog mit Hilfe der
Gleichung

oo
{xeQ|(nff)x)=a} = [|{xeQlfilx)=a}.
n=1
Fiir jedes n € IN sei die Funktion sup, f,, definiert durch Q — R, x — sup{f,,(x) | m > n}, und inf, f,, entsprechend

durch x — inf{f,,(x) | m = n}. Auch diese Funktionen sind .A-messbar, denn es gilt

[ee]

xeQlup, f)()<a} = (J{xealfu()<al
-
{xeQ|(nf, f)x)=a} = [|{xeQl|fu(x)=a}.
Fiir jedes x € Q ist die Folge ((sup, f,,)(X))nen monoton fallen’:l,::ieshalb gilt
limsupf,(x) = lim (sup, f,)(x) = inf{(sup, f)(x)n€N} = (inf(sup, f))(x)-

Aus der A-Messbarkeit der Funktionen sup, f,, folgt also die Messbarkeit von limsup f,. Ebenso beweist man die
A-Messbarkeit von liminf f,, durch

liminff,,(x) = lim (inf, f;)(x) = sup{(inf, f,)(x) [n€N} = (sup(inf, f,,))(x) ,
wobei wir im zweiten Schritt verwendet haben, dass die Folge ((inf, f,,)(x)),en fiir jedes n € IN monton wachsend
ist. O




Folgerung 5.12

@ Sind fi, ..., f, : @ — R messbare Funktionen beziiglich .4, dann gilt dasselbe fiir die Funk-
tionen x — min{f;(x), ..., f(x)} und x — max{f;(x), ..., f-(x)}.

(i) Ist (f,)nen eine Folge A-messbarer Funktionen, die punktweise gegen eine Funktion
f : Q — R konvergiert, dann ist auch f eine .A-messbare Funktion.

Beweis: Sowohl (i) als auch (ii) ist ein Spezialfille des vorherigen Satzes. Definieren wir f,,(x) = f,.(x) fiirn > r,

dann gilt min{f;(x), ..., f,(x)} = (inf f,)(x) und max{f;(x),..., f,(x)} = (sup f,,)(x). Konvergiert die Folge (f,)nen
punktweise gegen f, dann gilt f = limsup f,, = liminff,. m|

Ist f : @ — R eine beliebige Funktion, dann definieren wir nichtnegative Funktionen f* und f~ durch f*(x) =
max{0, f(x)} und f~(x) = —min{0, f(x)} fiir x € Q. Offenbar gilt dann f = f* — f . Den Betrag von f definieren
wir durch |f|(x) = [f (x)| = f*(x) + f ~(x). Aus der Folgerung|[5.12]ergibt sich unmittelbar

Folgerung 5.13 Eine Funktion f : Q — R ist genau dann .A-messbar, wenn f* und f~ beide
A-messbar sind. Ist die Funktion f messbar beziiglich A, dann gilt dasselbe fiir |f|.




§ 6. Integrierbare Funktionen

Zusammenfassung. Fiir jeden Mallraum (2, A, u) definieren wir den R-Vektorraum der u-integrierbaren
Funktionen und ordnen jeder solchen Funktion f ein Integral f f du zu. Dabei gehen wir schrittweise vor,
indem wir zunéchst fiir die messbaren Funktionen mit endlicher Wertemenge, den sog. Stufenfunktionen, ein
Integral definieren und diese Definition dann auf messbare nicht-negative Funktionen ausdehnen. Fiir unser
neues Integral werden einige elementare Rechenregeln hergeleitet. AuBerdem fithren wir den Begriff der Null-
menge in einem Maf3raum ein. Auf solchen Mengen konnen Funktionen beliebig abgedndert werden, ohne dass
sich dies auf die u-Integrierbarkeit oder den Wert des Integrals auswirkt.

Wichtige Grundbegriffe Zentrale Sditze
- Menge E(, A) der Stufenfunktionen — Charakterisierung der nichtnegativen messbaren Funk-
tionen durch monoton wachsende Folgen von Stufen-

— p-Integral einer Stufenfunktion auf einem funktionen
MafBraum (£, A, u)
— Satz iiber die monotone Konvergenz fiir nicht-negative

— p-Integral einer nicht-negativen messbaren messbare Funktionen

Funktion
— Lebesgue-Integrierbarkeit stetiger Funktionen mit

— p-Integrierbarkeit und u-Integral einer Funk- kompaktem Triger

tion auf einem Mallraum

) . — Verhalten des u-Integrals bei Einschrankung und Null-
— Nullfortsetzung einer Funktion

fortsetzung
— Nullmenge in einem Maffraum — Invarianz der u-Integrierbarkeit und des u-Integrals
_ u-fast {iberall bestehende Eigenschaften bei Wechsel zu einer u-fast iiberall iibereinstimmenden
Funktion

Auch hier bezeichnet im gesamten Abschnitt das Paar (£2, .A) einen festgew&hlten Messraum.

Definition 6.1 Als A-Stufenfunktion bezeichnen wir eine nichtnegative, .A-messbare Funktion
f : @ = R, die nur endlich viele reelle Werte annimmt. Die Menge der .4-Stufenfunktionen
bezeichnen wir mit E(, A).

Die meisten Funktionen, die uns in der Analysis begegnen, sind natiirlich keine Stufenfunktionen. Insbesondere sind
stetige Funktionen in der Regel keine Stufenfunktionen. Dem Begriff kommt auf unserem Weg zur Integraldefinition
lediglich eine Hilfsfunktion zu.

Proposition 6.2 Eine Funktion f : Q — R ist genau dann eine .A-Stufenfunktion, wenn ein
n € IN,, paarweise disjunkte Mengen A, ...,A, € A mit Q = A; U...UA, und uy,...,u, € R,
existieren, so dass f = Zle u;1, erfiillt ist.




Beweis: ,=“ Sei f € E(Q,A), und seien u,...,u, € R, die verschiedenen Werte von f. Wegen {u;} € B fiir
1 <i < n und auf Grund der .A-Messbarkeit von f sind die Mengen A; = f~!({;}) in A enthalten. Die Mengen
A, ..., A, sind paarweise disjunkt, und offenbar gilt @ = A; U... UA,,. Man {berpriift nun unmittelbar die Gleichung
flx)= Z?:l u;1, (x) fir alle x € Q, indem man die Fille x € A; fiir 1 <i < n der Reihe nach durchgeht.

,&=“ Sei f eine Funktion der Form Z?zl u;1, . Nach Proposition sind die Funktionen 1, messbar beziiglich A,
und mit Satz erhalten wir die Messbarkeit von f. Offenbar ist f nichtnegativ und nimmt nur die Werte uy, ..., u,
an. i

Proposition 6.3 Sind f,g € E(Q,.A), dann sind auch die Funktionen f + g, f g, max{f, g}
und min{f, g} in E(Q, A) enthalten.

Beweis: Aus dem letzten Abschnitt ist bekannt, dass f + g, f g, max{f, g} und min{f, g} messbar beziiglich A ist.
Dariiber hinaus ist unmittelbar klar, dass alle Funktionen nur endlich viele verschiedene, nichtnegative reelle Werte
annehmen. 0O

Aus der soeben bewiesenen Proposition folgt unmittelbar, dass E(£2,.A4) die Struktur eines R-Vektorraums besitzt.
Unser nichstes Ziel besteht darin, den Stufenfunktionen ein Integral zuzuordnen. Dafiir erweitern wir unseren
Messraum (€2, .4) zu einem MaRraum (£2, A, u).

Lemma 6.4 Sei f € E(Q2,.A), und seien

m n
f = ZailAi = Zﬁlej
i=1 =1

zwei Darstellungen von f mitm,n € N, ay, ..., @, B, -, P € R, sowie Ay, ..., A, By, ...,B, €A,
wobei A4, ...,A,, und By, ..., B, jeweils paarweise disjunkt sind und ihre Vereinigung jeweils Q2

ergibt. Dann gilt
DLpld) = D Bu(B).
i=1 =1

Beweis: Wegen 2 =A;U...UA,, = B;U...UB, gelten die Mengengleichungen A; = U?Zl(AiﬂBj) und B; = UL, A NB;)
flir 1 <i<mbzw. 1 < j <n, wobei die Mengen A; N B; in beiden Vereinigungen jeweils paarweise disjunkt sind. Es
folgt
n m
pA)=> uANB) und  u(B)= > uANB)).
=1 i=1
Sei S die Menge aller Paare (i,j) mit A; N B; # . Fiir diese Paare (i, j) und beliebige Punkte x € A; N B; gilt
a; = f(x) = ;. Wir definieren y;; = a; = §; fiir alle (i, j) € S und erhalten

m m n
Dlawa) = D > auANB) = > yuAnB) =
i=1 i=1 j=1 (i,j)es

m n

ZZﬂjM(AinBj) = ZﬁjM(Bj)- O
=

i=1 j=1




Definition 6.5 Das u-Integral einer Funktion f € E(Q, A) der Form f = 271:1 u;1, mit
Uy, ..., U, € R, und paarweise disjunkten A, ...,A,, € A mit Q =A; U...UA,, ist definiert durch

ff du = Zn:uiu(Ai),

i=1

wobei wir u;u(A;) im Fall u; = 0, u(4;) = +oo gleich Null setzen.

Nach Lemma [6.4]ist der Wert des Integral von der Darstellung der Funktion f unabhéngig.

Proposition 6.6 FiirAc A, f,g € E(Q, A) und a € R, gelten folgende Rechenregeln.
M) [14dp=puA)
@ [(af)du=affdu
(i) [(f+&)du=[fdu+[gdu
(iv) ng:ff duﬁfgdu

Beweis: Gleichung (i) ergibt sich direkt aus der Definition. Fiir den Beweis von (ii) bis (iv) seien die Funktionen f, g in

der Form f = ZT:I u;l, und g = Z;.lzl vilp vorgegeben, mit u;,v; € R, und A;, B; € A, wobei die Mengen A4, ..., A,

und By, ..., B, jeweils paarweise disjunkt sind und ihre Vereinigung jeweils 2 ergibt. Weil der Wert des Integrals von
der Darstellung der Funktion als Summe unabhéngig ist, konnen wir an Stelle von A4, ...,A,,, und By, ..., B, das System
der Schnittmengen A; N B; zu Grund legen. Es gilt dann f =" | 23;1 uijlacs;, 8 = > Z;.lzl Vijlpnp, und

m n m n
ff du=zzugu(AmB,-) , Jgdu=ZZViJM(AiﬂBj)

i=1j=1 i=1 j=1
mit u;; =u; und v;; =v; firl<i<mund 1 <j<n. Wegen f +g =", Z;.lzl(uij +vj)1a,0s, folgt

J(f"‘g)dﬂ = ZZ(Uij+Vij)M(Ai) =

i=1 j=1

Zzuuu(AiﬂB,-)+ZZviju(AmBj) = ffdu+fgdu-

i=1 j=1 i=1 j=1

Durch die Darstellung af = > (au;)1 4, erhalten wir

f (af)dp = DlaupAd) = ayup@) = a f f dp.
i=1 i=1

Aus f < g folgt schlieBlich u;; < v;; flir 1 <i<m, 1 < j <n und damit

ffdﬂ = i:zn:uij‘u(AimBj) < iivijU(AiﬁBj) = fgdu- O

i=1 j=1 i=1 j=1




Unser nichstes Ziel besteht darin, den Integralbegriff auf allgemeinere nicht-negative Funktionen auszudehnen

Eine Folge (f,),en von Funktionen f, : Q — R bezeichnen wir als monoton wachsend, wenn f,(x) < f,.,(x) fiir
alle x € Q und n € IN erfiillt ist. Weiterhin sei (£2, 4, u) ein festgewahlter Mafsraum.

Satz 6.7 Eine Funktion f : @ — R, ist genau dann .A-messbar, wenn eine monoton wachsende
Folge (f,,)nen in E(£2,.A) mit f = sup f, existiert.

Beweis: ,<“ Nach Satz ist f als Supremum einer Folge .A-messbarer Funktionen selbst .4-messbar.
»,= Die wesentliche Idee besteht darin, f durch A-Stufenfunktionen zunehmend genauer zu approximieren, wobei
wir die Stellen x € Q mit f(x) = +00 gesondert beriicksichtigen miissen. Fiir jedes n € IN seien die Mengen A,,,
gegeben durch
A {xeQ|p2™<f(x)<(p+1)27"} fir0<p<n2"—1
T xeqlfx)=n} fiir p = n2"

Die Menge der x € 2 mit 0 < f(x) < n wird also zunehmend feiner aufgeteilt, je nach Wert der Funktion f,
wihrend die {ibrigen Punkte in der Menge A, ,,» zusammengefasst werden. Fiir jedes n € IN sind die Mengen A,,,
in A enthalten, paarweise disjunkt, und es gilt 2 = U';ZOAHP. Durch f, = 2;2:,10 p2™"-1 Anp erhalten wir jeweils eine
Funktion in E(f2, .A). Wir zeigen nun, dass die Folge dieser Funktionen monoton wéchst. Fiir alle n, p mit 0 < p < n2"
gilt A, = Apia0p UAps1 2p+1 auf Grund der Aquivalenzen

x€A, & p2<fxX)<p@+1)2" & @2 V< fx)<@p+2)2 ) o

np
(2p)2 "D < fF(x) < (2p+1)27 D v (2p +1)27D < f(x) < (2p +2)27 (D
g X eAn+1,2p VX eAn+1,2p+1 = X eAnJrl,Zp UAn+1,2p+1'
AufA,, ist f, konstant gleich p2™", und f,,,; nimmt nur die Werte p2™" = (2p)2~"*V und (2p +1)2~**V) an, also gilt
hier f,,1(x) > f,(x). Fiir alle x € Q gilt f(x) > n genau dann, wenn p2~"*V < f(x) < (p + 1)2~"*V fiir ein p mit

n2™! < p < (n+1)2"" —1 gilt, oder wenn f (x) > n+1 erfiillt ist. Im ersten Fall ist f,_;(x) = p2~"*D > n = f,(x),
im zweiten f,1(x) =n+1>n= f,(x). Insgesamt ist die Folge (f,),en also iiberall monoton wachsend.

Wir zeigen nun, dass f = sup f,, gilt und betrachten dafiir einen beliebigen Punkt x € Q. Im Fall f(x) = + oo gilt
fa(x) = n fiir alle n € IN, also sup f,(x) = +00 = f(x). Ist f(x) endlich, dann gilt f,(x) < f(x) < f,,(x) + 27" fiir
alle n > f(x). Durch Grenziibergang n — oo erhalten wir f(x) = lim f,(x) = sup f,,(x). O

Wir werden nun diese monoton wachsenden Folgen (f,),e dazu verwenden, der Funktion f ein Integral zuzuord-
nen. Zur Vorbereitung beweisen wir

Satz 6.8 Sei (f,),en €ine monoton wachsende Folge in E(Q, A) und f € E(Q, A) eine Funktion

mit f < sup f,.. Dann folgt
Jf du < supffn du.




Beweis: Wir stellen die Funktion f in der Form f = >’
und B, = {x € Q| f,,(x) = af (x)}. Wir zeigen

;n=1 a1, mita; € R, undA; € Adar. Sei a € ]0, 1] vorgegeben

@@ ffn du=> aff 1p du firalle neN und (i) lirgoff ‘1 du= Jf du.
zu (i) Nach Definition gilt af - 15 < f,15 < f,. Fiir die Integrale folgt daraus

an-andu = Jaf-andu, < ffnd,u.

zu (ii) Weil die Folge (f,,),e;y monoton wachsend ist, gilt dasselbe fiir die Folge (B, ) e in A, und aus f < supf,
folgt Q = U:; B,. Somit ist fiir jedes j € {1,...,m} auch die Folge (A; N B,,),c monoton wachsend, und es gilt
A;= U:Zl(AJ- N B,,). Auf Grund der o-Additivitat des Mal3es u erhalten wir

m m
ff du = leaju(Aj) = nlgrgozllaju(Aj nB,) = nlinoloff ~1p,du.
j= j=
Die Aussagen (i) und (ii) liefern zusammen

supffndu > supan-andu = a-lirgoff-lgndu = affd,u.

Weil a € ]0, 1[ beliebig gewihlt war, folgt aus dieser Abschétzung die Behauptung. O

Folgerung 6.9 Sind (f,),eny und (g,)new zWei monoton wachsende Folgen in E(£2,.4) mit
lim f,, = lim g,,, dann folgt supffn du = supf gn du.

Beweis: Fiirallem € IN gilt g,,, < sup f,,, also f gmdu < sup f fndunach Satz Es folgt supf gmdu <sup f fodu.
Ebenso erhélt man die umgekehrte Abschatzung. m|

Definition 6.10 Sei f : Q@ — R, eine .A-messbare Funktion und (f,),c €ine monoton wach-
sende Folge in E(, A) mit sup f,, = f. Dann ist das u-Integral von f definiert durch

deu = Supjfndu-

Nach Satz existiert zumindest eine Folge von Stufenfunktionen mit den angegebenen Eigenschaften, und nach
Folgerung [6.9]ist die Definition von der Wahl der Folge unabhéngig.




Satz 6.11 Fiir alle .A-messbaren Funktionen f, g und alle a € R, gilt

@ [(af)du=affdu
(i [(f+g)du=[fdu+[gdu
(iii) Ist f < g, dann folgtff d,usfgdu.

Beweis:  Sei (f,),en €ine monoton wachsende Folge in E(S,.A) mit sup f,, = f. Dann ist (af,),en €benfalls eine
monoton wachsende Folge in E(£,.4) mit supaf, = af. Die Folge der Integrale f fn du ist monoton wachsend,
deshalb gilt sup f fn dp = lim, f fn du. Entsprechendes gilt fiir die Folge der Integrale iiber die Funktionen af,,.
Insgesamt erhalten wir

J(af)du = SUPJ(afn)du = nlingof(afn)du = nlirgoaffndu =

a-lirgloand,u = a-supffnd,u = and,u.

wobei wir verwendet haben, das die Vertauschbarkeit von skalarer Multiplikation und Integrationen fiir Funktionen
aus E(£2, A) bereits gezeigt wurde. Genauso beweist man auch die Gleichung (ii). Ist (g, ) e €ine Folge mit sup g,, =
g, dann gilt sup(f, + g,) = f + g, und wir erhalten

f(f+g)du = supf(fﬁgn)du = nlingof(fﬁgn)du =

lilgoandu+lirgofgndu = supffnduﬂlmfgndu = ffdu+fgdu-

Setzen wir nun f < g voraus, und beweisen wir die Ungleichung (iii) zwischen den Integralen. Wieder seien (f,,),en
und (g,),en monoton wachsende Folgen in E(£2,.4) mit f = sup f, und g =sup g,,. Aus f < g folgt f,, < supg, fiir
alle m € IN. Nach Satzfolgt f fm du < sup f g, du fiir alle m € IN. Durch Ubergang zum Supremum erhalten wir

ffdu = Supffndu < SUPfgndu = fgdu- O

Satz 6.12 (Satz iiber die monotone Konvergenz)

Sei (f,)nen eine monoton wachsende Folge .A-messbarer Funktionen f, : Q — R,, und sei
f =supf,. Dann ist auch f eine .A-messbare Funktion, und es gilt

ffdu = supffndu-




Beweis: Dass das Supremum einer Folge .A-messbarer Funktionen selbst .A-messbar ist, wurde bereits gezeigt. Es
gilt f, < f fir alle n € IN, nach Satz (iii) folgt daraus f fondu £ f f du, durch Ubergang zum Supremum
also sup f fondu < f f du. Um auch die umgekehrte Abschéatzung zu beweisen, wéihlen wir fiir jedes n € IN eine
monoton wachsende Folge (un,)pen in E(R,.A) mit f, = sup,cp Un,- Fiir jedes p € IN sei v, = max{uyp, ..., upp}.
Auch diese Funktionen sind in E(f2,.4) enthalten. Wir beweisen nun die Gleichung f = sup,cy V,- Zunéchst gilt
v, < max{fy, ..., f,} = f, und somit sup,c v, < sup,ep f, = f. Andererseits ist u,, < v, fiir n < p, also sup,epy Uyp <
Sup,cny v, und somit f,, < sup,cy Vv, fir alle n € IN. Es folgt f = sup,c f, < Suppe v, durch Ubergang zum Su-
premum, insgesamt also f = sup,cyy v, Dies bedeutet, dass wir die Folge (v,,),en in E(Q,.A) zur Berechnung des
Integrals der Funktion f verwenden kdnnen. Zusammen mit der Abschétzung v, < f, fiir alle n € IN erhalten wir

ffdu = supfvndu < SUPffndu ,
nelN nelN

insgesamt also supf fndu= f f du wie gewiinscht. |

Im nachfolgenden Teil soll nun noch die Beschridnkung auf nichtnegative Funktionen aufgehoben werden.

Definition 6.13  Eine Funktion f : @ — R wird u-integrierbar genannt, wenn f eine A-
messbare Funktion und die Integrale f ftdu, f f~ du endlich (also R-wertig) sind. In diesem
Fall nennt man

ff du = Jer d,u—Jf_ du  das u-Integral von f.

Ist der zu Grunde liegende MaRraum speziell der Raum (R¢, Ay, u4) mit dem Lebesgue-MaR u, und der o-Algebra A,
der Lebesgue-messbaren Funktionen, dann nennt man die u4-integrierbaren Funktionen auch Lebesgue-integrierbar
und spricht vom Lebesgue-Integral der Funktion.

Eine nicht-negative, .4-messbare Funktion f : 2 — R, ist nach Definition genau dann u-integrierbar, wenn das
Integral f f du in R liegt. Ist dies nédmlich der Fall, dann ist auch f f* du endlich wegen f* = f, und f~ = 0 ist
eine Stufenfunktion mit Integral Null. Also ist f nach Definition u-integrierbar. Setzen wir dies umgekehrt voraus,
dann ist das Integral iiber f* = f endlich.

Satz 6.14 Fiir eine A-messbare Funktion sind die folgenden Aussagen dquivalent.
(i) Die Funktion f ist u-integrierbar.
(i) Es gibt u-integrierbare Funktionen g,h : Q@ — R, mit f = g—h.
(iii) Es gibt eine u-integrierbare Funktion g; : Q — R, mit |f| < g;.
(iv) Die Funktion |f| ist u-integrierbar.

Ist Bedingung (ii) mit den Funktionen g und h erfiillt, dann gilt f fdu= f gdu— f h du.




Beweis: (i) = (ii) © Sei g = f* und h = f~. Auf Grund der Bemerkung sind g und h beides u-integrierbare
Funktionen, und es gilt f = g —h.

,(ii) = (iii)“ Mit g und h ist auch g, = g + h eine uy-integrierbare Funktion. Es gilt f = g—h < g +h = g; und
—f=h—g<h<g+h=g,,insgesamt also |f| < g;.

,(il) = (iv)“ Esgilt|f|~ =0, also ist |f|~ eine Stufenfunktion, und das u-Integral {iber | f |~ ist gleich Null. AuRerdem
giltflfl dusfgl du < +o00.

LAv) = ()“ Wegen f* < |f| und f~ < |f] sind die u-Integrale iiber f* und f~ endlich. Also ist f nach Definition
eine u-integrierbare Funktion.

Zum Schluss beweisen wir die zusitzliche Aussage zum Punkt (ii). Aus f = g—h=f"—f folgtg+f =h+f".
Esfolgtfgdu+ff_ d,u=f(g+f_)d,u=f(h+f+)d,u=fhdu+ff+ d,u,alsoff d,uszJr d,u—ff‘ du=
fg d,u—fh du. m|

Satz 6.15 Seien f,g : Q — R zwei u-integrierbare Funktionen und a € R. Dann sind auch
die Funktionen f + g, af, min{f, g} und max{f, g}, sofern sie auf ganz Q definiert sind, jeweils
u-integrierbar. Es gilt dann

f(f+g)du = J-fd,u+Jgdu und f(af)du = affdu.

Beweis: Seizunichst a > 0. Dann gilt (af)* = af ", (af)” = af ,und mit f*, f~ sind auch (af)* und (af)~ beides
A-messbare Funktionen. Weil f f* du endlich ist, gilt dasselbe fiir f (af)t du= af f* du, ebenso ist f (af) du
endlich. Aulierdem gilt

J(af)du = f(affdu—J.(af)‘du = aff+du—aff‘du =
a(J.erd,u—J.f_du) = and,u,.

Im Fall a < 0 gilt (af)* = (—a)f~ und (af )" = (—a)f*. Aus ff’ du < +o0o folgt f(ctf)Jr du = f(—a)f’ du =
(—a)ff_ du < +00, und auf Grund der Voraussetzung ff+ du < +oo gilt f(af)_ du = f(—OL)fJr du =
(—a)f ftdu < +o00. Also ist af eine u-integrierbare Funktion. Fiir das Integral gilt

fafdu = J(afﬁdu—f(af)‘du = (—a)ff‘du—(—a)fﬁdu =
aff+du—aff_du = ajfd,u.

Nun beweisen wir die entsprechenden Aussagen fiir die Funktion f + g. Mit f*, f~, ¢* und g~ sind auch die Funk-
tionenu=f*+g" und v=f~ + g jeweils u-integrierbar, und es giltu—v=(f*—f ) +(g* —g ) =f + g. Nach




Satz (ii) ist damit auch f + g eine u-integrierbare Funktion, und es gilt

f(f+g)du = fudu—fvdu = ff*du+fg+du—ff‘du—Jg‘du =
ff*du—ff‘du+fg+du—Jg‘du = J.fdu+Jgdu-

Die Funktionen min{f, g} und max{f, g} sind nach Folgerung beide .A-messbar, und es gilt | min{f, g}| < |f |+|g|
sowie |max{f, g}| < |f|+ |g|- Die Funktion |f| + |g| ist u-integrierbar, wie wir bereits festgestellt haben. Also sind
min{f, g} und max{f, g} nach Satz (iii) jeweils u-integrierbar. |

Der Satz zeigt insbesondere, dass die reellwertigen u-integrierbaren Funktionen einen R-Vektorraum bilden, den wir
mit %'(u) bezeichnen. Im Fall des Lebesgue-MafRes u,; auf dem R? bezeichnen wir diesen Raum auch mit £ *(R).

Bemerkenswerterweise ist das Produkt f g zweier u-integrierbarer Funktionen im allgemeinen nicht u-integrierbar.
Sei p € N mit p > 2 und der Mafraum (£2, A, u,) gegeben durch 2 =N, A =*P(IN) und die Funktion

W = e
neA
Man iiberpriift unmittelbar, dass durch u,, tatsdchlich ein Mal} definiert ist. Ist f : N — R, eine Funktion, die nur

an endlich vielen Stellen einen Wert ungleich Null annimmt, dann ist f eine Stufenfunktion, und die einelementigen
Mengen {n} sind in A = P(IN) enthalten. Nach Definition des u,-Integrals gilt

de‘“p = Zf(n).u'p({n}) = Zf(n)n‘p_l.

nelN nelN

Sei nun f eine beliebige nicht-negative Funktion. Fiir jedes n € IN definieren wir M,, = {k € N | 1 < k < n} und
fa=1f+1y,. Dann ist (f,),en eine monoton wachsende Folge in E(IN, B(IN)) mit sup f,, = f. Dies zeigt, dass f eine
PB(IN)-messbare Funktion ist. Weiter gilt

d = su . d = lim | f,d = lim (n Pt =
ff by neﬂgff Uy Hoff wy = lim > £00)

keM,

lim > FRKPT = lim YRR = D fmn
k=1 n=1

keM,

Wir betrachten nun die spezielle Funktion f : O — R gegeben durch n — n. Dann gilt f fdu= Z:Zl n? < +oo,
aber f fPdu= Z:Zl n~! = +00. Die p-te Potenz von f ist also im Gegensatz zu f nicht u-integrierbar. Es gilt aber

Proposition 6.16 Ist f : Q — R u-integrierbar und g : 2 — R beschrinkt und messbar, dann
ist auch das Produkt u-integrierbar, sofern es auf ganz 2 definiert ist.

Beweis: Nach Satz ist f g eine messbare Funktion. Da g beschrénkt ist, existiert eine Konstante v € R* mit
|g(x)| <y fiir alle x € R*. Es gilt also |g| < v, und daraus folgt (fg)* < |f gl < ylflund (f )~ < |f gl < vIf]. Weil f
eine u-integrierbare Funktion ist, gilt f |f|du < +00. Auf Grund der Ungleichungen folgt f (fg)tdu< }ff Ifldu <
+o00 und ebenso f( fg) du< )ff |f|du < +o00. Dies zeigt, dass auch f g eine u-integrierbare Funktion ist. m|




Ist (X, 7) ein topologischer Raum und f : X — R eine Funktion, so wird der Abschluss der Menge {x € X | f (x) # 0}
der Trédger der Funktion genannt.

Satz 6.17 Jede stetige Funktion f : R — R mit kompaktem Triger ist Lebesgue-integrierbar.

Beweis:  Aus Proposition folgt, dass f Borel-messbar und damit auch Lebesgue-messbar ist. Sei T C R? der
kompakte Tréger von f. Auf Grund des Maximumsprinzips und der Stetigkeit von f existiert eine Konstante y € R”*
mit |f(x)] < y fiir alle x € T; es gilt also |f| < y-1;. Da T als kompakte Menge auch beschrankt ist, hat das
Lebesgue-MaR u,4(T) einen endlichen Wert. Wegen f+ < |f| <y -1, gilt ff+ dug < f}f- 1pdu=7y-uy4(T) < +o0,
und ebenso weist man die Endlichkeit des Integrals f f~dug nach. Also ist f tatsdchlich Lebesgue-integrierbar. O

Definition 6.18 Sei f : Q — R eine u-integrierbare Funktion und A € A. Dann ist das u-
Integral von f iiber A definiert durch

ffdu = .[f~hdu ;
A

wobei wir von der Konvention (+00) -0 = 0 und (—o0) - 0 = 0 Gebrauch machen, falls f
unendliche Werte annimmt. Man beachte, dass das Integral auf der rechten Seite wegen |1,-f| <
|f| tatsachlich existiert.

Ist f : Q — R eine u-integrierbare Funktion, und sind A, B € A, dann gilt

J fdu+f fdu = ffdu+ffdw
AUB ANB A B

Dies folgt unmittelbar aus der Gleichung f -1, 5 +f - 145 = f - 14+f - 1. Sind A und B disjunkt, dann gilt insbesondere

fAUde‘uzfAf d“+f3f du.

Ist (Q, A, u) ein Mallraum und B € A, dann ist Az = {ANB | A € A} offenbar eine in A enthaltene o-Algebra. Durch
das Tripel (A, Ag, ug) mit und uy = ul 4, ist wiederum ein MaRraum gegeben, denn mit y ist auch die eingeschrénkte
Abbildung ug abzdhlbar additiv.

Lemma 6.19 Sei f : @ — R eine u-integrierbare Funktion und B € A. Dann ist die Ein-
schrankung f |5 eine ug-integrierbare Funktion, und es gilt

f(ﬂs) dug = ff du. (6.1)
B

Beweis: Wir betrachten zunichst den Fall, dass f nicht-negativ und lediglich .A-messbar ist. Fiir alle C € B! gilt
(f1z)"Y(C)=Bn f7}(C) € A. Also ist f|; eine Az-messbare Funktion. Wir beweisen nun die Gleichung (6.1). Weil




f +1; eine A-messbare Funktion ist, gibt es eine monoton wachsende Folge (f,,)nen in E(Q, A) mit sup,c fn = f - 13-
Die Folge (f,,|g)|en ist dann in E(B, .Ap) enthalten, ebenfalls monoton wachsend, und es gilt sup,c fnlg = f |5. Nach
Definition gilt

Jf du= supan du  und (flg) dusg =su§f(fnls) dusg. (6.2)
B ne

nelN
Wir zeigen nun, dass fiir jedes n € IN die Gleichung f fndu = f( fnlg) dug erfiillt ist. Wegen f, € E(£,.4) gibt es
eink, € N, ay,...,a;, € R, und By, ...,B € Amit f, = Zf;l a; - 1g, wobei wir a; > 0 fiir 1 <1 < k, annehmen
konnen. Wegen 0 < f,, < f - 15 gilt B; C B fiir 1 <i < k,,. AuBerdem ist f,|z = Zf;l a; - 15 5. Damit erhalten wir fiir
die Integrale

k, k,
ffndu = DauB) = Y auB) = J(fnlg)dus-
i=1 i=1

Wegen li ist die Gleichung li also fiir nicht-negatives f bewiesen. Insbesondere ist das Integral f( flg) dug
genau dann endlich, wenn fB f du endlich ist.

Seinun f : Q — R eine u-integrierbare Funktion. Dann sind die Integrale f s *du und f 3~ dw endlich, auf Grund
des bisher Gezeigten wegen (f|z)* = f*|z und (f|z)~ = f |5 also auch f(f l5)* dug und f(fIB)_ dug. Damit ist
f |p eine ug-integrierbare Funktion. AufSerdem gilt

ffdu = ff*du—jfdu = J(f|3)+dHA_J(f|B)dNB = J(ﬂg)dHB- ]
B B B B B

Ist B eine Teilmenge unseres Mafraums (£, .4, u) mit B € A, so bezeichnen wir eine Funktion f : B — R als u-
integrierbar, wenn f auf dem Malraum (B, Ag, ug) eine ug-integrierbare Funktion ist, und zur Vereinfachung der

ffdu = ffdug-
B

Aus dem Lemma folgt also, dass fiir jede u-integrierbare Funktion g : © — R und jedes B € A auch die Einschrinkung

Notation setzt man

gl|p eine u-integrierbare Funktion ist und dann f z&du = f 5(&lp)du gilt. Anstelle einer Einschrédnkung kann der
Definitionsbereich einer Funktion auch ausgeweitet werden.

Definition 6.20 SeiB€ A, f : B— R und f3 : @ — R definiert durch

fa(x) =

f(x) firxeB
0 fir x ¢ B.

Dann nennen wir f; die Nullfortsetzung von f auf Q.

Das folgende Lemma besagt, dass die Nullfortsetzung von messbaren bzw. integrierbaren Funktionen wiederum
messbar bzw. integrierbar ist.




Lemma 6.21 Sei B < Aund f : B— R eine Funktion.

(i) Ist f nicht-negativ und .4z-messbar, dann ist f; eine .A-messbare Funktion.

(i) Ist f u-integrierbar, dann gilt dasselbe fiir )?B, und es gilt fB fdu= ffB du.

Beweis: zu (i) Auf Grund der Agz-Messbarkeit von f gibt es nach Satz eine monoton wachsende Folge (f,,) e
in E(B, Ag) mit sup,cy fn = f. Sei g, fiir jedes n € IN jeweils die Nullfortsetzung von f,. Dann ist g, jeweils in
E(9, A) enthalten. Denn fiir jeden der endlich vielen Werte ¢ ungleich null, die von f,, angenommen werden, gilt
g ({c}) = f'({c}) € Ap, wegen Ay C A also auch g ({c}) € A. AuBerdem gilt g ({0}) = £ '({0H)U(Q\B) € A.
Dariiber hinaus gilt offenbar sup, < g, = )?B. Wiederum nach Satz zeigt dies, dass )?B eine .A-messbare Funktion
1st.

zu (ii) Sei f zunédchst nicht-negativ. Nach Definition gilt fBlB = f und fB ‘lp = ﬁ;, und wegen Lemma folgt

daraus
deu = f(fgmdug = stdu = ffs-lgdu = ffsdu-
B B

Seinun f : B — R eine beliebige u-integrierbare Funktion. Dann gilt nach Definition f s *du < +oo und fB fTdug <
+00. Die Funktionen (f5)" und (f3)~ sind die Nullfortsetzungen von f * bzw. f ~, und auf Grund des bisher Gezeigten
gilt f(j?B)+ du= fB f* du < +00 und ebenso f (ﬁ; )~ du < +00. Also ist die Funktion ﬁ; tatsdchlich u-integrierbar,
und aus der Gleichheit der Integrale fiir f* und f~ folgt die entsprechende Gleichheit der Integrale fiir f. m|

Definition 6.22 Sei (2, A, u) ein Mallraum. Wir bezeichnen eine Teilmenge N C Q als Null-
menge, wenn u(N) = 0 gilt.

Im weiteren Verlauf verwenden wir die folgende Sprechweise: Wir sagen, eine Funktion f : 2 — R besitzt eine
Eigenschaft u-fast iiberall, wenn eine Nullmenge N C Q existiert, so dass die Eigenschaft fiir alle x € Q \ N erfiillt
ist. Wir illustrieren dies an einer Reihe von Beispielen.

(i) Wir sagen, zwei Funktionen f, g : © — R sind u-fast iiberall gleich, falls eine Nullmenge N C ( existiert, so
dass f(x) = g(x) fiir alle x € Q\ N gilt. Insbesondere sagt man, die Funktion f verschwindet u-fast tiberall,
wenn f u-fast iiberall mit der Nullfunktion {ibereinstimmt.

(i) Eine Funktion f : Q — R ist u-fast iiberall endlich, falls eine Nullmenge N C Q existiert, so dass |f (x)| < +00
fiir alle x € Q\ N erfiillt ist.

Satz 6.23 Sei f : Q — R, eine A-messbare Funktion. Genau dann ist f f du =0, wenn f
u-fast iiberall verschwindet.

Beweis:




Sei N = {x € Q| f(x) #0} = {x € Q| f(x) > 0}. Zu zeigen ist die Aquivalenz ff du=0< u(N)=0.

~=“  Sei (f,)pen die monoton wachsende Folge in E(S, A) gegeben durch f, = n- 1y fiir alle n € IN. Dann gilt
f fn du =0 fiir alle n € IN. Definieren wir g = sup,c f,,» dann ist g eine .A-messbare Funktion, und es gilt f gdu=
supne]fon du=0.Aus f ngolgtosff d,usfg d,uzOundsomitff du=0.

,=>"“ Fiir jedes n € N sei A, = {x € Q| f(x) > n"'}. Dann ist (A,),c monoton wachsend, es gilt U:;An = N und
somit lim,, u(A,) = u(N). Wegen f >n"'- 1,4, gilt
0 < n'w@,) < J ntl, duy < ff du = 0.

Es folgt u(A,) = 0 fiir alle n € IN, also u(N) = 0. m|

Folgerung 6.24 Sei f : Q — R eine .A-messbare Funktion und N C Q eine Nullmenge. Dann
ist f liber N u-integrierbar, und es gilt f NS du=0.

Beweis: Die Funktionen f*-1y und f~ -1, verschwinden u-fast iiberall, also gilt fN frdu= f v~ du=0.Folglich
ist f iiber N integrierbar, und es gilt fo du= fo+ du—fo_ du=0. |

Satz 6.25 Seien f, g : 2 — R A-messbare Funktionen, die u-fast iiberall iibereinstimmen.

(i) Sind f, g beide nicht-negativ, dann gilt f fdu= f g du.
(i) Ist f eine u-integrierbare Funktion, dann gilt dasselbe fiir g, und es ist f fdu= f g du.
(Hier sind fiir f, g auch negative Werte zugelassen.)

Beweis: zu (i) Die Menge N = {x € Q| f(x) # g(x)} ist nach Definition Folgerung [5.8|in A enthalten und liegt
auerdem nach Voraussetzung in einer Nullmenge. Also ist N selbst eine Nullmenge. Nach Satz gilt

ffdu = fgdu = 0.
N N

Setzen wir M = Q \ N, dann gilt fM fdu= fM g du nach Definition von M, und wir erhalten

ffdu = deu+ffdu = deu = Jgdu =
M N M M
Jgdu+fgdu = fgdu-
M N

zu (ii) Gilt f = g u-fast {iberall, dann sind auch die Gleichungen f* = g* und f~ = g~ u-fast iiberall erfiillt. Nach
Teil (i) folgt f ftdu= f gt du und f f~du= f g~ du. Weil f nach Voraussetzung eine u-integrierbare Funktion
ist, gilt f f*du<+oo und f f~ du < +00. Also ist auch g eine u-integrierbare Funktion, und es gilt

ffdu = ff+du—jf‘du = fg+du—fg‘du = fgdu- O




Folgerung 6.26 Seien f, g : 2 — R zwei .A-messbare Funktionen, und es gelte |f| < g u-fast
iiberall. Ist g eine u-integrierbare Funktion, dann gilt dasselbe fiir f .

Beweis: Die Funktion g; = max{g, |f|} stimmt u-fast iiberall mit g iiberein. Nach Satz ist g; also u-integrierbar.
Wegen |f| < g; auf Q erhalten wir mit Satz (iii) die u-Integrierbarkeit von f. O

Wir sagen, eine Menge B € A besitzt ein o-endliches MaB8, wenn uy : A — R, ein o-endliches MaR ist. Gleich-
bedeutend damit ist, dass eine monoton wachsende Folge (B,,),cn von Teilmengen B, € B mit U:ian = B und
w(B,) < +oo fiir alle n € IN existiert.

Satz 6.27 Sei f : Q — R eine u-integrierbare Funktion. Dann gilt

(i) Die Funktion f nimmt u-fast iiberall endliche Werte an.

(ii) Die Menge {x € Q| f(x) # 0} besitzt ein o-endliches Maf.

Beweis: zu (i) Sei N ={x €Q||f(x)| =+oo}. Dann ist N als Durchschnitt iiber die Folge (N, ),c in A gegeben
durch N, = {x € Q| |f (x)| = n} selbst in A enthalten. Fiir alle a € R, gilt a- 1y < |f]. Es folgt

au(N) = Ja-hdu < JWﬂdu = J}*du+ffdu < +oo

fiir alle @ € R, und somit u(N) = 0.

zu (ii) Wir kénnen f > 0 voraussetzen; ansonsten betrachten wir die Funktion |f| an Stelle von f. Fiir jedes n € IN
seid, ={x€Q| f(x)>n"'}={x€Q|nf(x)>1}. Dann gilt 14, <n-f, die Folge (A,),en ist monoton wachsend,
und es gilt

{xeQlf(x)#£0} = {xeq|f(x)>0} = |JA,.

Aus 1, < n-f folgt u(4,) < flAn du < nff du < +oo fiir alle n € IN. Damit ist die o-Endlichkeit der Menge
{x €| f(x)# 0} bewiesen. |

Die vorhergenden Sitze zeigen, dass sich an der Integrierbarkeit und dem Integral einer Funktion f nichts dndert,
wenn f auf einer Nullmenge (oder einer Teilmenge davon) modifiziert wird. Es wiirde deshalb auch nichts ausma-
chen, wenn f auf dieser Nullmenge gar nicht definiert ware. In einigen Anwendungen ist es praktisch, die Definition
von f nur auBerhalb einer Nullmenge angeben zu miissen.

Dies motiviert die folgende Definition: Sei (22, 4, u) ein MaRraum. Wir sagen, eine R-wertige Funktion f ist u-fast
tiberall auf Q) definiert, wenn f auf einer Menge M C Q2 definiert ist, deren Komplement in einer Nullmenge enthalten
ist. Wir sagen, die Funktion f ist u-integrierbar, wenn eine u-integrierbare Funktion g : Q — R mit g|,, = f existiert.
Das u-Integral von f definieren wir dann durch

ffdu = fgdw

Nach Satz [6.25]ist es von der Wahl der Fortsetzung g unabhéingig.

— 56 —



§ 7. Konvergengzsdtze der Integrationstheorie

Zusammenfassung. Ein wichtiger Vorteil des Lebesgue-Integrals (oder anderer maf3theoretisch definierter
Integrale) gegeniiber dem Riemann-Integral besteht darin, dass fiir Erstere vergleichsweise einfache Regeln
fiir die Vertauschbarkeit der Integration mit Grenzprozessen giiltig sind, die mit weniger Voraussetzungen
auskommen. Als Beispiele fiir solche Regeln werden in diesem Kapitel die Konvergenzsétze von Beppo Levi
und von Lebesgue behandelt. Aus diesen lassen sich weitere, fiir die Anwendungen niitzliche Rechenregeln
gewinnen. Als Anwendungen der Konvergenzsétze beweisen wir die Stetigkeit parameterabhingiger Integrale
und die Vertauschbarkeit von Integration und Differentiation, die hdufig auch als Zulassigkeit der , Ableitung
unter dem Integralzeichen“ verstanden wird.

Zentrale Sdtze

— Satz von Beppo Levi iiber die monotone Konvergenz
— Satz von Lebesgue iiber die majorisierte Konvergenz
— Stetigkeit parameterabhéngiger Integrale

— Differenzierbarkeit parameterabhingiger Integrale

— Ubereinstimmung des Lebesgue-Integrals mit dem Riemann-Integral

Im gesamten Kapitel bezeichnet (€2, A, u) einen vollstindigen MaBraum.

Satz 7.1 (Satz von Beppo Levi)

Sei (f,,)men €ine u-fast iiberall monoton wachsenden Folge von u-integrierbaren Funktionen
fon : © — R mit der Eigenschaft, dass die Folge der Integrale f fmdu in R beschrankt ist. Dann
existiert eine u-integrierbare Funktion f : Q — R mit der Eigenschaft, dass (f,,,)men punktweise
u-fast tiberall gegen f konvergiert, und es gilt lim,, f fmdu= f fdu.

Beweis: Nach Satz konnen wir jede der Funktionen f,, jeweils auf einer u-Nullmenge so abandern, dass die
Ungleichung f,,,(x) < fi41(x) fiir alle x € Q und alle m € N erfiillt ist, ohne an der u-Integrierbarkeit oder den Werten
der u-Integrale etwas zu dndern. Unser Ziel besteht nun darin, die Aussage des Satzes auf Satz|6.12|zuriickzufiihren.
Weil sich dieser Satz nur auf nicht-negative Funktionen bezieht, betrachten wir an Stelle von (f,,)en die Folge
(gm)men gegeben durch g,, = f,, — f,. Dabei handelt es sich eine Folge monoton wachsender, nicht-negativer und
u-integrierbarer Funktionen mit der Eigenschaft, dass der Grenzwert

c = supJ gmdu = mliggoJ. Emdu = n}ggoj fmdu—ffldu in R, liegt.
Ay Ay Ay




Definieren wir nun g : 2 — R, durch g(x) = sup,, g,,(x) = lim,, g,,(x), so folgt aus Satz|6.12| dass durch g eine
A-messbare Funktion gegeben ist, mit f gdu = c. Weil dieser Wert endlich ist, handelt es sich bei g sogar um eine
u-integrierbare Funktion.

Nun definieren wir f = g + f;. Weil wir jede der Funktionen f,, nur auf einer yu-Nullmenge abgeéndert haben (und
weil die abzdhlbare Vereinigung von u-Nullmengen wiederum eine u-Nullmenge ist), ist die Gleichung

f@) = g+AE) = lim g()+AE) = lm f0—A0)+AG) = lim f,(x)

auch dann fiir u-fast alle x € Q erfiillt, wenn wir die urspriinglich gegebenen Funktionen f,, zu Grunde legen. Weil
die Funktionen g und f; beide u-integrierbar sind, gilt dasselbe fiir f, und nach Satz[6.27|werden folglich die Werte
00 nur auf einer u-Nullmenge angenommen. Wir kénnen also nach Anderung von f auf einer u-Nullmenge davon
ausgehen, dass f eine R-wertige Funktion ist. Schlielich gilt auch die im Satz angebene Gleichung fiir das Integral,
wegen

ffdu = deu = fgd;HJfldu = n}iggogmdu+ff1du = lim f,du. O
A A A

Fiir Riemann-integrierbare Funktionen ist eine entsprechende Aussage falsch. Als Beispiel betrachten wir die Dirichlet-
Funktion y : [0,1] — R gegeben durch y(x) = 1 fiir alle rationalen und y(x) = O fiir alle irrationalen x € [0,1].
Diese ist nicht Riemann-integrierbar, wie in der Analysis einer Variablen gezeigt wurde. Sei nun (x,,),,e eine Folge,
die alle Elemente aus N = [0, 1] N Q durchlauft. Definieren wir eine Funktionenfolge (x,,,)men durch

1 falls x € {x1,..., X}
Am(x) =
0 sonst,

dann konvergiert die Folge (¥,)men Punktweise und monoton wachsend auf [0, 1] gegen y. Alle Funktionen in der
Folge sind Riemann-integrierbar, und es gilt jeweils f 01 Xmdu = 0. Insbesondere ist die Folge der Integrale in R
beschréankt. Aber y als der punktweise Limes der Funktionenfolge ist nicht Riemann-integrierbar.

Der Satz von Beppo Levi gilt auch fiir monoton fallende Folgen u-integrierbarer Funktionen: Man erhalt ihn dadurch,
dass man den urspriinglichen Satz auf die Folge (—f})rey anwendet. Hierbei muss man dann natiirlich fordern, dass
die Folge der u-Integrale in IR nach unten beschrankt ist.

Wir geben eine konkrete Anwendung fiir den soeben bewiesenen Satz. Die Funktion f : R = R, x — e istals stetige
Funktion auf jedem endlichen, abgeschlossenen Intervall [a, b] € R (mit a, b € R, a < b) Riemann-integrierbar. Es
ist aber nicht moglich, fiir die Stammfunktionen von f einen geschlossenen Ausdruck bestehend aus den bekannten
elementaren Funktionen (Exponentialfunktion, Logarithmus, trigonometrische Funktionen, Arcusfunktionen) anzu-
geben. Somit existiert auch keine einfache Formel fiir die Integrale fab f(x)dx.

Mit Hilfe der Konvergenzsitze konnen wir aber zumindest eine Reihenentwicklung fiir die Integrale angeben. Be-
kanntlich gilt e* = Z;:O ’fl—; fiir alle x € R. Daraus folgt, dass f(x) = e der punktweise Limes der Funktionenfolge
(f)new gegeben durch f,(x) = ZZZO Xk—z‘k ist, und diese Folge ist wegen x?* > 0 fiir alle x € R und k € IN, monoton
wachsend. Sei nun y die Einschrénkung des Lebesgue-Maf3es u, auf die o-Algebra (A;)[, 5} Die Folge der u-Integrale
der Funktionen f,, ist nach oben beschriankt. Denn wie wir weiter unten zeigen werden, stimmt das Lebesgue-Integral

iiber [a, b] mit dem Riemann-Integral iiberein, und es folgt

b b
ffndu = an(x)dx < Jexzdx < (b—a)ec2




mit ¢ = max{|al,|b|}, fiir alle n € IN. Damit sind alle Voraussetzungen des Satzes von Beppo Levi erfiillt, und wir
erhalten

b b b n 2%
J edx = ffdu lim an dpu = lim f fu(x)dx = lim f (Z x_) dx
a n—oo n—oQ a n—oQ a % k'
o[ N S N 1 2n+1 _ _2n+1
= li —d = - — = (ptl_ g2ntl)
E&;L K Z[(2n+1)n!] ;(2n+1)n!( a*™)

n=0 a

Durch die Beschrankung auf u-fast {iberall monoton wachsende Funktionenfolgen kann der Satz von Beppo Levi in
dieser Form nur auf Reihen mit nichtnegativen Gliedern angewendet werden. Diese Beschrankung wird durch den
folgenden Satz beseitigt.

Satz 7.2 (Satz von Lebesgue iiber die majorisierte Konvergenz)

Sei (f,,)men €ine Folge u-integierbarer Funktionen f,, : 2 — R, die fast {iberall gegen eine
Funktion f : @ — R konvergiert. Sei ferner g : @ — R, eine u-integrierbare Funktion mit der
Eigenschaft, dass u-fast iiberall jeweils |f,,| < g erfiillt ist, fiir jedes m € IN. Dann ist auch f

u-integrierbar, und es gilt
deu = lim ffmdu.

Beweis: Nach Abadnderung der Funktionen f,,, f und g auf einer Nullmenge konnen wir davon ausgehen, dass
(fm)men Uberall gegen f konvergiert, und dass |f,,| < g auf ganz Q erfiillt ist; nach Satz hat dies keine Aus-
wirkungen auf die p-Integrierbarkeit oder den Wert der Integrale. Um die Aussage des Satzes auf den Satz [7.1]von
Beppo Levi zuriickfithren zu kénnen, bendtigen wir monoton wachsende oder fallende Funktionenfolgen. Deshalb
definieren wir fiir alle m, v € IN die Funktionen

8m,y = max{fm:fm+1> “':fm+v} und &m = SUPy, &m,v-

Auf Grund der Voraussetzungen gilt |g,, ,| < g fiir alle m, v € IN und damit auch |g,,| < g fiir alle m € IN. Nach Satz
sind mit den f,, auch die Funktionen g,, , alle u-integrierbar. Fiir jedes m € IN ist die Folge (g, ,) <y monoton
wachsend, und die Folge der Integrale f &m,ydu ist durch f g du beschrankt. Aus Satz folgt nun, dass alle g,,
u-integrierbar sind, und dass jeweils

fgmd,u = supvJ.gm’vdu = vgrglofgm,vdu erfiillt ist.

Fiir alle m € IN gilt nach Definition jeweils jeweils g,,(x) = sup{ fi(x) | k = m}. Die Menge, iiber die das Supremum
gebildet wird, wird also in jedem Schritt kleiner, und dies zeigt, dass die Funktionenfolge (g,,)ex der monoton
fallend ist. Wegen |g,,,| < g gilt auch g,, > —g fiir jedes m € IN, und daraus folgt, dass die Folge der Integrale f gndu
nach unten durch — f g du beschrankt ist. Eine erneute Anwendung von Satzliefert eine u-integrierbare Funktion
f : Q — R mit der Eigenschaft, dass (g,,)men punktweise u-fast tiberall gegen f konvergiert, und dass

n}grgofgm du = ffdu gilt.




Aber der punktweise Limes der Folge (g,,)men Stimmt mit f iiberein. Zum Nachweis dieser Aussage seien x €
und ¢ € R* vorgegeben. Dann existiert ein N € IN mit |f,,(x) — f(x)]| < %s fiir alle x € Q, was zu f(x)— %s <
fm(X) < fx)+ %s dquivalent ist. Daraus folgt f(x) — %s < gmy(x) < f(x)+ %8 fiir alle m > N und v € IN, und
der Grenziibergang v — oo liefert f(x)— %e < gn(x) < flx) + %e fiir jedes m > N. Insbesondere erhalten wir
|gm(x) — f(x)| < ¢ fiir alle m > N, wodurch der Nachweis, dass die Folge (g, )men punktweise (iiberall) gegen f
konvergiert, erbracht ist.

Aus dieser Beobachtung folgt, dass die Funktionen f und f u-fast iiberall iibereinstimmen. Nach Satz ist
also auch f eine u-integrierbare Funktion, und es gilt lim,, f gmdy = f f du. Indem wir nun die Funktionen
hy , = min{f,, ..., fns,} und h, = infth, , | v € IN} definieren, erhalten wir nach demselben Schema eine Folge u-
integrierbarer Funktionn (h,,),en, die monoton wachsend gegen f konvergiert, mit der Eigenschaft lim,, f h,du=
f f dp. Nun gilt h,, < f,,, < g, fiir alle m € N, und daraus folgt jeweils

fhmdu < medu < ngdu-

Auf Grund der Gleichungen lim,, f h,,du = f fdu =lim,, f gm du folgt aus dem Sandwich-Lemma, dass auch die
Folge der u-Integrale f fmdu konvergiert, und dass der Grenzwert dieser Folge das u-Integral der Funktion f ist. O

Im weiteren Verlauf bezeichne (T, d) einen metrischer Raum. Ist g : 2 x T — R und t € T, dann verwenden wir fiir
das Integral iiber die Funktion g, : © — R gegeben durch g,(x) = g(x, t) (sofern es existiert) die Schreibweise

f g(x, t) du(x).

Satz 7.3 Seif :Qx T — R eine Funktion mit den folgenden Eigenschaften.

(i) Fiirjedeste T ist Q — R, x — f(x,t) eine A-messbare Funktion.
(ii) Esgibtein ty € T,sodass T — R, t — f(x,t) fiir u-fast alle x € Q in ¢, stetig ist.

(iii) Es gibt eine Umgebung U € T von t, und eine u-integrierbare Funktion g : 2 — R, so
dass fiir alle t € U jeweils |f (x, t)| < g(x) fiir u-fast alle x € Q erfiillt ist.

Dannist F : U - R, t — f f(x,t)du(x) eine auf ganz U definierte, reellwertige, in ¢, stetige
Funktion.

Beweis: Fiir alle t € U gilt jeweils fiir u-fast alle x € Q die Abschétzung |f (x,t)| < g(x). Also ist x — f(x,t)
jeweils eine y-integrierbare Funktion und F(t) € R damit fiir alle t € U definiert. Sei nun (t,).en €ine Folge in T
mit lim, t,, = t,. Nach Weglassen endlich vieler Folgenglieder konnen wir t,, € U fiir alle n € IN voraussetzen. Weiter
definieren wir eine Funktionenfolge (f,) e, indem wir f,(x) = f(x,t,) fir alle x € Q und n € IN setzen. Dann
sind die Werte F(t,) fiir alle n € IN definiert, und die Ungleichung |f,| < g gilt jeweils u-fast tiberall. Auf Grund der
Bedingung (ii) konvergiert die Folge (f,),en u-fast iiberall gegen die Funktion Q — R, x — f(x, ty). Wir kénnen
Satz iiber die majorisierte Konvergenz anwenden und erhalten

lim F(t,) = lim f e t)dute) = lim f fodp = f flot)dutx) = Fle) O




Satz 7.4 Seil C R ein offenes Intervall und f : 2 x I — R eine Abbildung, so dass folgende
Bedingungen erfiillt sind.

(i) Fiirjedes t €l ist Q > R, x — f(x,t) eine A-messbare Funktion.

(ii) Es gibtein t, €1, so dass Q@ — R, x — f(x, t,) u-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich 2 x I existiert die partielle Ableitung %.

(iv) Es gibt eine u-integrierbare Funktion g : 2 — R, so dass fiir alle t € I jeweils %(x, t)) <

g(x) fiir u-fast alle x € Q erfiillt ist.

Dannist F : I - R, t — f f(x,t)du(x) eine reellwertige, auf ganz I definierte und differen-
zierbare Funktion, und es gilt F'(t) = f g—{(x, t)du(x) fir alle t 1.

Beweis: Wir zeigen zunéchst, dass 2 — R, x — f(x, t) fiir jedes t € I eine u-integrierbare Funktion und F somit
auf ganz U definiert und reellwertig ist. Sei dazu t € I vorgegeben. Auf Grund der u-Integrierbarkeit von g und
auf Grund der Abschéitzung Ig—ft(x, t)| < g(x) fur u-fast alle x € Q ist jedenfalls x — g—{(x, t) eine u-integrierbare
Funktion. Nach dem Mittelwertsatz der Differentialrechnung finden wir fiir jedes x € Q ein s(x) € I zwischen t und

to mit £ (x, t) — £ (x, to) = L (x,5(x))(t — to). Es folgt

fGe, 0l < 1f(x, tl+ lt—tol < 1f(x, to)l +g(x)t — 1ol

of
E(X,S)

Die Funktionen x — f(x, t,) und x — g(x)|t — to| sind nach Voraussetzung beide u-integrierbar, also gilt dasselbe
fiir x — f(x,t).

Nun beweisen wir die Differenzierbarkeit von F und den angegebenen Wert fiir die Ableitung. Sei t € I und (t,,),en
eine Folge in I \ {t} mit lim,_,, t, = t. Fiir jedes n € IN gilt

Fle)=F()  _ JM au().

th,—t t,—t

Erneut finden wir durch den Mittelwertsatz der Differentialrechnung fiir jedes n € IN und jedes x € Q ein s,(x) €I
zwischen t und ¢, mit

fOot)=fx,t) _ 8f
—tn—t = 37 x,s,(x)).
Es folgt
f(x: tn)_f(xz t)

t,—t

9 (e, 5,(0)

A < gx)

fiir u-fast alle x € Q. AuRerdem konvergieren die Funktionen x — (t, — t) *(f(x, t,) — f (x, t)) punktweise iiberall
gegen t — %(x, t). Wir kénnen den Satz iiber die majorisierte Konvergenz anwenden und erhalten

P = am PO (fEW S0,

n—oo tn —t n—o0 tn —t

(x) = Jaa—{(x,t) du(x). m|

Wir konnen daraus eine Regel fiir die partielle Differentiation unter dem Integralzeichen ableiten.




Folgerung 7.5 Seien m,n € IN, A € R™ eine Lebesgue-messbare und U € R" eine offene
Teilmenge, und sei f : Ax U — R eine Funktion mit folgenden Eigenschaften.

(i) Fiir jedes y € U ist die Funktion A — R, a — f (a, y) Lebesgue-integrierbar.

(i) Fiir jeden Punkt a € A existieren die partiellen Ableitungen J,f, mit 1 < j < n auf ganz
U, wobei f, : U — R durch f,(x) = f(a, x) definiert ist.

(iii) Es gibt eine u-integrierbare Funktion g : A — R, so dass 10;fal < g(a) fiir 1 < j < n gilt.

Dann ist die Funktion F : U — R, x — f Af(a,x)du(a) partiell differenzierbar, und es gilt
O;F(x) = fA 0;fo(x)du(a) fiir alle x € U.

Beweis: Sei j € {1,...,n}, xo € U und ¢ : R — R" gegeben durch ¢(t) = x, + te;. Da U C R" offen ist, existiert
ein ¢ € R* mit der Eigenschaft, dass die Bildmenge ¢ (I) des offenen Intervalls ]—¢, e[ C I in U enthalten ist. Nach
Definition der partiellen Ableitung gilt dann (f, o ¢)'(t) = 9;f,(xo + te;) = Opqjf (a,xq + te;) fiir alle a € A. Wir
wenden nun Satz auf die Funktion f tAxI >R, (a,t)— (f, o ¢)(t) an. Offenbar sind die Voraussetzungen (i)
bis (iv) des Satzes fl'jrf erfiillt: Fiir jedes t € [ istA—> R, a — fA(a, t) wegen f(a, t) = (fao@)(t) = f(a,xq + te;)
eine Lesbesgue-integrierbare und damit erst recht eine .4,,-messbare Funktion, also sind (i) und (ii) erfiillt. Fiir jedes
Paar (a,t) € A x I existiert die partielle Ableitung

oF
L@ = God)0 = duf@xitee)

also ist B(idingung (iii) erfl'iAllt. Wegen |0, f (a,x + te;)| = [0, f,(x + te;)| < g(a) fiir alle a € A ist auch (iv) giiltig.
SomitistF : 1 - R, t — f f(a, t)du(a) auf Grund des Satzes eine reellwertige, auf ganz I differenzierbare Funktion,
und es gilt

F) = f %(a,t)du(a) = fajf(a,xo)du(a).

Auflerdem gilt
F(t) = ff(a,t)du(a) = f(fa°<i>)(t)du(a) = ff(a’x0+tej)du(a) = F(xo+te))

fiir alle ¢ € I und somit F'(0) = 9;F (x,). Insgesamt ist die angegebene Gleichung im Punkt x, € U also erfiillt. O

Wir illustrieren den soeben bewiesenen Satz anhand eines Beispiels. Sei f : [0,1]xR? — R gegeben durch f(x, y,z) =
x2y +3z. Die partiellen Ableitungen von f nach y und z sind gegeben durch g—f,(x, y,2) = x?und Z—ﬁ(x, y,2) = 3. Auf
Grund der Ubereinstimmung von Riemann- und Lebesgue-Integral (siehe unten) ist die Integralfunktion F : R? — R,
(y,2)— f[o,l](xzy + 32)du,(x) gegeben durch

1
F(y,z) = J(x2y+32)dx = [%x3y+3xz](1) = 1ly+3z
0




Die partiellen Ableitungen dieser Funktion sind gegeben durch g—i(y,z) = % und ‘Z—g(y,z) = 3. Wie in Satz
angegeben, stimmen die Integrale iiber diese partiellen Ableitungen mit den partiellen Ableitungen von f iiberein,
d.h. es gilt

3 ! OF
J L irane = f var = [0 = = Lo
[0,1]
1
f L iy dit) = f 3dx = [} = 3 = Lo
Z 0 Jz

[0,1]

Als letztes Thema in diesem Kapitel untersuchen wir den Zusammenhang zwischen dem Riemann- und dem Lebesgue-
Integral. Wir erinnern kurz an die wichtigsten Bezeichnungen und Definitionen, die im Zusammenhang mit dem
Riemann-Integral eingefiihrt wurden. Seien a,b € R mit a < b und f : [a,b] — R eine beschrankte Funktion.
Sei Z = {xy,...,x,_1} eine endliche Teilmenge von ]a, b[ mit x; < ... < x,_;; eine solche Teilmenge hatten wir als
Zerlegung des Intervalls [a, b] bezeichnet.

Zur Vereinfachung der Notation setzen wir x, = a und x,, = b. Fiir 1 < k < n sei jeweils
c =inf f([xp_1, %))  und i =sup f([xp_1, X D)

Dann ist S;(Z) = >;;_; c(x, — X;1) die Untersumme und sH(2) = Sie; di(xx — x4_y) die Obersumme von f
beziiglich Z. In der Analysis einer Variablen hatten wir gezeigt, dass f genau dann Riemann-integrierbar ist, wenn
fiir jedes ¢ € R" eine Zerlegung Z mit der Eigenschaft S;“(Z) —Sf_(Z) < ¢ existiert. Das Riemann-Integral erfiillt
dann jeweils die Ungleichungen

b
57(2) < ff(x)dx < i@

Um die Beziehung zur Maf3theorie herzustellen, bezeichne u wie oben die Einschrédnkung von u; auf (A )4 ;. Fiir
jede Zerlegung Z fiihren wir auf [a, b] die Funktionen

n n n n
F2G) =T e g+ 2 F00) 1y und FEG0) =D di Ly r+ 2L F 00 Ly
k=1 k=0 k=1 k=0

ein. (Im Fall ¢;,d; = 0 fiir 1 < k < n handelt es sich um Stufenfunktionen.) Diese sind so konstruiert, dass jeweils
fz < f £ f5 erfiillt ist. AuBerdem gilt

n

ff_gfdul = >l uOxenxD+ D ) ula) =
k=0

k=1

n n

Dl xe)+ ) f()-0 = D alu—xo) = S(2)
k=0

k=1 k=1
und ebenso zeigt man ffZ*f du = S;(Z).

Man tiberpriift leicht, dass f> < fZ, und f, < f7 gilt, wenn Z’ eine Verfeinerung von Z ist, also Z’ 2 Z gilt:
Die Infima bzw. Suprema, die man fiir die Unter- bzw. Obersummen beziiglich Z’ betrachten, werden tiber kleine
Teilintervalle gebildet als bei der Zerlegung Z. Dadurch sind die Infima bei Z’ grofer und die Suprema kleiner. Mit
demselben Argument haben wir in der Analysis einer Variablen die Ungleichungen S (2) < S;(Z’) und S;(Z’) <
Sf*(Z) hergeleitet.




Satz 7.6 Seif :[a,b] — R eine beschrankte Funktion.

(i) Ist f Riemann-integrierbar, dann auch Lebesgue-integrierbar, und es gilt

b
deu = Jf(X)dX-

(ii) Die Funktion f ist genau dann Riemann-integrierbar, wenn die Menge
N ={x €[a, b] | f unstetig in x} eine Lebesguesche Nullmenge ist.

Beweis: Fiir jedes m € IN sei Z,, die dquidistante Zerlegung von [a, b] im m Teilintervalle, also Z,, = {a + kb%a 1<
k < m}. Ersetzen wir anschlieBend fiir alle m € IN nacheinander die Zerlegung Z,,,; jeweils durch 2, U Z,,,, dann
gilt Z,, € Z, ., fiir alle m € IN, und jedes Teilintervall von [a, b] beziiglich Z,, hat eine Linge < %

Fiir jedes m € IN sei ¢,, = f; und ¢, = f1 . Nach Konstruktion der Folge (Z,,) e gilt ¢ < @1 < f < Pppq <
Y, fir alle m € IN. Fiir jedesn;c € [a, b] ist also (@m(x))men eine beschriankte monoton wachsende und (,,,(x))en
eine beschriankte monoton fallende Folge. Dies zeigt, dass (¢,,)men Punktweise gegen eine Funktion ¢ und (3,;,) men
punktweise gegen eine Funktion v auf [a, b] konvergiert; dabei gilt ¢ < f < ). Beide Funktionenfolgen sind
betragsméfRig durch die u-integrierbare Funktion |¢;| + || beschrankt. Wir kénnen also den Satz iiber die
majorisierte Konvergenz auf beide Folgen anwenden und erhalten die u-Integrierbarkeit von ¢ und 1) sowie

lingngomduzfnpd,u und lirgofwmduszd,u.

zu (i) Auf Grund der Riemann-Integrierbarkeit von f konnen die Zerlegungen Z,, so verfeinert werden, dass
S;’(Zm) - Sf_(Zm) < % fiir alle m € IN erfiillt ist. Auf Grund der Ungleichungen Sf_(Zm) < fab fl)dx < S;(Zm) gilt
jeweils

b
0 SJ fO)dx =87 (Z) < SHE) =87 (Zn) < 7

und 0 < S}’(Zm) — fabf(x)dx < S]T(Zm) =S5 (2, < L. Damit erhalten wir

b
lirglosf_(zm) = lirgoS}“(Zm) = ff(x)dx.

Wegen f Pmdu= Sf_(Zm) und fmpm du = S;'(Zm) fiir alle m € IN erhalten wir damit insgesamt

b
fwiu = ff(X)dx = deu-

Wegen ¢ < f <1 giltyp—p >0, und aus f(lp—cp)d,u = fl/) du—f ¢ du = 0 folgt mit Satz , dass 1 — ¢ u-fast
iiberall gleich null ist. Wegen 0 < f —¢ <) — ist auch f — ¢ fast {iberall gleich null. Nach Satz ist damit auch

f u-integrierbar, und es gilt ff du= f pdu= fabf(x)dx.




zu (ii) Sei Z = U;o:l Z... Diese Menge ist als abzdhlbare Vereinigung endlicher Mengen abzihlbar, es gilt also
w(2) = 0. Um den Beweis der Aquivalenz vorzubereiten, zeigen zunéchst, dass fiir jeden Punkt x, € [a,b]\ Z die
Funktion f in x, genau dann stetig ist, wenn ¢(x,) = ¥ (x,) gilt.

»,=“ Nach Voraussetzung ist f in x, stetig. Sei ¢ € R* vorgegeben. Dann gibt es ein 6 € R*, so dass |f (x)—f (x,)| <
%8 fiir alle x € [a, b] mit |x — x| < 6 erfiillt ist. Sei nun M € IN mit % < 6, seim> M, und sei k so gewahlt, dass x,
im Intervall J = ]x;, x;,;[ enthalten ist. Dann ist der Abstand sédmtlicher Punkte des Intervals J durch & beschrénkt,
und wir erhalten

PYm(x0) = Pm(x0) = sup f(J)—inf f(J) = (sup f(J)—f(x0)) +(f (xo) —inf f())) < je+3¢ = e.

Daraus folgt lim,, (v ,,(x¢) — ¢, (x0)) = 0, und auf Grund der punktweisen Konvergenz von (¢,,)men Und (3, ) men
folgt ¢(x) = (xo)-

& Setzen wir ¢(xo) = 1 (xo) voraus. Wegen ¢(xo) < f(x,) < 1 (x,) konvergieren dann die Folgen (¢,,,(x¢))men
und (Y,,,(xo))men beide gegen f(x,). Fiir vorgegebenes ¢ € R* finden wir demzufolge ein m € IN mit 1),,(x,) —
flxg) < %e und f(xg) — @m(xg) < %s. Sei nun y,z € Z,, die eindeutig bestimmten Punkte mit y < x, < z und dem
minimalen Abstand zu x,. Setzen wir § = min{x, — y,z — Xy}, dann ist ]Jx, — &, x, + 6[ im Teilintervall [y,z] der
Zerlegung Z,, enthalten. Nach Definition von ¢, und v,, gilt

¢m(xo) = inf f([y,2]) < f(x) < sup f([y,z]) = Yulxo)

fiir alle x € [a, b] mit |x—x| < &. Es folgt | f (x)—f (xo)| < 9 n(x0)—@m(x0) = (¥ (x0)—f (x0))+(f (x0)—pm(x0)) <
%s + %s = ¢ fiir alle x € [a, b] mit |x —x,| < &. Dies zeigt, dass f stetig in x, ist.

Nun beweisen wir die Aussage (ii). ,,=“ Sei f Riemann-integrierbar. Wie wir in Teil (i) gezeigt haben, gilt ¢(x) =
f(x) =(x) fiir u-fast alle x € [a, b], damit auch fiir u-fast alle x € [a, b]\ Z. Auf Grund unserer zuvor bewiesenen
Hilfsaussage ist f damit in u-fast allen Punkten von x € [a, b]\ Z stetig. Weil Z eine Nullmenge ist, ist f somit auch
u-fast iiberall auf [a, b] stetig.

~&= Ist f u-fast liberall stetig, dann gilt auf Grund der Hilfsaussage insbesondere ¢(x) = f(x) = a4 (x) fiir u-fast
alle x € [a, b]\ Z. Wegen u(Z) = 0 gilt also ¢(x) = ¢(x) also u-fast iberall auf [a, b], und es folgt f pdu= f Y du.
Der Satz von Lebesgue iiber die majorisierte Konvergenz liefert nun

. + _ . — — . _ . —
Mim S7(Zy, f) = lim $™(Zy, f) mlggofwmdu n}ggofsom du
f Y du—f pdu = 0.
Dies zeigt, dass f Riemann-integrierbar ist. |




§8. Produktmafle und Satz von Fubini

Zusammenfassung. Je zwei Messraumen (£, .4;) und (Q,, 4,) kann ein neuer Messraum (2, A) zugeordnet
werden, wobei Q = ; x Q, ist und A = A; ® A, die von den kartesischen Produkten A; x A, mit A; € A; und
A, € A, erzeugte o-Algebra bezeichnet. Ist u; fiir j = 1,2 jeweils ein o-endliches Maf3, dann existiert (2,.4)
ein eindeutig bestimmtes Maf} u mit u(A; x A,) = u(A;) - u(A,) fiir alle A; € A;, A, € A,. Fiir eine beliebige
Menge C € A kann u(C) durch geeignete u,- oder u,-Integrale berechnet werden. Daraus ergibt sich der
fiir die mehrdimensionale Integration wichtige Satz von Fubini, welcher besagt, dass die h6herdimensionale
Integration auf die eindimensionale Integration zuriickgefiithrt werden kann.

Wichtige Grundbegriffe Zentrale Sdtze
— Produkt endlich vieler von Messrdume — Eindeutigkeit des Produktmal3es
— Produktmaf} - Existenz des Produktmales fiir o-endliche Mal3e
— Schnitt senkrecht zur ersten bzw. zweiten — Cavalierisches Prinzip
Koordinatenachse

— Satz von Tonelli

— Lebesgue-Borelsches Maf3 o
— Satz von Fubini

Wir beginnen mit der Definition des Produkts von o -Algebren und Messrdumen. Im gesamten weiteren Verlauf dieses
Kapitels seien (,.4;) Messrdaume fiir k € {1,2}, aullerdem Q = Q; x Q,, und es bezeichen 7; : 2 — Q; und
Ty : Q — Q, die zugehodrigen Projkektionsabbildungen.

Definition 8.1 Als Produkt A= A; ® A, der beiden o-Algebren A; und A, bezeichnet man
die von dem System

{rl@lke{1,2}, Ac A}

erzeugte o-Algebra. Das Paar (£2, .A) wird dann das Produkt der beiden Messraume (9;,.4;) und
(£2,, A,) genannt.

Man sieht unmittelbar, dass .A; ® A, die kleinste o-Algebra in Q; x Q, ist, beziiglich der die beiden Projektionsab-
bildungen 7, T, messbar sind. Unser erstes Ziel besteht darin, moglichst einfache Erzeugendensysteme fiir diese
o-Algebra anzugeben.

Satz 8.2 Fiir k = 1,2 sei & jeweils ein Erzeugendensystem von .A;, wobei wir zusatzlich an-
nehmen, dass in & jeweils eine monoton wachsende Folge mit (Ej,)mew mit |, e Exm = i
exstiert. Dann bilden die Mengen der Form E; x E, mit E; € &, und E, € &, ein Erzeugendensy-
stem von A = A; ® A,.




Beweis: Es bezeichne A’ die o-Algebra in Q, die von den Mengen der angegebenen Form erzeugt wird. Zunéchst
zeigen wir, dass A’ C A gilt. Dafiir reicht es zu tiberpriifen, dass fiir alle E; € & und E, € &, die Menge E; x E, jeweils
in A liegt. Seien also E; und E, zwei solchen Mengen. Nach Definition von .4 liegt sowohl rc;l(El) = E; xQ als auch
n;l(Ez) = QO xE, in A, und damit auch der Durchschnitt dieser beiden Urbildmengen, der mit E; x E, iibereinstimmt.

Fiir die umgekehrte Inklusion A C A’ geniigt es zu zeigen, dass fir k € {1,2} die Projektionsabbildung 7, jeweils
messbar beziiglich A" und A, ist, denn wie oben angemerkt, ist A die kleinste o-Algebra mit der Eigenschaft, dass
7y, beziiglich A und A, messbar ist. Wir beschrénken uns auf den Nachweis fiir k = 1. Nach Proposition [5.3| gentigt
es zu iiberpriifen, dass n;l(E ) fiir jedes E € & in A’ liegt. Sei also ein solches E vorgegeben. Dann gilt

m(E) = ExQ, = Ex(UEZm) = JExEy,.

melN melN

Die Produkte E X E,, sind nach Definition alle in der o-A’ enthalten, also gilt dasselbe auch fiir die abzihlbare
Vereinigung. m|

Der Satz zeigt auch, dass unter der angegebenen Voraussetzung die Mengen der Form A; x A, mit A, € A fiir
k € {1,2} in A enthalten sind und ein Erzeugendensystem dieser o-Algebra bilden.

Wie man sich leicht {iberzeugt, kann das Produkt der Messrdaume von zwei auf eine beliebige endliche Anzahl von
Faktoren ausgedehnt werden. Ist r € IN, und sind (£, A;) Messrdume fiir 1 < k < r, und existiert fiir die o-Algebra
Ay jeweils ein Erzeugendensystem &, mit einer monoton wachsenden Folge (Ej,,)neny Wie in Satz dann ist
A;®...® A, also eine o-Algebra in Q; x ... xQ,, die von den Mengen der Form A; x ... XA, mitA, € A, fir1 <k <r
erzeugt wird.

Folgerung 8.3 Fiir jedes n € IN stimmt die Borelsche o-Algebra B, in R" stimmt mit der
o-Algebra @) _, B, iiberein.

Beweis: Nach Definition wird die o-Algebra 5; von den endlichen Intervallen in R! erzeugt. Weil R! durch endliche
Intervalle ausgeschdpft werden kann, bilden die kartesischen Produkte I; X ... x I, I; Intervall in R fiir 1 < k < n,
wie soeben bemerkt, ein Erzeugendensystem von ®);_, B;. Andererseits sind die angegebenen kartesischen Produkte
genau die Quader im R", und diese bilden ein Erzeugendensystem der o-Algebra B,. Also stimmen die beiden o-
Algebren B, und @ _, B, iiberein. O

Wie wir allerdings in Kiirze feststellen werden, ist die o-Algebra A, der Lebesgue-messbaren Mengen im R" eine
echte Obermenge von @, _; A;.

Im weiteren Verlauf beschranken wir uns aus Griinden der Ubersichtlichkeit wieder auf den Fall r = 2. Wir setzen
nun voraus, dass auf jedem unseren beiden Messraume (£, 4;) jeweils ein Mal} u; existiert und beschéftigen uns
mit der Frage, unter welchen Voraussetzungen sich daraus ein Mal? auf (£, .4) gewinnen l&sst.




Satz 8.4 (Eindeutigkeit des Produktmafses)

Fir k = 1,2 sei & jeweils ein N-stabiles Erzeugendensystem von 4;, das eine monoton wach-
sende Folge (Ej)men Mit U;ozl Em = @ und i (Ey,,) < +oo fiir alle m € IN enthilt. Dann
gibt es hochstens ein Maf$ u auf (€2, .A) mit

W(Ey X Ey) = uq(Eus(E,) fir alle E; €& und E, €&,.

Beweis: Sei £ das System aller Mengen E; x E, mit E; € & fiir k = 1,2. Nach Satz handelt es bei £ um ein
Erzeugendensystem von A = A; ® A,. Auch £ ist N-stabil, denn fiir beliebige Produkte E; x E, und F; x F, aus
€ liegt die Menge (E; x E5) N (F; X Fy) = (E; NF;) x (E;,NF,) in £. Fiir jedes m € N sei G,, = E;,, X E,,,. Sind
u, fi zwei MalBe auf A mit der im Satz angegebenen Eigenschaft, dann gilt u(G,,) = i (E;n)t2(Esy) und ebenso
f(Gp) = py(Er)ug(Eyy,) fiir jedes m € IN, und diese Zahlen sind jeweils endlich. AuBerdem gilt | J, .y G = Q.
Damit ist insgesamt das Eindeutigkeitskriterium in Proposition [4.4] erfiillt, und es folgt u = fi. |

Wiederum lésst sich der Beweis leicht auf endlich viele Faktoren {ibertragen.

Folgerung 8.5 Istu, fiir 1 < k < n jeweils ein o-endliches Mal? auf A, dann gibt es hochstens
ein MaB y auf @,;_, A, mit

n
pA x .. xA) = [[m@)  fir €A, 1<k<n.
k=1

Kommen wir nun zum Nachweis der Existenz von Produktmafen. Fiir den Rest des Kapitels setzen wir voraus, dass
(29,41, uq) und (925, Ay, u,) zwei Mallrdume mit o-endlichen MaBen uq, U, sind.

Definition 8.6 Sei C C 0, x Q, eine beliebige Teilmenge, x € Q; und y € Q,. Dann definieren
wir
Cl ={yeQl(x,y)eC} und C}%:{xeﬂll(x,y)EC}.

Wir nennen C} bzw. CJZ/ einen Schnitt durch C senkrecht zur x- bzw. zur y-Achse.

Wie man sich leicht iiberzeugt, ist die Bildung von Schnitten vertraglich mit den Mengenooperationen Vereinigung
und Differenz.

Lemma 8.7 SeiC C Q;xQ, und (C,,)en €ine Folge in Q; xQ,. Dann gelten fiir alle x € Q,; die
Gleichungen (2 \ C)! = Q,\ C! und (|, .cn Cm))lc = [Umen(Cm)L. Analoge Gleichungen gelten
auch fiir die Schnitte senkrecht zur y-Achse.




Beweis: Sei x € ;. Fiir ein beliebiges Element y € Q, gelten dann die Aquivalenzen
ye@\0), & (xy)eQ\C & (xXY)eQA(xy)¢C & yeMWAy¢C, & ye\CL.

Dies beweist die erste Mengengleichung. Ebenso gelten fiir alle y € Q, die Aquivalenzen

melN melN melN

1
ye(U Cm) & (x,y)e UCm & ImeN:(x,y)eC, & ImeN:ye(C,). & y€ U(Cm)}c. O

Lemma 8.8 Sei C € A. Dann ist fiir jedes x € Q; die Menge C; in A, enthalten. Ebenso gilt
C§ € A, fiir alle y € Q,.

Beweis: Es geniigt, die erste Aussage zu beweisen, da der Beweis der zweiten vollig analog verlduft. Wir zeigen, dass
fiir vorgegebenes x € Q; das System
Al = {ceqlcled,}

eine o-Algebra bildet, die simtliche Produkte A; x A, mit A; € A;, A, € A, enthélt. Wegen @}C =g € A, gilt
zunachst @ € A)l(. Setzen wir nun C € A)l( voraus. Dann gilt C; € A,, und aus dem vorhergehenden Lemma folgt
(Q\C): =Q,\C! € A,, also 2\ C € AL Sei nun (C,),e eine Folge in AL. Dann gilt (C,)! € A, fiir alle n € IN.
Wiederum auf Grund von Lemma [8.7] folgt

1

(Gcn) = G(Cn))l( EAZ
x n=1

n=1

und somit U:Zl C, e A}C. Damit ist der Nachweis, dass es sich bei A}C um eine o-Algebra handelt, abgeschlossen.
Sei nun eine Teilmenge A; X A, € Q; x Q, mitA; € A;, A, € A, vorgegeben. Es gilt

(A, XAz))l( =

A, falls xeA;
@ falls x€¢A,

in jedem Fall also (A; XAz))lc € A,. Dies zeigt, dass A)lc alle Produkte der Form A; x A, mit A; € A;, A, € A, enthilt.
Weil die o-Algebra A; ® A, von diesen Produkten erzeugt wird, ist sie in A}( enthalten. Ist also C € 4; ® A, und
x € Q;, dann folgt C € A! und nach Definition von A} somit C} € A,. |

Sei C € A. Dann gilt C} € A, fiir jedes x € Q, nach Lemma Die Menge C} ist also A,-messbar, und das Maf}
uo(CL) fiir jedes x € Q definiert. Wir erhalten fiir jedes C € A also eine Funktion s¢ : Q1 — R, x — p,(C)).

Lemma 8.9 Fiir alle C € A und x € Q, erfiillt die Funktion s, folgende Regeln.

D) so(x) = uy(2) () sa\c(x) = ua(925) —sc(x)
(iii) GiltC = U:Zl C, fiir eine Folge (C,),en in A bestehend aus paarweise disjunkten
Mengen, dann folgt s-(x) = Z:Zl sc, (x).
(iv) IstA; € A; und A; € Ay, dann gilt s4 .4, = Ua(A2) - 1y,




Beweis: Gleichung (i) folgt aus Q! = Q,, Gleichung (ii) aus (2\C)! = Q,\C! und Gleichung (iii) aus C} = (|2, C,)!
(siehe Lemma. Die vierte Gleichung folgt aus der Tatsache, dass die Menge (A; x Az)}( im Fall x € A; gleich A,
und im Fall x ¢ A, die leere Menge ist. m|

In § 4 hatten wir den Begriff des Dynkin-Systems in einer Menge 2 eingefiihrt. Dabei handelte es sich um ein System
von Teilmengen von (2, dass die leere Menge @& enthélt und abgeschlossen unter Komplementen und abzéhlbaren
disjunkten Vereinigungen ist.

Lemma 8.10 Sei C € A. Dann gilt

() Die Funktion s¢ : 2, — R, x = p,(Cl) ist A, -messbar.

(ii) Die Funktion s : Q, — R,,y— ,ul(Cﬁ) ist A,-messbar.

Beweis: Wir beschrdnken uns auf den Beweis der Aussage (i) und setzen dafiir zundchst u,(€,) < +0o voraus.
Zundchst weisen wir nach, dass das System D gegeben durch

D = {CeA ®A,|scist Aj-messbar}

ein Dynkin-System ist. Sei Q2 = Q; x €,. Als konstante Funktion sq(x) = u,(Q,) ist sg offenbar A;-messbar, also
gilt Q € D. Liegt eine Menge C € A; ® A, in D, dann ist s nach Definition von D eine .A;-messbare Funktion. Mit
sc ist auch s\ c(x) = uy(2,) —sc(x) A;-messbar. Ist schliefflich (C,),ecn eine Folge in D bestehend aus paarweise
disjunkten Mengen, dann ist s .4;-messbar fiir alle n € N. Setzen wir C =, C,,, dann gilt sc = >0 s¢ . Als
Summe .4, -messbarer Funktionen ist auch s .4;-messbar und somit C € D. Wir haben somit gezeigt, dass D in der
Tat ein Dynkin-System ist. Die Gleichung s, x4, = U2(A;) - 14, zeigt auBerdem, dass D alle Produkte A; x A, mit
A, € A, und A, € A, enthilt.

Nach Satz[8.2]ist das System £ der Mengen A; x A, mit A; € A; und A, € A, ein Erzeugendensystem der o-Algebra
A; ® A,. Wegen (A; xA,)N(B;NB,) = (A;NB;) x(A,NB,) flir A;,B; € A; und A,, B, € A, ist es N-stabil, damit nach
Satz[4.3|auch ein Erzeugendensystem von A; ® A, als Dynkin-System. Aus £ C D € A; ® A, folgt also D = A; ® A,.
Damit ist die Aussage (i) im Fall u,(£2,) < +00 bewiesen.

Setzen wir nun voraus, dass das Mal3 u, nur o-endlich ist. Sei (B,,) e €ine monoton wachsende Folge in A, mit
o(B,,) < +oo fiir alle m € N und | J,,cpy Bn = Q. Dann ist uy,, : A — (AN B,,) fiir jedes m € IN ein endliches
MaR auf A,. Auf Grund der bereits bewiesenen Aussage ist also Q; — R, x — ,uz’m(C;) fiir jedes m € IN und jedes
C € A; ® A, eine A;-messbare Funktion. Fiir jede solche Menge C gilt wegen C; = UmelN(Ci N B,,) aulBerdem

sc(@) = wp(C) = suppy(CiNB,) = suppy(Cy)
melN melN
Als Supremum .4, -messbarer Funktionen ist nach Satz auch s¢ A;-messbar. m|

Fiir jedes n € IN sei A, die o-Algebra der Lebesgue-messbaren Teilmengen von R". Dann ist A; ® A; in A, enthalten.
Weil ndmlich die o-Algebra Lebesgue-messbaren Mengen durch Vervollstdndigung der Borelschen o-Algebra zustan-
de kommt, gibt es fiir vorgegebene A;,A, € A, jeweils By, B, € B; und N;, N, C R!, so dass A; = B; UN;, A, = B,UN,
gilt und Ny, N, jeweils in einer Borelschen Nullmenge enthalten sind. Es folgt




Die Menge B, x B, liegt in B; ® B; = B,, die {ibrigen drei Mengen sind in Nullmengen enthalten. Es folgt damit
A, XA, € Ay. Weil die o-Algebra A; ® A; von kartesischen Produkten der Form A; x A, erzeugt wird, ist sie in A,
enthalten.

Andererseits ist 4; ® A; eine echte Teilmenge von A,. Wiirde A, mit der Produktalgebra iibereinstimmen, dann
miisste jeder Schnitt einer Menge aus A, senkrecht zur ersten Koordinatenachse nach Lemma in der o-Algebra
A; liegen. Wihlen wir aber eine nicht Lebesgue-messbare Teilmenge A C R! und setzen B = A x {0}, dann ist B C R?2
Lebesgue-messbar, der Schnitt B(l) = A aber nicht. Statt dessen handelt es sich bei .A, um die Vervollstdndigung von
A; ® A;, denn aus § 4 ist bekannt, dass A, die Vervollstindigung von B; ® B; = B, ist.

Satz 8.11 (Existenz des Produktmafses)

Es gibt auf A; ® A, ein eindeutig bestimmtes Mal y mit
WA xAy)) = uq(A)us(As) firalle A, €A, A€ A,.
Dabei gilt
ue) = J up(Cp) dpy(x) = J 1 (C) dpa(y)

fiir alle C € A; ® A,. Das Mal} u ist ebenfalls o-endlich. Wir bezeichnen es als das Produktmaf3
W1 ® Uy von uq und u,. Die Gleichungen fiir u(C) sind unter dem Namen ,,Cavalierisches Prinzip“
bekannt.

Beweis: Wir zeigen, dass durch

A ®A—-R, C’_’fsc dyy zfﬂz(ci) duy(x)

ein Mal auf A; ® A, definiert ist. Fiir C = @ ist die Funktion s konstant gleich Null und somit u(@) = 0. Sei nun
(C,)nen eine Folge paarweise disjunkter Mengen in A; ® A,. Dann gilt s, = Z::l s¢, und somit

ue) = f scdp = Q] f s, du = D ,u(Cy).
n=1 n=1

Damit sind die Mafeigenschaften nachgewiesen. IstA; € A; und A, € A,, dann liefert die Formel sy 4, = 12(A5) 1,
die Gleichung

u(A, xAy) = JSAleZ du; = fﬂz(Az) 1y dpy = 1 (Ar)u(A,).

Die Gleichung u(C) = fpcl(Cy) dus(y) folgt aus der Tatsache, dass auch i : C — f,ul(Cy) dus(y) ein Mafd auf A; ®
A, mit der Eigenschaft fi(A; x Ay) = p;(A;)u,(Ay) definiert, sowie der Eindeutigkeit des ProduktmaRes (Satz[8.4).
Zum Nachweis der o-Endlichkeit wiahlen wir monoton wachsende Folgen (A;,,) e und (A, ) pen mit 4 = U:;Aln,
Q, = U21A2n sowie (A1), Uo(Ay,) < +0o fiir alle n € IN. Dann gilt u(A;, x As,) = U1(A1)U2(Ay,) < +o0o fiir
alle n € IN, auflerdem offenbar Q; x Q, = U:ZI(AM x Ayy)- |




Fiir jedes n € IN bezeichnen wir die Einschrankung des Lebesgue-Mal3es u, auf die Borelsche o-Algebra B, ebenfalls
mit u,. Man bezeichnet diese Einschrankung als das Lebesgue-Borelsche MaR. Setzen wir n > 2, dann ist jeder
Quader P C R" kartesisches Produkt P = Q x I eines Quaders Q € R™! und eines endlichen Intervalls I € R'.
Nach Satz gilt (u" ' ® ut)(P) = " }(P)ul(I), das ProduktmaR stimmt also auf den Quadern im R" mit der
natiirlichen Volumenfunktion iiberein. Weil die eindeutig bestimmte Fortsetzung der natiirlichen Volumenfunktion
auf B, das Lebesgue-Borelsche Malf ist, folgt u" = u" ! ® u'.

Als Anwendungsbeispiele berechnen wir den Flicheninhalt des Kreises und das Volumen der Kugel. Sei r € R* und
C, ={(x,y) € R? | x2 + y? < r?} die Kreisscheibe vom Radius r. Fiir alle y € R gilt

ye(C) & (x,y)eC & x*+y’<r? & y*<ri-x?

S |yl Vri—x?2 o —Vr2-x2<y<vr2—x2 |

und wir erhalten (C,)! = [—vr2—x2,v/r2—x2] fiir alle x € R mit |x| < r. Im Fall |x| > r gilt (C,)! = @. Mit Hilfe
von Satz konnen wir den Flacheninhalt von C, berechnen.

ua(C,) = ful(c;)dul = 2-J Vii—xtdx = 2r-f J1- e dx

1
_ ZrZ,J Vi—x2dx = zrz.(%x\/l—x2+%arcsin(x))
-1

1
= r-.
-1

Seinun B, = {(x,y,2z) € R? | x*+ y?+2* < r?} die Einheitskugel. In diesem Fall gilt (B,)} = C./z— fiir x| < r und
(B,)! = & sonst. Wir erhalten

r

ps(B,) = f“z(cm)dm = ﬂf (rz_xz)dx = (”rzx—%ﬁxs)

—r

2—Hprd = A3,
3 3

Dasin Satzformulierte Prinzip wurde von seinem Namensgeber Bonaventura Cavalieri (1598 - 1647) verwendet,
um den Rauminhalt einer groRen Zahl geometrischer Kérper zu bestimmen. Dies waren einige der ersten Ergebnisse
der Geometrie, die iiber das seit der Antike bekannte Wissen wesentlich hinausgingen. Da die Infinitesimalrechnung
zu dieser Zeit noch nicht existierte (diese begann sich mit Newton und Leibniz erst gegen Ende des 17. Jahrhun-
derts zu entwickeln), konnte Cavalieri den in Satz[8.11]vorhandenen Integralausdruck nicht symbolisch berechnen,
sondern musste sich statt dessen mit Vergleichen behelfen.

Beispielsweise leitete er aus dem bereits bekannten Kegel- und Zylindervolumen das Volumen der Kugel ab, in dem
er neben eine Halbkugel H vom Radius r einen Zylinder Z mit Radius und Hohe r setzte. In diesem Zylinder wurde
ein auf der Spitze stehender Kreisregel K mit Grundfldche und Hohe r untergebracht. Schneidet man die Halkugel
nun auf Hohe h mit einer zur Grundfiche parallelen Ebene Ej,, dann erhdlt man nach dem Satz des Pythagoras eine
Kreisschreibe vom Radius vr2 —h2, deren Flicheninhalt 7t(r2—h?) betrigt. Schneidet man den Zylinder auf gleicher
Hohe, so ergibt dies eine Kreisscheibe mit Flicheninhalt 7%, und der Schnitt von E; mit de Kegel ergibt einen Kreis
vom Flicheninhalt 7wh?. Der Schnitt von E,, mit der Differenzmenge Z \ K betrigt also ebenfalls 7(r? — h?), ist also
genauso grof wie der Schnitt zwischen E; und Halbkugel! Weil dies fiir alle h € [0, r] der Fall ist, schloss Cavalieri,
dass das Halbkugelvolumen gleich dem Volumen von Z \ K sein muss. Da v5(Z) = nr? - r = nr® und v4(K) = %7‘[7’3
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bereits bekannt war, erhielt er damit v5(H) = v5(Z \ K) = v5(Z) — v3(K) = nr® — 27r® = 27r® und schlieRlich das
Volumen 277 fiir die Vollkugel.

Allerdings waren viele von Cavalieris Kollegen damals nicht bereit, seine Herleitung der Gleichung v5(H) = v3(Z \ K)
zu akzeptieren. Scheinbar erforderte sie, die Kérper H, Z und K in unendlich viele, unendlich diinne Scheiben zu
zerlegen und deren unendlich kleine Volumina aufzuaddieren, was ihnen suspekt erschien. Erst durch die Integral-
rechnung konnte Cavalieris Schluss im Nachhinein gerechtfertigt werden. Einen Einblick in die damalige Auseinan-
dersetzung erhélt man durch einen sehr lesenswerten Spektrum-Artikel in der Ausgabe vom Oktober 2015.

Unser néchstes Ziel besteht darin, das Cavalierische Prinzip von Volumina auf Integrale zu iibertragen. Sei (€', .A")
ein weiterer Messraum und f : Q; x Q, — Q' eine Abbildung. Fiir jedes x € Q; bezeichnen wir mit fx1 die Funktion
gegeben durch f' : 2, — @', y = f(x,y). Entsprechend sei fiir jedes y € 2, die Funktion f? : Q! — Q' gegeben
durch fyz(x) = f(x,y) fir alle x € Q;. Ist C € Q; x Q, eine beliebige Teilmenge, dann gilt (16))1< = 1¢: und
(1c)32, = 1C§-

Lemma 8.12 Sei f : Q; x Q, — Q' eine (A4; ® A,)-A’-messbare Funktion. Dann gilt
(i) Die Funktion fx1 ist A,-A’-messbar fiir jedes x € Q;.

(ii) Die Funktion fy2 ist A;-A’-messbar fiir jedes y € Q,.

Beweis: Wir beschrinken uns auf den Beweis der Aussage (i). Seien A’ € A’ und x € Q, vorgegeben. Fiir alle y € Q,
gelten die Aquivalenzen

yeUN@) o fleAd o fluy)ed o ye( (A

also (f1)71(A) = (f 1(A))}. Auf Grund der Messbarkeit von f gilt f 7'(A") € A; ® A,, und mit Lemmaﬁber die
Messbarkeit der Schnitte erhalten wir (f ~(A"))! € A,. O

Satz 8.13 (Satz von Tonelli)
Sei f : Q; x 2, = R, eine (A; ® A,)-messbare Funktion. Dann gilt

(i) Die Abbildung 2, » R,y — [ f 2 dy, ist Ay-messbar.
(i) Die Abbildung Q; — R, x — [ f du, ist A;-messbar.

(i) Es gilt ff d(u; ®uy) = J(nyz d‘ul)dﬂz(}’) = J(Jf; duz)dul(X)-

Beweis: Sei Q=Q; xQ,, A=A; ® A, und p = 4y ® u,. Wir beweisen den Satz zunéchst fiir den Spezialfall, dass f
eine Stufenfunktion ist. Sei also f = Zir=1 a;-1g mit ay,...,a, € R, und Cy, ..., C, € A paarweise disjunkte Menge,
deren Vereinigung 2 ergibt. Fiir jedes y € Q, gilt dann

r

)
fo= el = Dl
i=1

i=1
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und somit ffyz dp, =20, a;41((C;)3)- Nach Lemma ist die Abbildung y — ;((C;)?) jeweils A,-messbar, also
auch die Funktion y — f fy2 du, als Linearkombination dieser Funktionen. Mit Hilfe der Formel aus dem Existenzsatz
fiir Produktmalf3e erhalten wir auferdem

f(ffj dul) duy(y) = J(Zaim((ci)i)) dus(y)
i=1
= Zaiful((ci)i)duz(y) = DauC) = ff dy.
i=1 i=1

Nun sei f : Q — R, eine beliebige nicht-negative, .A-messbare Funktion und (f,),c eine monoton wachsende Folge
von A-Stufenfunktionen mit der Eigenschaft sup, ¢y f, = f. Dann gilt sup,¢( fn)i = fy2 fiir alle y € Q,, und die
Folge (( fn)f,)ne]N ist jeweils monoton wachsend. Mit dem Satz {iber die monotone Konvergenz erhalten wir

ffyz du, = SunI\JJJ.(fn)f' du, fir alle ye€Q,.
ne

Dabei ist die Folge der Integrale auf der rechten Seite monoton wachsend. Auf Grund der bereits bewiesenen Aussage
ist die Abbildung Q, » R, y — f ( fn)i du, fiir jedes n € N eine .4,-messbare Funktion. Als punktweises Supremum
der monoton wachsenden Funktionenfolge .A,-messbaren Funktionen y — f ( fn)f, duq ist auch y — f fy2 du, A,-
messbar. Nochmalige Anwendung des Satzes von der monotonen Konvergenz liefert

J(ffyz dul) dus(y) = sup f(f(fn)i dul) dus(y) = sup an du = ff du.

Der Beweis der Aussage (ii) und der zweiten Gleichung unter (iii) verlduft v6llig analog. O

Satz 8.14 (Satz von Fubini)
Sei f : Q; x Q, — R eine u, ® u,-integrierbare Funktion. Dann gilt

(i) Die Funktion fx1 ist fiir u,-fast alle x € Q; u,-integrierbar.
(i) Die Funktion f, y2 ist fiir u,-fast alle y € Q, u;-integrierbar.

(iii) Die u,-fast iiberall definierte Funktion x — f fx1 du, ist u,-integrierbar, und die u,-fast
iiberall definierte Funktion y — f fy2 du, ist u,-integrierbar. Es gilt

ff d(u ®uy) = IU £ dul)duz(y) = f(f fe duz) dpa ().

Beweis: Nach Voraussetzung ist das Integral f |f| d(uq ® u,y) endlich, und aus dem Satz von Tonelli folgt

J U £ dul) dur(y) = f (f f12 dm)duz(y) = J f1 d(p ® py) < +00




Nach Satz bedeutet dies fl f |§ du, < +oo fiir uy-fast alle y € Q,, die Aussage (ii) ist also erfiillt. Genauso
beweist man (i). Die erste Gleichung unter (iii) erhilt man unter erneuter Anwendung des Satzes von Tonelli durch
die Rechnung

ffd(m@uz) = Jf_'—d(l"'l@.b‘z)_ff_d(“l@“z) =

J. (f(f*)i dul)duz(y) - J (f(f‘)i dul)duz(y) =
f (J(ff)+ dul)duz(y) - f (J(ff)‘ dul) dus(y) = f (J 7 dul) dus(y)

der Beweis der zweiten Gleichung funktioniert analog. m|

Folgerung 8.15 Seien a,b,c,d € R mita < b und ¢ < d, sei Q = [a, b] x [c,d], und sei
f 1 Q — R eine stetige Funktion. Dann ist f Lebesgue-integrierbar, die Funktion [c,d] — R,
y — f(x,y) ist fiir jedes x € [a, b] Riemann-integrierbar, und es gilt

b d
f fduy, = f (f f(x,y)dy) dx.
Q a c

Beweis: Als stetige Funktion ist f auf jedenfalls Lebesgue-messbar. Auf Grund des Maximumsprinzips nimmt die
stetige Funktion f auf dem kompakten Bereich Q ihr Minimum und ihr Maximum an; insbesondere existiert ein
y € R" mit |f(x, y)| <y fiir alle (x, y) € Q. Die Abschitzung |f| <y - 1, liefert f [f1dus < 7us(Q) < +00. Also ist
f eine Lebesgue-integrierbare Funktion; die Voraussetzung des Satzes von Fubini ist damit erfiillt. Mit f ist auch die
Funktion y — f(x,y) fiir jedes [a, b] eine stetige Funktion, mit [c,d] als Definitionsbereich, somit Riemann- und
damit nach Satz auch Lebesgue-integrierbar. Die auf [a, b] definierte Funktion, die jedem x € [a, b] den Wert
f Cd flx,y)dy = f [ed] fx1 duq zu"ordnet, ist nach Satzstetig, und damit ebenfalls Riemann-integrierbar. Auf Grund
des Satzes von Fubini und der Ubereinstimmung von Riemann- und Lebesgue-Integral erhalten wir

b d
J. fdu, = f ( fxlduz)dul(X) = J (J f(x,y)dy) dx. O
Q [a.b] \J1e.d] o \Je

Als konkretes Anwendungsbeispiel kénnen wir die Funktion f : Q — R, (x,y) — xy auf dem Quader Q = [0, 1] x
[0, 1] berechnen. Es gilt

1/ p1 1 1
=1 1
ffd!iz = f(f xydy)dx = J[%xyz]izodx = f%xdx =[], = 3
Q o \Jo 0 0

Natiirlich l4sst sich diese Aussage problemlos auf héhere Dimension verallgemeinern: Ist Q C R? ein kompakter
Quader, Q =[a,b] x[c,d] x [u,v] mita, b,c,d,u,v € Rmita < b, c <d, u < v, dann ist auch jede stetige Funktion
f : Q — R Lebesgue-integrierbar, und es gilt

b d v
J fdus = J (f (J f(x,y,z)dz) dy) dz.
Q a c u
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Die Voraussetzung der Integrierbarkeit von f iiber Q, x , ist wesentlich fiir die Hauptaussage des Satzes von Fubini,
die Vertauschbarkeit der beiden Integrationsschritte. Das sie im allgemeinen tatsachlich notwendig ist, sieht man zum

Beispiel anhand der Funktion
2_y2

£:10,11x 10,1]—R , (x,y)— 2 +y2)y

>

die iiber ihren Definitionsbereich nicht Lebesgue-integrierbar ist. Einerseits gilt

x2—y? X 1
Ty dulx) | du(y) = (— ) du(y) =
J;0,1] (f]o,l] (x2+y2)? 10.1] x2+y2 /|,
1 1
- du(y) = —arctan(y)| = -Z.
J;o,1] 1+y? o 4
Die Vertauschung der Integrationsschritte liefert aber das Ergebnis
xZ—y? y 1
St ) = | ()] duw =
J]O,l] (J]O,l] (x2 + y2)? .11 x2+y2 /|,

1

]

1
du(x) = arctan(x)
J]O,l] 1+ x2

0

Als Anwendung der Produktma@e behandeln wir den Zusammenhang zwischen der Messbarkeit einer Funktion und
der Messbarkeit der Flidche unter ihrem Funktionsgraphen. Auch hier sei (€, A, u) ein beliebiger Mallraum. Mit 5;
bezeichnen wir die Borelsche o-Algebra in R' und mit u! : B; — R* das Lebesgue-Borelsche MaR.

Definition 8.16 Sei f : 2 — R, eine nicht-negative Funktion. Dann bezeichnen wir die Menge
Ay = {(x,y)eQxR|0<y<f(x)}

als Teilmenge unter dem Funktionsgraphen von f .

Der folgende Satz besagt nun, dass das Maf3 solcher Mengen durch ein Integral ausgedriickt werden kann.

Satz 8.17 Eine nicht-negative Funktion f : Q — R, ist genau dann .A-messbar, wenn Af €
A® B, erfiillt ist. In diesem Fall gilt

(u®u)Ay) = deu-




Beweis: ,<"“ Setzen wir Ay € A® B, voraus. Nach Lemma giltdann (A;), € Afiir alle y € R,. Fiir jedes x, € Q
gelten die Aquivalenzen
Xo€Af), & (xp,y)ed & flx))>y & x<e{xelf(x)>y} < xo € AT (f,y).

Es gilt also A*(f,y) = (Af), € Afiiralle y € R,. Fiir y < 0 gilt A*(f,y) = Q € A, weil f nicht-negativ ist. Nach
Folgerung [5.7] ergibt sich daraus insgesamt die Messbarkeit von f.

= Ist f messbar, dann gilt insbesondere A*(f, a) € A fiir alle a € Q* und somit A*(f,a) x [0,a] € A® B;. Wir
beweisen nun die Gleichung

4 = |J (@ ¢f,@)x[0,al)

acQt
Als Vereinigung abzéhlbar vieler Mengen aus .A ® B, ist dann auch A; in A ® B; enthalten. ,C“ Sei (x,y) € Ay.
Dann gilt f(x) > y. Es gibt also ein a € Q* mit y < a < f(x), und wir erhalten x € A™(f, a) sowie y € [0,a]. ,2“
Sei (x,y) € AT(f,a) x [0,a] fiir ein a € Q. Dann gilt f(x) > a und 0 < y < a. Insbesondere gilt f(x) > y und
somit (x,y) €EAy.

Die im Satz angegebene Gleichung beweisen wir mit Hilfe von Satz Es gilt
(weu)4;) = J.ul(Af),lc du(x) = f pl ([0, f (D) du(x) = ff(x) du(x) = Jf du. O

Insbesondere ist eine Funktion f : D — R, auf einem Definitionsbereich D C R" also genau dann Lebesgue-messbar,
wenn die Teilmenge Ay € D x R < R"™! Lebesgue-messbar ist, und Lebesgue-integrierbar genau dann, wenn Af
dariiber hinaus ein endliches Lebesgue-Maf3 besitzt.

Als Standardsimplex im R® bezeichnet man die Menge
S = {(xy,2)e[0,1® | x+y+z<1}.
Definieren wir die Funktion f : [0,1]*> — R durch
fooy) = {1—x—y fallsx+y <1
0 sonst
so kann man leicht tiberpriifen, dass S = A, erfiillt ist. Denn fiir alle (x, y,2) € R? gilt die Aquivalenz
(x,y,2)€A; & (x,y)€[0,1PA0<z<f(x,y) & (5,y)€[0,1PA0<z<1—x—y &
(x,y)€[0,1PA0<x+y+2<1 & (x,,2)€[0,1PA0<x+y+2<1 & (x,y,2)€S.

Ist x € [0, 1] vorgegeben, dann gilt f (x,y)=1—x—y fiiralley €[0,1] mitx+y <1< y <1—x,und f(x,y)=0
fiir 1 —x <y < 1. Durch Anwendung von Satz erhalten wir

1 1 1 1—x
ua(S) = wa(Ay) = ffduz = J(J f(x,y)dy)dx = J( (1—x—y)dy)dx =
0 0 0 0

1 1
f [y—xy—%yz](l)_x dx = f (A—x)—x(1—x)—3(1—x)?)dx =
0 0

1 1
f (1-x—x+x*—1+x—1ix?)dx = j (3x2—x+3)dx =
0 0

1.3 _1.2,1 71 _ 1_1,1 _ 1
[P =3 +3x]y = §-3+3 = &
Durch einen einfachen Induktionsbeweis in Verbindung mit dem Satz von Fubini kann man zeigen, dass das Volumen

entsprechender Teilmengen des R" (gegeben durch die Ungleichung x; + ... + x,, < 1) jeweils gleich (n!)™! ist.




§9. Bildmafle und die Transformationsformel

Zusammenfassung. In diesem Abschnitt untersuchen wir, wie sich das Lebesgue-Mal} unter Transformatio-
nen verhalt. Zunéchst betrachten wir bijektive lineare Abbildungen. Hier bestatigen sich durch die Anschauung
zu erwartende Eigenschaften, wie beispielsweise die Invarianz des Volumens unter Translationen, Drehungen
und Spiegelungen, die Zunahme des Flicheninhalts um den Faktor ¢ und des Volumens um den Faktor c® bei
Skalierung der Menge um einen positiven Faktor ¢ usw.

AnschliefSend befassen wir uns mit dem Verhalten des Lebesgue-Malfdes und des Lebesgue-Integrals unter Dif-
feomorphismen. Dieses wird durch den Transformationssatz beschrieben, das zentrale Ergebnis dieses Kapi-
tels. In vielen Fillen, zum Beispiel in Anwendungen aus der Physik, kann mit diesem Satz die Berechnung der
Integrale vereinfacht werden, beispielsweise in die Rotationssymmetrie von Funktionen und ihren Definitions-
bereichen genutzt wird.

Wichtige Grundbegriffe Zentrale Sdtze

— BildmaR — Transformationsverhalten des Lebesgue-Mal3es unter

. . linearen Transformationen
— translationsinvariantes MafR

. . — Transformationssatz fiir das Lebesgue-Integral
- bewegungsinvariantes MaR3

Definition 9.1 Sei (€, A, u) ein MaRraum, (Q’,.A") ein Messraum und f : Q — Q' eine A-A'-
messbare Abbildung. Dann nennt man die Abbildung f (u) : A’ — R, gegeben durch

FWA)=p(f1(A)) firalle AeA

das Bildmaf3 von u, unter f.

Man iiberpriift unmittelbar, dass es sich bei f (1) um ein MaR handelt: Zunéchst gilt f (u)(2) = u(f (@) = w(@) =
0. Ist (A,)nen eine Folge paarweise disjunkter Mengen aus .A’, dann sind wegen f ~(A,,) N f 1(4,) = f (A, NA,)
fiir A,,,A, € A" auch die Urbildmengen f ~1(A,) paarweise disjunkt, und es folgt

f(u)(UAn) = u(f‘l(UAn)) = M(Uf‘l(An)) = @) = D@,
n=1 n=1 n=1 n=1 n=1

Wir erinnern an die folgenden Begriffe aus der Linearen Algebra: Sei n € IN und R" ausgestattet mit dem euklidischen
Standard-Skalarprodukt (-, -). Eine Translation auf R" ist eine Abbildung der Form 7, : R" — R", x — v + x, wobei
v einen beliebigen Vektor aus R" bezeichnet. Eine orthogonale Abbildung ist eine lineare Abbildung 1) : R" — R" mit
(Y(x),Y(y)) = (x,y) fir alle x, y € R". Eine Abbildung der Form 7, o1 bestehend aus einer Translation 7, und
einer orthogonalen Abbildung ) bezeichnen wir als Bewegung.




Eine Abbildung der Form 7, o1 mit einer beliebigen Abbildung 1y € GL(IR") nennt man eine Affinitdt. Die Affinitaten
umfassen die Bewegungen. Jede Affinitét ist stetig. Daraus folgt, dass jede Affinitét eine 3,-53,-messbare Abbildung
ist.

Definition 9.2 Ein Mal u auf (R", B,) wird translationsinvariant genannt, wenn 7, () = U
fiir alle v € R" erfiillt ist. Gilt sogar ¢ (u) = u fiir jede Bewegung ¢, dann spricht man von einem
bewegungsinvarianten MaR.

Nach Definition ist ein Maf$ u genau dann translations- bzw. bewegungsinvariant, wenn u(7,(A)) = u(A) bzw.
u(¢(A)) = u(A) fiir alle v € R™ bzw. alle Bewegungen ¢ und alle A € B, erfiillt ist.

Proposition 9.3 Das Lebesgue-Borelsche Maf3 u,, ist translationsinvariant.

Beweis: Die Borelsche o-Algebra 5, wird von den Quadern der Form Q = I; x ... x I, erzeugt, wobei I} jeweils ein
endliches Intervall mit den Endpunkten a, b, € R, a; < b, bezeichnet. Ist v = (v4,...,v,) € R" vorgegeben, dann
gilt 7,1(Q) =1, x ... x I;, wobei I} jeweils ein Intervall mit den Endpunkten a; — v; und by —v; bezeichnet. Es folgt

k=1

LW)Q = (@) = [Je—vd—(@—v) = []-a) = wm@.
k=1

Sowohl u,, als auch 7, (u,) sind offenbar o-endliche MaRe. Wir kénnen somit Proposition[4.4/anwenden und erhalten
die Ubereinstimmung von u, und 7, (u,) auf der gesamten o-Algebra B,. O

Wir zeigen nun, dass das Lebesgue-Borelsche Maf} im wesentlichen das einzige translationsinvariante Maf$ auf B,
ist.

Lemma 9.4 Sei S C R eine dichte Teilmenge von R. Dann wird die o-Algebra 5, von den
Quadern der Form Q = [ay, b;[ X... x [a,, b,[ mit a;,b; €S fiir 1 < i < n erzeugt.

Beweis:  Zunéchst einmal lassen sich die Mengen der Form {(x,...,x,) | x; = a} miti € {1,..,n} und a € S
als abzahlbare Vereinigung solcher Quader darstellen. Lassen wir eine Folge (a,),en in S streng monoton fallend
gegen ein beliebiges a € R laufen, dann erhalten wir {(x,...,x,) | x; > a} als abzdhlbare Vereinigung der Mengen
{(x1,...,x,) | x; = a,}. Durch Komplementbildung erhalten wir alle Mengen der Form {(x,...,x,) | x; < a} mit
i€{l,..,n}und a € R, und die Menge {(x1, ..., x,) | x; < a} wiederum als abzdhlbare Vereinigung. Nun ist jeder
Quader offenbar ein endlicher Durchschnitt von Mengen der bereits konstruierten Form, und die Quader bilden ein

Erzeugendensystem der o-Algebra B,. |

Satz 9.5 Sei u ein translationsinvariantes Maf auf B,, und sei a = u([0,1[") € R,. Dann
gilt u = au,,. Das Lebesgue-Borelsche Mal3 u,, ist das einzige translationsinvariante Ma® u auf
(R", B,)) mit u([0,1[™) = 1.




Beweis: Sei m € IN eine beliebig vorgegebene natiirliche Zahl. Definieren wir A,, = {0,1,...,m — 1}" und Q; =
[%, kl—;l[ X... X [%“, k”—,:lrl[ fiir alle k = (kq,...,k,) € A,,, dann ist durch [0, 1[” UkeA Q. offenbar eine disjunkte
Zerlegung von [0, 1[" definiert. Jeder Quader Q, geht durch Translation in [0, < [ tiber, aus der Translationsinvarianz

von u folgt also u(Q;) = u([O, %[”) fiir alle k € A,,,. Wir erhalten somit

a = w0l = > p@Q) = Y. ul0iM = muloi" ,

kea,, keA,,

also ,u([O,%[") = m"a. Nun zeigen wir: Sind ay,...,a,,b;,....,b, € Q mit a; < b; fiir 1 < i < n, und ist Q =
la;, by[ %... % [a,, b,[, dann gilt u(Q) = a ]_[?Zl(bi —a;) = au,(Q). Auf Grund der Translationsinvarianz kénnen wir
a, = ... = a, = 0 voraussetzen. Sei nun m der grofite gemeinsame Nenner der Zahlen by, ..., b, und b; = mb, € N

fir 1 <i <n.SeiA={(ky,...k,)| 0 <k; < b;} und

Q = [B8H0 x &R fir k=(ky,... k) €A

m?’ m m’ m

Wiederum auf Grund der Translationsinvarianz gilt u(Q,) = u([0, i[”) = - fiir alle k € A. Mit Hilfe der disjunkten
Zerlegung Q = Jiea Q. erhalten wir

n

w - G el al_[b = @

Die Menge Q der rationalen Zahlen liegt dicht in R, nach Lemma [9.4] wird die o-Algebra B, also von den Mengen
der Form Q erzeugt. Wir haben also gezeigt, dass die Malle u und au, auf einem N-stabilen Erzeugendensystem von
B, tibereinstimmen. Nach Proposition [4.4]sind sie damit auf ganz 3, gleich. |

Lemma 9.6 Ist u: B, — R, ein translationsinvariantes MaR auf R" und ist ¢ : R" — R" eine
Affinitét, dann ist auch ¢ (u) translationsinvariant.

Beweis: Nach Definition der Affinititen gilt ¢ = 7, 0 fiir ein v € R" und eine invertierbare lineare Abbildung
. Sei w € R". Zu zeigen ist 7,,(¢(u)) = ¢(u). Nach Definition des Bildmalles ist dies ist gleichbedeutend mit
w((t,, 0 @) 1(A)) = u(¢1(A)) fiir alle A € B,,. Durch Einsetzen von ¢ fiihrt dies auf die Gleichung

u((Typ o) HA) = u((T, 0y)H(A).

Wir man unmittelbar nachrechnet, gilt 7., 0% = 7, 01 o 1, fiir den Vektor w’ = 1)~ (w). Tatséchlich gilt fiir jeden
Vektor u € R" jeweils

(tyoor, )W) = v+ypW+w) = v+ypW)+yp@) = v+w+yp@) = (7,4, °0Y)w.

Zu zeigen bleibt also
p((ty oo, )N A) = ul(ry, o) H(A).

Nach Definition des BildmafRes ist dies dquivalent zu 7., (u)((7, o) (A)) = u((t, o) 1(A)). Nun sieht man, dass
die Gleichung direkt aus der Translationsinvarianz von u folgt. |

Satz 9.7 Das Lebesgue-Borelsche Mal} u, ist bewegungsinvariant.




Beweis: Weil u, invariant unter Translationen ist, geniigt es, die Invarianz unter orthogonalen Abbildungen zu bewei-
sen. Seialso ¢ : R" — R" eine orthogonale Abbildung. Weil mit u1, nach Lemmal9.6/auch ¢ (u,,) translationsinvariant
ist, gibt es nach Satz[9.5|ein @ € R, mit ¢(u,) = au,. Sei B ={x € R" | ||x|l, < 1} die abgeschlossene Einheitskugel
beziiglich der 2-Norm || - ||,. Wegen (¢ (x), ¢ (x)) = (x, x) ist diese invariant unter ¢, es gilt also ¢ "' (B) = B. Fiir alle
x € R" gilt ||x|loo < lIx]la £ V/7||X]|0o- Aus [[X]|oo < %ﬁ folgt ||x||, < 1, also enthalt B den n-dimensionalen Wiirfel
mit Kantenlédnge %, dessen Zentrum mit dem Nullpunkt Og. zusammenfallt. Es folgt u,(B) > 2"n™™/? > 0. Aus
[Ix]ly < 1 folgt andererseits ||x||c < 1, d.h. B ist im Wiirfel mit Kantenlédnge 2 und demselben Mittelpunkt enthalten.
Das liefert die Abschétzung u,(B) < 2" < +00. Weil u,(B) endlich und positiv ist, folgt aus der Gleichung

au,(B) = ¢,)B) = u(¢7'(B) = p(B)

also a =1 und somit ¢ (u,) = U,. O
Folgerung 9.8 Jede Hyperebene H C R" ist eine Lebesguesche Nullmenge.

Beweis: Aus der Linearen Algebra ist bekannt, dass H durch eine Bewegung ¢ in die Koordinatenhyperebene H, =
{00, x4, ..., x,) | x; € R fiir 2 < i < n} tberfiihrt werden kann. Weil H, als abzahlbare Vereinigung der Nullmengen
N,, = {0} x [=m,m]""! dargestellt werden kann, ist auch H, = Ufle N,, eine Nullmenge. Aus ¢(H) = H, folgt
pn(H) = ¢~ () (H) = pip (¢ (H)) = p,(Ho) = 0. O

Wir erinnern an die folgende Notation aus der Linearen Algebra: Ist A € M(mxn,R), dann bezeichnet ¢, : R* — R™
die Abbildung v — Av gegeben durch das Matrix-Vektor-Produkt.

Proposition 9.9 Ist D € GL,(RR) eine Diagonalmatrix mit positiven Eintragen auf der Haupt-
diagonalen, dann gilt ¢p(u,) = (det D) *u,,.

Beweis: Weil mit u,, nach Lemma auch ¢p(u,) translationsinvariant ist, existiert nach Satz ein a € R, mit
¢p(u,) = au,. Zu zeigen ist, dass @ = (detD)™! ist. Sind d,...,d, € R" die Diagonaleintrige von D, dann gilt
detD = ]_[?=1 d; und ¢p(xq,....,x,) = (dyxq,...,d,x,) fir alle x = (xq,...,x,) € R". Sei Q = [0,1]". Dann ist das
Urbild von Q unter ¢, gegeben durch ¢;'(Q) =[0,d; '] x ... x [0,d '], und wir erhalten

Q= o) = p(9;'@) = []d? = (detD)™. =
i=1

Satz 9.10 (Transformationsverhalten des Lebesgue-Majf3es)

Ist A € GL,(R), dann gilt ¢,(u,) = | detA|  u,,.




Beweis: Sei A € GL,(R). Die Matrix B = 'AA erfiillt die Gleichung ‘B = (*AA) = 'A'(*A) = 'AA und ist somit
symmetrisch. Auferdem ist sie positiv definit, denn fiir jeden Vektor v € R" mit v # Op. gilt Av # O, (auf Grund der
Invertierbarkeit von A) und somit 'vBv = *(Av)(Av) > 0. Auf Grund des Satzes iiber die Hauptachsentransformation
existiert eine ON-Basis (vy,...,v,) des R" bestehend aus Eigenvektoren von B mit positiven Eigenwerten A4, ..., A,.
Die Vektoren u; = JLJ._l/ 2Avj bilden ebenfalls eine ON-Basis des R", denn fiir 1 < j < k < n gilt jeweils

(W) = AMAvAv) = A7 (M) = A7 (B )
= A vev) = ATy = 11 =]
und
wjpue) - = 1;1/2}‘;1/2<A"1’A"k> = Af/zlll/z(tAAvj,vk) = X;I/ZAZI/Z(BVJ-,W)
= Aj_l/zlzuz(%"j:vk) — l}/zlzl/z(vj,vk) _ A;/lel/z'o - o

Sei nun U die Matrix mit den Vektoren uy,...,u, als Zeilen, und V die Matrix mit vy, ..., v, als Spalten. Dann gilt
UAV = D mit D = diag(?t}/z, s A/2). Weil U und V orthogonale Matrizen sind, gilt det(U),det(V) € {£1}. Die
Gleichung A = U™'DV ™! liefert somit |det(A)| = |det(D)| = det(D). AuRerdem gilt ¢, = ¢y-1 © Pp © Py mit
den orthogonalen Abbildungen ¢ und ¢-:. Auf Grund der Bewegungsinvarianz von u, (und weil orthogonale

Matrizen Bewegungen definieren), folgt mit Proposition 9.9 die Gleichung

baltn) = (@g'odpod, D) = ¢ (p(dy ' w)) = ¢ (Pp(ka)) =

¢;'(detD)'p,) = (detD)7'w, = |detAl™',. O

Man kann das Ergebnis folgendermaf3en umformulieren: Sei B € R" und ¢ : R" — R" eine Bewegung der Form
x — v+Ax mit v € R" und A € GL,(R). Genau dann liegt B € B, wenn ¢,(B) in B, enthalten ist, und in diesem
Fall gilt

un(Pa(B)) = [det(A)|u,(B).

Es ist nicht schwer, dieses Ergebnis von der Borelschen o-Algebra B, auf die o-Algebra A, der Lebesgue-messbaren
Mengen zu iibertragen. Hier werden wir dieses Resultat etwas weiter unten in allgemeinerer Form beweisen.

Zur Erinnerung: Ein % -Diffeomorphismus ¢ : U — V zwischen zwei offenen Teilmengen U, V C R" ist eine bijektive
Abbildung mit der Eigenschaft, dass sowohl ¢ als auch die Umkehrabbildung ¢! in jedem Punkt ihres Definitions-
bereich stetig differenzierbar ist. Inbesondere sind ¢ und ¢! dann beide stetig; das bedeutet, dass in U liegende
Teilmengen aus B, unter Anwendung von ¢ erhalten bleiben.

Lemma 9.11 Seien U,V C R" offene Umgebungen von Ok, und ¢ : U — V ein €¢!-
Diffeomorphismus mit ¢(Op:) = Og» und ¢’'(0g.) = idg.. Dann gibt es fiir jedes 5§ € R* eine
Umgebung Us von Op. mit der folgenden Eigenschaft: Ist W C Us ein abgeschlossener Wiirfel
mit Og. € W, dann gilt

pn(@(W)) < (14 8)u,(W).

Beweis: Wegen ¢’(Ogn) = idg. gibt eine Funktion h : U — R" mit ¢(x) = ¢(Ogn) + ¢’ (O~ )(x) + h(x) = idg.(x) +
h(x) = x4+ h(x) und

liH(l) ||x||;h(x) = 0.

X —>
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Fiir jedes ¢ € R" gibt es also ein a € R, so dass ||h(x)|| < €||x||o fiir alle x € U mit ||x||o, < a erfiillt ist. Sei nun
V,={x €U ||x|]loo < a}und W C V, ein abgeschlossener Wiirfel mit Kantenlédnge r und Or. € W. Ist x € W und
y = ¢(x), dann gilt ||x||sc < r und

ly—xlle = llx+h(x)=xlloc =[xl < ellxllc < er

Schreiben wir x = (x4, ...,x,) und y = (¥, ..., ¥»), dann gilt also |y; —x;| < er und somit x; —er < y; < x; + er fiir
1 <i <r. Dies zeigt, dass ¢(W) in einem Wiirfel der Kantenldnge r(1 + 2¢) enthalten ist, und es folgt

pa(e(W)) < (1+28)"p,(W).

Seinun & € R* vorgegeben und ¢ € R so klein gewihlt, dass (1+2¢)" < 1+6 ist. Sei a € R" der zu & gehérende Wert
mit ||h(x)]| < €||x]|o fiir alle x € V,,. Dann ist Us = V,, eine Umgebung von Oy, mit der gewiinschten Eigenschaft:
Ist W C Us ein Wiirfel mit Kantenldnge r € R* und Og. € W, dann ist u,(¢(W)) < (1 + &)u,(W) erfiillt. |

Lemma 9.12 Seien U,V C R" offene Mengen, und sei ¢ : U — V ein %!-Diffeomorphismus
mit |det ¢’(x)| =1 fiir alle x € U. Dann gilt u,(¢(Q)) < u,(Q) fiir jeden Quader Q C U.

Beweis: Zunachst fiihren wir die Aussage von Quadern auf den Fall von Wiirfeln zuriick. Angenommen, die Aussage
ist flir Wiirfel bereits bewiesen. Ist Q C U ein Quader, dann gibt es eine Diagonalmatrix D € GL,(RR) mit positiven
Diagonaleintrigen, so dass W = ¢, (Q) zu einem Wiirfel wird. Setzen wir U = ¢,(U), V = ¢p(V), und definieren
wir die Abbildung ¢ : U — V durch ¢ = ¢po¢ o $,', dann gilt d'(x) = ¢p o ¢'(¢5'(x)) o ¢5" und somit
|det ¢’(x)] = | det ¢'(¢5'(x))| =1 fiir alle x € U. Auf Grund unserer Annahme folgt wn(p(W)) < u, (W), also

un(P($p(Q)) < bn(Pp(Q) = pn(dp($(QN) < pn(dp(Q) =
(detD)u,(¢(Q)) < (detD)u,(Q) = wa(¢(Q)) < wa(Q).

Es gentigt also, die Abschédtzung unter den gegebenen Voraussetzungen fiir einen Wiirfel W C U zu beweisen. Nehmen
wir nun an, die Abschétzung ist nicht erfiillt. Dann gibt es ein § € R* mit u,(¢(W)) > (1+6)u,(W).Seiw = Ulz; w;
eine disjunkte Zerlegung von W in 2" Wiirfel der halben Kantenldnge. Ware u,(¢(W;)) < (1+6)u,(W;) fir1 <i < 2"
erfiillt, dann wiirde daraus

" 2m
plOW)) = D p (W) < D A+8W) = (1+8)u,W)
i=1 i=1

folgen, im Widerspruch zur Annahme. Also muss es ein i mit u,(¢ (W;)) > (1 + 6)u,(W;) geben. Indem wir nun die-
selbe Argumentation auf W) anstelle von W anwenden, erhalten wir einen Wiirfel W® mit der halben Kantenlinge
von W, der die Abschitzung u,(¢(W®)) > (1 + 8)u,(W®P) erfiillt. Indem wir so fortfahren, erhalten wir in U
eine Folge W 2 WM > W® > ... von Wiirfeln mit

oWy > (1+8)u,Wm)  firallemelN

deren Kantenldnge gegen Null konvergiert. Bezeichnet W(m) jeweils den topologischen Abschluss von W™, dann ist
wegen
——(m) m m ——(m)
Ul pWT)) = p(pW™) > (1+8)u,(W™) = (1+8)u,(W )
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fiir die abgeschlossenen Wiirfel dieselbe Abschétzung erfiillt.

Weil die Kantenlédnge der abgeschlossenen Wiirfel W(m) gegen Null konvergiert, gibt es einen Punkt v € U mit
m;o:1 W(m) = {v}. Setzen wir w = ¢(v) und ¢ = T_,0¢ o1, dann gilt ¢'(x) = ¢’(7_,(x)) fiir alle x € 7,(U).
Wir kénnen also ¢ durch ¢ ersetzen, ohne dass sich an der Voraussetzung beziiglich der Ableitung von ¢ etwas
dndert. Ebensowenig dndern sich die Volumina der Bildmengen ,un(¢>(W(m))). Wir diirfen also ohne Beschriankung
der Allgemeinheit v = w = 0 annehmen. SchlieRlich ersetzen wir noch ¢ durch ¢; = ¢'(Og:)"'o¢ und kénnen damit
von der Ableitung ¢’(Og») = idg» ausgehen. Die Zahlen un(¢(W(m))) bleiben wegen |det ¢’(0)| = 1 und Satz
iiber das Transformationsverhalten des Lebesgue-Mal3es hierdurch unveréndert.

Auf diese Situation wird nun Lemma(9.11|angewendet. Demnach gibt es eine Umgebung Uz von Op. mit der Eigen-
schaft, dass u,(¢(W)) < (1+6)u, (W) fiir alle Wiirfel W C Us mit Oy, € W erfiillt ist. Wahlen wir m aber hinreichend
grof3, dann ist W(m) in Us enthalten, es gilt O, € W(m) und u,(p(W))>(1+6 )un(W(m)), im Widerspruch zur Aus-
sage des Lemmas. m|

Weil jede Figur in R" als disjunkte Vereinigung von Quadern darstellbar ist, gilt Lemma[9.12|an Stelle von Quadern
offenbar auch fiir Figuren.

Lemma 9.13 Seien U,V C R" offene Mengen, und sei ¢ : U — V ein ¢*-Diffeomorphismus
mit |det ¢’(x)| = 1 fiir alle x € U. Dann gilt

() w;(¢(A)) < u(A) fiir jede Teilmenge A C U, und dariiber hinaus
(i) w,(¢(A)) = u,(A) fiir jede Borel-messbare Teilmenge A C U.

Beweis: zu (i) Sei A C U beliebig. Wir kénnen u*(A) < +00 voraussetzen, weil die Ungleichung ansonsten
offensichtlich erfiillt ist. Nach Definition ist das &uf3ere Lebesgue-Maf u;(A) von A das Infimum {iber alle Summen
Z:lo:l Un(Fn), wobei (Fp,)men alle Folgen von Figuren mit U:lo:l F,, 2 A durchlauft. Sei nun ¢ € R* vorgegeben.
Dann gibt es also eine Folge (F,,)en Von Figuren mit Z;o:l wi(Fp) < ui(A) + € und U:«le F,, 2 A. Es folgt

pie@) < D wFE)) < D uFE) < @)+
m=1 m=1

Weil & beliebig klein gewahlt werden kann, erhalten wir u*(¢(A)) < u(A) wie gewtinscht.

zu (i) Sei nun A C U Borel-messbar. In diesem Fall ist ¢»(A) eine Borel-messbare Teilmenge von V. Das dufere
Malf$ stimmt dann jeweils mit dem Lebesgue-Malf? iiberein, so dass wir u,(¢(A)) < u,(A) erhalten. Da mit ¢ auch die
Umbkehrabbildung ¢! ein C!-Diffeomorphismus ist, und da auf Grund der Umkehrregel auch det (¢ 1) (x)| = 1 fiir
alle x € V gilt, erhalten wir ebenso u,(A) < u,(¢ (¢ (A))) < u,(¢p(A)). Insgesamt gilt also u,(A) = u,(¢(4)). O




Satz 9.14 (Transformationssatz)

Seien U,V C R" offene Teilmengen, und sei ¢ : U — V ein %!-Diffeomorphismus. Sei A C U
und B = ¢(A). Sei auBerdem f : B — R eine Funktion.

(i) Die Teilmenge A ist genau dann Lebesgue-messbar, wenn B Lebesgue-messbar ist, und in
diesem Fall gilt

ua(B) = fldet¢'|dun(X)«
A

Genau dann ist A eine (Lebesguesche) Nullmenge, wenn B eine Nullmenge ist.

(ii) Ist A Lebesgue-messbar, und ist f > 0 und Lebesgue-messbar, dann gilt

deun = f(focb)ldetcﬁ’ldun- @)
B A

(iii) Sei A Lebesgue-messbar. Unter dieser Voraussetzung ist die Funktion f auf B genau dann
Lebesgue-integrierbar, wenn die Funktion (f o ¢)| det ¢’| auf A Lebesgue-integrierbar ist,
und es gilt dann ebenfalls die Gleichung (*).

Beweis: Wir beweisen die Gleichung (*) zunichst unter der stirkeren Voraussetzung, dass A eine Borel-messbare
Teilmenge von U ist. In diesem Fall ist B als Urbild von A unter der stetigen Abbildung ¢! : V — U ebenfalls
Borel-messbar. Zur Abkiirzung setzen wir y(x) = |det ¢’(x)| fiir alle x € U. Zu zeigen ist die Gleichung f o f dun =
fA(f o ¢)ydu,. Sei AC R"™ gegeben durch

A = {(x,w)eR™ |[xeA, 0<u<f(Pp0))r(x)}

Offenbar gilt A = A(fopyys d-h. Aist die Teilmenge unter dem Funktionsgraphen der auf A definierten Funktion (f o¢)y.
Nach Satz folgt aus der Borel-Messbarkeit von f die Borel-Messbarkeit von A, und es gilt u,(A) = f( fog)ydu,.
Wir betrachten nun die Funktion ¢ : U x R, =V x R,, (x,u) = (¢(x),uy(x)™!). Die Jacobi-Matrix von ¢ an der
Stelle (x, u) hat die Form
N ¢'(x) 0
/
(x,u) = ( _
¢ O
es ist also det@’(x,u) = (det¢’(x))y(x)™! = (det¢’(x))|detp’(x)|™* iiberall vom Betrag 1. Wir kénnen somit
Lemma anwenden und erhalten p, (A) = u, (¢ (A)). Wie wir weiter unten gleich zeigen werden, gilt ¢ (A) =As.
Eine nochmalige Anwendung von Satz liefert dann w, (¢ (A)) = un () = f 3 S diy, wodurch die Gleichung (*)

insgesamt bewiesen ist.

Sei (y,2) € B x R, vorgegeben, x € A mit ¢(x) = y und u € R, so gewihlt, dass uy(x)™* = z erfiillt ist (wobei
y(x)™ > 0 zu beachten ist). Dann gilt ¢;(x, u) = (y,2), und wir erhalten die Aquivalenz
(r.2)€d; & (P ur(x)™MNed;, & 0<suy(x) ' <f(o(x)) &
0su<(fop)x)r(x) & (xrued & (y,2)ed(A).

Damit ist der Beweis der Mengengleichung ¢ (4) = Ay abgeschlossen. Wendet man die soeben bewiesene Aussage
auf die Funktion f : V — R, gegeben durch 15 = 14, an, fiir Borel-messbares A C U, so erhélt man die Gleichung
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unter (i). In Verbindung mit Folgerung|[6.24|ergibt sich daraus, dass das Bild einer Borelschen Nullmenge N C U eine
Borelsche Nullmenge unter ¢ eine Borelsche Nullmenge ist.

Fiir den uneingeschrinkten Beweis von (i) sei nun A C U Lebesgue-messbar. Wie wir in § 4 gezeigt haben, existiert
dann eine Borel-messbare Teilmenge A C A und eine Borelsche Nullmenge N C U, die N = A\ A enthilt. Aus
A=AUN folgt dann ¢(A) = ¢p(A) U ¢(N). Mit N auch ¢ (N) eine Borelsche Nullmenge, und mit A ist auch ¢ (A)
Borel-messbar. Wegen ¢(N) C ¢(N) folgt aus der Gleichung ¢(A) = ¢(A) U ¢(N), dass ¢ (A) Lebesgue-messbar ist.
Das Bild einer Lebesgue-messbaren Teilmenge von U unter ¢ ist also eine Lebesgue-messbare Teilmenge von V. Da
wir diese Feststellung statt auf ¢ auch auf ¢ —* anwenden kénnen, ist die ,,genau dann“-Aussage in Teil (i) bewiesen.
Da sich Lebesguesche Nullmengen nach Satz[6.25|nicht auf den Wert der Integrale auswirken, ist die Gleichung unter
(i) auch fiir Lebesgue-messbare Teilmengen giiltig, und nicht nur fiir Borel-messbare. Aus demselben Grund ist auch
(ii) ohne weitere Einschriankungen giiltig.

Kommen wir nun zum Beweis der Aussage (iii). Die Lebesgue-Integrierbarkeit von f auf B ist nach Satz
dquivalent zu f s fldu, < +00, und die Lebesgue-Integrierbarkeit von |(f o ¢)]|det ¢’| auf A ist dquivalent zu
f Al(fog)lldet ¢’|du, < +o00. Die ,,genau dann“-Aussage zur Integrierbarkeit folgt also aus der Gleichung (*) unter
(ii), angewendet auf |f|. Die Gleichung (*) unter (iii) ergibt sich nun unmittelbar dadurch, dass man (ii) auf die
nicht-negativen Funktionen f* und f~ anwendet: Es gilt

J(f°¢)|det¢'ldun = f(f+°¢)Idet¢’|dun—f(f_°¢)Idet¢'ldun
A A A

= ff+dun_ff_dun = ffd.u‘n a
B B B

Besonders haufig, zum Beispiel bei Anwendungen in der Physik, wird die Transformationsformel im Zusammenhang
mit Polar-, Zylinder- oder Kugelkoordinaten genutzt.

Folgerung 9.15

(i) Seip:R, xR — R? (r,¢) — (rcos(¢),rsin(y)) die Polarkoordinaten-Abbildung. Ist
A C R, x[0,27] eine Lebesgue-messbare Teilmenge und f : p(A) — R eine Lebesgue-
integrierbare Funktion, dann gilt

fduy, = J(f op)(r, @) 1 duy(r, ¢).
A

pA)

(i) Seip : Ry x RxR — R3, (r,p,h) — (rcos(p),rsin(p),h) die Zylinderkoordinaten-
Abbildung. IstAC R, x[0,27] xR eine Lebesgue-messbare Teilmenge und f : p(A) —» R
eine Lebesgue-integrierbare Funktion, dann gilt

f fdnu’B = j(f op)(rJ ‘P’h)‘r dH3(r: ‘P:h)'
p(4) A

(iii) Sei p : Ry x Rx R — R3, (,9,¢) — (rsin(#)cos(p), rsin(9)sin(¢), r cos(?)) die
Kugelkoordinaten-Abbildung. Ist A € R, x [0, ] x [0,27] eine Lebesgue-messbare Teil-
menge und f : p(A) — R eine Lebesgue-integrierbare Funktion, dann gilt

fdus = f(fOp)(r,ﬂ,cp)-rzsin(ﬁ) dus(r, 9, ¢).
p(4) A




Der Faktor unter dem Integralzeichen ist jeweils der Betrag der Determinante der Jacobi-Matrix von p an der Stelle
(r, @) bzw. (1, ¢, h) bzw. (r, ¥, ¢). Man beachte, dass die Polarkoordinaten-Abbildung nicht auf ihrem gesamten De-
finitionsbereich R, x R ein ¢!-Diffeomorphismus auf ihre Bildmenge ist, sondern nur nach Einschrinkung auf die
Teilmenge R* x ]0, 27[. Das Komplement von R* x ]0,27[ in R, x[0,27], die Menge {0} x [0,2n]UR* x {27}, und
dasselbe gilt fiir die Bildmenge des Komplements unter dieser Abbildung. Die Integrale in der Gleichung unter (i)
bleiben durch Hinzu- oder Wegnahme dieser Menge unverandert. Entsprechend muss man die Zylinderkoordinaten-
Abbildung unter (ii) auf R* x ]0, 27t[ xR einschrénken, um einen C!-Diffeomorphismus auf die Bildmenge zu erhalten,
und die Kugelkoordinaten-Abbildung entsprechend auf die Teilmenge R* x ]0, [ x ]0, 27[.

Als Anwendung der Transformationsformel mit Polarkoordinaten berechnen wir das Volumen eines Kegels K der
Hohe h € R* mit Grundflichenradius r € R", also das Volumen der Teilmenge des R® gegeben durch

2
£ {(x’y’z)eRS ZE[O,h],x2+y2<r2(1_%)}

= {(x,y,2)€R?®|z€[0,h], (hx)*+ (hy)? < r?(h—z2)?}.

Fiir alle (x, y,2) € K gilt insbesondere x2 + y? < r2. Setzen wir B = {(x, y) € R? | x? + y? < r?}, dann gilt fiir alle
(x,y,2) € R® mit (x, y) € B die Aquivalenz

(x,y,2)€EK & x>+y?< rz(l—%)2 =
\/m< r(l—%) & hy/x2+yi<r(h—z) &
L i<h-s & s<h-tydiy o z<h(1_}¢m).
Es giltalso K = Ay fiir die Funktion f : B > R, (x,y) — h(l—% v/x2 + y2), und aus Satszolgt us(K) = fo dus.
Wir berechnen dieses Integral durch Verwendung der Polarkoordinaten-Abbildung, die wir mit p bezeichnen. Da es

sich bei B um die offene Kreisscheibe vom Radius r handelt, erfiillt A= [0, r[ x [0,27] die Gleichung p(A) = B. Fiir
alle (s, p) € A gilt

(fop)s,9) = flscos(p),ssin(p)) = h(1—1y/s2cos(p)2+s?sin(p)?) = h(1-%) ,

und wir erhalten

us(K) = ffdﬂz = f(fOP)(s,w)-sduz(s,np) = fhs(l—%)duz(s,np)
B A A

r 27 r
= EJ‘s(r—s)d,uz(s,np) = Ef (J s(r—s)d(p)ds = @ s(r—s)ds
" Ja " Jo \Jo " Jo

1 1 r 21h 1 1
grs?—3s], = T-grB = 3-(nr¥)-h.

271th

Damit ist die aus der Schulmathematik bekannte Formel , Kegelvolumen = % x Grundflache x Hohe“ bestatigt.




Als weiteres Anwendungsbeispiel betrachten wir eine wichtige Funktion aus der Stochastik.

Definition 9.16 Seien u € R und o € R". Die Dichtefunktion der Normalverteilung zum
Mittelwert u und der Standardabweichung o ist die Funktion f, , : R — R gegeben durch

1 1o
fuox) = e 2T,

ov2n

Ist u =0 und o = 1, dann spricht man von der Standard-Normalverteilung.

Wir erinnern kurz an die Bedeutung der Normalverteilung. Fiir alle @, # € R mit a < f3 gibt das Integral ff fuo(x)dx
die Wahrscheinlichkeit dafiir an, dass in einer Menge mit einem mit den Parametern y und o normalverteilten
numerischen Merkmal (zum Beispiel Kdrpergréfie oder Intelligenzquotient) ein zuféllig gewahltes Element seinen
Wert im Intervall [a, 3] hat. Fiir [u — o, u + o] betrdgt diese Wahrscheinlichkeit beispielsweise ~ 68, 3%, fiir das
grolere Intervall [u — 20, u + 20] bereits ungefahr 95 %.

Man erhalt eine solche Normalverteilung unter anderem dadurch, dass man ein diskretes Zufallsexperiment X sehr
oft wiederholt. Betrachtet man fiir groes N € IN beispielsweise das Zufallsexperiment ,,N-faches Wiirfeln“ mit dem
Merkmal ,durchschnittlich gewiirfelte Augenzahl“, ndhert sich die Verteilung fiir N — oo einer Normalverteilung mit
dem Mittelwert u = 3,5 und der Standardabweichung o & 1,71 an. Hierbei ist der Mittelwert wenig {iberraschend,
denn E(X) = %(1 +243+445+6)= % ist das durchschnittliche Ergebnis beim Wiirfeln. Die Standardabweichung
o ergibt sich als Quadratwurzel aus der Varianz, die man wiederum durch die Formel

2 _ 35
¥ o= 3

NIN

6
varx) = E((X-w) = §) (k-
k=1

berechnen kann. Das Verhalten, dass sich eine Zufallsverteilung einer Normalverteilung annahert, ist in der Stochastik
als ,Gesetz der grof3en Zahlen® bekannt. Offenbar kann durch f, , nur dann eine Zufallsverteilung gegeben sein,
wenn die Wahrscheinlichkeit fiir ein Ergebnis zwischen —oo und +o00 gleich 1 ist.

Satz 9.17 (Gaufs’sches Fehlerintegral)

+00

Fiir alle u € R und o € R* gilt f fue(X)dx = 1.

Dabei steht f:r:: fu,o(x)dx fiir den Grenzwert von f jr fuo(x)dx fiir r — +00. Offenbar geniigt es, die Gleichung
f j:: e dx = v/ zu beweisen, denn dann folgt das Ergebnis leicht aus der eindimensionalen Substitutionsregel:
Fiir alle a, f € R mit a < 3 erhalten wir mit der Substitutionsfunktion ¢(t) = % und deren Ableitung ¢’(t) = -

V2o
das Ergebnis

fﬁf (0d 1 J’j I 1 (F R L ("7 e
o X X e 24 o X = e — Qp t)e t = _ e X ,
a oV2n a ﬁ a ﬁ v(a)




und wegen lim ¢(a)=—oco und lim ¢(f)=+oo folgt daraus
a——00 B—+o00

e(r) 1

+00 r
J fuo(x)dx = lirgof fuo(x)dx = lim — e dx =

T o= 1.
S RVEN VT

Kommen wir nun zum Beweis der Gleichung fj:: e’ dx = /7. Definieren wir fiir jedes r € R* das Quadrat
Q, =[-r,r]?, dann gilt jeweils

r 2 r r r r
(f f(X)dX) = (J f(X)dX)U f(y)dy) = J (J f(X)dX)f(y)dy =

JU f(X)f(y)dX)dy = fFOFNdx,y) = fe*”zd(x,y).

Q .

400 2
(J fx) dx) = rE-Il—noo J e d(x,y).
o) Q

r

Es gilt also

Nun betrachten wir fiir jedes r € R* auch die abgeschlossene Kreisscheibe B, € R? vom Radius r um den Ursprung.
Aus den Inklusionen Q, .5 < B, € Q, und der Tatsache, dass die Funktion (x,y) — e nur positive Werte
annimmt, folgt die Abschiatzung

f e_xz_yzd(x,y) < J
Q vz B

und daraus wiederum die Ubereinstimmung lim fB ey d(x,y)= lim f e XY’ d(x,y).
r—+oo v br r—+00JQ;

e d(x,y) < J e d(x,y)

r r

Mit Hilfe des Transformationssatzes, angewendet auf Polarkoordinaten, erhalten wir nun weiter

f e d(x,y) = f e d(x,y) = f eI d(r ) =

B, p([0,r]x[0,27]) p([0,r]x[0,27])

Je_rzrd(r,ap) = an redr = th (Zr)e_rzdr
0 0

p([0,r]x[0,27])
.
2
= —Trf e tdt = —n[e_t]g = n(l—e") ,
0

also

+00 2
(J‘ f(x)dx) = 1i£n Je‘xz_yzd(x,y) = ligrn Je_"z_yzd(x,y) = 1i£n rl—e™) = =
oo r—+00 r—+00 B r—+00

r r

und damit f _+:§ f(x)dx = /7 wie behauptet.
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