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Zusammenfassung

Bereits im ersten Semester haben wir das Riemann-Integral für beschränkte Funktionen einer Variablen,
definiert auf einem endlichen, abgeschlossenen Intervall, kennengelernt. Das Ziel dieses Vorlesungsab-
schnitts besteht nun darin, den Integralbegriff auf Funktionen mehrerer Variablen zu verallgemeinern.
Das Riemann-Integral kann auf naheliegende Weise auf höhere Dimensionen übertragen werden, aller-
dings erweist sich dieses Konzept für moderne Anwendungen als nicht flexibel genug. Beispielsweise
hat man es häufig mit Funktionen auf unendlich ausgedehnten Definitionsbereichen zu tun, und oft ist
auch der Wertebereich der Funktionen unbeschränkt.

Um einen möglichst vielseitig einsetzbaren Zugang zum Integralbegriff zu erhalten, entwickelt man
zunächst eine Theorie der Maße, mit denen man Teilmengen einer gewissen Grundmenge, in der Regel
desRn, ein „Volumen” zuordnen kann. Das am häufigsten verwendete Maßauf demRn ist das Lebesgue-
Maß, mit dessen Konstruktion wir uns als erstes beschäftigen werden. Basierend auf dem Maßbegriff
kann man anschließend gewissen reellwertigen Funktionen auf der Grundmenge ein Integral zuord-
nen. Im Fall des Lebesgue-Maßes erhält man das sogenannte Lebesgue-Integral, das eine Verallgemei-
nerung des Riemann-Integrals darstellt. Nachdem wir die wichtigsten grundlegenden Eigenschaften
und elementare Rechenregeln für Integrale hergeleitet haben, befassen wir uns noch mit einigen fort-
geschrittenen Integrationstechniken. Mit dem Satz von Fubini kann beispielsweise die Integration von
Funktionen in hoher Dimension auf kleinere Dimension zurückgeführt werden, und die Transformati-
onsformel stellt eine weitreichende Verallgemeinerung der eindimensionalen Substitutionsregel dar. Im
einzelnen behandeln wir die folgenden Themen:

• Inhalte und Maße, Konstruktion des Lebesgue-Maßes

• messbare und integrierbare Funktionen

• Konvergenzsätze

• Produktmaße und Satz von Fubini

• Bildmaße und die Transformationsformel



Inhaltsverzeichnis

§ 1. Die Unlösbarkeit des Maßproblems ............................................................................................ 3

§ 2. Der Jordansche Inhalt ............................................................................................................. 7

§ 3. σ-Algebren und Maße ............................................................................................................. 18

§ 4. Eindeutigkeit der Fortsetzung und Vollständigkeit ........................................................................ 27

§ 5. Messbare Funktionen .............................................................................................................. 36

§ 6. Integrierbare Funktionen ......................................................................................................... 43

§ 7. Konvergenzsätze der Integrationstheorie .................................................................................... 57

§ 8. Produktmaße und Satz von Fubini ............................................................................................. 66

§ 9. Bildmaße und die Transformationsformel ................................................................................... 78



§ 1. Die Unlösbarkeit des Maßproblems

Im gesamten Text bezeichnet R die Menge der reellen, R+ die Menge der positiven und R+ die Menge der nicht-
negativen reellen Zahlen. Ist X eine beliebige Menge, dann bezeichnet P(X ) ihre Potenzmenge, also die Menge aller
Teilmengen A⊆ X .

Ein wichtiges Ziel der Maßtheorie besteht darin, auf einer möglichst großen Klasse K von Teilmengen des Rn eine
Abbildung µ : K→R+ ∪ {+∞} zu definieren, so dass für jedes A∈ K die Zahl µ(A) dem entspricht, was wir intuitiv
unter dem „Volumen“ von A verstehen würden. Bevor wir uns überlegen, welche Eigenschaften eine solche Abbildung
haben sollte, erinnern wir zunächst an die folgende Definition.

Definition 1.1 Eine Abbildungψ :Rn→Rn wird Bewegung genannt, wenn eine orthogonale
Matrix A∈ O(n) und ein Vektor v ∈Rn existieren, so dass ψ(x) = v + Ax für alle v ∈Rn gilt.

Die Bewegungen der Form τv : Rn → Rn, x 7→ v + x bezeichnet man als Translationen. Weitere Beispiele für
Bewegungen sind Spiegelungen an Hyperebenen oder Rotationen um beliebige (n − 2)-dimensionale Drehachsen.
Man kann zeigen, dass die Bewegungen genau die Abbildungenψ :Rn→Rn mit der Eigenschaft ∥ψ(x)−ψ(y)∥2 =
∥x− y∥2 für alle x , y ∈Rn sind, wobei ∥·∥2 die gewöhnliche euklidische Norm bezeichnet. Man spricht deshalb auch
von abstands-erhaltenden Abbildungen. Sei Teilmengen X , Y ⊆ Rn werden kongruent genannt, und man schreibt
X ∼= Y , wenn eine Bewegung ψ des Rn mit ψ(X ) = Y existiert.

Folgende Eigenschaften würde man nun für eine „vernünftige“ Volumenfunktion µ naheliegenderweise voraussetzen.
Sind A, B Elemente des Definitionsbereichs K von µ, dann sollte dies auch für A∪ B, A∩ B und A\ B gelten. Weitere
natürliche Bedingungen an µ lauten

(i) µ(∅) = 0 und µ(Rn) = +∞ (falls Rn in K liegt)

(ii) (Normierungsbedingung)
Die n-dimensionalen abgeschlossenen Quader der Form [a1, b1]× ...× [an, bn] mit ai , bi ∈R und ai ≤ bi sind
in K enthalten, und es gilt µ(Q) =

∏n
j=1(b j − a j).

(iii) (Bewegungsinvarianz)
Ist A∈ K und ψ :Rn→Rn eine Bewegung, dann liegt ψ(A) in K,
und es gilt µ(ψ(A)) = µ(A).

(iv) (endliche Additivität)
Sind A, B ∈ K disjunkt (also A∩ B =∅), dann gilt A∪ B ∈ K und µ(A∪ B) = µ(A) +µ(B).

Bereits aus (i) und (iv) lassen sich weitere, „intuitiv naheliegende“ Eigenschaften einer solchen Funktion µ herleiten.
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Lemma 1.2 Seien r ∈N0 und A, B, A1, ..., Ar Elemente aus K, auf denen die Funktion µ endliche
Werte annimmt.

(i) Unter der Voraussetzung A⊆ B gilt µ(A)≤ µ(B).

(ii) Es ist µ(A∪ B) = µ(A) +µ(B)−µ(A∩ B).

(iii) Sind die Mengen A1, ..., Ar ∈ K paarweise disjunkt, dann gilt

r
⋃

k=1

Ak ∈ K und µ

� r
⋃

k=1

Ak

�

=
r
∑

k=1

µ(Ak).

(Dabei bedeutet r = 0, dass die Vereinigung
⋃r

k=1 Ak leer ist. Die Summe auf der rechten
Seiten ist dann gleich Null.)

Beweis: zu (i) Die Menge B kann disjunkt in die Teilmengen A und B \ A zerlegt werden, also gilt µ(A) ≤ µ(A) +
µ(B \ A) = µ(B).

zu (ii) Die Menge A∪B besitzt eine disjunkte Zerlegung in die Teilmengen A\B, B \A und A∩B. Durch wiederholte
Anwendung der endlichen Additivität erhalten wir

µ(A∪ B) = µ(A\ B) +µ(B \ A) +µ(A∩ B) =

µ(A\ B) +µ(A∩ B) +µ(B \ A) +µ(A∩ B)−µ(A∩ B) = µ(A) +µ(B)−µ(A∩ B).

zu (iii) Auf Grund der Voraussetzung µ(∅) = 0 ist die Gleichung in den Fällen r = 0,1 offensichtlich, und auf Grund
der endlichen Additivität gilt sie auch für r = 2. Sei nun r > 2 und die Gleichung für alle kleineren Zahlen bereits
bewiesen. Seien A1, ..., Ar ∈ K paarweise disjunkte Mengen. Setzen wir B = A1∪...∪Ar−1, dann gilt µ(B) =

∑r−1
k=1µ(Ak)

nach Induktionsvoraussetzung. Weil B und Ar disjunkt sind, erhalten wir weiter

µ

� r
⋃

k=1

Ak

�

= µ(B ∪ Ar) = µ(B) +µ(Ar) =
r−1
∑

k=1

µ(Ak) +µ(Ar) =
r
∑

k=1

µ(Ak). □

Die Eigenschaft (i) aus dem Lemma, die häufig als Monotonie bezeichnet wird, ist für Volumenberechnungen interes-
sant. Bereits durch die Beschäftigung mit dem Riemann-Integral ist deutlich geworden, dass sich das Volumen vieler
elementar-geometrischer Objekte (wie Kugeln, Pyramiden, Kegel, Zylinder) approximieren lässt, wenn man diese
durch hinreichend kleine rechteckige Quader ausschöpft bzw. einschließt. Genauer bedeutet dies, dass man für jedes
solche geometrische Objekt O endliche Vereinigungen A, B von „kleinen“ Quadern bilden kann, so dass A ⊆ O ⊆ B
und µ(A) ≈ µ(B) gilt. Auf Grund der Monotonie muss dann auch µ(O) ungefähr gleich µ(A) sein. Dies zeigt, dass
eine Volumenfunktion µ mit den Eigenschaften (i) bis (iv) unserer anschaulichen Vorstellung von einem Volumen
wirklich sehr nahe kommt. Aus Gründen, die hauptsächlich auf Anwendungen in der Analysis zurückgehen, und die
erst im weiteren Verlauf der Vorlesung klar werden, verschärft man die Bedingung (iv) häufig zu

(iv)’ Ist (Am)m∈N eine abzählbare Folge von paarweise disjunkten Elementen aus K, dann gilt

⋃

m∈N
Am ∈ K und µ

�

⋃

m∈N
Am

�

=
∞
∑

m=1

µ(Am).
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Man spricht in diesem Fall von abzählbarer Additivität oder σ-Additivität. Diese Eigenschaft impliziert die endliche
Additivität, denn sind A1, ..., Ar endlich viele, paarweise disjunkte Mengen aus K, dann können wir Am =∅ für m> r
setzen und erhalten wegen µ(∅) = 0 die Gleichung unter (iv) zurück.

Unsere Hauptaufgabe in diesem Kapitel wird darin bestehen, eine Abbildung µ mit den Eigenschaften (i), (ii), (iii)
und (iv)’ auf einer möglichst großen Menge K zu konstruieren. Ideal wäre es natürlich, wenn man K =P(Rn) setzen,
also jeder Teilmenge desRn ein Volumen zuordnen könnte. Das Problem, eine solche Zuordnung zu bestimmen, wird
als Maßproblem bezeichnet. Seit langem ist jedoch bekannt, dass diese Problem nicht lösbar ist.

Satz 1.3 (Guiseppe Vitali, 1905)

Für keine natürliche Zahl n existiert eine Abbildung µ : P(Rn)→ R+ ∪ {+∞} mit den Eigen-
schaften (i), (ii), (iii) und (iv)’.

Beweis: Wir definieren auf Rn eine Relation ∼ durch x ∼ y ⇔ x − y ∈ Qn. Man überprüft unmittelbar, dass es
sich dabei um eine Äquivalenzrelation handelt. Jede Äquivalenzklasse besitzt einen Repräsentanten innerhalb des
Einheitswürfels [0,1]n, da für jedes s ∈Rn sogar ein r ∈Zn mit 0≤ si − ri < 1 für 1≤ i ≤ n existiert. Auf Grund des
Auswahlaxioms der Mengenlehre kann also innerhalb von [0,1]n ein Repräsentantensystem der Äquivalenzklassen
von ∼ gewählt werden, also eine Teilmenge A⊆ [0, 1]n mit der Eigenschaft, dass jedes für jedes s ∈Rn ein eindeutig
bestimmtes a ∈ A mit s ∼ a existiert.

Sei nun B = [−1,1]n∩Qn und C =
⋃

r∈B(r+A). Bei C handelt es sich um eine disjunkte, abzählbare Vereinigung von
Teilmengen desRn. Die Abzählbarkeit ist klar, da B als Teilmenge der abzählbaren MengeQn abzählbar ist. Seien nun
r, r ′ ∈ B so gewählt, dass r+A und r ′+A nicht disjunkt sind. Dann gibt es Elemente a, a′ ∈ A mit r+a = r ′+a′. Nach
Definition unserer Äquivalenzrelation folgt a ∼ a′ und damit a = a′, weil A ein Repräsentantensystem der Relation
ist. Dies wiederum bedeutet r = r ′, also ist die Vereinigung tatsächlich disjunkt.

Nun beweisen wir die Inklusionen [0,1]n ⊆ C ⊆ [−1, 2]n. Ist s ∈ [0,1]n, dann gibt es (auf Grund der Eigenschaft von
A, Repräsentantensystem zu sein) Elemente a ∈ A und r ∈ Qn mit s = r + a. Für 1 ≤ i ≤ n ist ri = si − ai ∈ [−1,1]
und somit r ∈ [−1, 1]n. Es folgt s = r + a ∈ C . Ist nun s ∈ C vorausgesetzt, dann gibt es Elemente r ∈ B ⊆ [−1,1]n

und a ∈ A⊆ [0,1]n mit s = r + a. Aus −1≤ ri ≤ 1 und 0≤ ai ≤ 1 folgt −1≤ si ≤ 2 für 1≤ i ≤ n.

Nehmen wir nun an, µ : P(Rn) → R+ ∪ {+∞} ist eine Abbildung mit den Eigenschaften (i) bis (iv)’. Aus der
Monotonie folgt dann 1 = µ([0,1]n) ≤ µ(C) ≤ µ([−1, 2]n) = 3n. Die Eigenschaft (iv’), die Bewegungsinvarianz
sowie die Darstellung von C als disjunkte, abzählbare Vereinigung liefern

µ(C) =
∑

r∈B

µ(r + A) =
∑

r∈B

µ(A).

Aus
∑

r∈B µ(A) = µ(C) ≥ 1 folgt µ(A) > 0 und somit
∑

r∈B µ(A) = +∞. Dies aber steht im Widerspruch zur zweiten
Ungleichung µ(C)≤ 3n. □
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Wird an Stelle von (iv)’ nur die schwächere Bedingung (iv) gefordert, so spricht man vom Inhaltsproblem. Dass auch
dieses Problem i.a. unlösbar ist, wird eindrucksvoll belegt durch das

Satz 1.4 (Banach-Tarski-Paradoxon)

Seien X und Y beschränkte Teilmengen vonR3 mit einem nichtleeren Inneren. Dann gibt es eine
natürliche Zahl n ∈N und disjunkte Zerlegungen

X = X1 ∪ ...∪ Xn und Y = Y1 ∪ ...∪ Yn ,

so dass X j
∼= Yj für 1≤ j ≤ n erfüllt ist.

Beweis: Ein elementarer Beweis wird in [Str] beschrieben. □

Beispielsweise sind X = [0, 1]3 und Y = [0,2]3 Teilmengen des R3 mit einem nichtleeren Inneren, auf welche
folglich die Aussage des Banach-Tarski-Paradoxons angewendet werden kann. Nehmen wir nun an, dass es sich
bei µ : P(Rn) → R+ ∪ {+∞} um eine Abbildung mit den Eigenschaften (i) bis (iv) handelt. Sind X1, ..., Xn und
Y1, ..., Yn die Mengen aus der im Banach-Tarski-Paradoxon angegebenen disjunkten Zerlegung, dann liefern diese
Eigenschaften den Widerspruch

1 = µ([0, 1]3) = µ(X ) =
n
∑

i=1

µ(X i) =
n
∑

i=1

µ(Yi) =

µ(Y ) = µ([0, 2]3) = 8.

Auch imRn für n≥ 4 ist das Inhaltsproblem unlösbar. Für n= 1,2 gibt es überraschenderweise Lösungen, aber diese
sind nicht eindeutig bestimmt (für Beweise siehe [Wa]).
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§ 2. Der Jordansche Inhalt

Zusammenfassung. Um die Konstruktion des Lebesgue-Maßes vorzubereiten, beschäftigen wir uns in diesem
Abschnitt zunächst mit den Inhalten auf Mengenringen. Bei Letzteren handelt es sich um Mengensysteme, die
unter gewissen Operationen abgeschlossen sind, unter anderem bezüglich endlicher Vereinigungen. Erstere
ordnen den Mengen in einem solchen System Werte zu, die man als „Volumen“ dieser Mengen interpretieren
kann.

Um einen Volumenbegriff zu erhalten, der der anschaulichen Vorstellung nahekommt, betrachten wir zunächst
den Mengenring der Figuren. Dies sind endliche Vereinigungen von Quadern, denen man auf naheliegende
Weise ein Volumen zuordnen kann. Dieses bezeichnet man als den Jordan-Inhalt der Figur. Anschließend wer-
den wir die Definition des Jordan-Inhalt auf eine möglichst große Klasse von Teilmengen des Rn fortsetzen.

Wichtige Grundbegriffe

– Mengenhalbring und Mengenhalbalgebra

– Mengenring und Mengenalgebra

– Inhalt auf einem Mengenhalbring

– erzeugter Mengenring

– inneres und äußeres Maß eines Inhalts

– Intervall, Quader, Figar

– Volumen eines Quaders

– Jordan-Messbarkeit und Jordan-Inhalt

Wie wir im letzten Abschnitt gesehen haben, wird es uns nicht gelingen, beliebigen Teilmengen des Rn auf sinnvolle
Weise ein Volumen zuzuordnen. Unser erstes Ziel ist daher die Definition von Mengensystemen, auf denen eine
geeignete Volumenfunktion existiert. In den folgenden Abschnitten bezeichnet Ω stets eine beliebige Menge.

Definition 2.1 Eine Teilmenge H ⊆ P(Ω) wird Mengenhalbring in Ω genannt, wenn ∅ ∈ H
gilt und außerdem folgende Bedingungen erfüllt sind.

(i) Sind A, B ∈H, dann liegt auch A∩ B in H.

(ii) Für alle A, B ∈H gibt es ein r ∈N0 und Mengen C1, ..., Cr ∈H, so dass A\ B als disjunkte
Vereinigung A\ B = C1 ∪ ...∪ Cr dargestellt werden kann.

Gilt zusätzlich Ω ∈H, dann nennt man H eine Halbalgebra.

Im ersten Semester haben wir die Intervalle eingeführt als Teilmengen I ⊆ R mit der Eigenschaft, dass für alle
a, b ∈ I mit a < b auch jedes c ∈ R mit a < c < b in I enthalten ist. Die Intervalle sind also genau die konvexen
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Teilmengen von R. Es ist leicht zu sehen, dass die Intervalle einen Mengenhalbring in R bilden. Auch die endlichen
Intervalle bilden einen Mengenhalbring.

Satz 2.2 Seien H, H′ zwei Mengenhalbringe in Ω bzw. Ω′. Dann ist auch das Mengensystem

{A× A′ | A∈H, A′ ∈H′} ein Mengenhalbring.

Beweis: Wir bezeichnen das angegebene System von Teilmengen von Ω×Ω′ mit H′′. Zunächst gilt ∅=∅×∅ ∈H′′.
Seien nun A× A′, B × B′ zwei Elemente in H′′, mit A, B ∈ H und A′, B′ ∈ H′. Weil H und H′ Halbringe sind, gilt
A∩ B ∈H und A′ ∩ B′ ∈H′. Es folgt (A×A′)∩ (B× B′) = (A∩ B)× (A′ ∩ B′) ∈H′′. Wir haben damit Bedingung (i) der
Halbring-Eigenschaft verifiziert.

Nun zeigen wir, dass (A× A′) \ (B × B′) für H′′ die Bedingung (ii) in Definition 2.1 erfüllt. Weil H und H′ Halbringe
sind, gibt es r, s ∈N0 und Mengen C1, ..., Cr ∈H, C ′1, ..., C ′s ∈H

′, so dass A\ B und A′ \ B′ als disjunkte Vereinigungen

A\ B = C1 ∪ ...∪ Cr und A′ \ B′ = C ′1 ∪ ...∪ C ′s

dargestellt werden können. Die Menge (A× A′) \ (B × B′) zerfällt disjunkt in die Teilmengen
(A∩ B)× (A′ \ B′), (A\ B)× (A′ ∩ B′) und (A\ B)× (A′ \ B′). Es gilt

(A∩ B)× (A′ \ B′) =
s
⋃

j=1

(A∩ B)× C ′j , (A\ B)× (A′ ∩ B′) =
r
⋃

i=1

Ci × (A′ ∩ B′)

und

(A\ B)× (A′ \ B′) =
r
⋃

i=1

s
⋃

j=1

Ci × C ′j .

Sämtliche Vereinigungen sind disjunkt, und die in den Vereinigungen vorkommenden Mengen sind alle in H′′ ent-
halten. Damit ist die Halbring-Eigenschaft (ii) nachgewiesen. □

Als Quader imRn bezeichnen wir im Folgenden ein kartesisches Produkt I1× ...× In von endlichen Intervallen. Nach
Satz 2.2 bilden die Quader einen Mengenhalbring im Rn.

Definition 2.3 Ein Mengenring ist eine Teilmenge R ⊆ P(Ω) mit den Eigenschaften, dass
∅ ∈R gilt und mit A, B ∈R auch A∪B und A\B in R liegen. Gilt zusätzlich Ω ∈R, dann spricht
man von einer Mengenalgebra.

Sind A, B Elemente eines Mengenrings R, dann sind auch die symmetrische Differenz ∆ definiert durch A∆B =
(A\B)∪ (B \A) und der Durchschnitt A∩B = (A∪B)\ (A∆B) in R enthalten. Insbesondere ist jeder Mengenring ein
Mengenhalbring. Man kann leicht überprüfen, dass R mit△ als Addition und ∩ als Multiplikation ein Ring im Sinne
der Algebra ist, allerdings ohne Einselement. Der anderorts definierte Begriff der Algebra als Vektorraum mit einer
zusätzlichen multiplikativen Verknüpfung steht allerdings mit unserem Begriff in keinem Zusammenhang.
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Wir werden nun sehen, wie aus einem Mengenhalbring auf natürliche Weise ein Mengenring gewonnen werden
kann.

Definition 2.4 Wir sagen, ein Mengenring R wird von einer beliebigen Teilmenge E ⊆ P(Ω)
erzeugt, wenn R ⊇ E gilt und für jeden Ring S in Ω mit S ⊇ E auch S ⊇R erfüllt ist.

Offenbar ist der von einer Menge E erzeugte Ring eindeutig bestimmt. Sind nämlich R1,R2 zwei von E erzeugte
Ringe, dann gilt nach Definition R1 ⊆R2 und R2 ⊆R1, insgesamt also R1 =R2. Wir bezeichnen den von E erzeugten
Ring mit R(E). Ist E ein Halbring, dann lassen sich die Elemente von R(E) folgendermaßen charakterisieren.

Satz 2.5 Sei H ⊆P(Ω) ein Halbring. Dann gilt

(i) Die Elemente von R(H) sind die endlichen Vereinigungen von Mengen aus H.

(ii) Die Elemente von R(H) sind die endlichen disjunkten Vereinigungen von Mengen aus H.

Beweis: Wir beweisen zunächst die Eigenschaft (ii). Dass R(H) alle endlichen disjunkten Vereinigungen von Men-
gen aus H enthält, beweist man unmittelbar durch vollständige Induktion unter Verwendung der Voraussetzungen
H ⊆ R(H) und A, B ∈ R(H)⇒ A∪ B ∈ R(H). Es bleibt zu zeigen, dass die Menge R1 der endlichen disjunkten Ver-
einigungen von Mengen aus H ein Ring ist. Zunächst gilt ∅ ∈R1, da auch ∅ nach unserer Konvention eine endliche
Vereinigung (bestehend aus null Mengen) ist. Seien nun A, B ∈ R1 und A= P1 ∪ ...∪ Pr , B = Q1 ∪ ...∪Qs von A und
B als disjunkte Vereinigungen von Mengen Pi ,Q j ∈H. Für A∩ B existiert die Darstellung als disjunkte Vereinigung

A∩ B =
r
⋃

i=1

s
⋃

j=1

(Pi ∩Q j) ,

und auf Grund der Halbring-Eigenschaft von H gilt Pi ∩Q j ∈H für 1≤ i ≤ r, 1≤ j ≤ s. Daraus folgt A∩ B ∈R1. Für
die Differenz erhalten wir die Darstellung als disjunkte Vereinigung

A\ B =
r
⋃

i=1

(Pi \ B) =
r
⋃

i=1

�

s
⋂

j=1

(Pi \Q j)

�

.

Wir haben bereits gezeigt, dass R1 abgeschlossen unter Durchschnitten ist, deshalb genügt es zu überprüfen, dass
die Mengen Pi \Q j in R1 enthalten sind. Dies folgt aber wiederum aus der Halbring-Eigenschaft von H, denn auf
Grund dessen ist Pi \Q j eine disjunkte Vereinigung von Mengen aus H. Schließlich liegt auch A∪ B in R1, denn wir
können A∪ B als disjunkte Vereinigung der Mengen A∩ B, A\ B und B \ A darstellen, die (wie bereits gezeigt) in R1

enthalten sind. Damit ist der Beweis von Aussage (ii) abgeschlossen.

Zum Beweis von (i) bemerken wir zunächst, dass R(H) auf Grund der Ringeigenschaft sämtliche endlichen Vereini-
gungen von Elementen aus H enthält. Umgekehrt ist jedes Element aus R(H), wie wir schon gezeigt haben, sogar
eine endliche disjunkte Vereinigung von Mengen aus H. □
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Definition 2.6 Eine Figur im Rn ist eine endliche Vereinigung von Quadern, also eine Teil-
menge F ⊆Rn der Form F =Q1 ∪ ...∪Q r , mit r ∈N0 und Quadern Q1, ...,Q r im Rn.
(Im Fall r = 0 ist F =∅.)

Aus Satz 2.5 folgt unmittelbar, dass die Figuren im Rn einen Ring bilden. Wir kommen nun zur Einführung eines
geeigneten Volumenbegriffs.

Definition 2.7 Ein Inhalt auf einem Halbring H ist eine Abbildung c : H→ R+ mit c(∅) = 0
und

c (A1 ∪ ...∪ Ar) =
r
∑

i=1

c(Ai)

für r ∈ N0 und paarweise disjunkte Mengen A1, ..., Ar ∈ H mit der Eigenschaft, das auch die
Vereinigung A1 ∪ ...∪ Ar in H enthalten ist. Man bezeichnet diese Eigenschaft als endliche Ad-
ditivität.

Der Begriff des Inhalts ist auf Mengenringen genauso definiert wie auf Mengenhalbringen, d.h. eine Abbildung
c : R → R+ auf einem Mengenring R ist genau dann ein Inhalt, wenn sie die beiden in Definition 2.7 genann-
ten Eigenschaften besitzt. Zum Nachweis der Inhaltseigenschaft genügt es bei Ringen allerdings, die Gültigkeit der
Gleichung c(A1∪A2) = c(A1)+c(A2) für zwei disjunkte A1, A2 ∈R zu nachzuweisen. Die Aussage für beliebiges r ∈N0

erhält man dann durch vollständige Induktion. Für Mengenhalbringen H ist dies in dieser Form nicht möglich: Der In-
duktionsschritt funktioniert nicht, denn aus der Voraussetzung, dass A1∪ ...∪Ar+1 in H liegt, darf nicht ohne weiteres
geschlossen werden, dass auch A1∪ ...∪Ar in H liegt, selbst dann nicht, wenn A j ∈H für 1≤ j ≤ r+1 vorausgesetzt
ist.

Proposition 2.8 Sei c : H→R+ ein Inhalt auf einem Mengenhalbring H.

(i) Für A, B ∈H mit A⊆ B gilt c(A)≤ c(B).
(Diese Eigenschaft bezeichnet man als Monotonie.)

(ii) Ist H ein Mengenring, dann gilt c(A∪ B)≤ c(A) + c(B) für alle A, B ∈H.
(Diese Eigenschaft wird Subadditivität genannt.)

Beweis: zu (i) Auf Grund der Halbring-Eigenschaft existiert eine disjunkte Zerlegung B\A= C1∪ ...∪Cr mit r ∈N0

und C j ∈H für 1≤ j ≤ r. Dies liefert eine disjunkte Zerlegung von B in A∪C1∪ ...∪Cr , und auf Grund der Additivität
erhalten wir

c(B) = c(A) + c(C1) + ...+ c(Cr) ≥ c(A).

zu (ii) Die Vereinigungsmenge A∪B kann als disjunkte Vereinigung der drei Mengen A\B, B\A und A∩B dargestellt
werden. Daraus folgt

c(A∪ B) = c(A\ B) + c(B \ A) + c(A∩ B) =

(c(A\ B) + c(A∩ B)) + (c(B \ A) + c(A∩ B))− c(A∩ B) = c(A) + c(B)− c(A∩ B) ≤ c(A) + c(B). □
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Unser nächstes Ziel besteht darin, auf dem Mengenhalbring der Quader im Rn einen Inhalt einzuführen. Dazu legen
wir die folgende Notation fest: Ist f :R→R eine beliebige Funktion, dann bezeichnet man den Abschluss der Menge
{x ∈ R | f (x) ̸= 0} als Träger supp( f ) von f . Ist der Träger von f in einem endlichen, abgeschlossenen Intervall
[a, b] enthalten und f auf [a, b] Riemann-integrierbar, dann definieren wir

∫

R

f (x) d x =

∫ b

a

f (x) d x .

Man überprüft leicht, dass dieses Integral von der Wahl des Intervalls [a, b] unabhängig ist. Sind die Träger von f
und g in einem endlichen, abgeschlossenen Intervall enthalten, dann gilt dasselbe auch für supp( f + g), und es ist

∫

R

( f + g)(x) d x =

∫

R

f (x) d x +

∫

R

g(x) d x .

Für jedes endliche Intervall I ⊆R mit den Grenzen a, b ∈R, wobei a < b ist, bezeichnen wir c1(I) = ℓ(I) = b− a als
die Länge des Intervalls.

Wenden wir uns nun den höheren Dimensionen zu. Ist Q ein Quader im Rn und kartesisches Produkt der Intervalle
I1, ..., In, so bezeichnen wir cn(Q) =

∏n
j=1 ℓ(I j) als das Volumen des Quaders. Wir verwenden von nun an Hn als

Bezeichnung für den Halbring der Quader im Rn, und Rn für den Ring der Figuren. Ist A ⊆ Rn+1 eine beliebige
Teilmenge, dann definieren wir

Ax = {y ∈Rn | (x , y) ∈ A} für jedes x ∈R.

Ist X eine Menge und A⊆ X eine beliebige Teilmenge, dann bezeichnen wir die Abbildung

1A : X −→ {0, 1} , 1A(x) =

(

1 falls x ∈ A

0 falls x /∈ A

als Indikatorfunktion der Menge A. Ist I ⊆R ein endliches Intervall, dann gilt offenbar
∫

R

1I (x) d x = c1(I) = ℓ(I) ,

insbesondere ist das Integral definiert. Dies überprüft man unmittelbar, indem man die möglichen Fälle für das In-
tervall I einzeln durchgeht.

Lemma 2.9 Sei n ∈ N und A ∈ Hn+1. Dann ist der Träger der Funktion auf R gegeben
durch x 7→ cn(Ax) in einem abgeschlossenen Intervall enthalten, die Funktion ist dort Riemann-
integrierbar, und es gilt

∫

R

cn(Ax) d x = cn+1(A).

Beweis: Da A ein Quader in Rn+1 ist, gibt es nach Definition ein endliches Intervall I und einen Quader Q ⊆Rn, so
dass A= I ×Q ist. Es gilt dann

Ax =

(

Q für x ∈ I

∅ für x /∈ I
, also cn(Ax) =

(

cn(Q) für x ∈ I

0 für x /∈ I .
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Der Träger der Funktion x 7→ cn(Ax) ist also im Abschluss Ī von I enthalten. Dabei ist Ī ein endliches, abgeschlossenes
Intervall der Form [a, b], und es gilt ℓ(I) = ℓ( Ī) = b− a. Da die Funktion x 7→ cn(Ax) auf I konstant ist, ist sie auf Ī
Riemann-integrierbar. Für den Wert des Integrals erhalten wir

∫

R

cn(Ax) d x =

∫ b

a

cn(Ax) d x = ℓ(I)cn(Q) = cn+1(I ×Q) = cn+1(A). □

Satz 2.10 Durch die Volumenfunktion cn : Hn → R+ ist ein Inhalt auf dem Mengenhalbring
Hn gegeben.

Beweis: Nach Definition gilt cn(∅) = 0 für alle n ∈N. Die zweite Eigenschaft einer Inhalts-Abbildung beweisen wir
durch vollständige Induktion über n. Sei zunächst n = 1, r ∈ N0, und seien A1, ..., Ar ∈ H1 paarweise disjunkt und
nichtleer mit der Eigenschaft, dass auch A = A1 ∪ ... ∪ Ar in H1 liegt. Weil die Mengen A1, ..., Ar paarweise disjunkt
sind, gilt 1A(x) =

∑r
i=1 1Ai

(x) für alle x ∈R, und es folgt

c1(A) =

∫

R

1A(x) d x =

∫

R

r
∑

i=1

1Ai
(x) =

r
∑

i=1

∫

R

1Ai
(x) d x =

r
∑

i=1

c1(Ai).

Sei nun n ∈ N und die Inhalts-Eigenschaft für n bereits bewiesen. Seien A1, ..., Ar ∈ Hn+1 paarweise disjunkt mit
A= A1 ∪ ...∪Ar ∈Hn+1. Mit A1, ..., Ar sind auch die n-dimensionalen Quader (Ai)x für alle x ∈R jeweils disjunkt. Es
gilt Ax = (A1)x ∪ ...∪ (Ar)x für jedes x ∈R, denn für alle y ∈Rn gilt die Äquivalenz

y ∈ Ax ⇔ (x , y) ∈ A ⇔ ∃i ∈ {1, ..., r} : (x , y) ∈ Ai ⇔

∃i ∈ {1, ..., r} : y ∈ (Ai)x ⇔ y ∈
r
⋃

i=1

(Ai)x

Durch Anwendung von Lemma 2.7 und der Induktionsvoraussetzung erhalten wir somit

cn+1(A) =

∫

R

cn(Ax) d x =

∫

R

cn

� r
⋃

i=1

(Ai)x

�

d x =

∫

R

r
∑

i=1

c((Ai)x) d x

=
r
∑

i=1

∫

R

cn((Ai)x) d x =
r
∑

i=1

cn+1(Ai). □

Der soeben eingeführte Inhalt soll nun auf den Ring der Figuren fortgesetzt werden.

Satz 2.11 Sei H ein Halbring in Ω und R der von H erzeugte Ring. Dann gibt es für jeden
Inhalt c : H→R+ einen eindeutig bestimmten Inhalt c̃ auf R mit c̃|H = c (also eine Fortsetzung
von c auf R).
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Beweis: Zunächst beweisen wir die Eindeutigkeit. Sei c̃ eine beliebige Fortsetzung von c zu einem Inhalt auf R und
A∈R. Ist A= P1 ∪ ...∪ Pr eine beliebige Darstellung von A als disjunkte Vereinigung von Mengen Pi ∈H, dann gilt

c̃(A) =
r
∑

i=1

c̃(Pi) =
r
∑

i=1

c(Pi). (2.1)

Zum Nachweis der Existenz wählen wir für jedes A ∈ R eine Darstellung als disjunkte Vereinigung P1 ∪ ... ∪ Pr mit
Pi ∈H und definieren c̃(A) durch (2.1). Nach Definition gilt dann c̃(∅) =∅. Ersetzt man in (2.1) die Mengen Pi durch
eine beliebige andere Darstellung von A als disjunkte Vereinigung Q1 ∪ ...∪Qs mit Q j ∈H, so erhält man denselben
Wert. Jedes Pi kann nämlich disjunkt in

Pi = (Pi ∩Q1)∪ ...∪ (Pi ∩Qs)

zerlegt werden. Die Elemente Pi ∩Q j liegen in H, und weil c ein Inhalt auf H ist, gilt

r
∑

i=1

c(Pi) =
r
∑

i=1

s
∑

j=1

c(Pi ∩Q j).

Ebenso beweist man die Gleichung
s
∑

j=1

c(Q j) =
r
∑

i=1

s
∑

j=1

c(Pi ∩Q j) ,

womit die Unabhängigkeit von der Wahl der Zerlegung von A bewiesen ist. Nun zeigen wir, dass c̃(A∪B) = c̃(A)+ c̃(B)
für disjunkte A, B ∈ R gilt. Seien A= P1 ∪ ... ∪ Pr und B = Q1 ∪ ... ∪Qs die zu Beginn gewählten Darstellungen von
A, B als disjunkte Vereinigungen von Mengen Pi ,Q j ∈ H. Dann kann (auf Grund der bewiesenen Unabhängigkeit)
der Wert c̃(A∪B)mit Hilfe der disjunkten Zerlegung P1∪ ...∪Pr ∪Q1∪ ...∪Qs ausgerechnet werden, und wir erhalten

c̃(A∪ B) =
r
∑

i=1

c(Pi) +
s
∑

j=1

c(Q j) = c̃(A) + c̃(B). □

Aus Satz 2.11 folgt unmittelbar die Existenz eines Inhalts cn : Rn → R+ auf dem Ring Rn der Figuren im Rn. Als
nächstes beschäftigen wir uns nun mit der Frage, wie Inhaltsfunktionen auf beliebige Teilmengen des Rn fortgesetzt
werden können.

Definition 2.12 Sei R ein Ring inΩ, c : R→R+ ein Inhalt und A⊆ Ω eine beliebige Teilmenge.
Dann sind das innere Maß c∗(A) bzw. das äußere Maß c∗(A) von A bezüglich c definiert durch

c∗(A) = sup{c(B) | B ∈R, B ⊆ A} und c∗(A) = inf{c(B) | B ∈R, B ⊇ A}.

Sowohl beim inneren als auch beim äußeren Maß ist auch der Wert +∞ möglich. Beim inneren Maß c∗(A) tritt
dieser Fall ein, wenn die Menge {c(B) | B ∈ R, B ⊆ A} in R+ unbeschränkt ist, und beim äußeren Maß c∗(A), wenn
{c(B) | B ∈R, B ⊇ A} die leere Menge ist.

Beim folgenden Lemma setzen wir voraus, dass (entsprechend der üblichen Konvention) für alle a, b ∈ R ∪ {+∞}
die Abschätzung a ≤ +∞ und im Fall a = +∞ oder b = +∞ die Gleichung a+ b = +∞ erfüllt ist.
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Lemma 2.13 Sei R ein Ring in Ω, c : R→R+ ein Inhalt, und seien A, B ⊆ Ω beliebig.

(i) Aus A⊆ B folgt c∗(A)≤ c∗(B) und c∗(A)≤ c∗(B).

(ii) Allgemein gilt c∗(A∪ B)≤ c∗(A) + c∗(B).

(iii) Sind A und B disjunkt, dann gilt c∗(A∪ B)≥ c∗(A) + c∗(B).

Beweis: zu (i) Die Menge M1 = {c(C) | C ∈ R, C ⊆ A} ist in M2 = {c(C) | C ∈ R, C ⊆ B} enthalten, weil für jedes
C ∈R mit C ⊆ A auch C ⊆ B gilt. Im Fall c∗(B) = +∞ ist c∗(A)≤ c∗(B) offenbar erfüllt. Ansonsten ist c∗(B) = sup(M2)
eine obere Schranke von M1. Weil c∗(A) = sup(M1) die kleinste obere Schranke von M1 ist, folgt c∗(A) ≤ c∗(B). Der
Beweis der Abschätzung c∗(A)≤ c∗(B) läuft analog.

zu (ii) Wir können davon ausgehen, dass c∗(A) und c∗(B) beide endlich sind, denn ansonsten ist die Ungleichung
offensichtlich. Sei ϵ ∈ R+ vorgegeben. Nach Definition des äußeren Maßes gibt es Mengen A1, B1 ∈ R mit A1 ⊇ A,
B1 ⊇ B mit c(A1) ≤ c∗(A) + 1

2ϵ und c(B1) ≤ c∗(B) + 1
2ϵ. Wegen A ∪ B ⊆ A1 ∪ B1 liegt c(A1 ∪ B1) in der Menge

{c(C) | C ∈ R, C ⊇ A ∪ B}. Weil c∗(A ∪ B) eine untere Schranke dieser Menge ist, gilt c∗(A ∪ B) ≤ c(A1 ∪ B1) ≤
c(A1) + c(B1)≤ c∗(A) + c∗(B) + ϵ. Weil ϵ beliebig vorgegeben war, folgt c∗(A∪ B)≤ c∗(A) + c∗(B).

zu (iii) Wir setzen voraus, dass c∗(A∪ B) endlich ist. Nach Teil (i) und wegen A, B ⊆ A∪ B sind dann auch c∗(A)
und c∗(B) endlich. Für vorgegebenes ϵ ∈ R+ finden wir A0, B0 ∈ R mit A ⊇ A0, B ⊇ B0 und c(A0) ≥ c∗(A) −

1
2ϵ,

c(B0) ≥ c∗(B) −
1
2ϵ. Mit A, B sind auch A0, B0 disjunkt. Zusammen mit der Inklusion A0 ∪ B0 ⊆ A∪ B folgt daraus

c∗(A∪B)≥ c(A0∪B0) = c(A0)+ c(B0)≥ c∗(A)+ c∗(B)−ϵ. Lassen wir ϵ gegen Null laufen, so erhalten wir c∗(A∪B)≥
c∗(A) + c∗(B). □

Lemma 2.14 Für jede Teilmenge A⊆ Ω gilt c∗(A)≤ c∗(A).

Beweis: Zunächst betrachten wir den Fall, dass c∗(A) unendlich ist. Angenommen, c∗(A) ist endlich. Nach Definition
des Infimums existiert dann ein B ∈R mit B ⊇ A und c(B)≤ c∗(A)+1. Wegen c∗(A) = +∞ finden wir ein C ∈R mit
C ⊆ A mit c(C)> c(B). Wegen C ⊆ A⊆ B muss andererseits c(C)≤ c(B) gelten, wir erhalten also einen Widerspruch.
Also muss c∗(A) = +∞ gelten.

Seien nun c∗(A) und c∗(A) beide endlich, aber c∗(A)> c∗(A). Nach Definition des Infimums finden wir ein B ∈R mit
B ⊇ A und c(B) < c∗(A). Nach Definition des Supremums gibt es andererseits ein C ⊆ A und c(C) > c(B). Wiederum
ergibt sich wegen C ⊆ A⊆ B ein Widerspruch zur Monotonie. □

Lemma 2.15 Sei R ein Ring in Ω und c : R→ R+ ein Inhalt. Dann gilt c∗(A) = c∗(A) = c(A)
für alle A∈R.

Beweis: Die Zahl c(A) ist in der Menge {c(B) | B ⊆ A} enthalten. Weil das Supremum eine obere Schranke dieser
Menge ist, gilt c(A) ≤ c∗(A). Nehmen wir an, dass c(A) < c∗(A) ist. Dann gibt es ein B ∈ R mit B ⊆ A und c∗(A) ≥
c(B)> c(A), was aber der Monotonie der Inhaltsfunktion c widerspricht. Also muss c(A) = c∗(A) gelten.

Für das äußere Maß verläuft der Beweis völlig analog. Die Zahl c(A) ist ein Element der Menge {c(B) | B ⊇ A}, nach
Definition des Infimums gilt also c(A)≥ c∗(A). Durch die Annahme c(A)> c∗(A) erhält man ein B ∈R mit B ⊇ A und
c∗(A)≤ c(B)< c(A), was aber auf Grund der Monotonie von c unmöglich ist. Also gilt auch c(A) = c∗(A). □
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Definition 2.16 Sind die Werte c∗(A) und c∗(A) beide endlich und gilt c∗(A) = c∗(A), dann
bezeichnen wir A als c-messbar und definieren c(A) = c∗(A). Die cn-messbaren Teilmengen E ⊆
Rn werden auch als Jordan-messbar bezeichnet, und man nennt cn(E) den Jordan-Inhalt der
Teilmenge E.

Lemma 2.17 Sei R ein Ring in Ω und c : R→ R+ ein Inhalt. Sei ϵ ∈ R+, E ⊆ Ω beliebig und
A ∈ R mit c∗(A∆ E) < 1

2ϵ. Dann gibt es Mengen A′, B′ ∈ R mit A′ ⊆ E ⊆ B′, A′ ⊆ A⊆ B′ und der
Abschätzung c(B′ \ A′)< ϵ.

Beweis: Nach Definition des äußeren Maßes existiert ein B ∈ R mit B ⊇ A∆ E und c(B) < ϵ. Auf Grund der
Ringeigenschaft liegen B′ = A∪ B und A′ = A \ B beide in R, und es gilt B′ \ A′ = B, also c(B′ \ A′) = c(B) < ϵ.
Außerdem ist A′ = A \ B ⊆ A \ (A∆ E) ⊆ E und E ⊆ A∪ (A∆ E) ⊆ A∪ B = B′. Die Inklusionen A′ ⊆ A ⊆ B′ sind
offensichtlich. □

Satz 2.18 Sei R ein Ring in Ω und c : R→ R+ ein Inhalt. Für eine Teilmenge E ⊆ Ω sind die
folgenden Aussagen äquivalent.

(i) Die Menge E ist c-messbar.

(ii) Für jedes ϵ ∈R+ gibt es A, B ∈R mit A⊆ E ⊆ B und c(B \ A)< ϵ.

(iii) Für jedes ϵ ∈R+ gibt es ein A∈R mit c∗(A∆ E)< ϵ.

Beweis: „(i) ⇒ (ii)“ Sei ϵ ∈ R+ vorgegeben. Nach Definition von c∗(E) existiert ein B ∈ R mit E ⊆ B und
c(B) < c∗(E) + 1

2ϵ. Ebenso finden wir ein A ∈ R mit A ⊆ E und c(A) > c∗(E)−
1
2ϵ. Weil E messbar bezüglich c ist,

gilt c(E) = c∗(E) = c∗(E), und die disjunkte Zerlegung von B in A und B \ A liefert c(B) = c(A) + c(B \ A). Insgesamt
erhalten wir c(B \ A) = c(B)− c(A)< (c(E) + 1

2ϵ)− (c(E)−
1
2ϵ) = ϵ.

„(ii)⇒ (i)“ Sei ϵ ∈ R+ vorgegeben. Auf Grund der Voraussetzung existieren Elemente A, B ∈R mit A⊆ E ⊆ B und
c(B \ A) < ϵ. Es folgt c∗(E)− c∗(E) ≤ c(B)− c(A) = c(B \ A) < ϵ. Weil ϵ ∈ R+ beliebig gewählt war, bedeutet dies
c∗(E) = c∗(E), d.h. E ist messbar bezüglich c.

„(ii) ⇒ (iii)“ Sei ϵ ∈ R+ vorgegeben. Nach Voraussetzung finden wir Elemente A, B ∈ R mit A ⊆ E ⊆ B und
c(B \ A)< ϵ. Es gilt dann A∆ E = E \ A⊆ B \ A und somit c∗(A∆ E)≤ c∗(B \ A) = c(B \ A)< ϵ.

„(iii)⇒ (ii)“ Zu vorgegebenem ϵ ∈R+ wählen wir ein A∈R mit c∗(A∆ E)< 1
2ϵ. Nach Lemma 2.17 gibt es A′, B′ ∈R

mit A′ ⊆ E ⊆ B′, A′ ⊆ A⊆ B′ und c(B′ \ A′)< ϵ. □

Folgerung 2.19 Sei R ein Ring in Ω, c : R→R+ ein Inhalt auf R und E ⊆ Ω eine c-messbare
Menge. Dann gibt es eine Folge (An)n∈N in R mit limn c∗(An∆ E) = 0 und für jede solche Folge
gilt limn c(An) = c(E).
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Beweis: Für jedes n ∈N gibt es nach Satz 2.18 ein An ∈R mit c∗(An∆ E) < 1
n . Dadurch ist die Existenz einer Folge

(An)n∈N mit
lim

n→∞
c∗(An∆ E) = 0 bewiesen.

Sei nun (An)n∈N eine beliebige Folge mit dieser Eigenschaft und ϵ ∈ R+ vorgegeben. Sei N ∈ N so gewählt, dass
c∗(An∆ E)< 1

2ϵ für alle n≥ N erfüllt ist. Sei nun n ∈N mit n≥ N . Nach Lemma 2.17 gibt es Mengen A′, B′ ∈R mit
A′ ⊆ E ⊆ B′ und A′ ⊆ An ⊆ B′ sowie c(B′ \ A′)< ϵ. Nun gilt

c(An)− c(E) = c(An)− c∗(E) ≤ c(B′)− c∗(A′) = c(B′)− c(A′) = c(B′ \ A′) < ϵ

und ebenso c(E)− c(An) = c∗(E)− c∗(An) ≤ c∗(B′)− c∗(A′) = c(B′)− c(A′) = c(B′ \ A′) < ϵ, so dass wir insgesamt
|c(An)− c(E)|< ϵ erhalten. Damit ist auch die Gleichung limn c(An) = c(E) bewiesen. □

Satz 2.20 Sei R ein Ring inΩ und c : R→R+ ein Inhalt. Dann bilden die c-messbaren Mengen
einen Ring Rc , der R als Teilmenge enthält. Durch A 7→ c(A) ist ein Inhalt auf Rc definiert.

Beweis: Nach Lemma 2.15 gilt R ⊆ R̃. Wegen ∅ ∈R ist ∅ nach Lemma 2.15 eine c-messbare Menge. Seien nun A, B
zwei c-messbare Mengen. Zu zeigen ist, dass auch A∪ B und A\ B messbar sind. Sei dazu ϵ ∈R+ vorgegeben. Nach
Satz 2.18 gibt es Mengen A0, A1 ∈R mit A0 ⊆ A⊆ A1 und c(A1 \A0)<

1
2ϵ. Ebenso finden wir Mengen B0, B1 ∈R mit

B0 ⊆ B ⊆ B1 und c(B1 \ B0)<
1
2ϵ. Setzen wir C0 = A0 ∪ B0, C1 = A1 ∪ B1, dann gilt

C1 \ C0 = (A1 ∪ B1) \ (A0 ∪ B0) ⊆ (A1 \ A0)∪ (B1 \ B0).

und somit c(C1 \ C0) ≤ c(A1 \ A0) + c(B1 \ B0) <
1
2ϵ +

1
2ϵ = ϵ. Wegen C0 ⊆ A∪ B ⊆ C1 zeigt dies nach Satz 2.18 die

c-Messbarkeit von A∪ B. Zum Nachweis, dass auch A \ B eine c-messbare Menge ist, setzen wir D0 = A0 \ B1 und
D1 = A1 \ B0. Es gilt dann D0 ⊆ A\ B ⊆ D1 und

D1 \ D0 = (A1 \ B0) \ (A0 \ B1) ⊆ (A1 \ A0)∪ (B1 \ B0).

Wie zuvor erhalten wir c(D1 \ D0)< ϵ. Die Messbarkeit von A\ B ist damit nachgewiesen.

Nun zeigen wir noch, dass durch c ein Inhalt auf Rc definiert ist. Nach Lemma 2.15 gilt c(∅) = c∗(∅) = 0, denn die
leere Menge ist nach Definition in R enthalten. Seien nun A, B ∈Rc zwei disjunkte Mengen; dann liegt auch A∪B in
Rc . Nach Lemma 2.13 gilt die Aussagen c(A∪B) = c∗(A∪B)≤ c∗(A)+ c∗(B) = c(A)+ c(B) und c(A∪B) = c∗(A∪B)≥
c∗(A)∪ c∗(B) = c(A) + c(B), insgesamt also Gleichheit. □

Speziell für den Jordan-Inhalt notieren wir an diese Stelle als wichtige Eigenschaft die Bewegungsinvarianz, die wir
bereits im Einführungsabschnitt erwähnt haben. Wir werden diese Eigenschaft später unter allgemeineren Voraus-
setzungen herleiten.

Satz 2.21 Sei A⊆Rn eine beliebige Teilmenge undψ :Rn→Rn eine Bewegung. Genau dann
ist A Jordan-messbar, wenn ψ(A) Jordan-messbar ist, und in diesem Fall gilt cn(ψ(A)) = cn(A).
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Das folgende Beispiel zeigt, dass bereits auf recht einfache Weise definierte Mengen nicht Jordan-messbar sein
können.

Satz 2.22 Für jedes n ∈N ist die Menge A= [0,1]n ∩Qn nicht Jordan-messbar.

Beweis: Wir beweisen die Gleichungen c∗(A) = 0 und c∗(A) = 1. Zum Beweis der ersten Gleichung nehmen wir an,
dass c∗(A) > 0 ist und somit eine Figur F mit F ⊆ A und c(F) > 0 existiert. Stellen wir F als disjunkte Vereinigung
Q1 ∪ ...∪Q r von Quadern da, so gilt c(Q i) > 0 für ein i mit 1 ≤ i ≤ r. Schreiben wir Q i als Produkt von Intervallen,
Q i = I1 × ...× Ir , dann haben alle Intervalle positive Länge. In jedem Intervall liegt somit eine irrationale Zahl, d.h.
es existiert ein Punkt a ∈Q i \Qn. Aber dies widerspricht den Annahmen Q i ⊆ F ⊆ A⊆Qn.

Nehmen wir nun an, dass c∗(A) < 1 gilt. Dann existiert eine Figur F ⊇ A mit c(F) < 1. Wir können F ⊆ [0,1]n

annehmen (ansonsten ersetze F durch F ∩ [0,1]n). Wegen c([0, 1]n) = 1 ist G = [0,1]n \ F eine Figur mit c(G) > 0.
Indem wir G wie im vorherigen Absatz als Vereinigung von Quadern darstellen, finden wir einen Quader Q ⊆ G mit
c(Q) > 0. Ist Q = I1 × ...× Ir die Darstellung von Q als kartesisches Produkt von Intervallen, so hat jedes Intervall
positive Länge und enthält eine rationale Zahl. Somit liegt in Q ein Punkt aus [0,1]n ∩Qn = A, was der Annahme
Q ⊆ G ⊆ [0, 1]n \ F ⊆ [0,1]n \ A widerspricht. □

Auch Koordinantenhyperebenen wie z.B. {(0, x2, ..., xn) | x i ∈ R für 2 ≤ i ≤ n} ⊆ Rn sind nicht Jordan-messbar
(Nachweis als Übung).

Wir werden im nächsten Abschnitt den Jordanschen Inhalt zum Lebesgue-Maß verallgemeinern. Bei der Konstruktion
wird die folgende Charakterisierung der c-messbaren Mengen, die ohne den Begriff des inneren Maßes auskommt,
für uns hilfreich sein.

Proposition 2.23 Sei R ein Ring und c : R → R+ ein Inhalt. Sei A ∈ P(Ω) eine beliebig
vorgegebene Menge.

(i) Ist F ∈R mit F ⊇ A, dann gilt c∗(A) = c(F)− c∗(F \ A).

(ii) Genau dann ist A c-messbar, wenn c(F)≥ c∗(A) + c∗(F \ A) gilt.

Beweis: zu (i) Wir müssen die Gleichung c(F)− c∗(F \A) = sup { c(B) | B ⊆ A, B ∈R} herleiten. Zum Nachweis, dass
die Zahl auf der linken Seite eine obere Schranke für die Menge rechts ist, sei B ∈ R mit B ⊆ A vorgegeben. Dann
gilt F \ B ⊇ F \ A und somit c∗(F \ A) ≤ c∗(F \ B) = c(F \ B), also c(F)− c∗(F \ A) ≥ c(F)− c(F \ B) = c(B). Nehmen
wir nun an, dass ϵ ∈ R+ und c(F)− c∗(F \ A)− ϵ ebenfalls eine obere Schranke der Menge ist. Nach Definition des
äußeren Maßes gibt es ein B′ ∈R mit B′ ⊇ F \A und c(B′)< c∗(F \A) + ϵ. Es gilt A= F \ (F \A) ⊇ F \ B′. Setzen wir
B = F \ B′, dann gilt also B ∈ R, A ⊇ B und c(B) = c(F)− c(B′) > c(F)− c∗(F \ A)− ϵ, was der Eigenschaft dieser
Zahl, obere Schranke der Menge {c(B) | B ⊆ A, B ∈R} zu sein, widerspricht.

zu (ii) „⇒“ Ist die Menge A c-messbar, dann gilt c∗(A) = c∗(A), also c(F) − c∗(F \ A) = c∗(A) und somit c(F) =
c∗(A) + c∗(F \ A). „⇐“ Auf Grund der Voraussetzung und der Subadditivität von c∗ gilt c(F) = c∗(A) + c∗(F \ A). Es
folgt c∗(A) = c(F)− c∗(F \ A) = c∗(A), d.h. A ist c-messbar. □
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§ 3. σ-Algebren und Maße

Zusammenfassung. Während wir im letzten Kapitel lediglich endliche Mengenoperationen zugelassen haben,
erweitern wir die Strukturen dahingehend, dass auch abzählbar unendliche Mengenoperationen und Grenz-
wertprozesse zugelassen sind. Dies führt auf die beiden zentralen Begriffe der Maßtheorie, die σ-Algebren und
die Maße. Unser Hauptergebnis wird der Fortsetzungssatz von Carathéodory sein, welcher besagt, dass unter
gewissen Bedingungen ein Inhalt auf einem Ring zu einem Maß auf einer σ-Algebra fortgesetzt werden kann.
Dies ermöglicht uns die Erweiterung des Jordan-Inhalts zum bekannten Lebesgue-Maß.

Wichtige Grundbegriffe

– σ-Ring und σ-Algebra

– Borelsche σ-Algebra

– σ-additiver Inhalt

– Maß auf einer σ-Algebra, Maßraum

– äußeres Maß auf einer Menge

– Messbarkeit bezüglich eines äußeren Maßes
(µ∗-Messbarkeit)

– Lebesgue-messbare Mengen und Lebesgue-Maß

Zentrale Sätze

– σ-Additivität des Jordan-Inhalts

– Erzeugendensysteme der Borelschen σ-Algebra

– Satz über die µ∗-Messbarkeit

– Fortsetzungssatz von Carathéodory

Definition 3.1 Ein Inhalt c auf einem Mengenring R wird als σ-additiv oder auch abzähl-
bar additiv bezeichnet, wenn für jede Folge (Am)m∈N paarweise disjunkter Am ∈ R mit A =
⋃∞

m=1 Am ∈R jeweils c(A) =
∑∞

m=1 c(Am) erfüllt ist.

Unser erstes Ziel in diesem Kapitel besteht darin, die σ-Additivät des Jordan-Inhalts auf dem Ring Rn der Figuren
nachzuweisen.

Lemma 3.2 Sei (Am)m∈N eine monoton fallende Folge nichtleerer kompakter Teilmengen Am ⊆
Rn, es gelte also Am ⊇ Am+1 ⊋ ∅ für alle m ∈ N. Dann ist die Schnittmenge A =

⋂∞
m=1 Am

nichtleer.

Beweis: Nehmen wir an, dass A = ∅ gilt. Dann ist die Folge (Bm)m∈N gegeben durch Bm = A1 \ Am eine bezüglich
der Relativtopologie in A1 offene Überdeckung von A1, d.h. es gilt

⋃∞
m=1 Bm = A1. Weil A1 kompakt ist, existiert eine

endliche Teilüberdeckung, also i1, ..., ip ∈N mit i1 ≤ ...≤ ip und
⋃p

j=1 Bi j
= A1. Wir erhalten

Aip
=

p
⋂

j=1

Ai j
=

p
⋂

j=1

(A1 \ Bi j
) = A1 \

�

p
⋃

j=1

Bi j

�

= A1 \ A1 = ∅

im Widerspruch zur Voraussetzung. □
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Lemma 3.3 Sei n ∈N und c der Jordan-Inhalt auf dem Ring R der Figuren imRn. Ist (Am)m∈N
eine monoton fallende Folge in R mit

⋂∞
m=1 Am =∅, dann gilt limm c(Am) = 0.

Beweis: Weil die Folge (c(Am))m∈N monoton fallend und nach unten durch 0 beschränkt ist, existiert der Grenzwert
δ = limm cn(Am) auf jeden Fall als Wert in R+. Nehmen wir an, dass δ > 0 ist. Dann ist jedes Am nichtleer. Nach
Satz 2.5, angewendet auf den Halbring der Quader, kann jedes Am als endliche, disjunkte Vereinigung von Quadern
dargestellt werden. Indem wir jeden Quader durch einen geringfügig kleineren Quader ersetzen, finden wir jeweils
eine Figur Bm mit

B̄m ⊆ Am und c(Am)− c(Bm)≤ 2−mδ.

Dabei bezeichnet B̄m jeweils den topologischen Abschluss von Bm, also eine disjunkte Vereinigung abgeschlossener
Quader. Definieren wir nun

Cm = B1 ∩ ...∩ Bm ,

dann ist (C̄m)m∈N eine monoton fallende Folge kompakter Teilmengen inRn. Nach Lemma 3.2 gilt also
⋂∞

m=1 C̄m ̸=∅,
sofern C̄m ̸= ∅ für alle m ∈ N erfüllt ist. Wegen C̄m ⊆ Am ist dann erst recht

⋂∞
m=1 Am ̸= ∅, im Widerspruch zur

Voraussetzung. Wir beweisen C̄m ̸=∅ für alle m ∈N, indem wir die Abschätzung

c(Cm) ≥ c(Am)−δ(1− 2−m) für alle m ∈N

durch vollständige Induktion herleiten. Betrachten wir zunächst den Fall m = 1. Nach Wahl von B1 gilt die Unglei-
chung c(A1)− c(B1)≤

1
2δ, also

c(C1) = c(B1) ≥ c(A1)−
1
2δ = c(A1)−δ(1− 2−1).

Sei nun m ∈N und die Aussage für m bereits bewiesen. Wegen gilt Cm+1 = Bm+1 ∩ Cm gilt c(Bm+1 ∪ Cm) = c(Bm+1)+
c(Cm)− c(Cm+1). Zusammen mit der Inklusion Bm+1 ∪ Cm ⊆ Am+1 ∪ Am = Am folgt daraus

c(Cm+1) = c(Bm+1) + c(Cm)− c(Bm+1 ∪ Cm) ≥ c(Bm+1) + c(Cm)− c(Am).

Nach Induktionsvoraussetzung gilt die Abschätzung c(Cm) ≥ c(Am) − δ(1 − 2−m), außerdem c(Am+1) − c(Bm+1) ≤
2−(m+1)δ, was zu c(Bm+1)≥ c(Am+1)− 2−(m+1)δ umgestellt werden kann. Durch Einsetzen erhalten wir

c(Cm+1) ≥
�

c(Am+1)− 2−(m+1)δ
�

+
�

c(Am)−δ(1− 2−m)
�

− c(Am)

= c(Am+1)− 2−(m+1)δ−δ(1− 2−m) = c(Am+1)−δ(1− 2−(m+1)).

Insgesamt erhalten wir damit für alle m ∈ N jeweils c(Cm) ≥ c(Am)− δ(1− 2−m) ≥ δ− δ(1− 2−m) = δ2−m > 0. Es
gilt also Cm ̸=∅, damit erst recht C̄m ̸=∅ für alle m ∈N. □

Satz 3.4 Sei n ∈N und R der Ring der Figuren im Rn. Dann ist der Jordan-Inhalt c auf R ein
σ-additiver Inhalt.

Beweis: Sei (Am)m∈N eine Folge paarweise disjunkter Figuren mit der Eigenschaft, dass auch A =
⋃∞

m=1 Am in Rn

enthalten ist. Definieren wir Bm = A\ (A1 ∪ ...∪ Am) für alle m ∈ N, dann ist (Bm)m∈N eine monoton fallende Folge
von Figuren, und es gilt

⋂∞
m=1 Bm = ∅. Auf Grund der Definition von Bm gilt jeweils c(Bm) = c(A)−

∑m
k=1 c(Ak) für

alle m ∈N. Die soeben bewiesene Hilfsaussage liefert die Gleichung limn c(Bm) = 0. Damit erhalten wir nun

c(A) = lim
m→∞

�

c(Bm) +
m
∑

k=1

c(Ak)

�

= lim
m→∞

c(Bm) +
∞
∑

m=1

c(Am) = 0+
∞
∑

m=1

c(Am) =
∞
∑

m=1

c(Am). □
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Definition 3.5 SeiΩ eine Menge. Einσ-Ring inΩ ist ein Ring R, der nicht nur unter endlichen,
sondern auch unter abzählbaren Vereinigungen abgeschlossen ist. Ist also (Am)m∈N eine Folge
in R, dann muss auch

⋃∞
m=1 Am in R liegen. Man nennt R eine σ-Algebra, wenn R zugleich

σ-Ring und Algebra ist.

Aus der Definition ergibt sich unmittelbar

Proposition 3.6 Ein Mengensystem A in Ω ist genau dann eine σ-Algebra, wenn ∅ ∈ A gilt,
für jedes A ∈ A auch das Komplement Ω \ A in A liegt, und wenn für jede Folge (Am)m∈N in A
auch
⋃∞

m=1 Am in A enthalten ist.

Jede σ-Algebra A ist auch abgeschlossen unter abzählbaren Durchschnitten. Ist nämlich (Am)m∈N eine Folge in A,
dann sind auch die Mengen Bm = Ω \ Am in A enthalten, und mit ihnen auch

∞
⋃

m=1

Bm =
∞
⋃

m=1

(Ω \ Am) = Ω \
� ∞
⋂

m=1

Bm

�

.

Dies zeigt, dass auch
⋂∞

m=1 Bm in A enthalten ist.

Ebenso wie Mengenringe können auchσ-Algebren durch Angabe eines Erzeugendensystems defininiert werden. Man
sagt, eine σ-Algebra A wird durch ein System E ⊆P(Ω) erzeugt, wenn A ⊇ E gilt und jede σ-Algebra A′ mit A′ ⊇ E
auch A′ ⊇A erfüllt. Wie bei den Ringen zeigt man, dass jede σ-Algebra durch die Angabe eines Erzeugendensystems
eindeutig bestimmt ist.

Definition 3.7 Die eindeutig bestimmte σ-Algebra Bn, die von den Quadern im Rn erzeugt
wird, nennt man die Borelsche σ-Algebra. Ihre Elemente bezeichnet man als Borelmengen.

Für die σ-Algebra Bn lassen sich viele weitere Erzeugendensysteme angeben.

Satz 3.8 Die Borelsche σ-Algebra wird außer von den Quadern noch von folgenden Mengen-
systemen erzeugt.

(i) dem Ring der Figuren im Rn

(ii) dem System aller offenen Teilmengen von Rn

(iii) dem System aller abgeschlossenen Teilmengen von Rn

(iv) dem System aller kompakten Teilmengen von Rn
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Beweis: zu (i) Jede σ-Algebra, welche die Menge aller Quader enthält, besitzt auch alle Figuren als Elemente,
denn jede Figur ist nach Definition als Vereinigung von Quadern darstellbar. Umgekehrt enthält jede σ-Algebra mit
den Figuren auch alle Quader, denn nach Definition ist jeder Quader eine Figur.

zu (ii) Sei A eine σ-Algebra, die alle offenen Teilmengen von Rn enthält. Dann liegen auch alle abgeschlossenen
Teilmengen (als Komplemente der offenen Mengen) in A. Dies bedeutet, dass insbesondere alle abgeschlossenen
Quader in A enthalten sind. Man überprüft unmittelbar, dass jeder Quader Q relativ-offen in seinem topologischen
Abschluss Q̄ ist. Deshalb kann Q als Durchschnitt von Q̄ mit einer geeigneten offenen Teilmenge U ⊆ Rn dargestellt
werden und ist somit ebenfalls in A enthalten.

Sei nun A eine σ-Algebra, die alle Quader enthält und U ⊆ Rn eine offene Menge. Wir müssen zeigen, dass U in A
enthalten ist. Dazu betrachten wir die (abzählbare) Menge UQ = U∩Qn und bilden für jeden Punkt a ∈ UQ den Wert

δa = sup{δ ∈R+ | Bδ(a) ⊆ U}

wobei Bδ(a) = {x ∈Rn | ∥x−a∥∞ < δ} den offenen Ball um a vom Radius δ bezüglich der Maximums-Norm aufRn

bezeichnet; dabei handelt es sich um den Würfel der Kantenlänge 2δ mit a als Zentrum. Weil U offen ist, gilt δa > 0
für alle a ∈ UQ. Unser Ziel U ∈A nachzuweisen ist erreicht, sobald wir die Gleichung

U =
⋃

a∈UQ

Bδa
(a)

bewiesen haben. Zunächst zeigen wir die Inklusion „⊇“ und nehmen an, dass ein a ∈ UQ mit Bδa
(a) ̸⊆ U existiert.

Sei x ∈ Bδa
(a) \ U . Dann gilt δ′ = ∥x − a∥∞ < δa, und bereits jede Zahl δ′′ mit δ′ < δ′′ < δa erfüllt die Bedingung

Bδ′′(a) ⊆ U nicht mehr. Dies widerspricht aber der Definition von δa. Zum Nachweis von „⊆“ sei x0 ∈ U vorgegeben.
Sei δ ∈R+ so gewählt, dass Bδ(x0) in U enthalten ist und a ∈ UQ mit ∥a− x0∥∞ <

1
2δ. Auf Grund der Dreiecksun-

gleichung gilt dann B 1
2δ
(a) ⊆ Bδ(x0) ⊆ U (denn aus ∥x − a∥∞ < 1

2δ folgt ∥x − x0∥∞ ≤ ∥x − a∥∞ + ∥a − x0∥∞ <
1
2δ +

1
2δ = δ) und somit 1

2δ ≤ δa nach Definition von δa. Daraus wiederum folgt x0 ∈ Bδa
(a), d.h. x0 ist in der

Menge auf der rechten Seite unserer Gleichung enthalten.

zu (iii) Dies folgt direkt aus (ii), weil die abgeschlossenen Teilmengen die Komplemente der offenen sind.

zu (iv) Jedeσ-Algebra, die alle abgeschlossenen Teilmengen vonRn enthält, enthält auch alle kompakten, denn die
kompakten Teilmengen sind gerade die beschränkten und abgeschlossenen Teilmengen von Rn. Sei nun umgekehrt
A eine σ-Algebra, die alle kompakten Teilmengen von Rn enthält, und sei V ⊆ Rn abgeschlossen. Dann ist Vm =
[−m, m]n ∩ V für jedes m ∈N kompakt, also in A enthalten. Damit liegt dann aber auch die abzählbare Vereinigung

∞
⋃

m=1

Vm =

� ∞
⋃

m=1

[−m, m]n
�

∩ V = Rn ∩ V = V in der σ-Algebra A. □

Für den weiteren Verlauf definieren wir die Bezeichnung R̄ = R∪ {−∞,+∞}, wobei −∞ und +∞ zwei nicht in
der Menge R enthaltene Elemente bezeichnen und die Totalordnung ≤ auf R durch die Festlegung −∞≤ a ≤ +∞
für alle a ∈R definiert ist. Außerdem setzen wir R̄+ =R+ ∪ {+∞}.

Definition 3.9 Sei A eine σ-Algebra. Eine Funktion µ : A → R̄+, die den Bedingungen
µ(∅) = 0 und µ(

⋃∞
m=1 Am) =
∑∞

m=1µ(Am) für jede Folge (Am)m∈N paarweise disjunkter Mengen
in A genügt, wird als Maß auf A bezeichnet. Ein Tripel (Ω,A,µ) bestehend aus einer Menge Ω,
einer σ-Algebra A in Ω und einem Maß µ auf A wird Maßraum genannt.
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Insbesondere ist jeder σ-additive Inhalt auf einer σ-Algebra ein Maß. Der einzige Unterschied besteht darin, dass
der Inhalt seine Werte nur in R+ annimmt, der Wert {+∞} also ausgeschlossen ist. Wir betrachten einige Beispiele
für Maße.

(i) Sei Ω eine Menge. Dann bezeichnet man die Abbildung ν : P(Ω) → N0 ∪ {+∞} gegeben durch ν(A) = |A|
als Zählmaß auf Ω. (Wie im ersten Semester definiert wurde, ist |A| = n ∈ N0, falls eine Bijektion zwischen
Mn = {1,2, ..., n} und A existiert, und |A|= +∞, falls kein n ∈N0 mit einer solchen Bijektion existiert.)

(ii) Sei n ∈ N und Ω eine Menge mit n Elementen. Dann ist durch µ : P(Ω) → R+, A 7→ 1
n |A| ein Maß auf

Ω definiert, für das µ(Ω) = 1 gilt. Allgemein bezeichnet man ein Maß µ in einem Maßraum (Ω,A,µ) mit
der Eigenschaft µ(Ω) = 1 als Wahrscheinlichkeitsmaß. In dem hier vorliegenden Fall kann µ(A) jeweils als
Wahrscheinlichkeit dafür interpretiert werden, dass ein zufällig gewähltes Element x ∈ Ω in A enthalten ist.

(iii) Sei (Ω,A,µ) ein Maßraum. Existiert ein x ∈ Ω, so dass für alle A∈A jeweils

µ(A) =

(

1 falls x ∈ A

0 falls x /∈ A

erfüllt ist, dann bezeichnet man µ als das Dirac-Maß δx im Punkt x .

Im weiteren Verlauf beschäftigen wir uns nun mit der Konstruktion von Maßen und insbesondere mit der Frage, wie
man Maße aus Inhalten gewinnen kann.

Definition 3.10 Eine Abbildung µ∗ : P(Ω)→ R̄+ wird ein äußeres Maß auf Ω genannt, wenn
µ∗(∅) = 0 gilt, die Abbildung monoton ist (aus A ⊆ B also µ∗(A) ≤ µ∗(B) folgt) und für jede
Folge (Am)m∈N in P(Ω) die Abschätzung

µ∗
�∞
⋃

n=1

An

�

≤
∞
∑

n=1

µ∗(An) erfüllt ist.

Die zuletzt angegebene Eigenschaft des äußeren Maßes bezeichnet man als abzählbare Subadditivität. Man sagt
auch, das äußere Maß ist σ-subadditiv.

Satz 3.11 Sei R ⊆P(Ω) ein Mengenring und c : R→ R̄+ ein Inhalt. Für jedes A⊆ Ω definieren
wir

µ∗c(A) = inf

¨∞
∑

n=1

c(An)

�

�

�

�

(An)n∈N Folge in R, A⊆
∞
⋃

n=1

An

«

,

wobei inf(∅) = +∞ gesetzt wird. Dann ist durch µ∗c ein äußeres Maß auf Ω definiert.
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Beweis: Zunächst gilt ∅ ∈ R und offenbar µ∗c(∅) = c(∅) = 0. Für jedes A ⊆ Ω bezeichnen wir mit s(A) die Menge
aller Summen
∑∞

n=1 c(An), die durch Folgen (An)n∈N in R mit
⋃∞

m=1 Am ⊇ A zu Stande kommen. Sind A, B ∈ P(Ω)
mit A ⊆ B vorgegeben, dann gilt s(B) ⊆ s(A), denn eine Folge, die B überdeckt, überdeckt auch die Menge A. Die
untere Schranke µ∗(A) = inf s(A) ist somit auch eine untere Schranke von B, und nach Definition des Infimums folgt
µ∗c(B) = inf s(B)≥ µ∗c(A). Damit haben wir die Monotonie nachgewiesen.

Zum Nachweis der dritten Bedingung sei (An)n∈N eine beliebige Folge in P(Ω) und A=
⋃∞

n=1 An. Wir können µ∗c(An)<
+∞ für alle n ∈N annehmen, da ansonsten die Ungleichung

µ∗c(A) ≤
∞
∑

m=1

µ∗c(An) (3.1)

offensichtlich erfüllt ist. Ist ϵ ∈ R+ beliebig vorgegeben, so finden wir für jedes n ∈ N eine Folge (Ank)k∈N in R mit
An ⊆
⋃∞

k=1 Ank und
∑∞

k=1 c(Ank)< µ∗c(An) + 2−nϵ. Es folgt

A⊆
∞
⋃

n=1

∞
⋃

k=1

Ank

und somit

µ∗c(A) ≤
∞
∑

n=1

�∞
∑

k=1

c(Ank)

�

≤
∞
∑

n=1

(µ∗c(An) + 2−nϵ) ≤

∞
∑

n=1

µ∗c(An) +
∞
∑

n=1

2−nϵ ≤
∞
∑

n=1

µ∗c(An) + ϵ.

Weil ϵ ∈R+ beliebig gewählt war, erhalten wir die Abschätzung (3.1). □

Definition 3.12 Das zum Jordan-Inhalt cn auf dem Ring Rn der Figuren im Rn gehörende
äußere Maß µ∗cn

wird äußeres Lebesgue-Maß genannt. Wir bezeichnen es mit µ∗n.

Für die Bestimmung des äußeren Maßes genügt es, abzählbare Vereinigungen von Quadern (an Stelle von Figuren)
zu betrachten, da jede Figur nach Definition endliche Vereinigung von Quadern ist.

In Definition 2.12 hatten wir bereits jedem Inhalt c auf einem Ring ein äußeres Maß c∗ zugeordnet. Für beliebige
Teilmengen A⊆ Ω gilt im Allgemeinen c∗(A)≥ µ∗c(A), aber nicht Gleichheit. Der Grund dafür ist, dass für jede solche
Teilmenge jeweils

�

c(B)

�

�

�

�

B ∈R , B ⊇ A

�

⊇

¨∞
∑

n=1

c(An)

�

�

�

�

(An)n∈N Folge in R, A⊆
∞
⋃

n=1

An

«

gilt,

die Mengen aber nicht übereinzustimmen brauchen. Bezogen auf den Jordan-Inhalt und das äußere Lebesgue-Maß
gilt für A= [0,1]n ∩Qn beispielsweise µ∗n(A) = 0 im Gegensatz zu c∗n(A) = 1. Ist H die erste Koordinatenhyperebene,
also H = {(0, x2, ..., xn) | x i ∈R für 2≤ i ≤ n}, dann gilt µ∗n(H) = 0 und c∗n(H) = +∞.

Im allgemeinen braucht ein äußeres Maß aber nicht wie in Satz 3.11 durch einen Inhalt auf einem Ring induziert zu
sein; es gibt auch andere Möglichkeiten, ein äußeres Maß auf einer Menge zu definieren. Die folgende Definition ist
durch Proposition 2.23 motiviert.
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Definition 3.13 Sei µ∗ : P(Ω)→ R̄+ ein äußeres Maß. Wir bezeichnen eine Menge A⊆ Ω als
µ∗-messbar, wenn für alle F ⊆ Ω die Ungleichung

µ∗(F) ≥ µ∗(F ∩ A) +µ∗(F \ A) erfüllt ist.

Man beachte, dass die angegebene Ungleichung auf Grund der Subadditivität von äußeren Maßen äquivalent zur
Gleichheit ist.

Satz 3.14 Sei µ∗ : P(Ω) → R̄+ ein äußeres Maß und Aµ∗ die Gesamtheit der µ∗-messbaren
Mengen. Dann ist Aµ∗ eine σ-Algebra, und durch µ̃= µ∗|Aµ∗

ist ein Maß auf Aµ∗ definiert.

Beweis: Offenbar ist ∅ in Aµ∗ enthalten, denn es gilt µ∗(F ∩∅) = µ∗(∅) = 0 und µ∗(F \∅) = µ∗(F). Mit A ist auch
A1 = Ω \ A in Aµ∗ enthalten. Denn für jede Teilmenge F ⊆ Ω gilt dann µ∗(F) ≥ µ∗(F ∩ A) + µ∗(F \ A), und wegen
F ∩ A1 = F ∩ (Ω \ A) = F \ A und F \ A1 = F \ (Ω \ A) = F ∩ A gilt auch µ∗(F)≥ µ∗(F ∩ A1) +µ∗(F \ A1).

Seien nun A, B ∈Aµ∗ vorgegeben. Um zu zeigen, dass auch A∪B in Aµ∗ liegt, müssen wir die Messbarkeits-Bedingung
für ein beliebiges F ⊆ Ω verifizieren. Weil die Menge A µ∗-messbar ist, gilt µ∗(F) = µ∗(F ∩ A) + µ∗(F \ A), und die
µ∗-Messbarkeit von B liefert

µ∗(F \ A) = µ∗((F \ A)∩ B) +µ∗(F \ (A∪ B)).

Es folgt dann

µ∗(F) = µ∗(F ∩ A) +µ∗(F \ A) = µ∗(F ∩ A) +µ∗((F \ A)∩ B) +µ∗(F \ (A∪ B)) ≥

µ∗((F ∩ A)∪ ((F \ A)∩ B)) +µ∗(F ∩ \(A∪ B)) = µ∗(F ∩ (A∪ B)) +µ∗(F ∩ \(A∪ B)) ,

wobei im letzten Schritt die Mengengleichung

(F ∩ A)∪ ((F \ A)∩ B) = (F ∩ A)∪ (F ∩ A∩ B)∪ ((F \ A)∩ B) = (F ∩ A)∪ (F ∩ B) = F ∩ (A∪ B)

verwendet wurde. Wir haben somit gezeigt, dass Aµ∗ eine Algebra ist.

Im zweiten Teil beweisen wir nun, dass Aµ∗ eine σ-Algebra, und dass durch µ̃= µ∗|Aµ∗
ein Maß auf Aµ∗ definiert ist.

Nach Definition eines äußeren Maßes gilt µ̃(∅) = µ∗(∅) = 0. Seien nun A, B ∈ Aµ∗ disjunkt. Für alle F ⊆ Ω gilt auf
Grund der Messbarkeit von A die Gleichung

µ∗(F ∩ (A∪ B)) = µ∗(F ∩ (A∪ B)∩ A) +µ∗((F ∩ (A∪ B)) \ A) = µ∗(F ∩ A) +µ∗(F ∩ B).

Durch vollständige Induktion erhalten wir

µ∗(F ∩ (A1 ∪ ...∪ Ar)) =
r
∑

k=1

µ∗(F ∩ Ak) (3.2)
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für alle r ∈ N und paarweise disjunkte Mengen A1, ..., Ar ∈ Aµ∗ . Sei nun (An)n∈N eine Folge paarweise disjunkter
Mengen in Aµ∗ . Wegen

⋃n
k=1 Ak ∈Aµ∗ und auf Grund der soeben bewiesenen Gleichung gilt

µ∗(F) = µ∗
�

F ∩
� n
⋃

k=1

Ak

��

+µ∗
�

F \
� n
⋃

k=1

Ak

��

=
n
∑

k=1

µ∗(F ∩ Ak) +µ
∗
�

F \
� n
⋃

k=1

Ak

��

.

Lassen wir n gegen unendlich laufen, dann erhalten wir auf Grund der Monotonie vonµ∗ und der Inklusionsbeziehung
⋃n

k=1 Ak ⊆
⋃∞

n=1 An die Ungleichung

µ∗(F) ≥
∞
∑

n=1

µ∗(F ∩ An) +µ
∗
�

F ∩ \
�∞
⋃

n=1

An

��

(3.3)

≥ µ∗
�

F ∩
�∞
⋃

n=1

An

��

+µ∗
�

F \
�∞
⋃

n=1

An

��

, (3.4)

wobei wir im zweiten Schritt die σ-Subadditivität des äußeren Maßes µ∗ verwendet haben. Also ist
⋃∞

n=1 An in Aµ∗
enthalten. Ist (An)n∈N eine beliebige (nicht notwendig disjunkte) Folge in Aµ∗ , dann definieren wir eine disjunkte
Folge (Bn)n∈N durch B1 = A1 und Bn+1 = An+1 \ (B1 ∪ ...∪ Bn). Es gilt

⋃∞
n=1 An =
⋃∞

n=1 Bn, also ist mit (An)n∈N auch
⋃∞

n=1 An in Aµ∗ enthalten.

Ist (An)n∈N nun wiederum eine disjunkte Folge in Aµ∗ , dann können wir in die Ungleichung (3.3) die Menge F =
⋃∞

k=1 Ak einsetzen. Wegen An ∩
�⋃∞

k=1 Ak

�

= An und An \
�⋃∞

k=1 Ak

�

=∅ für alle n ∈N gilt

µ∗
�∞
⋃

n=1

An

�

≥
∞
∑

n=1

µ∗(An) +µ
∗(∅) =

∞
∑

n=1

µ∗(An).

Zusammen mit der abzählbaren Subadditivität von µ∗ erhalten wir Gleichheit. Dies zeigt, dass die Einschränkung
von µ∗ auf Aµ∗ tatsächlich ein Maß liefert. □

Definition 3.15 Sei n ∈ N und µ∗n das äußere Lebesgue-Maß auf dem Rn. Dann bezeichnet
man die Elemente der σ-Algebra Aµ∗n als die Lebesgue-messbaren Teilmengen des Rn, und das
entsprechende Maß als Lebesgue-Maß.

Für die σ-Algebra Aµ∗n verwenden wir die einfachere Bezeichnung An, und µn für das Lebesgue-Maß auf An.

Unsere nächste Aufgabe besteht in dem Nachweis, dass es sich beim Lebesgue-Maß µn um eine Fortsetzung des
Jordan-Inhalts cn : Rn→R+ handelt. Ausschlaggebend ist hierbei die in Satz 3.4 festgestellte σ-Additivität von cn.

Satz 3.16 (Fortsetzungssatz von Carathéodory)

Sei R ein Ring in Ω, c : R→ R̄+ ein σ-additiver Inhalt und µ∗c : P(Ω)→ R̄+ das zu c gehörende
äußere Maß. Mit der Notation aus Satz 3.14 gilt dann R ⊆ Aµ∗c und außerdem µ∗c |R = c, d.h. c
wird durch µ∗c fortgesetzt.
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Beweis: Wir bemerken vorweg, dass aus der σ-Additivität von c die abzählbare Subadditivität folgt. Sei nämlich
(Bm)m∈N eine Folge in R mit der Eigenschaft, dass auch B =

⋃∞
m=1 Bm in R enthalten ist. Dann können wir dieser Folge

wie im Beweis von Satz 3.14 eine Folge paarweise disjunkter Mengen (Cm)m∈N mit Cm ⊆ Bm und
⋃m

k=1 Bk =
⋃m

k=1 Ck

für alle m ∈N zuordnen, und wegen B =
⋃∞

m=1 Cm gilt dann

c(B) = c

� ∞
⋃

m=1

Cm

�

=
∞
∑

m=1

c(Cm) ≤
∞
∑

m=1

c(Bm).

Für ein beliebig vorgegebenes A∈R beweisen wir nun zunächst die Gleichung c(A) = µ∗c(A). Definieren wir die Folge
(An)n∈N in R durch A1 = A und An = ∅ für n ≥ 2, dann gilt wegen

⋃∞
n=1 An ⊇ A nach Definition des äußeren Maßes

die Ungleichung µ∗c(A) ≤
∑∞

n=1 c(An), und die Summe ist offenbar gleich c(A); insbesondere ist µ∗c(A) also endlich.
Sei nun (An)n∈N eine beliebige Folge in R mit

A⊆
∞
⋃

n=1

An und
∞
∑

n=1

c(An)< +∞ ;

dass es mindestens eine solche Folge gibt, haben wir soeben nachgewiesen. Die abzählbare Subadditivität von c und
die Gleichung A=

⋃∞
n=1(A∩ An) liefern

c(A) = c

�∞
⋃

n=1

(A∩ An)

�

≤
∞
∑

n=1

c(A∩ An) ≤
∞
∑

n=1

c(An).

Bilden wir das Infimum über alle Folgen (An)n∈N in R mit A ⊆
⋃∞

n=1 An, dann erhalten wir c(A) ≤ µ∗c(A), insgesamt
also Gleichheit.

Nun beweisen wir die Inklusion R ⊆Aµ∗c . Für gegebene A∈R und F ⊆ Ω müssen wir die Ungleichung

µ∗c(F) ≥ µ∗c(F ∩ A) +µ∗c(F \ A) nachweisen.

Im Fall µ∗c(F) = +∞ ist nichts zu zeigen; wir können also davon ausgehen, dass eine Folge (An)n∈N in R mit F ⊆
⋃∞

n=1 An und
∑∞

n=1 c(An) < +∞ existiert. Die Mengen An ∩ A bilden eine Überdeckung von F ∩ A, und die Mengen
An \ A eine Überdeckung von F \ A durch Elemente aus R. Wir erhalten somit die Abschätzung

µ∗c(F ∩ A) +µ∗c(F \ A) ≤
∞
∑

n=1

c(An ∩ A) +
∞
∑

n=1

c(An \ A)

=
∞
∑

n=1

(c(An ∩ A) + c(An ∩ \A)) =
∞
∑

n=1

c(An)< +∞.

Durch Übergang zum Infimum über alle Folgen (An)n∈N in R mit F ⊆
⋃∞

n=1 An erhalten wir die gewünschte Ab-
schätzung µ∗c(F ∩ A) +µ∗c(F \ A)≤ µ∗c(F). Also ist A in Aµ∗c enthalten. □

Folgerung 3.17 Der Ring Rn der Figuren im Rn ist in der σ-Algebra An der Lebesgue-
messbaren Mengen enthalten. Damit ist auch die Borel-Algebra Bn im Rn eine Teilmenge von
An (denn dies ist nach Definition die kleinste σ-Algebra, die R enthält). Das Lebesgue-Maß µn

stimmt auf Rn mit dem Jordan-Inhalt überein.

Im nächsten Kapitel werden wir zeigen, dass auch der in § 2 definierte Ring der Jordan-messbaren Teilmengen in An

enthalten ist, und dass der Jordan-Inhalt cn auf diesem Ring mit dem Lebesgue-Maß µn übereinstimmt.
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§ 4. Eindeutigkeit der Fortsetzung und Vollständigkeit

Zusammenfassung. Nach dem Fortsetzungssatz von Carathéodory aus dem letzten Kapitel kann jeder σ-
additive Inhalt c auf einem Ring R zu einem Maß auf einer gewissen σ-Algebra Aµ∗ fortgesetzt werden kann.
Dadurch erhalten wir auch eine Fortsetzung von c zu einem Maß auf der von R erzeugten σ-Algebra σ(R).
Mit Hilfe des Konzepts der Dynkin-Systeme werden wir in diesem Kapitel zeigen, dass diese Fortsetzung unter
der Voraussetzung, dass c nicht nur σ-additiv, sondern auch σ-endlich ist, eindeutig bestimmt ist.

Eine σ-Algebra A wird als vollständig bezüglich eines Maßes µ bezeichnet, wenn jede Teilmenge einer µ-
Nullmenge (also einer Menge N ∈ A mit µ(N) = 0) ebenfalls in A enthalten ist. Auf jeden Fall kann A stets
zu einer vollständigen σ-Algebra erweitert werden; diesen Vorgang bezeichnet man als Vervollständigung.
Wir zeigen, dass für einen σ-additiven, σ-endlichen Inhalt auf einem Ring R die σ-Algebra Aµ∗ aus dem
Fortsetzungssatz eine Vervollständigung von σ(R) darstellt. Insbesondere ist die σ-Algebra An der Lebesgue-
messbaren Mengen eine Vervollständigung der Borelschen σ-Algebra Bn.

Wichtige Grundbegriffe

– Dynkin-System

– ∩-stabiles Mengensystem

– σ-endlicher Inhalt

– vollständiger Maßraum, Vervollständigung

Zentrale Sätze

– Eindeutigkeit der Fortsetzung σ-endlicher Inhalte

– µ∗-Kriterium für die Messbarkeit in vollständigen
Maßräumen

– Lebesgue-messbare Mengen als Vervollständigung
der Borelschen σ-Algebra

– innere und äußerer Regularität des Lebesgue-Maßes

In diesem Kapitel soll ein hinreichendes Kriterium dafür ermittelt werden, dass die Fortsetzung von einem Inhalt auf
eine σ-Algebra eindeutig bestimmt ist. Der folgende Begriff wird für den Beweis dieses Eindeutigkeitsresultats eine
wichtige Rolle spielen.

Definition 4.1 Eine Teilmenge D ⊆ P(Ω) heißt Dynkin-System in Ω, wenn folgende Bedin-
gungen erfüllt sind.

(i) Es gilt ∅ ∈ D.

(ii) Für jedes D ∈ D liegt auch Ω \ D in D.

(iii) Ist (Dn)n∈N eine Folge paarweise disjunkter Mengen in D, dann ist auch die Vereinigungs-
menge
⋃∞

n=1 Dn in D enthalten.

Auch endliche disjunkte Vereinigungen von Elementen aus einem Dynkin-System D sind wieder in D enthalten; man
betrachtet dazu Folgen, in denen alle bis auf endliche viele Mengen leer sind. Sind D, E ∈ D mit D ⊆ E, dann liegt
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auch die Menge E \D = E∩ (Ω\D) = Ω\ (D∪ (Ω\ E)) in D. Die Definition des Dynkin-Systems bleibt erhalten, wenn
man die Bedingungen (i),(ii) durch

(i)’ Ω ∈ D

(ii)’ D, E ∈ D, D ⊆ E⇒ E \ D ∈ D

ersetzt, denn es gilt ∅= Ω \Ω für alle D ∈ D.

Nach Definition ist eine σ-Algebra in Ω ein Mengensystem A mit ∅ ∈ A, dass unter Komplementbildung und ab-
zählbaren Vereinigungen beliebiger Mengen abgeschlossen ist. Somit ist jede σ-Algebra auch ein Dynkin-System. Es
stellt sich die Frage, welche zusätzliche Eigenschaft ein Dynkin-System benötigt, um zu einer σ-Algebra zu werden.
Allgemein bezeichnen wir ein Mengensystem E ⊆P(Ω) als ∩-stabil, wenn für alle A, B ∈ E auch A∩ B in E liegt.

Satz 4.2 Ein Dynkin-System ist genau dann eine σ-Algebra, wenn es ∩-stabil ist.

Beweis: Jede σ-Algebra ist ∩-stabil und (wie wir bereits festgestellt haben) ein Dynkin-System. Sei nun D ein ∩-
stabiles Dynkin-System; wir zeigen, dass D eine σ-Algebra ist. Zunächst gilt nach Definition ∅ ∈ D. Sind A, B ∈ D
vorgegeben, dann liegt nach Voraussetzung auch A∩B in D, damit auch A\B = A\ (A∩B) wegen A∩B ⊆ A nach (ii)’
und A∪B = (A\B)∪B wegen (A\B)∩B =∅ nach (iii). Es bleibt zu zeigen, dass D abgeschlossen unter abzählbaren
Vereinigungen ist. Sei dazu (An)n∈N eine beliebige Folge in D. Definieren wir A′0 = ∅ und A′n+1 = A′n ∪ An+1 für alle
n ∈N, dann gilt

∞
⋃

n=1

An =
∞
⋃

n=1

(A′n+1 \ A′n).

Die Inklusion „⊇“ ist offensichtlich. Ist x ein Element der Menge auf der linken Seite, dann wählen wir n ∈ N0

minimal mit x ∈ An+1 und erhalten x ∈ A′n+1 \ A′n. Wir haben bereits gezeigt, dass D abgeschlossen unter endlichen
Vereinigungen und Differenzbildung ist. Deshalb sind die Mengen A′n ud A′n+1 \A

′
n in D enthalten. Außerdem sind die

Mengen A′n+1 \ A′n paarweise disjunkt; dies zeigt, dass auch die Vereinigungsmenge
⋃∞

n=1 An in D liegt. □

Ist E ⊆P(Ω) ein beliebiges Mengensystem, dann bezeichnen wir von nun an mit σ(E) die von E erzeugte σ-Algebra
und mit δ(E) das von E erzeugte Dynkin-System, also das kleinste Dynkin-System in Ω, dass E als Teilmenge enthält.
Der folgende Satz spielt für die Konstruktion von σ-Algebren eine wichtige Rolle.

Satz 4.3 Für jedes ∩-stabile Mengensystem E ⊆P(Ω) gilt δ(E) = σ(E).

Beweis: Jede σ-Algebra ist ein Dynkin-System, insbesondere auch σ(E). Weil δ(E) nach Definition das kleinste
Dynkin-System ist, das E umfasst, gilt δ(E) ⊆ σ(E). Wir zeigen nun, dass δ(E) eine σ-Algebra ist und beweisen
auf diesem Wege die Übereinstimmung δ(E) = σ(E). Wegen Satz 4.2 genügt es zu zeigen, dass δ(E) ein ∩-stabiles
Mengensystem ist. Für jedes D ∈ δ(E) definieren wir das Mengensystem

DD = {Q ∈P(Ω) |Q ∩ D ∈ δ(E)}
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und überprüfen, dass es sich jeweils um ein Dynkin-System handelt: Wegen Ω∩ D = D ∈ δ(E) ist zunächst Ω ∈ DD,
also Bedingung (i)’ erfüllt. Sind Q, R ∈ DD mit Q ⊆ R, dann liegen Q∩ D und R∩ D in δ(E). Es gilt Q∩ D ⊆ R∩ D und
somit (R \Q) ∩ D = (R ∩ D) \ (Q ∩ D) ∈ δ(E), weil δ(E) ein Dynkin-System ist. Also ist auch R \Q in DD enthalten
und somit Eigenschaft (ii)’ bewiesen. Sei nun (Dn)n∈N eine Folge paarweise disjunkter Mengen Dn ∈ DD. Dann gilt
Dn ∩ D ∈ δ(E) für alle n ∈N. Weil die Mengen Dn ∩ D paarweise disjunkt und δ(E) ein Dynkin-System ist, folgt

�∞
⋃

n=1

Dn

�

∩ D =
∞
⋃

n=1

(Dn ∩ D) ∈ δ(E)

und damit
⋃∞

n=1 Dn ∈ DD. Damit ist auch die Eigenschaft (iii) nachgewiesen. Nun beweisen wir die ∩-Stabilität von
δ(E) in drei Schritten.

1. Schritt: A, B ∈ E ⇒ A∩ B ∈ δ(E)
Die Aussage ist klar, denn wegen der ∩-Stabilität liegt A∩ B in E und damit auch in δ(E).

2. Schritt: A∈ δ(E), B ∈ E ⇒ A∩ B ∈ δ(E)
Sei B ∈ E beliebig vorgegeben. Nach Schritt 1 gilt A ∈ E ⇒ A∩ B ∈ δ(E) für beliebiges A, also E ⊆ DB. Weil DB ein
Dynkin-System ist, folgt δ(E) ⊆ DB, also A∩B ∈ δ(E) für alle A∈ δ(E). Weil B beliebig gewählt war, erhalten wir die
gewünschte Aussage.

3. Schritt: A, B ∈ δ(E)⇒ A∩ B ∈ δ(E)
Sei A∈ δ(E) beliebig vorgegeben. Nach Schritt 2 gilt E ⊆ DA und somit δ(E) ⊆ DA, weil DA ein Dynkin-System ist. Es
folgt A∩ B ∈ δ(E) für alle B ∈ δ(E). Weil A beliebig gewählt war, ist damit die ∩-Stabilität von δ(E) bewiesen. □

Wir können nun den Beweis des Eindeutigkeitssatzes in Angriff nehmen.

Proposition 4.4 Sei A eine σ-Algebra in Ω, E ein ∩-stabiles Erzeugendensystem von A, und
sei (En)n∈N eine Folge in E mit

⋃∞
n=1 En = Ω. Sind µ1,µ2 Maße auf A mit µ1(E) = µ2(E) für alle

E ∈ E , und nehmen beide auf den Elementen der Folge (En)n∈N nur endliche Werte an, dann
folgt µ1 = µ2.

Beweis: Sei Ee die Menge aller E ∈ E mit µ1(E),µ2(E) < +∞; nach Voraussetzung gilt En ∈ Ee für alle n ∈ N. Für
jedes E ∈ Ee definieren wir

DE = {D ∈A | µ1(E ∩ D) = µ2(E ∩ D)}.

Wir überprüfen, dass durch DE dann jeweils ein Dynkin-System gegeben ist. Wegen µ1(E ∩ ∅) = µ1(∅) = 0 =
µ2(∅) = µ2(E∩∅) ist ∅ in DE enthalten. Sei nun D ∈ DE vorgegeben. Dann gilt µ1(E∩D) = µ2(E∩D). Wir erhalten

µ1(E ∩ (Ω \ D)) = µ1(E \ (E ∩ D)) = µ1(E)−µ1(E ∩ D) = µ2(E)−µ2(E ∩ D)

= µ2(E \ (E ∩ D)) = µ2(E ∩ (Ω \ D))

und somit Ω \ D ∈ DE , wobei im zweiten und vierten Schritt der Rechnung zu beachten ist, dass wegen E ∈ Ee

mit µ1(E),µ2(E) auch die Werte µ1(E ∩ D),µ2(E ∩ D) endlich sind. Sei schließlich (Dn)n∈N eine Folge paarweise
disjunkter Mengen in DE . Dann gilt µ1(E ∩ Dn) = µ2(E ∩ Dn) für alle n ∈N. Setzen wir D =

⋃∞
n=1 Dn, dann folgt aus

der σ-Additivität der Maße µ1 und µ2 die Gleichheit

µ1(E ∩ D) =
∞
∑

n=1

µ1(E ∩ Dn) =
∞
∑

n=1

µ2(E ∩ Dn) = µ2(E ∩ D)

und somit D ∈ DE . Damit sind alle Eigenschaften eines Dynkin-Systems für DE nachgerechnet.

— 29 —



Im nächsten Schritt zeigen wir nun, dass DE = A für jedes E ∈ Ee gilt. Sei E ∈ Ee vorgegeben. Ist A ∈ E , dann gilt
A∩ E ∈ E auf Grund der ∩-Stabilität von E . Es folgt µ1(A∩ E) = µ2(A∩ E) und somit A∈ DE . Damit ist die Inklusion
E ⊆ DE nachgewiesen. Weil DE ein Dynkin-System ist, gilt sogar δ(E) ⊆ DE . Weil E ein ∩-stabiles Mengensystem ist,
gilt δ(E) = σ(E) =A nach Satz 4.3. Zusammen mit δ(E) ⊆ DE ⊆A folgt DE =A.

Sei nun A∈A ein beliebiges Element. Wegen DE =A gilt µ1(E ∩ A) = µ2(E ∩ A) für alle E ∈ Ee. Weil die Folge (En)n∈N
nach Voraussetzung in Ee enthalten ist, gilt auch µ1(En ∩ A) = µ2(En ∩ A) für alle n ∈ N. Sei nun die Folge (Fn)n∈N
definiert durch F1 = E1 und Fn+1 = En+1 \ (E1 ∪ ...∪ En) für alle n ∈N. Dann sind die Mengen Fn paarweise disjunkt,
und es gilt
⋃∞

n=1 Fn =
⋃∞

n=1 En = Ω. Wegen Fn ∩ A∈A gilt außerdem

µ1(Fn ∩ A) = µ1(En ∩ Fn ∩ A) = µ2(En ∩ Fn ∩ A) = µ2(Fn ∩ A)

für alle n ∈ N. Mit Hilfe der disjunkten Zerlegung A = Ω ∩ A =
⋃∞

n=1(Fn ∩ A) und der σ-Additivität von µ1 und µ2

erhalten wir

µ1(A) =
∞
∑

n=1

µ1(Fn ∩ A) =
∞
∑

n=1

µ2(Fn ∩ A) = µ2(A).

Also stimmen die Maße µ1 und µ2 auf der gesamten σ-Algebra A überein. □

Definition 4.5 Sei R ein Ring in Ω. Einen Inhalt µ : R→ R̄+ bezeichnet man als σ-endlich,
wenn eine monoton wachsende Folge (An)n∈N in R mit Ω =

⋃∞
n=1 An und µ(An) < +∞ für alle

n ∈N existiert.

Die Bedingung „monoton wachsend“ kann auch weggelassen werden, da man eine gegebene Folge (An)n∈N in R mit
den Eigenschaften Ω =

⋃∞
n=1 An und µ(An) < +∞ immer durch die Folge (Bn)n∈N mit Bn = A1 ∪ ... ∪ An für n ∈ N

ersetzen kann.

Satz 4.6 (Eindeutigkeitssatz)

Sei R ein Mengenring. Dann kann jeder σ-additive und σ-endliche Inhalt c : R → R̄+ auf
einem Ring R auf eindeutige Weise zu einem Maß auf σ(R), der von R erzeugten σ-Algebra,
fortgesetzt werden.

Beweis: Nach Satz 3.16 existiert eine Fortsetzung von c zu einem Maß µ̃ auf einer σ-Algebra Aµ∗ mit Aµ∗ ⊇ R.
Weil σ(R) die kleinste σ-Algebra ist, die R umfasst, gilt σ(R) ⊆ Aµ∗ . Damit ist die Existenz bewiesen. Seien nun
µ1,µ2 : σ(R) → R̄+ zwei verschiedene Fortsetzungen von µ auf R. Als Ring ist R stabil unter Durchschnitten,
außerdem ein Erzeugendensystem von σ(R). Durch die σ-Endlichkeit ist gewährleistet, dass wir Proposition 4.4 auf
E =R anwenden können. Es folgt µ1 = µ2. □

Ist Rd der Ring der Figuren im Rd , dann gibt es also genau eine Möglichkeit, den Jordan-Inhalt cd von Rd zu einem
Maß auf der Borelschen σ-Algebra Bd fortzusetzen, und zwar durch das Lebesgue-Maß, eingeschränkt auf Bd .
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Definition 4.7 Sei A eine σ-Algebra und µ : A → R̄+ ein Maß. Wir nennen A vollständig
bezüglich µ, wenn jede Teilmenge A einer Menge B ∈A mit µ(B) = 0 ebenfalls in A enthalten ist.
Wir bezeichnenµ in diesem Fall als vollständiges Maß und das Tripel (Ω,A,µ) als vollständigen
Maßraum.

Satz 4.8 Sei µ∗ : P(Ω)→ R̄+ ein äußeres Maß und µ̃ : Aµ∗ → R̄+ das in Satz 3.14 konstruierte
zugehörige Maß. Dann ist (Ω,Aµ∗ , µ̃) ein vollständiger Maßraum.

Beweis: Sei B ∈Aµ∗ mit µ̃(B) = 0 und A⊆ B. Zu zeigen ist, dass A in Aµ∗ liegt, dass also µ∗(F)≥ µ∗(F ∩A)+µ∗(F \A)
für alle F ⊆ Ω gilt. Sei also F ∈ P(Ω) beliebig vorgegeben. Auf Grund der Monotonie des äußeren Maßes gilt
µ∗(F \ A)≤ µ∗(F) und µ∗(F ∩ A)≤ µ∗(B) = 0. Insgesamt erhalten wir tatsächlich µ∗(F ∩ A) +µ∗(F \ A)≤ µ∗(F). □

Durch den folgenden Satz wird die Aussage aus Folgerung 2.19 erweitert.

Satz 4.9 Sei (Ω,A,µ) ein vollständiger Maßraum und µ∗ : P(Ω)→ R̄+ das dem Inhalt nach
Satz 3.11 zugeordnete äußere Maß. Ist A ⊆ Ω eine Teilmenge und (An)n∈N eine Folge in A mit
µ(An)< +∞ für alle n ∈N und

lim
n→∞

µ∗(A∆An) = 0 ,

dann gilt A∈A und lim
n→∞

µ(An) = µ(A).

Beweis: Wegen A\An, An \A⊆ A∆An für alle n ∈N gilt auch lim
n→∞

µ∗(A\An) = lim
n→∞

µ∗(An \A) = 0. Für jedes n ∈N
finden wir also ein Bn ∈ A, Bn ⊇ A \ An, so dass lim

n→∞
µ(Bn) = 0 gilt. Setzen wir Cn = An ∪ Bn, dann ist A ⊆ Cn für

alle n ∈ N. Außerdem gilt Cn \ A = (An \ A) ∪ (Bn \ A) ⊆ (An \ A) ∪ Bn, also µ∗(Cn \ A) ≤ µ∗(An \ A) + µ∗(Bn) und
somit lim

n→∞
µ∗(Cn \ A) = 0. Setzen wir C =

⋂∞
n=1 Cn, dann gilt C ⊇ A und 0 ≤ µ∗(C \ A) ≤ µ∗(Cn \ A); durch den

Grenzübergang n→∞ erhält man µ∗(C \ A) = 0.

Wir wählen nun für jedes n ∈N ein Mn ∈A mit Mn ⊇ C \A und µ(Mn)<
1
n . Dann ist M =

⋂∞
n=1 Mn ein Element in A

mit M ⊇ C \A, außerdem gilt µ(M)≤ µ(Mn)<
1
n für alle n ∈N und damit µ(M) = 0. Auf Grund der Vollständigkeit

von A bezüglich µ ist damit auch C \ A in A enthalten. Damit ist auch A= C \ (C \ A) ein Element der σ-Algebra A.
Für alle n ∈N gilt A∪(An \A) = A∪An = An∪(A\An). Zusammen mit lim

n→∞
µ(An \A) = lim

n→∞
µ(A\An) = 0 folgt daraus

µ(A) = lim
n→∞

(µ(A) +µ(An \ A)) = lim
n→∞

(µ(An) +µ(A\ An)) = lim
n→∞

µ(An). □

Folgerung 4.10 Jede Jordan-messbare Teilmenge E ⊆ Rd ist in Ad enthalten, und es gilt
jeweils µd(E) = cd(E), d.h. der Jordan-Inhalt stimmt mit dem Lebesgue-Maß von A überein.
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Beweis: Ist E ⊆ Rd Jordan-messbar, dann existiert nach Folgerung 2.19 eine Folge (An)n∈N von Figuren, die die
Bedingung limn c∗d(An∆ E) = 0 erfüllt. Wie wir im Anschluss an Definition 3.12 bemerkt haben, gilt µ∗d(A) ≤ c∗d(A)
für beliebige Teilmengen A⊆ Rd . Deshalb gilt auch limnµ

∗
d(An∆ E) = 0, und außerdem µ∗d(An∆ E) ≤ c∗d(An∆ E) ≤

c∗d(E) < +∞ für alle n ∈ N. Durch Anwendung von Satz 4.9 folgt E ∈ Ad , und zusammen mit Folgerung 2.19
erhalten wir µd(E) = limnµd(An) = limn cd(An) = cd(E), wobei wir im zweiten Schritt verwendet haben, dass µd den
Jordan-Inhalt vom Ring Rd der Figuren auf Ad fortsetzt. □

Sei (Ω,A,µ) ein Maßraum. Ein weiteres Maß (Ω,B,ν) wird Erweiterung von (Ω,A,µ) genannt, wenn A ⊆ B und
ν|A = µ gilt. Wir werden nun zeigen, dass jeder Maßraum eine eindeutig bestimmte minimale vollständige Erweite-
rung besitzt.

Proposition 4.11 Sei (Ω,A,µ) ein Maßraum. Dann ist

Ā = {A∪ N | A∈A , N ∈P(Ω) , ∃M ∈A : µ(M) = 0∧ N ⊆ M}

eine σ-Algebra mit Ā ⊇A.

Beweis: Die Inklusion A ⊆ Ā ist wegen ∅ ∈ A offensichtlich, damit auch ∅ ∈ Ā. Sei nun B ∈ Ā vorgegeben. Dann
gibt es ein M ∈A mit µ(M) = 0 und eine Teilmenge N ⊆ M mit B = A∪ N . Nun gilt

Ω \ B = Ω \ (A∪ N) = (Ω \ A)∩ (Ω \ N) = (Ω \ A)∩ ((M \ N)∪ (Ω \M)) =

((Ω \ A)∩ (M \ N))∪ ((Ω \ A)∩ (Ω \M)) = ((Ω \ A)∩ (M \ N))∪ (Ω \ (A∪M)).

Die Menge (Ω \A)∩ (M \N) ist enthalten in der Menge M mit µ(M) = 0. Die Menge Ω \ (A∪M) ist ein Element von
A, weil A eine σ-Algebra ist. Nach Definition ist Ω \ B damit ein Element aus Ā.

Sei nun (Bn)n∈N eine Folge in Ā. Dann gibt es für jedes n ∈N jeweils Mengen An, Mn ∈A und Teilmengen Nn ⊆ Mn,
so dass µ(Mn) = 0 und Bn = An ∪ Nn erfüllt ist. Es gilt

⋃

n∈N
Bn =

�∞
⋃

n=1

An

�

∪
�∞
⋃

n=1

Nn

�

.

Die Menge
⋃∞

n=1 An liegt in A, weil A eine σ-Algebra ist. Auch die Menge M =
⋃∞

n=1 Mn liegt in A, und auf Grund
der σ-Additivität von µ gilt µ(M) = 0. Ferner ist N =

⋃∞
n=1 Nn eine Teilmenge von M . Insgesamt haben wir damit

nachgewiesen, dass
⋃∞

n=1 Bn in Ā enthalten ist. Damit sind für Ā alle Eigenschaften einer σ-Algebra verifiziert. □

Proposition 4.12 Es gibt auf Ā eine Funktion µ̄ : Ā→ R̄+ mit der folgenden Eigenschaft:
Ist B ∈ Ā, und sind A, M ∈ A Mengen mit µ(M) = 0 und N ⊆ M mit B = A∪ N , dann gilt
µ̄(B) = µ(A).

Beweis: Nach Definition von Ā können wir für jedes B ∈ Ā jeweils Elemente AB, MB der σ-Algebra A mit µ(MB) = 0
und eine Teilmenge NB ⊆ MB wählen, so dass B = AB ∪ NB erfüllt ist. Wir definieren dann jeweils µ̄(B) = µ(AB). Zu
überprüfen ist, dass µ̄ die im Satz angegebene Eigenschaft besitzt. Wir bezeichnen mit µ∗ das dem Inhalt µ nach Satz
3.11 zugeordnete äußere Maß. Nach Satz 3.16 gilt µ∗(A) = µ(A) für alle A∈A.
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Sei nun B ∈ Ā vorgegeben, und seien A, M ∈A und N ⊆ M , so dass die Bedingungen B = A∪N und µ(M) = 0 erfüllt
sind. Zu zeigen ist µ̄(B) = µ(A). Es gilt

µ̄(B) = µ(AB) = µ∗(AB) ≤ µ∗(AB ∪ NB) = µ∗(B) = µ∗(A∪ N) ≤ µ∗(A∪M)

= µ(A∪M) ≤ µ(A) +µ(M) = µ(A) + 0 = µ(A).

Ebenso erhält man

µ(A) = µ∗(A) ≤ µ∗(A∪ N) = µ∗(B) = µ∗(AB ∪ NB) ≤

µ(AB ∪MB) = µ(AB) +µ(MB) = µ(AB) + 0 = µ(AB) = µ̄(B).

Insgesamt gilt also tatsächlich µ̄(B) = µ(A). □

Proposition 4.13 Durch die Funktion µ̄ ist ein vollständiges Maß auf Ā definiert.

Beweis: Nach Definition gilt µ̄(∅) = µ(∅) = 0. Sei nun (Bn)n∈N eine Folge paarweise disjunkter Mengen in Ā und
B =
⋃∞

n=1 Bn. Zu zeigen ist
∑∞

n=1 µ̄(Bn) = µ̄(B).

Nach Definition von Ā gibt es für jedes n ∈N jeweils An, Mn ∈A und Teilmengen Nn ⊆ Mn, so dass Bn = An∪Nn und
µ(Mn) = 0 erfüllt ist. Setzen wir A =

⋃∞
n=1 An, N =
⋃∞

n=1 Nn und M =
⋃∞

n=1 Mn, dann gilt B = A∪ N , N ⊆ M , und
außerdem µ(M) =

∑∞
n=1µ(Mn) =
∑∞

n=1 0= 0. Auf Grund der Definition von µ̄ folgt daraus µ̄(B) = µ(A), und ebenso
gilt µ̄(Bn) = µ(An) für alle n ∈N. Weil auch A=

⋃∞
n=1 An eine disjunkte Vereinigung ist, erhalten wir insgesamt

µ̄(B) = µ(A) =
∞
∑

n=1

µ(An) =
∞
∑

n=1

µ̄(Bn).

Nun überprüfen wir noch, dass Ā vollständig bezüglich µ̄ ist. Sei B ∈ Ā mit µ̄(B) = 0 und F ⊆ B; dann ist F ∈ Ā zu
zeigen. Wegen B ∈ Ā gibt es A, M ∈ A mit µ(M) = 0 und eine Teilmenge N ⊆ M mit B = A∪ N . Nach Definition
gilt µ̄(B) = µ(A). Es folgt 0 ≤ µ(A∪ M) ≤ µ(A) + µ(M) = µ(A) + 0 = µ̄(B) = 0 und damit µ(A∪ M) = 0. Nach
Voraussetzung ist F ⊆ B ⊆ A∪M . Schreiben wir F also in der Form ∅∪ F , dann ist F nach Definition in der σ-Algebra
Ā enthalten. □

Man bezeichnet den Maßraum (Ω, Ā, µ̄) als Vervollständigung von (Ω,A,µ). Der folgende Satz besagt, dass es sich
um die kleinste vollständige Erweiterung von (Ω,A,µ) handelt.

Satz 4.14 Sei (Ω,A,µ) ein Maßraum und (Ω,B,ν) eine beliebige vollständige Erweiterung.
Dann ist (Ω,B,ν) auch eine Erweiterung von (Ω, Ā, µ̄).

Beweis: Zunächst überprüfen wir, dass Ā ⊆ B gilt. Sei B ∈ Ā. Dann gibt es A, M ∈ A und eine Teilmenge N ⊆ M ,
so dass µ(M) = 0 und B = A∪ N erfüllt ist. Wegen A ⊆ B gilt M ∈ B. Auf Grund der Vollständigkeit von B und
wegen ν(M) = µ(M) = 0 gilt auch N ∈ B. Zusammen mit A ∈ B folgt B = A∪ N ∈ B. Außerdem gilt ν(A) ≤ ν(B) ≤
ν(A) + ν(N)≤ ν(A) + ν(M) = ν(A) und somit ν(B) = ν(A) = µ(A) = µ̄(B). Dies zeigt, dass ν|Ā = µ̄ erfüllt ist. □
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Satz 4.15 Sei R ein Ring, µ : R→ R̄+ ein σ-endliches Prämaß und (Ω, Aµ∗ , µ̃) der in Satz 3.14
konstruierte Maßraum. Dann ist dieser Maßraum eine Vervollständigung von (Ω,σ(R), µ̃|σ(R)),
wobei σ(R) die von R erzeugte σ-Algebra bezeichnet.

Beweis: Nach Satz 4.8 ist (Ω, Aµ∗ , µ̃) ein vollständiger Maßraum. Nach Satz 3.16 ist R in Aµ∗ enthalten, und damit
gilt auch Aµ∗ ⊇ σ(R). Nach Satz 4.14 enthält Aµ∗ damit auch die Vervollständigung σ̄(R) von σ(R). Es genügt
also zu zeigen, dass Aµ∗ im Mengensystem σ̄(R) enthalten ist. Zunächst zeigen wir, dass jede Menge A ∈ Aµ∗ mit
µ∗(A) < +∞ auch in σ̄(R) liegt. Nach Definition von µ∗ gibt es für jedes n ∈ N ein Bn ∈ σ(R) mit Bn ⊇ A und
µ(Bn)≤ µ∗(A) +

1
n . Definieren wir B =

⋂∞
n=1 Bn, dann gilt B ∈ σ(R), A⊆ B und

µ∗(A) ≤ µ∗(B) ≤ µ∗(Bn) ≤ µ∗(A) + 1
n .

Lassen wir n gegen unendlich laufen, erhalten wir µ∗(A) = µ∗(B), also µ∗(B \ A) = µ∗(B) − µ∗(A) = 0. Setzen wir
Cn = Bn \ A, dann gilt also B \ A ⊆ Cn und µ∗(Cn) ≤

1
n für alle n ∈ N. Sei C =

⋂∞
n=1 Cn ∈ σ(R). Dann gilt C ⊇ B \ A

und µ∗(C) = µ∗(B \ A) = 0. Aus C ⊇ B \ A folgt B \ C ⊆ A und somit A = (B \ C) ∪ (A∩ C). Aus B \ C ∈ σ(R) und
A∩ C ⊆ C , µ∗(C) = 0 folgt wiederum A∈ σ̄(R).

Sei nun A ∈ Aµ∗ , wobei nun auch µ(A) = +∞ zugelassen ist. Weil das Prämaß µ nach Voraussetzung σ-endlich ist,
gibt es eine Folge (Sn)n∈N in R mit Ω =

⋃∞
n=1 Sn und µ(Sn) < +∞ für alle n ∈N. Es folgt A=

⋃∞
n=1(A∩ Sn). Wegen

A∩Sn ∈Aµ∗ und µ∗(A∩Sn)< +∞ folgt A∩Sn ∈ σ̄(R) auf Grund des bereits bewiesenen Teils. Weil es sich bei σ̄(R)
um eine σ-Algebra handelt, ist damit auch A in σ̄(R) enthalten. □

Folgerung 4.16 Für jedes d ∈N ist der Lebesguesche Maßraum (Rd ,Ad ,µd) die Vervollständi-
gung von (Rd ,Bd ,µd |Bd

), wobei Bd die Borelsche σ-Algebra in Rd bezeichnet. Ist A ⊆ Rd und
gibt es eine Folge (An)n∈N in Lebesgue-messbarer Mengen in Rd , so dass

lim
n→∞

µ∗d(A∆An) = 0 und µd(An)< +∞ für alle n ∈N

mit dem äußeren Lebesgue-Maß µ∗d gilt, dann ist auch A Lebesgue-messbar, und man erhält das
Lebesgue-Maß von A durch µd(A) = lim

n→∞
µd(An).

Beweis: Dies sind die Spezialfälle der Sätze 4.15 und 4.9, angewendet auf das Lebesgue-Maß. □

Wir beenden den Abschnitt mit einem Satz, der die Beziehung zwischen den Lebesgue-messbaren Mengen und der
Borel-Algebra weiter verdeutlicht.

Lemma 4.17 Ist A ∈ Ad und (Am)m∈N eine Folge in Ad mit Am ⊆ Am+1 für alle m ∈ N und
A=
⋃∞

m=1 Am, dann folgt limmµd(Am) = µd(A).

Beweis: Setzen wir B1 = A und Bm+1 = Am+1\Am für jedes m ∈N, dann ist (Bm)m∈N eine Folge disjunkter Teilmengen
in Ad mit A=
⋃∞

m=1 Bm. Außerdem gilt Am = B1 ∪ ...∪ Bm für alle m ∈N. Auf Grund der σ-Additivität des Lebesgue-
Maßes folgt

lim
m→∞

µd(Am) = lim
m→∞

m
∑

k=1

µd(Bk) =
∞
∑

m=1

µd(Bm) = µd(A). □
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Satz 4.18 (Regularität des Lebesgue-Maßes)

Sei d ∈N. Für alle Lebesgue-messbaren Teilmengen A⊆Rd gilt

(i) µd(A) = inf {µd(U) | U ⊆Rd offen, U ⊇ A}

(ii) µd(A) = sup {µd(K) | K ⊆Rd kompakt, K ⊆ A}

Beweis: zu (i) Dass es sich bei µd(A) eine untere Schranke der Menge rechts handelt, ist offensichtlich. Zu zeigen
bleibt, dass es die größte untere Schranke ist. Es genügt, den Fall µd(A) < +∞ zu betrachten, weil die Menge
rechts ansonsten keine endlichen Werte enthält und die Aussage somit offensichtlich ist. Sei ϵ ∈R+ vorgegeben. Zu
zeigen ist, dass eine offene Menge U ⊇ A mit µd(U) < µd(A) + ϵ existiert. Nach Definition des (äußeren) Lebesgue-
Maßes gibt es eine Folge (Qn)n∈N von Quadern mit A⊆

⋃∞
n=1 Qn und
∑∞

n=1µd(Qn)< µd(A)+
1
2ϵ. Durch geringfügige

Vergrößerung jedes Quaders Qn und Übergang zum offenen Inneren erhalten wir eine Folge (Pn)n∈N offener Quader
mit µd(Pn)≤ µd(Qn) +

ϵ
2n+1 für alle n ∈N. Definieren wir U =

⋃∞
n=1 Pn, dann ist U offen, es gilt U ⊇ A und

µd(U) = µd

�∞
⋃

n=1

Pn

�

≤
∞
∑

n=1

µd(Pn) ≤
∞
∑

n=1

�

µd(Qn) +
ϵ

2n+1

�

=

∞
∑

n=1

d(Qn) +
1
2ϵ < µd(A) +

1
2ϵ +

1
2ϵ = µd(A) + ϵ.

zu (ii) Wir betrachten zunächst den Fall, dass A eine beschränkte Teilmenge des Rd ist. Dann ist µd(A) endlich und
offenbar eine obere Schranke der Menge rechts. Um nachzuweisen, dass µd(A) die kleinste obere Schranke ist, sei
ϵ ∈ R+ vorgegeben. Wir müssen zeigen, dass eine kompakte Teilmenge C ⊆ A mit µd(C) > µd(A)− ϵ existiert. Sei
M ⊆Rd eine kompakte Teilmenge, die A enthält. Nach Teil (i) existiert eine offene Teilmenge U ⊆Rd mit U ⊇ M \A
und µd(U)< µd(M \ A) + ϵ. Setzen wir C = M \ U , dann ist C kompakt, und wir erhalten

µd(C) = µd(M)−µd(M ∩ U) ≥ µd(M)−µd(U) = µd(M \ A) +µd(A)−µd(U) =

µd(M \ A) + ϵ +µd(A)−µd(U)− ϵ > µd(U) +µd(A)−µd(U)− ϵ = µd(A)− ϵ.

Betrachten wir nun den Fall, dass A unbeschränkt ist. Dann definieren wir Am = [−m, m]d ∩A für alle m ∈N. Wegen
A=
⋃∞

m=1 Am und auf Grund von Lemma 4.17 gilt limmµd(Am) = µd(A), und jede der Teilmengen Am ist beschränkt
und in Ad enthalten. Setzen wir nun zunächst µd(A) = +∞ voraus. Dann gilt limmµd(Am) = +∞, und auf Grund
des bereits behandelten Falls für jedes m ∈N eine kompakte Teilmenge Cm mit Cm ⊆ Am mit µd(Cm) > µd(Am)− 1.
Es ist dann (Cm)m∈N eine Folge kompakter Teilmengen von A mit limmµd(Cm) = +∞. Damit ist die Gleichung unter
(ii) in diesem Fall nachgewiesen.

Nehmen wir nun an, dass µd(A) endlich ist. Ist ϵ ∈ R+ beliebig vorgegeben, dann existiert ein m ∈N mit µd(Am) >
µd(A)−

1
2ϵ. Da Am beschränkt ist, finden wir eine kompakte Teilmenge C ⊆ Am mit µd(C) > µd(Am)−

1
2ϵ. Damit ist

C auch eine kompakte Teilmenge von A, und es ist µd(C)> µd(Am)−
1
2ϵ > µd(A)−

1
2ϵ−

1
2ϵ = µd(A)− ϵ. Also ist die

Gleichung unter (ii) auch in diesem Fall gültig. □

Ist allgemein (Ω,T ) ein topologischer Raum und B die Borelsche σ-Algebra, also die σ-Algebra erzeugt von den
offenen Teilmengen, dann wird ein Maß µ auf B als von außen regulär bezeichnet, wenn es die Eigenschaft (i)
besitzt. Die Maße mit der Eigenschaft (ii) bezeichnet man als von innen regulär.
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§ 5. Messbare Funktionen

Zusammenfassung. Eine reellwertige Funktion f auf einem Maßraum (Ω,A,µ)wird messbar genannt, wenn
das Urbild jeder Borelschen Teilmenge Teilmenge von R in A enthalten ist. Die Messbarkeit einer Funktion ist
ein notwendige Bedingung für die Integrierbarkeit, die wir im nächsten Kapitel behandeln. Das Hauptanliegen
dieses Kapitels besteht in dem Nachweis, dass die Messbarkeit von Funktionen unter bestimmten Operationen
(zum Beispiel punktweiser Addition, Multiplikation...) erhalten bleibt.

Wichtige Grundbegriffe

– Messraum

– messbare Abbildung

– A-messbare und Borel-messbare Funktion

Zentrale Sätze

– Borel-Messbarkeit stetiger Funktionen

– Messbarkeits-Kriterium anhand der Teilmengen Λ±( f ,α)

– Erhaltung der Messbarkeit unter punktweiser Addition,
Subtraktion und Multiplikation

– Erhaltung der Messbarkeit unter Infimums- und Supre-
mumsbildung

Im folgenden bezeichnen wir als Messraum ein Paar (Ω,A) bestehend aus einer nichtleeren Menge Ω und einer
σ-Algebra A in Ω. Ein Maßraum (Ω,A,µ) besteht also aus einem Messraum (Ω,A) und einem Maß µ auf dem
Messraum.

Im weiteren Verlauf wird es sich als nützlich herausstellen, auch neben reellwertigen Funktionen auf einem Messraum
auch Funktionen mit Werten in R̄=R∪ {±∞} zuzulassen. Dazu definieren wir

B̄1 = {Ā⊆ R̄ | Ā∩R ∈ B1}.

Man überprüft leicht, dass es sich bei B̄1 um eine σ-Algebra mit B1 ⊆ B̄1 handelt.

Definition 5.1 Seien (Ω,A) und (Ω′,A′)Messräume. Eine Abbildung f : Ω→ Ω′ wird messbar
bezüglich A und A′ genannt, wenn f −1(A′) ∈ A für alle A′ ∈ A′ erfüllt ist. Ist speziell (Ω′,A′) =
(R̄, B̄1), dann sprechen wir von einer A-messbaren Funktion. Ist darüber hinaus Ω ⊆ Rd und
A = {A∩ Ω | A ∈ Bd}, dann nennen wir die bezüglich A messbaren Funktionen auch Borel-
messbar.

Ist beispielsweise f : Ω→ Ω′ konstant, dann ist f messbar. Ist nämlich c ∈ Ω′ der konstante Wert von f und A′ ∈A′,
so gilt f −1(A′) = Ω falls c ∈ A′ und f −1(A′) =∅ sonst. In jedem Fall ist f −1(A′) ein Element von A.

— 36 —



Proposition 5.2 Die Komposition messbarer Abbildungen ist messbar. Genauer: Sind (Ω,A),
(Ω′,A′) und (Ω′′,A′′) drei Messräume, ist f : Ω→ Ω′ messbar bezüglich A,A′ und g : Ω′→ Ω′′

messbar bezüglich A′,A′′, dann ist g ◦ f : Ω→ Ω′′ messbar bezüglich A und A′′.

Beweis: Ist A′′ ∈A′′, dann gilt A′ = g−1(A′′) ∈A′ und (g ◦ f )−1(A′′) = f −1(g−1(A′′)) = f −1(A′) ∈A. □

Proposition 5.3 Seien die Bezeichnungen wie in Definition 5.1 gewählt. Ist E ′ ein Erzeu-
gendensystem von A′ als σ-Algebra, so ist f genau dann messbar bezüglich A und A′, wenn
f −1(E′) ∈A für alle E′ ∈ E ′ erfüllt ist.

Beweis: Die Implikation „⇒“ ist offensichtlich, denn jedes E′ ∈ E ′ ist auch ein Element aus A′. Für die Richtung
„⇐“ überprüfen wir, dass das System B = {A′ ⊆ Ω′ | f −1(A′) ∈ A} eine σ-Algebra ist. Wegen f −1(∅) = ∅ ∈ A und
f −1(Ω′) = Ω ∈ A sind ∅ und Ω′ in B enthalten. Ist B ∈ B, dann gilt f −1(B) ∈ A. Weil A eine σ-Algebra ist, liegt
damit auch f −1(Ω′ \ B) = Ω \ f −1(B) in A und somit Ω′ \ B in B. Sei schließlich (Bn)n∈N eine Folge in B. Dann gilt
f −1(Bn) ∈A für alle n ∈N. Setzen wir B =

⋃∞
n=1 Bn, dann erhalten wir

f −1(B) =
∞
⋃

n=1

f −1(Bn) ∈ A ,

weil A eine σ-Algebra ist. Daraus folgt B ∈ B. Nach Voraussetzung ist nun E ′ eine Teilmenge von B. Weil A′ = σ(E ′)
nach Definition die kleinste σ-Algebra ist, die E ′ umfasst, erhalten wir A′ ⊆ B. Daraus wiederum folgt f −1(A′) ∈ A
für alle A′ ∈A′. □

Proposition 5.4 Sei (Ω,A) ein Messraum und A ⊆ Ω eine Teilmenge. Die Indikatorfunktion
1A : Ω→ R̄ von A definiert durch

1A(x) =

(

1 falls x ∈ A

0 falls x /∈ A

ist genau dann messbar bezüglich A, wenn A∈A gilt.

Beweis: „⇒“ Die einelementige Menge {1} liegt in B̄1. Auf Grund der Messbarkeit von 1A ist 1−1
A ({1}) = A also in

A enthalten. „⇐“ Ist A ∈ A, dann liegt auch Ω \ A in A. Sei nun U ∈ B̄1 beliebig vorgegeben. Im Fall 0, 1 /∈ U gilt
1−1

A (U) =∅, für 0 ∈ U , 1 /∈ U ist 1−1
A (U) = Ω \ A, für 0 /∈ U , 1 ∈ U ist 1−1

A (U) = A und im Fall 0, 1 ∈ U ist 1−1
A (U) = Ω.

Also ist die Urbildmenge 1−1
A (U) in jedem Fall ein Element der σ-Algebra A, und 1A ist messbar. □

Proposition 5.5 Sei Ω ⊆Rd und f : Ω→R eine stetige Funktion. Dann ist f Borel-messbar.

Beweis: Sei A= {A∩Ω | A∈ Bd}. Nach Satz 3.8 wird B1 von den offenen Teilmengen U ⊆R erzeugt. Nach Proposition
5.3 genügt es deshalb, die Bedingung f −1(U) ∈A für diese Mengen U zu überprüfen. Sei also U ⊆R offen. Auf Grund
der Stetigkeit von f ist f −1(U) offen in Ω. Es gibt also eine offene Teilmenge A⊆Rd mit A∩Ω= f −1(U). Als offene
Menge ist A in Bd enthalten. Also gilt f −1(U) ∈A. □
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Satz 5.6 Sei (Ω,A) ein Messraum. Eine Funktion f : Ω→ R̄ ist genau dann messbar bezüglich
A, wenn für jedes α ∈R die Menge

Λ̄+( f ,α) = {x ∈ Ω | f (x)≥ α} in A liegt.

Beweis: „⇒“ Die Borelsche σ-Algebra B1 enthält für jedes α ∈R die Menge [α,+∞[, weil diese inR abgeschlossen
ist. Damit ist nach Definition die Menge [α,+∞] in B̄1 enthalten. Weil f messbar bezüglich A ist, folgt Λ̄+( f ,α) =
f −1([α,+∞]) ∈A.

„⇐“ Sei Q ⊆P(R̄) die von den Teilmengen der Form [α,+∞]mit α ∈R erzeugte σ-Algebra. Wir zeigen zunächst,
dass Q = B̄1 gilt. Wie wir im ersten Teil des Beweises bereits festgestellt haben, gilt [α,+∞] ∈ B̄1 für alle α ∈ R
und damit Q ⊆ B̄1. Zeigen wir nun, dass B1 in Q enthalten ist. Dafür genügt es zu zeigen, dass sämtliche endlichen
Intervalle in Q liegen, denn B1 wird von den endlichen Intervallen erzeugt. Es gilt R̄\[α,+∞] = [−∞,α[, außerdem

[−∞,α] =
∞
⋂

n=1

[−∞,α+ 1
n [ und ]α,+∞] = R̄ \ [−∞,α].

Sind nun α,β ∈ R, α ≤ β , dann gilt [α,β] = [−∞,β] ∩ [α,+∞] ∈ Q, und auf ähnliche Weise erhält man auch
[α,β[, ]α,β] und ]α,β[ als Elemente von Q. Wegen

{−∞}=
∞
⋂

n=1

[−∞,−n] und {+∞}=
∞
⋂

n=1

[n,+∞]

sind auch {−∞} und {+∞} in Q enthalten. Weil jede Menge in B̄1 durch Vereinigung einer Menge aus B1 mit einer
Teilmenge von {−∞,+∞} zu Stande kommt, ist damit das gesamte System B̄1 in Q enthalten. Wir haben damit
nachgewiesen, dass die Mengen [α,+∞] ein Erzeugendensystem von B̄1 bilden. Nach Proposition 5.3 genügt es für
die Messbarkeit von f bezüglich A nachzuweisen, dass die Urbilder f −1([α,+∞]) dieser Mengen in A liegen. Dies
ist durch die Voraussetzung Λ̄+( f ,α) ∈A für alle α ∈R gewährleistet. □

Folgerung 5.7 Sei (Ω,A) ein Messraum und f : Ω→ R̄. Dann ist die A-Messbarkeit von f zu
jeder der folgenden Aussagen äquivalent.

(i) Für jedes α ∈R gilt Λ+( f ,α) = {x ∈ Ω | f (x)> α} ∈A.

(ii) Für jedes α ∈R gilt Λ−( f ,α) = {x ∈ Ω | f (x)< α} ∈A.

(iii) Für jedes α ∈R gilt Λ̄−( f ,α) = {x ∈ Ω | f (x)≤ α} ∈A.

Beweis: Nach Satz 5.6 genügt es zu zeigen, dass jede der drei Bedingungen dazu äquivalent ist, dass Λ̄+( f ,α) ∈ A
für alle α ∈R erfüllt ist. Für die Bedingung (i) gilt dies auf Grund der Gleichungen

Λ+( f ,α) =
∞
⋃

n=1

Λ̄+( f ,α+ 1
n ) und Λ̄+( f ,α) =

∞
⋂

n=1

Λ+( f ,α− 1
n ).
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und der Tatsache, dass die σ-Algebra A unter abzählbaren Vereinigungen und Durchschnitten abgeschlossen ist. Die
Mengengleichungen wiederum ergeben sich aus den für alle x ∈ Ω gültigen Äquivalenzen f (x) > α⇔ ∃n ∈ N :
f (x)≥ α+ 1

n und f (x)≥ α⇔∀n ∈N : f (x)> α− 1
n .

Für die Bedingung (ii) überprüft man zunächst, dass für jedes α ∈ R jeweils Λ−( f ,α) = Ω \ λ̄+( f ,α) gilt. Die
Äquivalenz folgt dann aus der Tatsache, dass die σ-Algebra A auch unter Komplementbildung abgeschlossen ist. Auf
dieselbe überprüft man, dass Bedingung (iii) zu Bedingung (i) äquivalent ist. □

Folgerung 5.8 Sind f , g : Ω→ R̄ messbar bezüglich A, dann sind die Mengen

(i) {x ∈ Ω | f (x)< g(x)} (ii) {x ∈ Ω | f (x)≤ g(x)} (iii) {x ∈ Ω | f (x) = g(x)}
(iv) {x ∈ Ω | f (x) ̸= g(x)}

in A enthalten.

Beweis: Weil die Menge Q in R dicht liegt, gibt es für jedes x ∈ Ω mit f (x) < g(x) ein a ∈Q mit f (x) < a < g(x).
Wir erhalten somit für die unter (i) angegebene Menge

{x ∈ Ω | f (x)< g(x)} =
⋃

a∈Q
{x ∈ Ω | f (x)< a < g(x)}

=
⋃

a∈Q
({x ∈ Ω | f (x)< a} ∩ {x ∈ Ω | g(x)> a}) .

Auf Grund der Abzählbarkeit von Q und der Messbarkeit von f und g ist diese Menge in der σ-Algebra A enthalten.
Dass die Mengen unter (ii), (iii) und (iv) auch in A liegen, folgt nun unmittelbar aus den beiden Mengengleichungen
{x ∈ Ω | f (x)≤ g(x)}= Ω \ {x ∈ Ω | g(x)< f (x)} und

{x ∈ Ω | f (x) = g(x)} = {x ∈ Ω | f (x)≤ g(x)} ∩ {x ∈ Ω | f (x)≥ g(x)}

sowie {x ∈ Ω | f (x) ̸= g(x)}= Ω \ {x ∈ Ω | f (x) = g(x)}. □

Im weiteren Verlauf werden wir auch zulassen, dass R̄-wertige Funktionen punktweise addiert, subtrahiert und mul-
tipliziert werden. Dabei kann sich allerdings der Definitionsbereich der Funktion verkleinern, weil die Werte a ± b
und ab nicht für alle a, b ∈ R̄ definiert sind. Wir legen für die Addition und Multiplikation folgende Konvention fest.

+ −∞ b ∈R +∞

−∞ −∞ −∞ undef.

a ∈R −∞ a+ b +∞
+∞ undef. +∞ +∞

− −∞ b ∈R +∞

−∞ undef. −∞ −∞
a ∈R +∞ a− b −∞
+∞ +∞ +∞ undef.

· −∞ b < 0 b = 0 b > 0 +∞

−∞ +∞ +∞ 0 −∞ −∞
a < 0 +∞ ab 0 ab −∞
a = 0 0 0 0 0 0

a > 0 −∞ ab 0 ab +∞
+∞ −∞ −∞ 0 +∞ +∞
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Proposition 5.9 Ist g : Ω→ R̄ A-messbar, dann auch die Funktion a+ bg für alle a, b ∈R.

Beweis: Ist b > 0, dann gilt für alle α ∈R jeweils

{x ∈ Ω | a+ bg(x)≥ α} = {x ∈ Ω | g(x)≥ b−1(α− a)} ,

und diese Menge liegt auf Grund der Messbarkeit von g in A. Für b < 0 kommt man durch die Gleichung {x ∈ Ω |
a+ bg(x)≥ α}= {x ∈ Ω | g(x)≤ b−1(α− a)} zum selben Ergebnis. Im Fall b = 0 ist die Funktion a+ bg, sofern sie
überall definiert ist, konstant und damit ebenfalls messbar. □

Satz 5.10 Sind f , g : Ω→ R̄ zwei A-messbare Funktionen, dann sind auch die Funktion f ± g
und f g messbar bezüglich A, sofern sie auf ganz Ω definiert sind.

Beweis: Sei α ∈ R beliebig vorgegeben. Auf Grund der Messbarkeit von g und Proposition 5.9 ist α − g messbar,
und mit Folgerung 5.8 erhalten wir

{x ∈ Ω | f (x) + g(x)≥ α} = {x ∈ Ω | f (x)≥ α− g(x)} ∈ A.

Daraus folgt die Messbarkeit von f + g. Ebenso ist auf Grund der Proposition die Funktion −g messbar, und wir
erhalten damit die Messbarkeit von f + (−g) = f − g.

Beim Beweis der Messbarkeit von f g beschränken wir uns zunächst auf den Fall, dass f g nur endliche Werte an-
nimmt. Wegen f g = 1

4 ( f + g)2 − 1
4 ( f − g)2 genügt es, den Fall f = g zu betrachten und die Messbarkeit von f 2 zu

beweisen. Sei dazu α ∈R vorgegeben. Ist α≤ 0, dann gilt

{x ∈ Ω | f (x)2 ≥ α} = Ω ∈ A.

Im Fall α > 0 gilt

{x ∈ Ω | f (x)2 ≥ α} = {x ∈ Ω | f (x)≥
p
α} ∪ {x ∈ Ω | f (x)≤ −

p
α} ,

und auf Grund der Messbarkeit sind diese beiden Mengen ebenfalls in A enthalten. Damit ist die Messbarkeit im
eingeschränkten Fall bewiesen, und wir betrachten nun die Situation, dass f g auch unendliche Werte annimmt.
Dazu definieren wir die Mengen

Ω+ = {x ∈ Ω | f (x)g(x) = +∞} , Ω− = {x ∈ Ω | f (x)g(x) = −∞} und Ω̃= Ω \ (Ω+ ∪Ω−).

Es gilt x ∈ Ω+ genau dann, wenn f (x) = +∞, g(x) > 0 oder f (x) = −∞, g(x) < 0 gilt, oder wenn eine dieser
Bedingungen mit vertauschten Rollen von f und g erfüllt ist. Wir erhalten

Ω+ = ({x ∈ Ω | f (x) = +∞}∩ {x ∈ Ω | g(x)> 0})∪

({x ∈ Ω | f (x) = −∞}∩ {x ∈ Ω | g(x)< 0})∪

({x ∈ Ω | f (x)> 0} ∩ {x ∈ Ω | g(x) = +∞})∪

({x ∈ Ω | f (x)< 0} ∩ {x ∈ Ω | g(x) = −∞}) ,

und diese Gleichung zeigt, dass Ω+ in A liegt. Ebenso beweist man Ω− ∈A, und es folgt Ω̃ ∈A.
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Sei Ã = {A ∈ A | A ⊆ Ω̃}; wie man leicht überprüft, handelt es sich um eine σ-Algebra bezüglich der Menge Ω̃.
Weil f und g messbar bezüglich A sind, sind die Funktionen f1 = f |Ω̃ und g1 = g|Ω̃ messbar bezüglich Ã, denn für
jede Menge B ∈ B̄1 gilt f −1

1 (B) = f −1(B) ∩ Ω̃ ∈ Ã, ebenso für die Funktion g1. Das Produkt f1 g1 nimmt auf seinem
Definitionsbereich nur endliche Werte an, ist also auf Grund der bereits gezeigten Aussage ebenfalls Ã-messbar. Ist
nun B ∈ B̄1 vorgegeben, so gilt ( f g)−1(B) = ( f1 g1)−1(B) ∈ Ã im Fall +∞,−∞ /∈ B, ansonsten ist ( f g)−1(B) gleich
einer der Mengen ( f1 g1)−1(B)∪Ω+,( f1 g1)−1(B)∪Ω− oder ( f1 g1)−1(B)∪Ω+∪Ω−. Wegen Ã ⊆A und Ω+,Ω− ∈A liegt
( f g)−1(B) in jedem Fall in der σ-Algebra A. □

Wir erinnern an die folgende Definition aus der Analysis einer Variablen: Ist (an)n∈N eine Folge reeller Zahlen (oder
allgemeiner, eine Folge von Elementen aus R̄), dann sind der limes superior und limes inferior der Folge definiert
durch

lim sup an = lim
m→∞

sup{an | n≥ m} und lim inf an = lim
m→∞

inf{an | n≥ m}.

Beide können Werte in ganz R̄ annehmen. Ist ( fn)n∈N eine Folge von Funktionen fn : Ω → R̄, dann bezeichnen
wir mit sup fn die Funktion gegeben durch (sup fn)(x) = sup{ fn(x) | n ∈ N} für alle x ∈ Ω, und mit limsup fn die
Funktion x 7→ limsup fn(x). Ebenso sind die Funktionen inf fn und lim inf fn definiert.

Satz 5.11 Sei ( fn)n∈N eine Folge von A-messbaren Funktionen. Dann sind auch die Funktionen
sup fn, inf fn, limsup fn und lim inf fn messbar bezüglich A.

Beweis: Für jedes α ∈R gilt {x ∈ Ω | (sup fn)(x)≤ α}=
⋂∞

n=1{x ∈ Ω | fn(x)≤ α}, denn für jedes x ∈ Ω ist α genau
dann eine obere Schranke von { fn(x) | n ∈N}, wenn α≥ sup{ fn(x) | n ∈N} erfüllt ist. Weil fn messbar bezüglich A
ist, liegt die Menge {x ∈ Ω | fn(x) ≤ α} in A, für jedes n ∈ N. Dies zeigt, dass auch {x ∈ Ω | (sup fn)(x) ≤ α} in A
liegt, und wir erhalten die A-Messbarkeit von sup fn. Die A-Messbarkeit von inf fn beweist man analog mit Hilfe der
Gleichung

{x ∈ Ω | (inf fn)(x)≥ α} =
∞
⋂

n=1

{x ∈ Ω | fn(x)≥ α}.

Für jedes n ∈N sei die Funktion supn fm definiert durch Ω→ R̄, x 7→ sup{ fm(x) | m ≥ n}, und infn fm entsprechend
durch x 7→ inf{ fm(x) | m≥ n}. Auch diese Funktionen sind A-messbar, denn es gilt

{x ∈ Ω | (supn fm)(x)≤ α} =
∞
⋂

m=n
{x ∈ Ω | fm(x)≤ α}

und

{x ∈ Ω | (infn fm)(x)≥ α} =
∞
⋂

m=n
{x ∈ Ω | fm(x)≥ α}.

Für jedes x ∈ Ω ist die Folge ((supn fm)(x))n∈N monoton fallend, deshalb gilt

limsup fn(x) = lim
n→∞

(supn fm)(x) = inf{(supn fm)(x) | n ∈N} = (inf(supn fm))(x).

Aus der A-Messbarkeit der Funktionen supn fm folgt also die Messbarkeit von limsup fn. Ebenso beweist man die
A-Messbarkeit von lim inf fn durch

lim inf fn(x) = lim
n→∞

(infn fm)(x) = sup{(infn fm)(x) | n ∈N} = (sup(infn fm))(x) ,

wobei wir im zweiten Schritt verwendet haben, dass die Folge ((infn fm)(x))n∈N für jedes n ∈ N monton wachsend
ist. □
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Folgerung 5.12

(i) Sind f1, ..., fr : Ω→ R̄messbare Funktionen bezüglich A, dann gilt dasselbe für die Funk-
tionen x 7→min{ f1(x), ..., fr(x)} und x 7→max{ f1(x), ..., fr(x)}.

(ii) Ist ( fn)n∈N eine Folge A-messbarer Funktionen, die punktweise gegen eine Funktion
f : Ω→ R̄ konvergiert, dann ist auch f eine A-messbare Funktion.

Beweis: Sowohl (i) als auch (ii) ist ein Spezialfälle des vorherigen Satzes. Definieren wir fn(x) = fr(x) für n ≥ r,
dann gilt min{ f1(x), ..., fr(x)} = (inf fn)(x) und max{ f1(x), ..., fr(x)} = (sup fn)(x). Konvergiert die Folge ( fn)n∈N
punktweise gegen f , dann gilt f = limsup fn = lim inf fn. □

Ist f : Ω → R̄ eine beliebige Funktion, dann definieren wir nichtnegative Funktionen f + und f − durch f +(x) =
max{0, f (x)} und f −(x) = −min{0, f (x)} für x ∈ Ω. Offenbar gilt dann f = f + − f −. Den Betrag von f definieren
wir durch | f |(x) = | f (x)|= f +(x) + f −(x). Aus der Folgerung 5.12 ergibt sich unmittelbar

Folgerung 5.13 Eine Funktion f : Ω→ R̄ ist genau dann A-messbar, wenn f + und f − beide
A-messbar sind. Ist die Funktion f messbar bezüglich A, dann gilt dasselbe für | f |.
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§ 6. Integrierbare Funktionen

Zusammenfassung. Für jeden Maßraum (Ω,A,µ) definieren wir den R-Vektorraum der µ-integrierbaren
Funktionen und ordnen jeder solchen Funktion f ein Integral

∫

f dµ zu. Dabei gehen wir schrittweise vor,
indem wir zunächst für die messbaren Funktionen mit endlicher Wertemenge, den sog. Stufenfunktionen, ein
Integral definieren und diese Definition dann auf messbare nicht-negative Funktionen ausdehnen. Für unser
neues Integral werden einige elementare Rechenregeln hergeleitet. Außerdem führen wir den Begriff der Null-
menge in einem Maßraum ein. Auf solchen Mengen können Funktionen beliebig abgeändert werden, ohne dass
sich dies auf die µ-Integrierbarkeit oder den Wert des Integrals auswirkt.

Wichtige Grundbegriffe

– Menge E(Ω,A) der Stufenfunktionen

– µ-Integral einer Stufenfunktion auf einem
Maßraum (Ω,A,µ)

– µ-Integral einer nicht-negativen messbaren
Funktion

– µ-Integrierbarkeit und µ-Integral einer Funk-
tion auf einem Maßraum

– Nullfortsetzung einer Funktion

– Nullmenge in einem Maßraum

– µ-fast überall bestehende Eigenschaften

Zentrale Sätze

– Charakterisierung der nichtnegativen messbaren Funk-
tionen durch monoton wachsende Folgen von Stufen-
funktionen

– Satz über die monotone Konvergenz für nicht-negative
messbare Funktionen

– Lebesgue-Integrierbarkeit stetiger Funktionen mit
kompaktem Träger

– Verhalten des µ-Integrals bei Einschränkung und Null-
fortsetzung

– Invarianz der µ-Integrierbarkeit und des µ-Integrals
bei Wechsel zu einer µ-fast überall übereinstimmenden
Funktion

Auch hier bezeichnet im gesamten Abschnitt das Paar (Ω,A) einen festgewählten Messraum.

Definition 6.1 Als A-Stufenfunktion bezeichnen wir eine nichtnegative, A-messbare Funktion
f : Ω → R, die nur endlich viele reelle Werte annimmt. Die Menge der A-Stufenfunktionen
bezeichnen wir mit E(Ω,A).

Die meisten Funktionen, die uns in der Analysis begegnen, sind natürlich keine Stufenfunktionen. Insbesondere sind
stetige Funktionen in der Regel keine Stufenfunktionen. Dem Begriff kommt auf unserem Weg zur Integraldefinition
lediglich eine Hilfsfunktion zu.

Proposition 6.2 Eine Funktion f : Ω → R ist genau dann eine A-Stufenfunktion, wenn ein
n ∈ N0, paarweise disjunkte Mengen A1, ..., An ∈ A mit Ω = A1 ∪ ... ∪ An und u1, ..., un ∈ R+
existieren, so dass f =

∑n
i=1 ui1Ai

erfüllt ist.
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Beweis: „⇒“ Sei f ∈ E(Ω,A), und seien u1, ..., un ∈ R+ die verschiedenen Werte von f . Wegen {ui} ∈ B̄1 für
1 ≤ i ≤ n und auf Grund der A-Messbarkeit von f sind die Mengen Ai = f −1({ui}) in A enthalten. Die Mengen
A1, ..., An sind paarweise disjunkt, und offenbar gilt Ω = A1 ∪ ...∪ An. Man überprüft nun unmittelbar die Gleichung
f (x) =
∑n

i=1 ui1Ai
(x) für alle x ∈ Ω, indem man die Fälle x ∈ Ai für 1≤ i ≤ n der Reihe nach durchgeht.

„⇐“ Sei f eine Funktion der Form
∑n

i=1 ui1Ai
. Nach Proposition 5.4 sind die Funktionen 1Ai

messbar bezüglich A,
und mit Satz 5.10 erhalten wir die Messbarkeit von f . Offenbar ist f nichtnegativ und nimmt nur die Werte u1, ..., un

an. □

Proposition 6.3 Sind f , g ∈ E(Ω,A), dann sind auch die Funktionen f + g, f g, max{ f , g}
und min{ f , g} in E(Ω,A) enthalten.

Beweis: Aus dem letzten Abschnitt ist bekannt, dass f + g, f g, max{ f , g} und min{ f , g} messbar bezüglich A ist.
Darüber hinaus ist unmittelbar klar, dass alle Funktionen nur endlich viele verschiedene, nichtnegative reelle Werte
annehmen. □

Aus der soeben bewiesenen Proposition folgt unmittelbar, dass E(Ω,A) die Struktur eines R-Vektorraums besitzt.
Unser nächstes Ziel besteht darin, den Stufenfunktionen ein Integral zuzuordnen. Dafür erweitern wir unseren
Messraum (Ω,A) zu einem Maßraum (Ω,A,µ).

Lemma 6.4 Sei f ∈ E(Ω,A), und seien

f =
m
∑

i=1

αi1Ai
=

n
∑

j=1

β j1B j

zwei Darstellungen von f mit m, n ∈N, α1, ...,αm,β1, ...,βn ∈R+ sowie A1, ..., Am, B1, ..., Bn ∈A,
wobei A1, ..., Am und B1, ..., Bn jeweils paarweise disjunkt sind und ihre Vereinigung jeweils Ω
ergibt. Dann gilt

m
∑

i=1

αiµ(Ai) =
n
∑

j=1

β jµ(B j).

Beweis: WegenΩ= A1∪...∪Am = B1∪...∪Bn gelten die Mengengleichungen Ai =
⋃n

j=1(Ai∩B j) und B j =
⋃m

i=1(Ai∩B j)
für 1≤ i ≤ m bzw. 1≤ j ≤ n, wobei die Mengen Ai ∩ B j in beiden Vereinigungen jeweils paarweise disjunkt sind. Es
folgt

µ(Ai) =
n
∑

j=1

µ(Ai ∩ B j) und µ(B j) =
m
∑

i=1

µ(Ai ∩ B j).

Sei S die Menge aller Paare (i, j) mit Ai ∩ B j ̸= ∅. Für diese Paare (i, j) und beliebige Punkte x ∈ Ai ∩ B j gilt
αi = f (x) = β j . Wir definieren γi j = αi = β j für alle (i, j) ∈ S und erhalten

m
∑

i=1

αiµ(Ai) =
m
∑

i=1

n
∑

j=1

αiµ(Ai ∩ B j) =
∑

(i, j)∈S

γi jµ(Ai ∩ B j) =

m
∑

i=1

n
∑

j=1

β jµ(Ai ∩ B j) =
n
∑

j=1

β jµ(B j). □
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Definition 6.5 Das µ-Integral einer Funktion f ∈ E(Ω,A) der Form f =
∑m

i=1 ui1Ai
mit

u1, ..., um ∈R+ und paarweise disjunkten A1, ..., Am ∈A mit Ω= A1 ∪ ...∪ Am ist definiert durch

∫

f dµ =
n
∑

i=1

uiµ(Ai),

wobei wir uiµ(Ai) im Fall ui = 0, µ(Ai) = +∞ gleich Null setzen.

Nach Lemma 6.4 ist der Wert des Integral von der Darstellung der Funktion f unabhängig.

Proposition 6.6 Für A∈A, f , g ∈ E(Ω,A) und α ∈R+ gelten folgende Rechenregeln.

(i)
∫

1A dµ= µ(A)

(ii)
∫

(α f ) dµ= α
∫

f dµ

(iii)
∫

( f + g) dµ=
∫

f dµ+
∫

g dµ

(iv) f ≤ g ⇒
∫

f dµ≤
∫

g dµ

Beweis: Gleichung (i) ergibt sich direkt aus der Definition. Für den Beweis von (ii) bis (iv) seien die Funktionen f , g in
der Form f =
∑m

i=1 ui1Ai
und g =
∑n

j=1 v j1B j
vorgegeben, mit ui , v j ∈R+ und Ai , B j ∈A, wobei die Mengen A1, ..., Am

und B1, ..., Bn jeweils paarweise disjunkt sind und ihre Vereinigung jeweils Ω ergibt. Weil der Wert des Integrals von
der Darstellung der Funktion als Summe unabhängig ist, können wir an Stelle von A1, ..., Am und B1, ..., Bn das System
der Schnittmengen Ai ∩ B j zu Grund legen. Es gilt dann f =

∑m
i=1

∑n
j=1 ui j1Ai∩B j

, g =
∑m

i=1

∑n
j=1 vi j1Ai∩B j

und

∫

f dµ=
m
∑

i=1

n
∑

j=1

ui jµ(Ai ∩ B j) ,

∫

g dµ=
m
∑

i=1

n
∑

j=1

vi jµ(Ai ∩ B j)

mit ui j = ui und vi j = v j für 1≤ i ≤ m und 1≤ j ≤ n. Wegen f + g =
∑m

i=1

∑n
j=1(ui j + vi j)1Ai∩B j

folgt

∫

( f + g) dµ =
m
∑

i=1

n
∑

j=1

(ui j + vi j)µ(Ai) =

m
∑

i=1

n
∑

j=1

ui jµ(Ai ∩ B j) +
m
∑

i=1

n
∑

j=1

vi jµ(Ai ∩ B j) =

∫

f dµ+

∫

g dµ.

Durch die Darstellung α f =
∑m

i=1(αui)1Ai
erhalten wir

∫

(α f ) dµ =
m
∑

i=1

αuiµ(Ai) = α

m
∑

i=1

uiµ(Ai) = α

∫

f dµ.

Aus f ≤ g folgt schließlich ui j ≤ vi j für 1≤ i ≤ m, 1≤ j ≤ n und damit

∫

f dµ =
m
∑

i=1

n
∑

j=1

ui jµ(Ai ∩ B j) ≤
m
∑

i=1

n
∑

j=1

vi jµ(Ai ∩ B j) =

∫

g dµ. □
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Unser nächstes Ziel besteht darin, den Integralbegriff auf allgemeinere nicht-negative Funktionen auszudehnen

Eine Folge ( fn)n∈N von Funktionen fn : Ω→ R̄ bezeichnen wir als monoton wachsend, wenn fn(x) ≤ fn+1(x) für
alle x ∈ Ω und n ∈N erfüllt ist. Weiterhin sei (Ω,A,µ) ein festgewählter Maßraum.

Satz 6.7 Eine Funktion f : Ω→ R̄+ ist genau dann A-messbar, wenn eine monoton wachsende
Folge ( fn)n∈N in E(Ω,A) mit f = sup fn existiert.

Beweis: „⇐“ Nach Satz 5.11 ist f als Supremum einer Folge A-messbarer Funktionen selbst A-messbar.
„⇒“ Die wesentliche Idee besteht darin, f durch A-Stufenfunktionen zunehmend genauer zu approximieren, wobei
wir die Stellen x ∈ Ω mit f (x) = +∞ gesondert berücksichtigen müssen. Für jedes n ∈ N seien die Mengen Anp

gegeben durch

Anp =

(

{x ∈ Ω | p2−n ≤ f (x)< (p+ 1)2−n} für 0≤ p ≤ n2n − 1

{x ∈ Ω | f (x)≥ n} für p = n2n

Die Menge der x ∈ Ω mit 0 ≤ f (x) < n wird also zunehmend feiner aufgeteilt, je nach Wert der Funktion f ,
während die übrigen Punkte in der Menge An,n2n zusammengefasst werden. Für jedes n ∈ N sind die Mengen Anp

in A enthalten, paarweise disjunkt, und es gilt Ω =
⋃n2n

p=0 Anp. Durch fn =
∑n2n

p=0 p2−n · 1Anp
erhalten wir jeweils eine

Funktion in E(Ω,A). Wir zeigen nun, dass die Folge dieser Funktionen monoton wächst. Für alle n, p mit 0≤ p < n2n

gilt Anp = An+1,2p ∪ An+1,2p+1 auf Grund der Äquivalenzen

x ∈ Anp ⇔ p2−n ≤ f (x)< (p+ 1)2−n ⇔ (2p)2−(n+1) ≤ f (x)< (2p+ 2)2−(n+1) ⇔

(2p)2−(n+1) ≤ f (x)< (2p+ 1)2−(n+1) ∨ (2p+ 1)2−(n+1) ≤ f (x)< (2p+ 2)2−(n+1)

⇔ x ∈ An+1,2p ∨ x ∈ An+1,2p+1 ⇔ x ∈ An+1,2p ∪ An+1,2p+1.

Auf Anp ist fn konstant gleich p2−n, und fn+1 nimmt nur die Werte p2−n = (2p)2−(n+1) und (2p+1)2−(n+1) an, also gilt
hier fn+1(x) ≥ fn(x). Für alle x ∈ Ω gilt f (x) ≥ n genau dann, wenn p2−(n+1) ≤ f (x) < (p + 1)2−(n+1) für ein p mit
n2n+1 ≤ p ≤ (n+1)2n+1−1 gilt, oder wenn f (x)≥ n+1 erfüllt ist. Im ersten Fall ist fn+1(x) = p2−(n+1) ≥ n= fn(x),
im zweiten fn+1(x) = n+ 1≥ n= fn(x). Insgesamt ist die Folge ( fn)n∈N also überall monoton wachsend.

Wir zeigen nun, dass f = sup fn gilt und betrachten dafür einen beliebigen Punkt x ∈ Ω. Im Fall f (x) = +∞ gilt
fn(x) = n für alle n ∈ N, also sup fn(x) = +∞ = f (x). Ist f (x) endlich, dann gilt fn(x) ≤ f (x) < fn(x) + 2−n für
alle n> f (x). Durch Grenzübergang n→∞ erhalten wir f (x) = lim fn(x) = sup fn(x). □

Wir werden nun diese monoton wachsenden Folgen ( fn)n∈N dazu verwenden, der Funktion f ein Integral zuzuord-
nen. Zur Vorbereitung beweisen wir

Satz 6.8 Sei ( fn)n∈N eine monoton wachsende Folge in E(Ω,A) und f ∈ E(Ω,A) eine Funktion
mit f ≤ sup fn. Dann folgt

∫

f dµ ≤ sup

∫

fn dµ.

— 46 —



Beweis: Wir stellen die Funktion f in der Form f =
∑m

j=1α j1A j
mit α j ∈R+ und A j ∈A dar. Sei α ∈ ]0,1[ vorgegeben

und Bn = {x ∈ Ω | fn(x)≥ α f (x)}. Wir zeigen

(i)

∫

fn dµ≥ α
∫

f · 1Bn
dµ für alle n ∈N und (ii) lim

n→∞

∫

f · 1Bn
dµ=

∫

f dµ.

zu (i) Nach Definition gilt α f · 1Bn
≤ fn1Bn

≤ fn. Für die Integrale folgt daraus

α

∫

f · 1Bn
dµ =

∫

α f · 1Bn
dµ ≤
∫

fn dµ.

zu (ii) Weil die Folge ( fn)n∈N monoton wachsend ist, gilt dasselbe für die Folge (Bn)n∈N in A, und aus f ≤ sup fn

folgt Ω =
⋃∞

n=1 Bn. Somit ist für jedes j ∈ {1, ..., m} auch die Folge (A j ∩ Bn)n∈N monoton wachsend, und es gilt
A j =
⋃∞

n=1(A j ∩ Bn). Auf Grund der σ-Additivität des Maßes µ erhalten wir

∫

f dµ =
m
∑

j=1

α jµ(A j) = lim
n→∞

m
∑

j=1

α jµ(A j ∩ Bn) = lim
n→∞

∫

f · 1Bn
dµ.

Die Aussagen (i) und (ii) liefern zusammen

sup

∫

fn dµ ≥ supα

∫

f · 1Bn
dµ = α · lim

n→∞

∫

f · 1Bn
dµ = α

∫

f dµ.

Weil α ∈ ]0,1[ beliebig gewählt war, folgt aus dieser Abschätzung die Behauptung. □

Folgerung 6.9 Sind ( fn)n∈N und (gn)n∈N zwei monoton wachsende Folgen in E(Ω,A) mit
lim fn = lim gn, dann folgt sup

∫

fn dµ= sup
∫

gn dµ.

Beweis: Für alle m ∈N gilt gm ≤ sup fn, also
∫

gm dµ≤ sup
∫

fn dµ nach Satz 6.8. Es folgt sup
∫

gm dµ≤ sup
∫

fn dµ.
Ebenso erhält man die umgekehrte Abschätzung. □

Definition 6.10 Sei f : Ω→ R̄+ eine A-messbare Funktion und ( fn)n∈N eine monoton wach-
sende Folge in E(Ω,A) mit sup fn = f . Dann ist das µ-Integral von f definiert durch

∫

f dµ = sup

∫

fn dµ.

Nach Satz 6.7 existiert zumindest eine Folge von Stufenfunktionen mit den angegebenen Eigenschaften, und nach
Folgerung 6.9 ist die Definition von der Wahl der Folge unabhängig.
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Satz 6.11 Für alle A-messbaren Funktionen f , g und alle α ∈R+ gilt

(i)
∫

(α f ) dµ= α
∫

f dµ

(ii)
∫

( f + g) dµ=
∫

f dµ+
∫

g dµ

(iii) Ist f ≤ g, dann folgt
∫

f dµ≤
∫

g dµ.

Beweis: Sei ( fn)n∈N eine monoton wachsende Folge in E(Ω,A) mit sup fn = f . Dann ist (α fn)n∈N ebenfalls eine
monoton wachsende Folge in E(Ω,A) mit supα fn = α f . Die Folge der Integrale

∫

fn dµ ist monoton wachsend,
deshalb gilt sup

∫

fn dµ = limn

∫

fn dµ. Entsprechendes gilt für die Folge der Integrale über die Funktionen α fn.
Insgesamt erhalten wir

∫

(α f ) dµ = sup

∫

(α fn) dµ = lim
n→∞

∫

(α fn) dµ = lim
n→∞

α

∫

fn dµ =

α · lim
n→∞

∫

fn dµ = α · sup

∫

fn dµ = α

∫

f dµ.

wobei wir verwendet haben, das die Vertauschbarkeit von skalarer Multiplikation und Integrationen für Funktionen
aus E(Ω,A) bereits gezeigt wurde. Genauso beweist man auch die Gleichung (ii). Ist (gn)n∈N eine Folge mit sup gn =
g, dann gilt sup( fn + gn) = f + g, und wir erhalten

∫

( f + g) dµ = sup

∫

( fn + gn) dµ = lim
n→∞

∫

( fn + gn) dµ =

lim
n→∞

∫

fn dµ+ lim
n→∞

∫

gn dµ = sup

∫

fn dµ+ sup

∫

gn dµ =

∫

f dµ+

∫

g dµ.

Setzen wir nun f ≤ g voraus, und beweisen wir die Ungleichung (iii) zwischen den Integralen. Wieder seien ( fn)n∈N
und (gn)n∈N monoton wachsende Folgen in E(Ω,A) mit f = sup fn und g = sup gn. Aus f ≤ g folgt fm ≤ sup gn für
alle m ∈N. Nach Satz 6.8 folgt

∫

fm dµ≤ sup
∫

gn dµ für alle m ∈N. Durch Übergang zum Supremum erhalten wir

∫

f dµ = sup

∫

fn dµ ≤ sup

∫

gn dµ =

∫

g dµ. □

Satz 6.12 (Satz über die monotone Konvergenz)

Sei ( fn)n∈N eine monoton wachsende Folge A-messbarer Funktionen fn : Ω → R̄+, und sei
f = sup fn. Dann ist auch f eine A-messbare Funktion, und es gilt

∫

f dµ = sup

∫

fn dµ.
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Beweis: Dass das Supremum einer Folge A-messbarer Funktionen selbst A-messbar ist, wurde bereits gezeigt. Es
gilt fn ≤ f für alle n ∈ N, nach Satz 6.11 (iii) folgt daraus

∫

fn dµ ≤
∫

f dµ, durch Übergang zum Supremum
also sup
∫

fn dµ ≤
∫

f dµ. Um auch die umgekehrte Abschätzung zu beweisen, wählen wir für jedes n ∈ N eine
monoton wachsende Folge (unp)p∈N in E(Ω,A) mit fn = supp∈N unp. Für jedes p ∈ N sei vp = max{u1p, ..., upp}.
Auch diese Funktionen sind in E(Ω,A) enthalten. Wir beweisen nun die Gleichung f = supn∈N vn. Zunächst gilt
vp ≤max{ f1, ..., fp}= fp und somit supp∈N vp ≤ supp∈N fp = f . Andererseits ist unp ≤ vp für n≤ p, also supp∈N unp ≤
supp∈N vp und somit fn ≤ supp∈N vp für alle n ∈ N. Es folgt f = supn∈N fn ≤ supp∈N vp durch Übergang zum Su-
premum, insgesamt also f = supp∈N vp. Dies bedeutet, dass wir die Folge (vn)n∈N in E(Ω,A) zur Berechnung des
Integrals der Funktion f verwenden können. Zusammen mit der Abschätzung vn ≤ fn für alle n ∈N erhalten wir

∫

f dµ = sup
n∈N

∫

vn dµ ≤ sup
n∈N

∫

fn dµ ,

insgesamt also sup
∫

fn dµ=
∫

f dµ wie gewünscht. □

Im nachfolgenden Teil soll nun noch die Beschränkung auf nichtnegative Funktionen aufgehoben werden.

Definition 6.13 Eine Funktion f : Ω → R̄ wird µ-integrierbar genannt, wenn f eine A-
messbare Funktion und die Integrale

∫

f + dµ,
∫

f − dµ endlich (also R-wertig) sind. In diesem
Fall nennt man

∫

f dµ =

∫

f + dµ−
∫

f − dµ das µ-Integral von f .

Ist der zu Grunde liegende Maßraum speziell der Raum (Rd ,Ad ,µd)mit dem Lebesgue-Maß µd und derσ-Algebra Ad

der Lebesgue-messbaren Funktionen, dann nennt man dieµd -integrierbaren Funktionen auch Lebesgue-integrierbar
und spricht vom Lebesgue-Integral der Funktion.

Eine nicht-negative, A-messbare Funktion f : Ω → R+ ist nach Definition genau dann µ-integrierbar, wenn das
Integral
∫

f dµ in R liegt. Ist dies nämlich der Fall, dann ist auch
∫

f + dµ endlich wegen f + = f , und f − = 0 ist
eine Stufenfunktion mit Integral Null. Also ist f nach Definition µ-integrierbar. Setzen wir dies umgekehrt voraus,
dann ist das Integral über f + = f endlich.

Satz 6.14 Für eine A-messbare Funktion sind die folgenden Aussagen äquivalent.

(i) Die Funktion f ist µ-integrierbar.

(ii) Es gibt µ-integrierbare Funktionen g, h : Ω→ R̄+ mit f = g − h.

(iii) Es gibt eine µ-integrierbare Funktion g1 : Ω→ R̄+ mit | f | ≤ g1.

(iv) Die Funktion | f | ist µ-integrierbar.

Ist Bedingung (ii) mit den Funktionen g und h erfüllt, dann gilt
∫

f dµ=
∫

g dµ−
∫

h dµ.
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Beweis: „(i) ⇒ (ii) “ Sei g = f + und h = f −. Auf Grund der Bemerkung sind g und h beides µ-integrierbare
Funktionen, und es gilt f = g − h.

„(ii) ⇒ (iii)“ Mit g und h ist auch g1 = g + h eine µ-integrierbare Funktion. Es gilt f = g − h ≤ g + h = g1 und
− f = h− g ≤ h≤ g + h= g1, insgesamt also | f | ≤ g1.

„(iii)⇒ (iv)“ Es gilt | f |− = 0, also ist | f |− eine Stufenfunktion, und das µ-Integral über | f |− ist gleich Null. Außerdem
gilt
∫

| f | dµ≤
∫

g1 dµ < +∞.

„(iv)⇒ (i)“ Wegen f + ≤ | f | und f − ≤ | f | sind die µ-Integrale über f + und f − endlich. Also ist f nach Definition
eine µ-integrierbare Funktion.

Zum Schluss beweisen wir die zusätzliche Aussage zum Punkt (ii). Aus f = g − h = f + − f − folgt g + f − = h+ f +.
Es folgt
∫

g dµ+
∫

f − dµ=
∫

(g+ f −) dµ=
∫

(h+ f +) dµ=
∫

h dµ+
∫

f + dµ, also
∫

f dµ=
∫

f + dµ−
∫

f − dµ=
∫

g dµ−
∫

h dµ. □

Satz 6.15 Seien f , g : Ω → R̄ zwei µ-integrierbare Funktionen und α ∈ R. Dann sind auch
die Funktionen f + g, α f , min{ f , g} und max{ f , g}, sofern sie auf ganz Ω definiert sind, jeweils
µ-integrierbar. Es gilt dann

∫

( f + g) dµ =

∫

f dµ+

∫

g dµ und

∫

(α f ) dµ = α

∫

f dµ.

Beweis: Sei zunächst α≥ 0. Dann gilt (α f )+ = α f +, (α f )− = α f −, und mit f +, f − sind auch (α f )+ und (α f )− beides
A-messbare Funktionen. Weil

∫

f + dµ endlich ist, gilt dasselbe für
∫

(α f )+ dµ = α
∫

f + dµ, ebenso ist
∫

(α f )− dµ
endlich. Außerdem gilt

∫

(α f ) dµ =

∫

(α f )+ dµ−
∫

(α f )− dµ = α

∫

f + dµ−α
∫

f − dµ =

α

�∫

f + dµ−
∫

f − dµ

�

= α

∫

f dµ.

Im Fall α < 0 gilt (α f )+ = (−α) f − und (α f )− = (−α) f +. Aus
∫

f − dµ < +∞ folgt
∫

(α f )+ dµ =
∫

(−α) f − dµ =
(−α)
∫

f − dµ < +∞, und auf Grund der Voraussetzung
∫

f + dµ < +∞ gilt
∫

(α f )− dµ =
∫

(−α) f + dµ =
(−α)
∫

f + dµ < +∞. Also ist α f eine µ-integrierbare Funktion. Für das Integral gilt

∫

α f dµ =

∫

(α f )+ dµ−
∫

(α f )− dµ = (−α)
∫

f − dµ− (−α)
∫

f + dµ =

α

∫

f + dµ−α
∫

f − dµ = α

∫

f dµ.

Nun beweisen wir die entsprechenden Aussagen für die Funktion f + g. Mit f +, f −, g+ und g− sind auch die Funk-
tionen u= f + + g+ und v = f − + g− jeweils µ-integrierbar, und es gilt u− v = ( f + − f −) + (g+ − g−) = f + g. Nach
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Satz 6.14 (ii) ist damit auch f + g eine µ-integrierbare Funktion, und es gilt

∫

( f + g) dµ =

∫

u dµ−
∫

v dµ =

∫

f + dµ+

∫

g+ dµ−
∫

f − dµ−
∫

g− dµ =
∫

f + dµ−
∫

f − dµ+

∫

g+ dµ−
∫

g− dµ =

∫

f dµ+

∫

g dµ.

Die Funktionen min{ f , g} und max{ f , g} sind nach Folgerung 5.12 beide A-messbar, und es gilt |min{ f , g}| ≤ | f |+|g|
sowie |max{ f , g}| ≤ | f |+ |g|. Die Funktion | f |+ |g| ist µ-integrierbar, wie wir bereits festgestellt haben. Also sind
min{ f , g} und max{ f , g} nach Satz 6.14 (iii) jeweils µ-integrierbar. □

Der Satz zeigt insbesondere, dass die reellwertigen µ-integrierbaren Funktionen einenR-Vektorraum bilden, den wir
mit L 1(µ) bezeichnen. Im Fall des Lebesgue-Maßes µd auf dem Rd bezeichnen wir diesen Raum auch mit L 1(Rd).

Bemerkenswerterweise ist das Produkt f g zweier µ-integrierbarer Funktionen im allgemeinen nicht µ-integrierbar.
Sei p ∈N mit p ≥ 2 und der Maßraum (Ω,A,µp) gegeben durch Ω=N, A=P(N) und die Funktion

µp(A) =
∑

n∈A

n−p−1.

Man überprüft unmittelbar, dass durch µp tatsächlich ein Maß definiert ist. Ist f : N→ R+ eine Funktion, die nur
an endlich vielen Stellen einen Wert ungleich Null annimmt, dann ist f eine Stufenfunktion, und die einelementigen
Mengen {n} sind in A=P(N) enthalten. Nach Definition des µp-Integrals gilt

∫

f dµp =
∑

n∈N

f (n)µp({n}) =
∑

n∈N

f (n)n−p−1.

Sei nun f eine beliebige nicht-negative Funktion. Für jedes n ∈ N definieren wir Mn = {k ∈ N | 1 ≤ k ≤ n} und
fn = f · 1Mn

. Dann ist ( fn)n∈N eine monoton wachsende Folge in E(N,P(N)) mit sup fn = f . Dies zeigt, dass f eine
P(N)-messbare Funktion ist. Weiter gilt

∫

f dµp = sup
n∈N

∫

fn dµp = lim
n→∞

∫

fn dµp = lim
n→∞

∑

k∈Mn

fn(k)n
−p−1 =

lim
n→∞

∑

k∈Mn

f (k)k−p−1 = lim
n→∞

n
∑

k=1

f (k)k−p−1 =
∞
∑

n=1

f (n)n−p−1.

Wir betrachten nun die spezielle Funktion f : Ω→ R gegeben durch n 7→ n. Dann gilt
∫

f dµ =
∑∞

n=1 n−p < +∞,
aber
∫

f p dµ=
∑∞

n=1 n−1 = +∞. Die p-te Potenz von f ist also im Gegensatz zu f nicht µ-integrierbar. Es gilt aber

Proposition 6.16 Ist f : Ω→ R̄ µ-integrierbar und g : Ω→ R̄ beschränkt und messbar, dann
ist auch das Produkt µ-integrierbar, sofern es auf ganz Ω definiert ist.

Beweis: Nach Satz 5.10 ist f g eine messbare Funktion. Da g beschränkt ist, existiert eine Konstante γ ∈ R+ mit
|g(x)| ≤ γ für alle x ∈R+. Es gilt also |g| ≤ γ, und daraus folgt ( f g)+ ≤ | f g| ≤ γ| f | und ( f g)− ≤ | f g| ≤ γ| f |. Weil f
eine µ-integrierbare Funktion ist, gilt

∫

| f | dµ < +∞. Auf Grund der Ungleichungen folgt
∫

( f g)+ dµ≤ γ
∫

| f | dµ <
+∞ und ebenso

∫

( f g)− dµ≤ γ
∫

| f | dµ < +∞. Dies zeigt, dass auch f g eine µ-integrierbare Funktion ist. □
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Ist (X ,T ) ein topologischer Raum und f : X →R eine Funktion, so wird der Abschluss der Menge {x ∈ X | f (x) ̸= 0}
der Träger der Funktion genannt.

Satz 6.17 Jede stetige Funktion f :Rd →R mit kompaktem Träger ist Lebesgue-integrierbar.

Beweis: Aus Proposition 5.5 folgt, dass f Borel-messbar und damit auch Lebesgue-messbar ist. Sei T ⊆ Rd der
kompakte Träger von f . Auf Grund des Maximumsprinzips und der Stetigkeit von f existiert eine Konstante γ ∈R+

mit | f (x)| ≤ γ für alle x ∈ T ; es gilt also | f | ≤ γ · 1T . Da T als kompakte Menge auch beschränkt ist, hat das
Lebesgue-Maß µd(T ) einen endlichen Wert. Wegen f + ≤ | f | ≤ γ · 1T gilt

∫

f + dµd ≤
∫

γ · 1T dµ= γ ·µd(T )< +∞,
und ebenso weist man die Endlichkeit des Integrals

∫

f − dµd nach. Also ist f tatsächlich Lebesgue-integrierbar. □

Definition 6.18 Sei f : Ω → R̄ eine µ-integrierbare Funktion und A ∈ A. Dann ist das µ-
Integral von f über A definiert durch

∫

A

f dµ =

∫

f · 1A dµ ,

wobei wir von der Konvention (+∞) · 0 = 0 und (−∞) · 0 = 0 Gebrauch machen, falls f
unendliche Werte annimmt. Man beachte, dass das Integral auf der rechten Seite wegen |1A· f | ≤
| f | tatsächlich existiert.

Ist f : Ω→ R̄ eine µ-integrierbare Funktion, und sind A, B ∈A, dann gilt

∫

A∪B

f dµ+

∫

A∩B

f dµ =

∫

A

f dµ+

∫

B

f dµ.

Dies folgt unmittelbar aus der Gleichung f ·1A∪B+ f ·1A∩B = f ·1A+ f ·1B. Sind A und B disjunkt, dann gilt insbesondere
∫

A∪B f dµ=
∫

A f dµ+
∫

B f dµ.

Ist (Ω,A,µ) ein Maßraum und B ∈A, dann ist AB = {A∩ B | A∈A} offenbar eine in A enthaltene σ-Algebra. Durch
das Tripel (A,AB,µB)mit und µB = µ|AB

ist wiederum ein Maßraum gegeben, denn mit µ ist auch die eingeschränkte
Abbildung µB abzählbar additiv.

Lemma 6.19 Sei f : Ω → R̄ eine µ-integrierbare Funktion und B ∈ A. Dann ist die Ein-
schränkung f |B eine µB-integrierbare Funktion, und es gilt

∫

( f |B) dµB =

∫

B

f dµ. (6.1)

Beweis: Wir betrachten zunächst den Fall, dass f nicht-negativ und lediglich A-messbar ist. Für alle C ∈ B̄1 gilt
( f |B)−1(C) = B ∩ f −1(C) ∈ A. Also ist f |B eine AB-messbare Funktion. Wir beweisen nun die Gleichung (6.1). Weil
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f ·1B eine A-messbare Funktion ist, gibt es eine monoton wachsende Folge ( fn)n∈N in E(Ω,A)mit supn∈N fn = f ·1B.
Die Folge ( fn|B)|n∈N ist dann in E(B,AB) enthalten, ebenfalls monoton wachsend, und es gilt supn∈N fn|B = f |B. Nach
Definition gilt

∫

B

f dµ= sup
n∈N

∫

fn dµ und

∫

( f |B) dµB = sup
n∈N

∫

( fn|B) dµB. (6.2)

Wir zeigen nun, dass für jedes n ∈ N die Gleichung
∫

fn dµ =
∫

( fn|B) dµB erfüllt ist. Wegen fn ∈ E(Ω,A) gibt es
ein kn ∈ N, α1, ...,αkn

∈ R+ und B1, ..., Bkn
∈ A mit fn =
∑kn

i=1αi · 1Bi
, wobei wir αi > 0 für 1 ≤ i ≤ kn annehmen

können. Wegen 0≤ fn ≤ f · 1B gilt Bi ⊆ B für 1≤ i ≤ kn. Außerdem ist fn|B =
∑kn

i=1αi · 1Bi
|B. Damit erhalten wir für

die Integrale

∫

fn dµ =
kn
∑

i=1

αiµ(Bi) =
kn
∑

i=1

αiµB(Bi) =

∫

( fn|B) dµB.

Wegen (6.2) ist die Gleichung (6.1) also für nicht-negatives f bewiesen. Insbesondere ist das Integral
∫

( f |B) dµB

genau dann endlich, wenn
∫

B f dµ endlich ist.

Sei nun f : Ω→ R̄ eine µ-integrierbare Funktion. Dann sind die Integrale
∫

B f + dµ und
∫

B f − dµ endlich, auf Grund
des bisher Gezeigten wegen ( f |B)+ = f +|B und ( f |B)− = f −|B also auch

∫

( f |B)+ dµB und
∫

( f |B)− dµB. Damit ist
f |B eine µB-integrierbare Funktion. Außerdem gilt

∫

B

f dµ =

∫

B

f + dµ−
∫

B

f − dµ =

∫

B

( f |B)+ dµA−
∫

B

( f |B)− dµB =

∫

( f |B) dµB. □

Ist B eine Teilmenge unseres Maßraums (Ω,A,µ) mit B ∈ A, so bezeichnen wir eine Funktion f : B → R̄ als µ-
integrierbar, wenn f auf dem Maßraum (B,AB,µB) eine µB-integrierbare Funktion ist, und zur Vereinfachung der
Notation setzt man

∫

B

f dµ =

∫

f dµB.

Aus dem Lemma folgt also, dass für jede µ-integrierbare Funktion g : Ω→ R̄ und jedes B ∈A auch die Einschränkung
g|B eine µ-integrierbare Funktion ist und dann

∫

B g dµ =
∫

B(g|B) dµ gilt. Anstelle einer Einschränkung kann der
Definitionsbereich einer Funktion auch ausgeweitet werden.

Definition 6.20 Sei B ∈A, f : B→ R̄ und bfB : Ω→ R̄ definiert durch

bfB(x) =

(

f (x) für x ∈ B

0 für x /∈ B.

Dann nennen wir bfB die Nullfortsetzung von f auf Ω.

Das folgende Lemma besagt, dass die Nullfortsetzung von messbaren bzw. integrierbaren Funktionen wiederum
messbar bzw. integrierbar ist.
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Lemma 6.21 Sei B ∈A und f : B→ R̄ eine Funktion.

(i) Ist f nicht-negativ und AB-messbar, dann ist bfB eine A-messbare Funktion.

(ii) Ist f µ-integrierbar, dann gilt dasselbe für bfB, und es gilt
∫

B f dµ=
∫

bfB dµ.

Beweis: zu (i) Auf Grund der AB-Messbarkeit von f gibt es nach Satz 6.7 eine monoton wachsende Folge ( fn)n∈N
in E(B,AB) mit supn∈N fn = f . Sei gn für jedes n ∈ N jeweils die Nullfortsetzung von fn. Dann ist gn jeweils in
E(Ω,A) enthalten. Denn für jeden der endlich vielen Werte c ungleich null, die von fn angenommen werden, gilt
g−1

n ({c}) = f −1
n ({c}) ∈AB, wegen AB ⊆A also auch g−1

n ({c}) ∈A. Außerdem gilt g−1
n ({0}) = f −1

n ({0})∪ (Ω\B) ∈A.
Darüber hinaus gilt offenbar supn∈N gn = bfB. Wiederum nach Satz 6.7 zeigt dies, dass bfB eine A-messbare Funktion
ist.

zu (ii) Sei f zunächst nicht-negativ. Nach Definition gilt bfB|B = f und bfB · 1B = bfB, und wegen Lemma 6.19 folgt
daraus

∫

B

f dµ =

∫

(bfB|B) dµB =

∫

B

bfB dµ =

∫

bfB · 1B dµ =

∫

bfB dµ.

Sei nun f : B→ R̄ eine beliebigeµ-integrierbare Funktion. Dann gilt nach Definition
∫

B f + dµ < +∞ und
∫

B f − dµB <

+∞. Die Funktionen (bfB)+ und (bfB)− sind die Nullfortsetzungen von f + bzw. f −, und auf Grund des bisher Gezeigten
gilt
∫

(bfB)+ dµ=
∫

B f + dµ < +∞ und ebenso
∫

(bfB)− dµ < +∞. Also ist die Funktion bfB tatsächlich µ-integrierbar,
und aus der Gleichheit der Integrale für f + und f − folgt die entsprechende Gleichheit der Integrale für f . □

Definition 6.22 Sei (Ω,A,µ) ein Maßraum. Wir bezeichnen eine Teilmenge N ⊆ Ω als Null-
menge, wenn µ(N) = 0 gilt.

Im weiteren Verlauf verwenden wir die folgende Sprechweise: Wir sagen, eine Funktion f : Ω → R̄ besitzt eine
Eigenschaft µ-fast überall, wenn eine Nullmenge N ⊆ Ω existiert, so dass die Eigenschaft für alle x ∈ Ω \ N erfüllt
ist. Wir illustrieren dies an einer Reihe von Beispielen.

(i) Wir sagen, zwei Funktionen f , g : Ω→ R̄ sind µ-fast überall gleich, falls eine Nullmenge N ⊆ Ω existiert, so
dass f (x) = g(x) für alle x ∈ Ω\N gilt. Insbesondere sagt man, die Funktion f verschwindet µ-fast überall,
wenn f µ-fast überall mit der Nullfunktion übereinstimmt.

(ii) Eine Funktion f : Ω→ R̄ ist µ-fast überall endlich, falls eine Nullmenge N ⊆ Ω existiert, so dass | f (x)|< +∞
für alle x ∈ Ω \ N erfüllt ist.

Satz 6.23 Sei f : Ω → R̄+ eine A-messbare Funktion. Genau dann ist
∫

f dµ = 0, wenn f
µ-fast überall verschwindet.

Beweis:
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Sei N = {x ∈ Ω | f (x) ̸= 0}= {x ∈ Ω | f (x)> 0}. Zu zeigen ist die Äquivalenz
∫

f dµ= 0⇔ µ(N) = 0.

„⇐“ Sei ( fn)n∈N die monoton wachsende Folge in E(Ω,A) gegeben durch fn = n · 1N für alle n ∈ N. Dann gilt
∫

fn dµ= 0 für alle n ∈N. Definieren wir g = supn∈N fn, dann ist g eine A-messbare Funktion, und es gilt
∫

g dµ=
supn∈N
∫

fn dµ= 0. Aus f ≤ g folgt 0≤
∫

f dµ≤
∫

g dµ= 0 und somit
∫

f dµ= 0.

„⇒“ Für jedes n ∈ N sei An = {x ∈ Ω | f (x) ≥ n−1}. Dann ist (An)n∈N monoton wachsend, es gilt
⋃∞

n=1 An = N und
somit limnµ(An) = µ(N). Wegen f ≥ n−1 · 1An

gilt

0 ≤ n−1µ(An) ≤
∫

n−1 · 1An
dµ ≤
∫

f dµ = 0.

Es folgt µ(An) = 0 für alle n ∈N, also µ(N) = 0. □

Folgerung 6.24 Sei f : Ω→ R̄ eine A-messbare Funktion und N ⊆ Ω eine Nullmenge. Dann
ist f über N µ-integrierbar, und es gilt

∫

N f dµ= 0.

Beweis: Die Funktionen f + ·1N und f − ·1N verschwinden µ-fast überall, also gilt
∫

N f + dµ=
∫

N f − dµ= 0. Folglich
ist f über N integrierbar, und es gilt

∫

N f dµ=
∫

N f + dµ−
∫

N f − dµ= 0. □

Satz 6.25 Seien f , g : Ω→ R̄ A-messbare Funktionen, die µ-fast überall übereinstimmen.

(i) Sind f , g beide nicht-negativ, dann gilt
∫

f dµ=
∫

g dµ.

(ii) Ist f eine µ-integrierbare Funktion, dann gilt dasselbe für g, und es ist
∫

f dµ=
∫

g dµ.
(Hier sind für f , g auch negative Werte zugelassen.)

Beweis: zu (i) Die Menge N = {x ∈ Ω | f (x) ̸= g(x)} ist nach Definition Folgerung 5.8 in A enthalten und liegt
außerdem nach Voraussetzung in einer Nullmenge. Also ist N selbst eine Nullmenge. Nach Satz 6.23 gilt

∫

N

f dµ =

∫

N

g dµ = 0.

Setzen wir M = Ω \ N , dann gilt
∫

M f dµ=
∫

M g dµ nach Definition von M , und wir erhalten
∫

f dµ =

∫

M

f dµ+

∫

N

f dµ =

∫

M

f dµ =

∫

M

g dµ =

∫

M

g dµ+

∫

N

g dµ =

∫

g dµ.

zu (ii) Gilt f = g µ-fast überall, dann sind auch die Gleichungen f + = g+ und f − = g− µ-fast überall erfüllt. Nach
Teil (i) folgt
∫

f + dµ =
∫

g+ dµ und
∫

f − dµ =
∫

g− dµ. Weil f nach Voraussetzung eine µ-integrierbare Funktion
ist, gilt
∫

f + dµ < +∞ und
∫

f − dµ < +∞. Also ist auch g eine µ-integrierbare Funktion, und es gilt
∫

f dµ =

∫

f + dµ−
∫

f − dµ =

∫

g+ dµ−
∫

g− dµ =

∫

g dµ. □
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Folgerung 6.26 Seien f , g : Ω→ R̄ zwei A-messbare Funktionen, und es gelte | f | ≤ g µ-fast
überall. Ist g eine µ-integrierbare Funktion, dann gilt dasselbe für f .

Beweis: Die Funktion g1 =max{g, | f |} stimmt µ-fast überall mit g überein. Nach Satz 6.25 ist g1 also µ-integrierbar.
Wegen | f | ≤ g1 auf Ω erhalten wir mit Satz 6.14 (iii) die µ-Integrierbarkeit von f . □

Wir sagen, eine Menge B ∈ A besitzt ein σ-endliches Maß, wenn µB : AB → R̄+ ein σ-endliches Maß ist. Gleich-
bedeutend damit ist, dass eine monoton wachsende Folge (Bn)n∈N von Teilmengen Bn ⊆ B mit

⋃∞
n=1 Bn = B und

µ(Bn)< +∞ für alle n ∈N existiert.

Satz 6.27 Sei f : Ω→ R̄ eine µ-integrierbare Funktion. Dann gilt

(i) Die Funktion f nimmt µ-fast überall endliche Werte an.

(ii) Die Menge {x ∈ Ω | f (x) ̸= 0} besitzt ein σ-endliches Maß.

Beweis: zu (i) Sei N = {x ∈ Ω | | f (x)| = +∞}. Dann ist N als Durchschnitt über die Folge (Nn)n∈N in A gegeben
durch Nn = {x ∈ Ω | | f (x)| ≥ n} selbst in A enthalten. Für alle α ∈R+ gilt α · 1N ≤ | f |. Es folgt

αµ(N) =

∫

α · 1N dµ ≤
∫

| f | dµ =

∫

f + dµ+

∫

f − dµ < +∞

für alle α ∈R+ und somit µ(N) = 0.

zu (ii) Wir können f ≥ 0 voraussetzen; ansonsten betrachten wir die Funktion | f | an Stelle von f . Für jedes n ∈N
sei An = {x ∈ Ω | f (x)≥ n−1}= {x ∈ Ω | nf (x)≥ 1}. Dann gilt 1An

≤ n · f , die Folge (An)n∈N ist monoton wachsend,
und es gilt

{x ∈ Ω | f (x) ̸= 0} = {x ∈ Ω | f (x)> 0} =
∞
⋃

n=1

An.

Aus 1An
≤ n · f folgt µ(An) ≤

∫

1An
dµ ≤ n
∫

f dµ < +∞ für alle n ∈ N. Damit ist die σ-Endlichkeit der Menge
{x ∈ Ω | f (x) ̸= 0} bewiesen. □

Die vorhergenden Sätze zeigen, dass sich an der Integrierbarkeit und dem Integral einer Funktion f nichts ändert,
wenn f auf einer Nullmenge (oder einer Teilmenge davon) modifiziert wird. Es würde deshalb auch nichts ausma-
chen, wenn f auf dieser Nullmenge gar nicht definiert wäre. In einigen Anwendungen ist es praktisch, die Definition
von f nur außerhalb einer Nullmenge angeben zu müssen.

Dies motiviert die folgende Definition: Sei (Ω,A,µ) ein Maßraum. Wir sagen, eine R̄-wertige Funktion f ist µ-fast
überall aufΩ definiert, wenn f auf einer Menge M ⊆ Ω definiert ist, deren Komplement in einer Nullmenge enthalten
ist. Wir sagen, die Funktion f ist µ-integrierbar, wenn eine µ-integrierbare Funktion g : Ω→ R̄mit g|M = f existiert.
Das µ-Integral von f definieren wir dann durch

∫

f dµ =

∫

g dµ.

Nach Satz 6.25 ist es von der Wahl der Fortsetzung g unabhängig.
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§ 7. Konvergenzsätze der Integrationstheorie

Zusammenfassung. Ein wichtiger Vorteil des Lebesgue-Integrals (oder anderer maßtheoretisch definierter
Integrale) gegenüber dem Riemann-Integral besteht darin, dass für Erstere vergleichsweise einfache Regeln
für die Vertauschbarkeit der Integration mit Grenzprozessen gültig sind, die mit weniger Voraussetzungen
auskommen. Als Beispiele für solche Regeln werden in diesem Kapitel die Konvergenzsätze von Beppo Levi
und von Lebesgue behandelt. Aus diesen lassen sich weitere, für die Anwendungen nützliche Rechenregeln
gewinnen. Als Anwendungen der Konvergenzsätze beweisen wir die Stetigkeit parameterabhängiger Integrale
und die Vertauschbarkeit von Integration und Differentiation, die häufig auch als Zulässigkeit der „Ableitung
unter dem Integralzeichen“ verstanden wird.

Zentrale Sätze

– Satz von Beppo Levi über die monotone Konvergenz

– Satz von Lebesgue über die majorisierte Konvergenz

– Stetigkeit parameterabhängiger Integrale

– Differenzierbarkeit parameterabhängiger Integrale

– Übereinstimmung des Lebesgue-Integrals mit dem Riemann-Integral

Im gesamten Kapitel bezeichnet (Ω,A,µ) einen vollständigen Maßraum.

Satz 7.1 (Satz von Beppo Levi)

Sei ( fm)m∈N eine µ-fast überall monoton wachsenden Folge von µ-integrierbaren Funktionen
fm : Ω→ R̄ mit der Eigenschaft, dass die Folge der Integrale

∫

fm dµ in R beschränkt ist. Dann
existiert eine µ-integrierbare Funktion f : Ω→Rmit der Eigenschaft, dass ( fm)m∈N punktweise
µ-fast überall gegen f konvergiert, und es gilt limm

∫

fm dµ=
∫

f dµ.

Beweis: Nach Satz 6.25 können wir jede der Funktionen fm jeweils auf einer µ-Nullmenge so abändern, dass die
Ungleichung fm(x)≤ fm+1(x) für alle x ∈ Ω und alle m ∈N erfüllt ist, ohne an derµ-Integrierbarkeit oder den Werten
der µ-Integrale etwas zu ändern. Unser Ziel besteht nun darin, die Aussage des Satzes auf Satz 6.12 zurückzuführen.
Weil sich dieser Satz nur auf nicht-negative Funktionen bezieht, betrachten wir an Stelle von ( fm)m∈N die Folge
(gm)m∈N gegeben durch gm = fm − f1. Dabei handelt es sich eine Folge monoton wachsender, nicht-negativer und
µ-integrierbarer Funktionen mit der Eigenschaft, dass der Grenzwert

c = sup

∫

A1

gm dµ = lim
m→∞

∫

A1

gm dµ = lim
m→∞

∫

A1

fm dµ−
∫

f1 dµ in R+ liegt.
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Definieren wir nun g : Ω → R̄+ durch g(x) = supm gm(x) = limm gm(x), so folgt aus Satz 6.12, dass durch g eine
A-messbare Funktion gegeben ist, mit

∫

g dµ = c. Weil dieser Wert endlich ist, handelt es sich bei g sogar um eine
µ-integrierbare Funktion.

Nun definieren wir f = g + f1. Weil wir jede der Funktionen fm nur auf einer µ-Nullmenge abgeändert haben (und
weil die abzählbare Vereinigung von µ-Nullmengen wiederum eine µ-Nullmenge ist), ist die Gleichung

f (x) = g(x) + f1(x) = lim
m→∞

gm(x) + f1(x) = lim
m→∞

fm(x)− f1(x) + f1(x) = lim
m→∞

fm(x)

auch dann für µ-fast alle x ∈ Ω erfüllt, wenn wir die ursprünglich gegebenen Funktionen fm zu Grunde legen. Weil
die Funktionen g und f1 beide µ-integrierbar sind, gilt dasselbe für f , und nach Satz 6.27 werden folglich die Werte
±∞ nur auf einer µ-Nullmenge angenommen. Wir können also nach Änderung von f auf einer µ-Nullmenge davon
ausgehen, dass f eine R-wertige Funktion ist. Schließlich gilt auch die im Satz angebene Gleichung für das Integral,
wegen
∫

f dµ =

∫

A

f dµ =

∫

A

g dµ+

∫

A

f1 dµ = lim
m→∞

gm dµ+

∫

f1 dµ = lim
m→∞

fm dµ. □

Für Riemann-integrierbare Funktionen ist eine entsprechende Aussage falsch. Als Beispiel betrachten wir die Dirichlet-
Funktion χ : [0,1] → R gegeben durch χ(x) = 1 für alle rationalen und χ(x) = 0 für alle irrationalen x ∈ [0,1].
Diese ist nicht Riemann-integrierbar, wie in der Analysis einer Variablen gezeigt wurde. Sei nun (xm)m∈N eine Folge,
die alle Elemente aus N = [0, 1]∩Q durchläuft. Definieren wir eine Funktionenfolge (χm)m∈N durch

χm(x) =

(

1 falls x ∈ {x1, ..., xm}

0 sonst,

dann konvergiert die Folge (χm)m∈N punktweise und monoton wachsend auf [0, 1] gegen χ. Alle Funktionen in der
Folge sind Riemann-integrierbar, und es gilt jeweils

∫ 1

0 χm dµ = 0. Insbesondere ist die Folge der Integrale in R
beschränkt. Aber χ als der punktweise Limes der Funktionenfolge ist nicht Riemann-integrierbar.

Der Satz von Beppo Levi gilt auch für monoton fallende Folgen µ-integrierbarer Funktionen: Man erhält ihn dadurch,
dass man den ursprünglichen Satz auf die Folge (− fk)k∈N anwendet. Hierbei muss man dann natürlich fordern, dass
die Folge der µ-Integrale in R nach unten beschränkt ist.

Wir geben eine konkrete Anwendung für den soeben bewiesenen Satz. Die Funktion f :R→R, x 7→ ex2
ist als stetige

Funktion auf jedem endlichen, abgeschlossenen Intervall [a, b] ⊆ R (mit a, b ∈ R, a < b) Riemann-integrierbar. Es
ist aber nicht möglich, für die Stammfunktionen von f einen geschlossenen Ausdruck bestehend aus den bekannten
elementaren Funktionen (Exponentialfunktion, Logarithmus, trigonometrische Funktionen, Arcusfunktionen) anzu-
geben. Somit existiert auch keine einfache Formel für die Integrale

∫ b

a f (x) d x .

Mit Hilfe der Konvergenzsätze können wir aber zumindest eine Reihenentwicklung für die Integrale angeben. Be-
kanntlich gilt ex =

∑∞
n=0

xn

n! für alle x ∈R. Daraus folgt, dass f (x) = ex2
der punktweise Limes der Funktionenfolge

( fn)n∈N gegeben durch fn(x) =
∑n

k=0
x2k

k! ist, und diese Folge ist wegen x2k ≥ 0 für alle x ∈ R und k ∈N0 monoton
wachsend. Sei nun µ die Einschränkung des Lebesgue-Maßes µ1 auf dieσ-Algebra (A1)[a,b]. Die Folge der µ-Integrale
der Funktionen fn ist nach oben beschränkt. Denn wie wir weiter unten zeigen werden, stimmt das Lebesgue-Integral
über [a, b] mit dem Riemann-Integral überein, und es folgt

∫

fn dµ =

∫ b

a

fn(x) d x ≤
∫ b

a

ex2
d x ≤ (b− a)ec2
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mit c = max{|a|, |b|}, für alle n ∈ N. Damit sind alle Voraussetzungen des Satzes von Beppo Levi erfüllt, und wir
erhalten
∫ b

a

ex2
d x =

∫

f dµ = lim
n→∞

∫

fn dµ = lim
n→∞

∫ b

a

fn(x) d x = lim
n→∞

∫ b

a

�

n
∑

k=0

x2k

k!

�

d x

= lim
n→∞

n
∑

k=0

∫ b

a

x2k

k!
d x =

∞
∑

n=0

�

x2n+1

(2n+ 1)n!

�b

a

=
∞
∑

n=0

1
(2n+ 1)n!

�

b2n+1 − a2n+1
�

.

Durch die Beschränkung auf µ-fast überall monoton wachsende Funktionenfolgen kann der Satz von Beppo Levi in
dieser Form nur auf Reihen mit nichtnegativen Gliedern angewendet werden. Diese Beschränkung wird durch den
folgenden Satz beseitigt.

Satz 7.2 (Satz von Lebesgue über die majorisierte Konvergenz)

Sei ( fm)m∈N eine Folge µ-integierbarer Funktionen fm : Ω → R, die fast überall gegen eine
Funktion f : Ω→ R konvergiert. Sei ferner g : Ω→ R+ eine µ-integrierbare Funktion mit der
Eigenschaft, dass µ-fast überall jeweils | fm| ≤ g erfüllt ist, für jedes m ∈ N. Dann ist auch f
µ-integrierbar, und es gilt

∫

f dµ = lim
m→∞

∫

fm dµ.

Beweis: Nach Abänderung der Funktionen fm, f und g auf einer Nullmenge können wir davon ausgehen, dass
( fm)m∈N überall gegen f konvergiert, und dass | fm| ≤ g auf ganz Ω erfüllt ist; nach Satz 6.25 hat dies keine Aus-
wirkungen auf die µ-Integrierbarkeit oder den Wert der Integrale. Um die Aussage des Satzes auf den Satz 7.1 von
Beppo Levi zurückführen zu können, benötigen wir monoton wachsende oder fallende Funktionenfolgen. Deshalb
definieren wir für alle m,ν ∈N die Funktionen

gm,ν =max{ fm, fm+1, ..., fm+ν} und gm = supν gm,ν.

Auf Grund der Voraussetzungen gilt |gm,ν| ≤ g für alle m,ν ∈N und damit auch |gm| ≤ g für alle m ∈N. Nach Satz
6.15 sind mit den fm auch die Funktionen gm,ν alle µ-integrierbar. Für jedes m ∈N ist die Folge (gm,ν)ν∈N monoton
wachsend, und die Folge der Integrale

∫

gm,ν dµ ist durch
∫

g dµ beschränkt. Aus Satz 7.1 folgt nun, dass alle gm

µ-integrierbar sind, und dass jeweils
∫

gm dµ = supν

∫

gm,ν dµ = lim
ν→∞

∫

gm,ν dµ erfüllt ist.

Für alle m ∈N gilt nach Definition jeweils jeweils gm(x) = sup{ fk(x) | k ≥ m}. Die Menge, über die das Supremum
gebildet wird, wird also in jedem Schritt kleiner, und dies zeigt, dass die Funktionenfolge (gm)m∈N der monoton
fallend ist. Wegen |gm| ≤ g gilt auch gm ≥ −g für jedes m ∈N, und daraus folgt, dass die Folge der Integrale

∫

gm dµ
nach unten durch−

∫

g dµ beschränkt ist. Eine erneute Anwendung von Satz 7.1 liefert eine µ-integrierbare Funktion
f̃ : Ω→R mit der Eigenschaft, dass (gm)m∈N punktweise µ-fast überall gegen f̃ konvergiert, und dass

lim
m→∞

∫

gm dµ =

∫

f̃ dµ gilt.
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Aber der punktweise Limes der Folge (gm)m∈N stimmt mit f überein. Zum Nachweis dieser Aussage seien x ∈ Ω
und ϵ ∈ R+ vorgegeben. Dann existiert ein N ∈ N mit | fm(x) − f (x)| < 1

2ϵ für alle x ∈ Ω, was zu f (x) − 1
2ϵ <

fm(x) < f (x) + 1
2ϵ äquivalent ist. Daraus folgt f (x) − 1

2ϵ < gm,ν(x) < f (x) + 1
2ϵ für alle m ≥ N und ν ∈ N, und

der Grenzübergang ν → ∞ liefert f (x) − 1
2ϵ ≤ gm(x) ≤ f (x) + 1

2ϵ für jedes m ≥ N . Insbesondere erhalten wir
|gm(x) − f (x)| < ϵ für alle m ≥ N , wodurch der Nachweis, dass die Folge (gm)m∈N punktweise (überall) gegen f
konvergiert, erbracht ist.

Aus dieser Beobachtung folgt, dass die Funktionen f und f̃ µ-fast überall übereinstimmen. Nach Satz 6.25 ist
also auch f eine µ-integrierbare Funktion, und es gilt limm

∫

gm dµ =
∫

f dµ. Indem wir nun die Funktionen
hm,ν = min{ fm, ..., fm+ν} und hm = inf{hm,ν | ν ∈ N} definieren, erhalten wir nach demselben Schema eine Folge µ-
integrierbarer Funktionn (hm)m∈N, die monoton wachsend gegen f konvergiert, mit der Eigenschaft limm

∫

hm dµ=
∫

f dµ. Nun gilt hm ≤ fm ≤ gm für alle m ∈N, und daraus folgt jeweils

∫

hm dµ ≤
∫

fm dµ ≤
∫

gm dµ.

Auf Grund der Gleichungen limm

∫

hm dµ =
∫

f dµ = limm

∫

gm dµ folgt aus dem Sandwich-Lemma, dass auch die
Folge der µ-Integrale

∫

fm dµ konvergiert, und dass der Grenzwert dieser Folge das µ-Integral der Funktion f ist. □

Im weiteren Verlauf bezeichne (T, d) einen metrischer Raum. Ist g : Ω× T → R̄ und t ∈ T , dann verwenden wir für
das Integral über die Funktion gt : Ω→ R̄ gegeben durch gt(x) = g(x , t) (sofern es existiert) die Schreibweise

∫

g(x , t) dµ(x).

Satz 7.3 Sei f : Ω× T →R eine Funktion mit den folgenden Eigenschaften.

(i) Für jedes t ∈ T ist Ω→R, x 7→ f (x , t) eine A-messbare Funktion.

(ii) Es gibt ein t0 ∈ T , so dass T →R, t 7→ f (x , t) für µ-fast alle x ∈ Ω in t0 stetig ist.

(iii) Es gibt eine Umgebung U ⊆ T von t0 und eine µ-integrierbare Funktion g : Ω→ R̄+, so
dass für alle t ∈ U jeweils | f (x , t)| ≤ g(x) für µ-fast alle x ∈ Ω erfüllt ist.

Dann ist F : U → R, t 7→
∫

f (x , t) dµ(x) eine auf ganz U definierte, reellwertige, in t0 stetige
Funktion.

Beweis: Für alle t ∈ U gilt jeweils für µ-fast alle x ∈ Ω die Abschätzung | f (x , t)| ≤ g(x). Also ist x 7→ f (x , t)
jeweils eine µ-integrierbare Funktion und F(t) ∈ R damit für alle t ∈ U definiert. Sei nun (tn)n∈N eine Folge in T
mit limn tn = t0. Nach Weglassen endlich vieler Folgenglieder können wir tn ∈ U für alle n ∈N voraussetzen. Weiter
definieren wir eine Funktionenfolge ( fn)n∈N, indem wir fn(x) = f (x , tn) für alle x ∈ Ω und n ∈ N setzen. Dann
sind die Werte F(tn) für alle n ∈N definiert, und die Ungleichung | fn| ≤ g gilt jeweils µ-fast überall. Auf Grund der
Bedingung (ii) konvergiert die Folge ( fn)n∈N µ-fast überall gegen die Funktion Ω → R, x 7→ f (x , t0). Wir können
Satz 7.2 über die majorisierte Konvergenz anwenden und erhalten

lim
n→∞

F(tn) = lim
n→∞

∫

f (x , tn) dµ(x) = lim
n→∞

∫

fn dµ =

∫

f (x , t0) dµ(x) = F(t0). □
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Satz 7.4 Sei I ⊆ R ein offenes Intervall und f : Ω× I → R eine Abbildung, so dass folgende
Bedingungen erfüllt sind.

(i) Für jedes t ∈ I ist Ω→R, x 7→ f (x , t) eine A-messbare Funktion.

(ii) Es gibt ein t0 ∈ I , so dass Ω→R, x 7→ f (x , t0) µ-integrierbar ist.

(iii) Auf dem gesamten Definitionsbereich Ω× I existiert die partielle Ableitung ∂ f
∂ t .

(iv) Es gibt eineµ-integrierbare Funktion g : Ω→ R̄+, so dass für alle t ∈ I jeweils
�

�

�

∂ f
∂ t (x , t)
�

�

�≤
g(x) für µ-fast alle x ∈ Ω erfüllt ist.

Dann ist F : I → R, t 7→
∫

f (x , t) dµ(x) eine reellwertige, auf ganz I definierte und differen-
zierbare Funktion, und es gilt F ′(t) =

∫

∂ f
∂ t (x , t) dµ(x) für alle t ∈ I .

Beweis: Wir zeigen zunächst, dass Ω→ R, x 7→ f (x , t) für jedes t ∈ I eine µ-integrierbare Funktion und F somit
auf ganz U definiert und reellwertig ist. Sei dazu t ∈ I vorgegeben. Auf Grund der µ-Integrierbarkeit von g und
auf Grund der Abschätzung | ∂ f

∂ t (x , t)| ≤ g(x) für µ-fast alle x ∈ Ω ist jedenfalls x 7→ ∂ f
∂ t (x , t) eine µ-integrierbare

Funktion. Nach dem Mittelwertsatz der Differentialrechnung finden wir für jedes x ∈ Ω ein s(x) ∈ I zwischen t und
t0 mit f (x , t)− f (x , t0) =

∂ f
∂ t (x , s(x))(t − t0). Es folgt

| f (x , t)| ≤ | f (x , t0)|+
�

�

�

�

∂ f
∂ t
(x , s)

�

�

�

�

|t − t0| ≤ | f (x , t0)|+ g(x)|t − t0|.

Die Funktionen x 7→ f (x , t0) und x 7→ g(x)|t − t0| sind nach Voraussetzung beide µ-integrierbar, also gilt dasselbe
für x 7→ f (x , t).

Nun beweisen wir die Differenzierbarkeit von F und den angegebenen Wert für die Ableitung. Sei t ∈ I und (tn)n∈N
eine Folge in I \ {t} mit limn→∞ tn = t. Für jedes n ∈N gilt

F(tn)− F(t)
tn − t

=

∫

f (x , tn)− f (x , t)
tn − t

dµ(x).

Erneut finden wir durch den Mittelwertsatz der Differentialrechnung für jedes n ∈ N und jedes x ∈ Ω ein sn(x) ∈ I
zwischen t und tn mit

f (x , tn)− f (x , t)
tn − t

=
∂ f
∂ t
(x , sn(x)).

Es folgt
�

�

�

�

f (x , tn)− f (x , t)
tn − t

�

�

�

�

=

�

�

�

�

∂ f
∂ t
(x , sn(x))

�

�

�

�

≤ g(x)

für µ-fast alle x ∈ Ω. Außerdem konvergieren die Funktionen x 7→ (tn − t)−1( f (x , tn)− f (x , t)) punktweise überall
gegen t 7→ ∂ f

∂ t (x , t). Wir können den Satz über die majorisierte Konvergenz anwenden und erhalten

F ′(t) = lim
n→∞

F(tn)− F(t)
tn − t

= lim
n→∞

∫

f (x , tn)− f (x , t)
tn − t

dµ(x) =

∫

∂ f
∂ t
(x , t) dµ(x). □

Wir können daraus eine Regel für die partielle Differentiation unter dem Integralzeichen ableiten.
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Folgerung 7.5 Seien m, n ∈ N, A ⊆ Rm eine Lebesgue-messbare und U ⊆ Rn eine offene
Teilmenge, und sei f : A× U →R eine Funktion mit folgenden Eigenschaften.

(i) Für jedes y ∈ U ist die Funktion A→R, a 7→ f (a, y) Lebesgue-integrierbar.

(ii) Für jeden Punkt a ∈ A existieren die partiellen Ableitungen ∂ j fa mit 1 ≤ j ≤ n auf ganz
U , wobei fa : U →R durch fa(x) = f (a, x) definiert ist.

(iii) Es gibt eine µ-integrierbare Funktion g : A→ R̄+, so dass |∂ j fa| ≤ g(a) für 1≤ j ≤ n gilt.

Dann ist die Funktion F : U → R, x 7→
∫

A f (a, x) dµ(a) partiell differenzierbar, und es gilt
∂ j F(x) =
∫

A ∂ j fa(x) dµ(a) für alle x ∈ U .

Beweis: Sei j ∈ {1, ..., n}, x0 ∈ U und φ : R → Rn gegeben durch φ(t) = x0 + te j . Da U ⊆ Rn offen ist, existiert
ein ϵ ∈ R+ mit der Eigenschaft, dass die Bildmenge φ(I) des offenen Intervalls ]−ϵ,ϵ[ ⊆ I in U enthalten ist. Nach
Definition der partiellen Ableitung gilt dann ( fa ◦ φ)′(t) = ∂ j fa(x0 + te j) = ∂m+ j f (a, x0 + te j) für alle a ∈ A. Wir
wenden nun Satz 7.4 auf die Funktion bf : A× I →R, (a, t) 7→ ( fa ◦φ)(t) an. Offenbar sind die Voraussetzungen (i)
bis (iv) des Satzes für f̂ erfüllt: Für jedes t ∈ I ist A→ R, a 7→ bf (a, t) wegen bf (a, t) = ( fa ◦φ)(t) = f (a, x0 + te j)
eine Lesbesgue-integrierbare und damit erst recht eine Am-messbare Funktion, also sind (i) und (ii) erfüllt. Für jedes
Paar (a, t) ∈ A× I existiert die partielle Ableitung

∂ bf
∂ t
(a, t) = ( fa ◦φ)′(t) = ∂m+ j f (a, x0 + te j) ,

also ist Bedingung (iii) erfüllt. Wegen |∂m+ j f (a, x + te j)| = |∂ j fa(x + te j)| ≤ g(a) für alle a ∈ A ist auch (iv) gültig.
Somit ist bF : I →R, t 7→

∫

bf (a, t) dµ(a) auf Grund des Satzes eine reellwertige, auf ganz I differenzierbare Funktion,
und es gilt

bF ′(0) =

∫

∂ bf
∂ t
(a, t) dµ(a) =

∫

∂ j f (a, x0) dµ(a).

Außerdem gilt

bF(t) =

∫

bf (a, t) dµ(a) =

∫

( fa ◦φ)(t) dµ(a) =

∫

f (a, x0 + te j) dµ(a) = F(x0 + te j)

für alle t ∈ I und somit bF ′(0) = ∂ j F(x0). Insgesamt ist die angegebene Gleichung im Punkt x0 ∈ U also erfüllt. □

Wir illustrieren den soeben bewiesenen Satz anhand eines Beispiels. Sei f : [0,1]×R2→R gegeben durch f (x , y, z) =
x2 y+3z. Die partiellen Ableitungen von f nach y und z sind gegeben durch ∂ f

∂ y (x , y, z) = x2 und ∂ f
∂ z (x , y, z) = 3. Auf

Grund der Übereinstimmung von Riemann- und Lebesgue-Integral (siehe unten) ist die Integralfunktion F :R2→R,
(y, z) 7→
∫

[0,1](x
2 y + 3z) dµ1(x) gegeben durch

F(y, z) =

∫ 1

0

(x2 y + 3z) d x =
�

1
3 x3 y + 3xz
�1

0 = 1
3 y + 3z.

— 62 —



Die partiellen Ableitungen dieser Funktion sind gegeben durch ∂ F
∂ y (y, z) = 1

3 und ∂ F
∂ z (y, z) = 3. Wie in Satz 7.5

angegeben, stimmen die Integrale über diese partiellen Ableitungen mit den partiellen Ableitungen von f überein,
d.h. es gilt

∫

[0,1]

∂ f
∂ y

f (x , y, z) dµ1(x) =

∫ 1

0

x2 d x =
�

1
3 x3
�1

0 = 1
3 =

∂ F
∂ y
(y, z)

∫

[0,1]

∂ f
∂ z

f (x , y, z) dµ1(x) =

∫ 1

0

3 d x = [3x]10 = 3 =
∂ F
∂ z
(y, z).

Als letztes Thema in diesem Kapitel untersuchen wir den Zusammenhang zwischen dem Riemann- und dem Lebesgue-
Integral. Wir erinnern kurz an die wichtigsten Bezeichnungen und Definitionen, die im Zusammenhang mit dem
Riemann-Integral eingeführt wurden. Seien a, b ∈ R mit a < b und f : [a, b] → R eine beschränkte Funktion.
Sei Z = {x1, ..., xn−1} eine endliche Teilmenge von ]a, b[ mit x1 < ... < xn−1; eine solche Teilmenge hatten wir als
Zerlegung des Intervalls [a, b] bezeichnet.

Zur Vereinfachung der Notation setzen wir x0 = a und xn = b. Für 1≤ k ≤ n sei jeweils

ck = inf f ([xk−1, xk]) und dk = sup f ([xk−1, xk]).

Dann ist S−f (Z) =
∑n

k=1 ck(xk − xk−1) die Untersumme und S+f (Z) =
∑n

k=1 dk(xk − xk−1) die Obersumme von f
bezüglich Z. In der Analysis einer Variablen hatten wir gezeigt, dass f genau dann Riemann-integrierbar ist, wenn
für jedes ϵ ∈ R+ eine Zerlegung Z mit der Eigenschaft S+f (Z) − S−f (Z) < ϵ existiert. Das Riemann-Integral erfüllt
dann jeweils die Ungleichungen

S−f (Z) <

∫ b

a

f (x) d x < S+f (Z).

Um die Beziehung zur Maßtheorie herzustellen, bezeichne µ wie oben die Einschränkung von µ1 auf (A1)[a,b]. Für
jede Zerlegung Z führen wir auf [a, b] die Funktionen

f −Z (x) =
n
∑

k=1

ck · 1]xk−1,xk[ +
n
∑

k=0

f (xk) · 1{xk} und f +Z (x) =
n
∑

k=1

dk · 1]xk−1,xk[ +
n
∑

k=0

f (xk) · 1{xk}

ein. (Im Fall ck, dk ≥ 0 für 1 ≤ k ≤ n handelt es sich um Stufenfunktionen.) Diese sind so konstruiert, dass jeweils
f −Z ≤ f ≤ f +Z erfüllt ist. Außerdem gilt

∫

f −Z f dµ1 =
n
∑

k=1

ck ·µ (]xk−1, xk[) +
n
∑

k=0

f (xk) ·µ({xk}) =

n
∑

k=1

ck(xk − xk−1) +
n
∑

k=0

f (xk) · 0 =
n
∑

k=1

ck(xk − xk−1) = S−f (Z) ,

und ebenso zeigt man
∫

f +Z f dµ= S+f (Z).

Man überprüft leicht, dass f −Z ≤ f −Z ′ und f +Z ′ ≤ f +Z gilt, wenn Z ′ eine Verfeinerung von Z ist, also Z ′ ⊇ Z gilt:
Die Infima bzw. Suprema, die man für die Unter- bzw. Obersummen bezüglich Z ′ betrachten, werden über kleine
Teilintervalle gebildet als bei der Zerlegung Z. Dadurch sind die Infima bei Z ′ größer und die Suprema kleiner. Mit
demselben Argument haben wir in der Analysis einer Variablen die Ungleichungen S−f (Z) ≤ S−f (Z

′) und S+f (Z
′) ≤

S+f (Z) hergeleitet.
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Satz 7.6 Sei f : [a, b]→R eine beschränkte Funktion.

(i) Ist f Riemann-integrierbar, dann auch Lebesgue-integrierbar, und es gilt

∫

f dµ =

∫ b

a

f (x) d x .

(ii) Die Funktion f ist genau dann Riemann-integrierbar, wenn die Menge
N = {x ∈ [a, b] | f unstetig in x} eine Lebesguesche Nullmenge ist.

Beweis: Für jedes m ∈N sei Zm die äquidistante Zerlegung von [a, b] im m Teilintervalle, also Zm = {a+ k b−a
m | 1≤

k < m}. Ersetzen wir anschließend für alle m ∈N nacheinander die Zerlegung Zm+1 jeweils durch Zm ∪Zm+1, dann
gilt Zm ⊆ Zm+1 für alle m ∈N, und jedes Teilintervall von [a, b] bezüglich Zm hat eine Länge ≤ b−a

m .

Für jedes m ∈N sei ϕm = f −Zm
und ψm = f +Zm

. Nach Konstruktion der Folge (Zm)m∈N gilt ϕm ≤ ϕm+1 ≤ f ≤ψm+1 ≤
ψm für alle m ∈N. Für jedes x ∈ [a, b] ist also (ϕm(x))m∈N eine beschränkte monoton wachsende und (ψm(x))m∈N
eine beschränkte monoton fallende Folge. Dies zeigt, dass (ϕm)m∈N punktweise gegen eine Funktion ϕ und (ψm)m∈N
punktweise gegen eine Funktion ψ auf [a, b] konvergiert; dabei gilt ϕ ≤ f ≤ ψ. Beide Funktionenfolgen sind
betragsmäßig durch die µ-integrierbare Funktion |ϕ1| + |ψ1| beschränkt. Wir können also den Satz 7.2 über die
majorisierte Konvergenz auf beide Folgen anwenden und erhalten die µ-Integrierbarkeit von ϕ und ψ sowie

lim
m→∞

∫

ϕm dµ=

∫

ϕ dµ und lim
m→∞

∫

ψm dµ=

∫

ψ dµ.

zu (i) Auf Grund der Riemann-Integrierbarkeit von f können die Zerlegungen Zm so verfeinert werden, dass
S+f (Zm)−S−f (Zm)<

1
m für alle m ∈N erfüllt ist. Auf Grund der Ungleichungen S−f (Zm)≤

∫ b

a f (x) d x ≤ S+f (Zm) gilt
jeweils

0 ≤
∫ b

a

f (x) d x − S−f (Zm) ≤ S+f (Zm)− S−f (Zm) <
1
m

und 0≤ S+f (Zm)−
∫ b

a f (x) d x ≤ S+f (Zm)− S−f (Zm)<
1
m . Damit erhalten wir

lim
m→∞

S−f (Zm) = lim
m→∞

S+f (Zm) =

∫ b

a

f (x) d x .

Wegen
∫

ϕm dµ= S−f (Zm) und
∫

ψm dµ= S+f (Zm) für alle m ∈N erhalten wir damit insgesamt

∫

ϕ dµ =

∫ b

a

f (x) d x =

∫

ψ dµ.

Wegen ϕ ≤ f ≤ψ giltψ−ϕ ≥ 0, und aus
∫

(ψ−ϕ) dµ=
∫

ψ dµ−
∫

ϕ dµ= 0 folgt mit Satz 6.23, dassψ−ϕ µ-fast
überall gleich null ist. Wegen 0≤ f −ϕ ≤ψ−ϕ ist auch f −ϕ fast überall gleich null. Nach Satz 6.25 ist damit auch
f µ-integrierbar, und es gilt

∫

f dµ=
∫

ϕ dµ=
∫ b

a f (x) d x .
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zu (ii) Sei Z =
⋃∞

m=1 Zm. Diese Menge ist als abzählbare Vereinigung endlicher Mengen abzählbar, es gilt also
µ(Z) = 0. Um den Beweis der Äquivalenz vorzubereiten, zeigen zunächst, dass für jeden Punkt x0 ∈ [a, b] \Z die
Funktion f in x0 genau dann stetig ist, wenn ϕ(x0) =ψ(x0) gilt.

„⇒“ Nach Voraussetzung ist f in x0 stetig. Sei ϵ ∈R+ vorgegeben. Dann gibt es ein δ ∈R+, so dass | f (x)− f (x0)|<
1
2ϵ für alle x ∈ [a, b] mit |x − x0|< δ erfüllt ist. Sei nun M ∈N mit 1

M < δ, sei m≥ M , und sei k so gewählt, dass x0

im Intervall J = ]xk, xk+1[ enthalten ist. Dann ist der Abstand sämtlicher Punkte des Intervals J durch δ beschränkt,
und wir erhalten

ψm(x0)−ϕm(x0) = sup f (J)− inf f (J) = (sup f (J)− f (x0)) + ( f (x0)− inf f (J)) ≤ 1
2ϵ +

1
2ϵ = ϵ.

Daraus folgt limm(ψm(x0)−ϕm(x0)) = 0, und auf Grund der punktweisen Konvergenz von (ϕm)m∈N und (ψm)m∈N
folgt ϕ(x0) =ψ(x0).

„⇐“ Setzen wir ϕ(x0) = ψ(x0) voraus. Wegen ϕ(x0) ≤ f (x0) ≤ ψ(x0) konvergieren dann die Folgen (ϕm(x0))m∈N
und (ψm(x0))m∈N beide gegen f (x0). Für vorgegebenes ϵ ∈ R+ finden wir demzufolge ein m ∈ N mit ψm(x0) −
f (x0) <

1
2ϵ und f (x0)−ϕm(x0) <

1
2ϵ. Sei nun y, z ∈ Zm die eindeutig bestimmten Punkte mit y < x0 < z und dem

minimalen Abstand zu x0. Setzen wir δ = min{x0 − y, z − x0}, dann ist ]x0 −δ, x0 +δ[ im Teilintervall [y, z] der
Zerlegung Zm enthalten. Nach Definition von ϕm und ψm gilt

ϕm(x0) = inf f ([y, z]) ≤ f (x) ≤ sup f ([y, z]) = ψm(x0)

für alle x ∈ [a, b]mit |x−x0|< δ. Es folgt | f (x)− f (x0)| ≤ψm(x0)−ϕm(x0) = (ψm(x0)− f (x0))+( f (x0)−ϕm(x0))<
1
2ϵ +

1
2ϵ = ϵ für alle x ∈ [a, b] mit |x − x0|< δ. Dies zeigt, dass f stetig in x0 ist.

Nun beweisen wir die Aussage (ii). „⇒“ Sei f Riemann-integrierbar. Wie wir in Teil (i) gezeigt haben, gilt ϕ(x) =
f (x) =ψ(x) für µ-fast alle x ∈ [a, b], damit auch für µ-fast alle x ∈ [a, b]\Z. Auf Grund unserer zuvor bewiesenen
Hilfsaussage ist f damit in µ-fast allen Punkten von x ∈ [a, b]\Z stetig. Weil Z eine Nullmenge ist, ist f somit auch
µ-fast überall auf [a, b] stetig.

„⇐“ Ist f µ-fast überall stetig, dann gilt auf Grund der Hilfsaussage insbesondere ϕ(x) = f (x) = ψ(x) für µ-fast
alle x ∈ [a, b]\Z. Wegen µ(Z) = 0 gilt also ϕ(x) =ψ(x) also µ-fast überall auf [a, b], und es folgt

∫

ϕ dµ=
∫

ψ dµ.
Der Satz von Lebesgue über die majorisierte Konvergenz liefert nun

lim
m→∞

S+(Zm, f )− lim
m→∞

S−(Zm, f ) = lim
m→∞

∫

ψm dµ− lim
m→∞

∫

ϕm dµ =
∫

ψ dµ−
∫

ϕ dµ = 0.

Dies zeigt, dass f Riemann-integrierbar ist. □

— 65 —



§ 8. Produktmaße und Satz von Fubini

Zusammenfassung. Je zwei Messräumen (Ω1,A1) und (Ω2,A2) kann ein neuer Messraum (Ω,A) zugeordnet
werden, wobei Ω= Ω1×Ω2 ist und A=A1⊗A2 die von den kartesischen Produkten A1×A2 mit A1 ∈A1 und
A2 ∈ A2 erzeugte σ-Algebra bezeichnet. Ist µ j für j = 1, 2 jeweils ein σ-endliches Maß, dann existiert (Ω,A)
ein eindeutig bestimmtes Maß µ mit µ(A1 × A2) = µ(A1) · µ(A2) für alle A1 ∈ A1, A2 ∈ A2. Für eine beliebige
Menge C ∈ A kann µ(C) durch geeignete µ1- oder µ2-Integrale berechnet werden. Daraus ergibt sich der
für die mehrdimensionale Integration wichtige Satz von Fubini, welcher besagt, dass die höherdimensionale
Integration auf die eindimensionale Integration zurückgeführt werden kann.

Wichtige Grundbegriffe

– Produkt endlich vieler von Messräume

– Produktmaß

– Schnitt senkrecht zur ersten bzw. zweiten
Koordinatenachse

– Lebesgue-Borelsches Maß

Zentrale Sätze

– Eindeutigkeit des Produktmaßes

– Existenz des Produktmaßes für σ-endliche Maße

– Cavalierisches Prinzip

– Satz von Tonelli

– Satz von Fubini

Wir beginnen mit der Definition des Produkts vonσ-Algebren und Messräumen. Im gesamten weiteren Verlauf dieses
Kapitels seien (Ωk,Ak) Messräume für k ∈ {1,2}, außerdem Ω = Ω1 × Ω2, und es bezeichen π1 : Ω → Ω1 und
π2 : Ω→ Ω2 die zugehörigen Projkektionsabbildungen.

Definition 8.1 Als Produkt A = A1 ⊗A2 der beiden σ-Algebren A1 und A2 bezeichnet man
die von dem System

�

π−1
k (A) | k ∈ {1,2} , A∈Ak

	

erzeugte σ-Algebra. Das Paar (Ω,A) wird dann das Produkt der beiden Messräume (Ω1,A1) und
(Ω2,A2) genannt.

Man sieht unmittelbar, dass A1 ⊗A2 die kleinste σ-Algebra in Ω1 ×Ω2 ist, bezüglich der die beiden Projektionsab-
bildungen π1,π2 messbar sind. Unser erstes Ziel besteht darin, möglichst einfache Erzeugendensysteme für diese
σ-Algebra anzugeben.

Satz 8.2 Für k = 1, 2 sei Ek jeweils ein Erzeugendensystem von Ak, wobei wir zusätzlich an-
nehmen, dass in Ek jeweils eine monoton wachsende Folge mit (Ekm)m∈N mit

⋃

m∈N Ekm = Ωk

exstiert. Dann bilden die Mengen der Form E1 × E2 mit E1 ∈ E1 und E2 ∈ E2 ein Erzeugendensy-
stem von A=A1 ⊗A2.
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Beweis: Es bezeichne A′ die σ-Algebra in Ω, die von den Mengen der angegebenen Form erzeugt wird. Zunächst
zeigen wir, dass A′ ⊆A gilt. Dafür reicht es zu überprüfen, dass für alle E1 ∈ E1 und E2 ∈ E2 die Menge E1×E2 jeweils
in A liegt. Seien also E1 und E2 zwei solchen Mengen. Nach Definition von A liegt sowohl π−1

1 (E1) = E1×Ω als auch
π−1

2 (E2) = Ω×E2 in A, und damit auch der Durchschnitt dieser beiden Urbildmengen, der mit E1×E2 übereinstimmt.

Für die umgekehrte Inklusion A ⊆ A′ genügt es zu zeigen, dass für k ∈ {1, 2} die Projektionsabbildung πk jeweils
messbar bezüglich A′ und Ak ist, denn wie oben angemerkt, ist A die kleinste σ-Algebra mit der Eigenschaft, dass
πk bezüglich A und Ak messbar ist. Wir beschränken uns auf den Nachweis für k = 1. Nach Proposition 5.3 genügt
es zu überprüfen, dass π−1

1 (E) für jedes E ∈ E1 in A′ liegt. Sei also ein solches E vorgegeben. Dann gilt

π−1
1 (E) = E ×Ω2 = E ×

�

⋃

m∈N
E2m

�

=
⋃

m∈N
E × E2m.

Die Produkte E × E2m sind nach Definition alle in der σ-A′ enthalten, also gilt dasselbe auch für die abzählbare
Vereinigung. □

Der Satz zeigt auch, dass unter der angegebenen Voraussetzung die Mengen der Form A1 × A2 mit Ak ∈ Ak für
k ∈ {1, 2} in A enthalten sind und ein Erzeugendensystem dieser σ-Algebra bilden.

Wie man sich leicht überzeugt, kann das Produkt der Messräume von zwei auf eine beliebige endliche Anzahl von
Faktoren ausgedehnt werden. Ist r ∈N, und sind (Ωk,Ak) Messräume für 1≤ k ≤ r, und existiert für die σ-Algebra
Ak jeweils ein Erzeugendensystem Ek mit einer monoton wachsenden Folge (Ekm)m∈N wie in Satz 8.2, dann ist
A1⊗ ...⊗Ar also eine σ-Algebra in Ω1× ...×Ωr , die von den Mengen der Form A1× ...×Ar mit Ak ∈Ak für 1≤ k ≤ r
erzeugt wird.

Folgerung 8.3 Für jedes n ∈ N stimmt die Borelsche σ-Algebra Bn in Rn stimmt mit der
σ-Algebra
⊗n

k=1 B1 überein.

Beweis: Nach Definition wird die σ-Algebra B1 von den endlichen Intervallen inR1 erzeugt. WeilR1 durch endliche
Intervalle ausgeschöpft werden kann, bilden die kartesischen Produkte I1 × ...× In, Ik Intervall in R1 für 1 ≤ k ≤ n,
wie soeben bemerkt, ein Erzeugendensystem von

⊗n
k=1 B1. Andererseits sind die angegebenen kartesischen Produkte

genau die Quader im Rn, und diese bilden ein Erzeugendensystem der σ-Algebra Bn. Also stimmen die beiden σ-
Algebren Bn und

⊗n
k=1 B1 überein. □

Wie wir allerdings in Kürze feststellen werden, ist die σ-Algebra An der Lebesgue-messbaren Mengen im Rn eine
echte Obermenge von

⊗n
k=1 A1.

Im weiteren Verlauf beschränken wir uns aus Gründen der Übersichtlichkeit wieder auf den Fall r = 2. Wir setzen
nun voraus, dass auf jedem unseren beiden Messräume (Ω,Ak) jeweils ein Maß µk existiert und beschäftigen uns
mit der Frage, unter welchen Voraussetzungen sich daraus ein Maß auf (Ω,A) gewinnen lässt.
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Satz 8.4 (Eindeutigkeit des Produktmaßes)

Für k = 1, 2 sei Ek jeweils ein ∩-stabiles Erzeugendensystem von Ak, das eine monoton wach-
sende Folge (Ekm)m∈N mit

⋃∞
m=1 Ekm = Ωk und µk(Ekm) < +∞ für alle m ∈ N enthält. Dann

gibt es höchstens ein Maß µ auf (Ω,A) mit

µ(E1 × E2) = µ1(E1)µ2(E2) für alle E1 ∈ E1 und E2 ∈ E2.

Beweis: Sei E das System aller Mengen E1 × E2 mit Ek ∈ Ek für k = 1, 2. Nach Satz 8.2 handelt es bei E um ein
Erzeugendensystem von A = A1 ⊗ A2. Auch E ist ∩-stabil, denn für beliebige Produkte E1 × E2 und F1 × F2 aus
E liegt die Menge (E1 × E2) ∩ (F1 × F2) = (E1 ∩ F1) × (E2 ∩ F2) in E . Für jedes m ∈ N sei Gm = E1m × E2m. Sind
µ, µ̃ zwei Maße auf A mit der im Satz angegebenen Eigenschaft, dann gilt µ(Gm) = µ1(E1m)µ2(E2m) und ebenso
µ̃(Gm) = µ1(E1m)µ2(E2m) für jedes m ∈ N, und diese Zahlen sind jeweils endlich. Außerdem gilt

⋃

m∈N Gm = Ω.
Damit ist insgesamt das Eindeutigkeitskriterium in Proposition 4.4 erfüllt, und es folgt µ= µ̃. □

Wiederum lässt sich der Beweis leicht auf endlich viele Faktoren übertragen.

Folgerung 8.5 Ist µk für 1≤ k ≤ n jeweils einσ-endliches Maß auf Ak, dann gibt es höchstens
ein Maß µ auf
⊗n

k=1 Ak mit

µ(A1 × ...× An) =
n
∏

k=1

µk(Ak) für Ak ∈Ak , 1≤ k ≤ n.

Kommen wir nun zum Nachweis der Existenz von Produktmaßen. Für den Rest des Kapitels setzen wir voraus, dass
(Ω1,A1,µ1) und (Ω2,A2,µ2) zwei Maßräume mit σ-endlichen Maßen µ1,µ2 sind.

Definition 8.6 Sei C ⊆ Ω1×Ω2 eine beliebige Teilmenge, x ∈ Ω1 und y ∈ Ω2. Dann definieren
wir

C1
x = {y ∈ Ω2 | (x , y) ∈ C} und C2

y = {x ∈ Ω1 | (x , y) ∈ C}.

Wir nennen C1
x bzw. C2

y einen Schnitt durch C senkrecht zur x- bzw. zur y-Achse.

Wie man sich leicht überzeugt, ist die Bildung von Schnitten verträglich mit den Mengenooperationen Vereinigung
und Differenz.

Lemma 8.7 Sei C ⊆ Ω1×Ω2 und (Cm)m∈N eine Folge inΩ1×Ω2. Dann gelten für alle x ∈ Ω1 die
Gleichungen (Ω \ C)1x = Ω2 \ C1

x und
�⋃

m∈N Cm

�1

x =
⋃

m∈N(Cm)1x . Analoge Gleichungen gelten
auch für die Schnitte senkrecht zur y-Achse.
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Beweis: Sei x ∈ Ω1. Für ein beliebiges Element y ∈ Ω2 gelten dann die Äquivalenzen

y ∈ (Ω \ C)1x ⇔ (x , y) ∈ Ω \ C ⇔ (x , y) ∈ Ω∧ (x , y) /∈ C ⇔ y ∈ Ω2 ∧ y /∈ C1
x ⇔ y ∈ Ω2 \ C1

x .

Dies beweist die erste Mengengleichung. Ebenso gelten für alle y ∈ Ω2 die Äquivalenzen

y ∈
�

⋃

m∈N
Cm

�1

x

⇔ (x , y) ∈
⋃

m∈N
Cm ⇔ ∃m ∈N : (x , y) ∈ Cm ⇔ ∃m ∈N : y ∈ (Cm)

1
x ⇔ y ∈
⋃

m∈N
(Cm)

1
x . □

Lemma 8.8 Sei C ∈ A. Dann ist für jedes x ∈ Ω1 die Menge C1
x in A2 enthalten. Ebenso gilt

C2
y ∈A1 für alle y ∈ Ω2.

Beweis: Es genügt, die erste Aussage zu beweisen, da der Beweis der zweiten völlig analog verläuft. Wir zeigen, dass
für vorgegebenes x ∈ Ω1 das System

A1
x = {C ∈ Ω | C1

x ∈A2}

eine σ-Algebra bildet, die sämtliche Produkte A1 × A2 mit A1 ∈ A1, A2 ∈ A2 enthält. Wegen ∅1
x = ∅ ∈ A2 gilt

zunächst ∅ ∈ A1
x . Setzen wir nun C ∈ A1

x voraus. Dann gilt C1
x ∈ A2, und aus dem vorhergehenden Lemma folgt

(Ω \ C)1x = Ω2 \ C1
x ∈ A2, also Ω \ C ∈ A1

x . Sei nun (Cn)n∈N eine Folge in A1
x . Dann gilt (Cn)1x ∈ A2 für alle n ∈ N.

Wiederum auf Grund von Lemma 8.7 folgt

�∞
⋃

n=1

Cn

�1

x

=
∞
⋃

n=1

(Cn)
1
x ∈A2

und somit
⋃∞

n=1 Cn ∈A1
x . Damit ist der Nachweis, dass es sich bei A1

x um eine σ-Algebra handelt, abgeschlossen.
Sei nun eine Teilmenge A1 × A2 ⊆ Ω1 ×Ω2 mit A1 ∈A1, A2 ∈A2 vorgegeben. Es gilt

(A1 × A2)
1
x =

(

A2 falls x ∈ A1

∅ falls x /∈ A1,

in jedem Fall also (A1 × A2)1x ∈ A2. Dies zeigt, dass A1
x alle Produkte der Form A1 × A2 mit A1 ∈ A1, A2 ∈ A2 enthält.

Weil die σ-Algebra A1 ⊗A2 von diesen Produkten erzeugt wird, ist sie in A1
x enthalten. Ist also C ∈ A1 ⊗A2 und

x ∈ Ω1, dann folgt C ∈A1
x und nach Definition von A1

x somit C1
x ∈A2. □

Sei C ∈ A. Dann gilt C1
x ∈ A2 für jedes x ∈ Ω1 nach Lemma 8.8. Die Menge C1

x ist also A2-messbar, und das Maß
µ2(C1

x ) für jedes x ∈ Ω definiert. Wir erhalten für jedes C ∈A also eine Funktion sC : Ω1→ R̄+, x 7→ µ2(C1
x ).

Lemma 8.9 Für alle C ∈A und x ∈ Ω1 erfüllt die Funktion sC folgende Regeln.

(i) sΩ(x) = µ2(Ω2) (ii) sΩ\C(x) = µ2(Ω2)− sC(x)

(iii) Gilt C =
⋃∞

n=1 Cn für eine Folge (Cn)n∈N in A bestehend aus paarweise disjunkten
Mengen, dann folgt sC(x) =

∑∞
n=1 sCn

(x).

(iv) Ist A1 ∈A1 und A2 ∈A2, dann gilt sA1×A2
= µ2(A2) · 1A1
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Beweis: Gleichung (i) folgt ausΩ1
x = Ω2, Gleichung (ii) aus (Ω\C)1x = Ω2\C1

x und Gleichung (iii) aus C1
x = (
⋃∞

n=1 Cn)1x
(siehe Lemma 8.7). Die vierte Gleichung folgt aus der Tatsache, dass die Menge (A1 × A2)1x im Fall x ∈ A1 gleich A2

und im Fall x /∈ A1 die leere Menge ist. □

In § 4 hatten wir den Begriff des Dynkin-Systems in einer Menge Ω eingeführt. Dabei handelte es sich um ein System
von Teilmengen von Ω, dass die leere Menge ∅ enthält und abgeschlossen unter Komplementen und abzählbaren
disjunkten Vereinigungen ist.

Lemma 8.10 Sei C ∈A. Dann gilt

(i) Die Funktion sC : Ω1→ R̄+, x 7→ µ2(C1
x ) ist A1-messbar.

(ii) Die Funktion s′C : Ω2→ R̄+, y 7→ µ1(C2
y) ist A2-messbar.

Beweis: Wir beschränken uns auf den Beweis der Aussage (i) und setzen dafür zunächst µ2(Ω2) < +∞ voraus.
Zunächst weisen wir nach, dass das System D gegeben durch

D = {C ∈A1 ⊗A2 | sC ist A1-messbar}

ein Dynkin-System ist. Sei Ω = Ω1 × Ω2. Als konstante Funktion sΩ(x) = µ2(Ω2) ist sΩ offenbar A1-messbar, also
gilt Ω ∈ D. Liegt eine Menge C ∈ A1 ⊗A2 in D, dann ist sC nach Definition von D eine A1-messbare Funktion. Mit
sC ist auch sΩ\C(x) = µ2(Ω2) − sC(x) A1-messbar. Ist schließlich (Cn)n∈N eine Folge in D bestehend aus paarweise
disjunkten Mengen, dann ist sCn

A1-messbar für alle n ∈ N. Setzen wir C =
⋃∞

n=1 Cn, dann gilt sC =
∑∞

n=1 sCn
. Als

Summe A1-messbarer Funktionen ist auch sC A1-messbar und somit C ∈ D. Wir haben somit gezeigt, dass D in der
Tat ein Dynkin-System ist. Die Gleichung sA1×A2

= µ2(A2) · 1A1
zeigt außerdem, dass D alle Produkte A1 × A2 mit

A1 ∈A1 und A2 ∈A2 enthält.

Nach Satz 8.2 ist das System E der Mengen A1 ×A2 mit A1 ∈A1 und A2 ∈A2 ein Erzeugendensystem der σ-Algebra
A1⊗A2. Wegen (A1×A2)∩(B1∩B2) = (A1∩B1)×(A2∩B2) für A1, B1 ∈A1 und A2, B2 ∈A2 ist es ∩-stabil, damit nach
Satz 4.3 auch ein Erzeugendensystem von A1⊗A2 als Dynkin-System. Aus E ⊆ D ⊆A1⊗A2 folgt also D =A1⊗A2.
Damit ist die Aussage (i) im Fall µ2(Ω2)< +∞ bewiesen.

Setzen wir nun voraus, dass das Maß µ2 nur σ-endlich ist. Sei (Bm)m∈N eine monoton wachsende Folge in A2 mit
µ2(Bm) < +∞ für alle m ∈ N und

⋃

m∈N Bm = Ω2. Dann ist µ2,m : A 7→ µ2(A∩ Bm) für jedes m ∈ N ein endliches
Maß auf A2. Auf Grund der bereits bewiesenen Aussage ist also Ω1→ R̄+, x 7→ µ2,m(C1

x ) für jedes m ∈N und jedes
C ∈A1 ⊗A2 eine A1-messbare Funktion. Für jede solche Menge C gilt wegen C1

x =
⋃

m∈N(C
1
x ∩ Bm) außerdem

sC(x) = µ2(C
1
x ) = sup

m∈N
µ2(C

1
x ∩ Bm) = sup

m∈N
µ2,m(C

1
x ).

Als Supremum A1-messbarer Funktionen ist nach Satz 5.11 auch sC A1-messbar. □

Für jedes n ∈N sei An die σ-Algebra der Lebesgue-messbaren Teilmengen vonRn. Dann ist A1⊗A1 in A2 enthalten.
Weil nämlich die σ-Algebra Lebesgue-messbaren Mengen durch Vervollständigung der Borelschen σ-Algebra zustan-
de kommt, gibt es für vorgegebene A1, A2 ∈A1 jeweils B1, B2 ∈ B1 und N1, N2 ⊆R1, so dass A1 = B1∪N1, A2 = B2∪N2

gilt und N1, N2 jeweils in einer Borelschen Nullmenge enthalten sind. Es folgt

A1 × A2 = (B1 × B2)∪ (B1 × N2)∪ (B2 × N1)∪ (N1 × N2).
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Die Menge B1 × B2 liegt in B1 ⊗ B1 = B2, die übrigen drei Mengen sind in Nullmengen enthalten. Es folgt damit
A1 × A2 ∈ A2. Weil die σ-Algebra A1 ⊗A1 von kartesischen Produkten der Form A1 × A2 erzeugt wird, ist sie in A2

enthalten.

Andererseits ist A1 ⊗ A1 eine echte Teilmenge von A2. Würde A2 mit der Produktalgebra übereinstimmen, dann
müsste jeder Schnitt einer Menge aus A2 senkrecht zur ersten Koordinatenachse nach Lemma 8.8 in der σ-Algebra
A1 liegen. Wählen wir aber eine nicht Lebesgue-messbare Teilmenge A⊆R1 und setzen B = A×{0}, dann ist B ⊆R2

Lebesgue-messbar, der Schnitt B1
0 = A aber nicht. Statt dessen handelt es sich bei A2 um die Vervollständigung von

A1 ⊗A1, denn aus § 4 ist bekannt, dass A2 die Vervollständigung von B1 ⊗B1 = B2 ist.

Satz 8.11 (Existenz des Produktmaßes)

Es gibt auf A1 ⊗A2 ein eindeutig bestimmtes Maß µ mit

µ(A1 × A2) = µ1(A1)µ2(A2) für alle A1 ∈A1 , A2 ∈A2.

Dabei gilt

µ(C) =

∫

µ2(C
1
x ) dµ1(x) =

∫

µ1(C
2
y) dµ2(y)

für alle C ∈A1⊗A2. Das Maß µ ist ebenfalls σ-endlich. Wir bezeichnen es als das Produktmaß
µ1⊗µ2 von µ1 und µ2. Die Gleichungen für µ(C) sind unter dem Namen „Cavalierisches Prinzip“
bekannt.

Beweis: Wir zeigen, dass durch

µ : A1 ⊗A2→ R̄+ , C 7→
∫

sC dµ1 =

∫

µ2(C
1
x ) dµ1(x)

ein Maß auf A1 ⊗A2 definiert ist. Für C = ∅ ist die Funktion sC konstant gleich Null und somit µ(∅) = 0. Sei nun
(Cn)n∈N eine Folge paarweise disjunkter Mengen in A1 ⊗A2. Dann gilt sC =

∑∞
n=1 sCn

und somit

µ(C) =

∫

sC dµ1 =
∞
∑

n=1

∫

sCn
dµ1 =

∞
∑

n=1

µ(Cn).

Damit sind die Maßeigenschaften nachgewiesen. Ist A1 ∈A1 und A2 ∈A2, dann liefert die Formel sA1×A2
= µ2(A2)·1A1

die Gleichung

µ(A1 × A2) =

∫

sA1×A2
dµ1 =

∫

µ2(A2) · 1A1
dµ1 = µ1(A1)µ2(A2).

Die Gleichung µ(C) =
∫

µ1(Cy) dµ2(y) folgt aus der Tatsache, dass auch µ̃ : C 7→
∫

µ1(Cy) dµ2(y) ein Maß auf A1⊗
A2 mit der Eigenschaft µ̃(A1 × A2) = µ1(A1)µ2(A2) definiert, sowie der Eindeutigkeit des Produktmaßes (Satz 8.4).
Zum Nachweis der σ-Endlichkeit wählen wir monoton wachsende Folgen (A1n)n∈N und (A2n)n∈N mit Ω1 =

⋃∞
n=1 A1n,

Ω2 =
⋃∞

n=1 A2n sowie µ1(A1n),µ2(A2n) < +∞ für alle n ∈ N. Dann gilt µ(A1n × A2n) = µ1(A1n)µ2(A2n) < +∞ für
alle n ∈N, außerdem offenbar Ω1 ×Ω2 =

⋃∞
n=1(A1n × A2n). □
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Für jedes n ∈N bezeichnen wir die Einschränkung des Lebesgue-Maßes µn auf die Borelsche σ-Algebra Bn ebenfalls
mit µn. Man bezeichnet diese Einschränkung als das Lebesgue-Borelsche Maß. Setzen wir n ≥ 2, dann ist jeder
Quader P ⊆ Rn kartesisches Produkt P = Q × I eines Quaders Q ⊆ Rn−1 und eines endlichen Intervalls I ⊆ R1.
Nach Satz 8.11 gilt (µn−1 ⊗ µ1)(P) = µn−1(P)µ1(I), das Produktmaß stimmt also auf den Quadern im Rn mit der
natürlichen Volumenfunktion überein. Weil die eindeutig bestimmte Fortsetzung der natürlichen Volumenfunktion
auf Bn das Lebesgue-Borelsche Maß ist, folgt µn = µn−1 ⊗µ1.

Als Anwendungsbeispiele berechnen wir den Flächeninhalt des Kreises und das Volumen der Kugel. Sei r ∈R+ und
Cr = {(x , y) ∈R2 | x2 + y2 ≤ r2} die Kreisscheibe vom Radius r. Für alle y ∈R1 gilt

y ∈ (Cr)
1
x ⇔ (x , y) ∈ Cr ⇔ x2 + y2 ≤ r2 ⇔ y2 ≤ r2 − x2

⇔ |y| ≤
p

r2 − x2 ⇔ −
p

r2 − x2 ≤ y ≤
p

r2 − x2 ,

und wir erhalten (Cr)1x = [−
p

r2 − x2,
p

r2 − x2] für alle x ∈ R mit |x | ≤ r. Im Fall |x | > r gilt (Cr)1x = ∅. Mit Hilfe
von Satz 8.11 können wir den Flächeninhalt von Cr berechnen.

µ2(Cr) =

∫

µ1(C
1
x ) dµ1 = 2 ·

∫ r

−r

p

r2 − x2 d x = 2r ·
∫ r

−r

s

1− (
x
r
)2 d x

= 2r2 ·
∫ 1

−1

p

1− x2 d x = 2r2 ·
�

1
2 x
p

1− x2 + 1
2 arcsin(x)
�

�

�

�

�

1

−1

= πr2.

Sei nun Br = {(x , y, z) ∈R3 | x2+ y2+ z2 ≤ r2} die Einheitskugel. In diesem Fall gilt (Br)1x = Cpr2−x2 für |x | ≤ r und
(Br)1x =∅ sonst. Wir erhalten

µ3(Br) =

∫

µ2(Cpr2−x2) dµ1 = π

∫ r

−r

(r2 − x2) d x =
�

πr2 x − 1
3πx3
�

�

�

�

�

r

−r

= (2− 1
3 )πr3 = 4

3πr3.

Das in Satz 8.11 formulierte Prinzip wurde von seinem Namensgeber Bonaventura Cavalieri (1598 - 1647) verwendet,
um den Rauminhalt einer großen Zahl geometrischer Körper zu bestimmen. Dies waren einige der ersten Ergebnisse
der Geometrie, die über das seit der Antike bekannte Wissen wesentlich hinausgingen. Da die Infinitesimalrechnung
zu dieser Zeit noch nicht existierte (diese begann sich mit Newton und Leibniz erst gegen Ende des 17. Jahrhun-
derts zu entwickeln), konnte Cavalieri den in Satz 8.11 vorhandenen Integralausdruck nicht symbolisch berechnen,
sondern musste sich statt dessen mit Vergleichen behelfen.

Beispielsweise leitete er aus dem bereits bekannten Kegel- und Zylindervolumen das Volumen der Kugel ab, in dem
er neben eine Halbkugel H vom Radius r einen Zylinder Z mit Radius und Höhe r setzte. In diesem Zylinder wurde
ein auf der Spitze stehender Kreisregel K mit Grundfläche und Höhe r untergebracht. Schneidet man die Halkugel
nun auf Höhe h mit einer zur Grundfäche parallelen Ebene Eh, dann erhält man nach dem Satz des Pythagoras eine
Kreisschreibe vom Radius

p
r2 − h2, deren Flächeninhalt π(r2−h2) beträgt. Schneidet man den Zylinder auf gleicher

Höhe, so ergibt dies eine Kreisscheibe mit Flächeninhalt πr2, und der Schnitt von Eh mit de Kegel ergibt einen Kreis
vom Flächeninhalt πh2. Der Schnitt von Eh mit der Differenzmenge Z \ K beträgt also ebenfalls π(r2 − h2), ist also
genauso groß wie der Schnitt zwischen Eh und Halbkugel! Weil dies für alle h ∈ [0, r] der Fall ist, schloss Cavalieri,
dass das Halbkugelvolumen gleich dem Volumen von Z \ K sein muss. Da v3(Z) = πr2 · r = πr3 und v3(K) =

1
3πr3
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bereits bekannt war, erhielt er damit v3(H) = v3(Z \ K) = v3(Z)− v3(K) = πr3 − 1
3πr3 = 2

3πr3 und schließlich das
Volumen 4

3πr3 für die Vollkugel.

Allerdings waren viele von Cavalieris Kollegen damals nicht bereit, seine Herleitung der Gleichung v3(H) = v3(Z \K)
zu akzeptieren. Scheinbar erforderte sie, die Körper H, Z und K in unendlich viele, unendlich dünne Scheiben zu
zerlegen und deren unendlich kleine Volumina aufzuaddieren, was ihnen suspekt erschien. Erst durch die Integral-
rechnung konnte Cavalieris Schluss im Nachhinein gerechtfertigt werden. Einen Einblick in die damalige Auseinan-
dersetzung erhält man durch einen sehr lesenswerten Spektrum-Artikel in der Ausgabe vom Oktober 2015.

Unser nächstes Ziel besteht darin, das Cavalierische Prinzip von Volumina auf Integrale zu übertragen. Sei (Ω′,A′)
ein weiterer Messraum und f : Ω1 ×Ω2→ Ω′ eine Abbildung. Für jedes x ∈ Ω1 bezeichnen wir mit f 1

x die Funktion
gegeben durch f 1

x : Ω2 → Ω′, y 7→ f (x , y). Entsprechend sei für jedes y ∈ Ω2 die Funktion f 2
y : Ω1 → Ω′ gegeben

durch f 2
y (x) = f (x , y) für alle x ∈ Ω1. Ist C ⊆ Ω1 × Ω2 eine beliebige Teilmenge, dann gilt (1C)1x = 1C1

x
und

(1C)2y = 1C2
y
.

Lemma 8.12 Sei f : Ω1 ×Ω2→ Ω′ eine (A1 ⊗A2)-A′-messbare Funktion. Dann gilt

(i) Die Funktion f 1
x ist A2-A′-messbar für jedes x ∈ Ω1.

(ii) Die Funktion f 2
y ist A1-A′-messbar für jedes y ∈ Ω2.

Beweis: Wir beschränken uns auf den Beweis der Aussage (i). Seien A′ ∈A′ und x ∈ Ω1 vorgegeben. Für alle y ∈ Ω2

gelten die Äquivalenzen

y ∈ ( f 1
x )
−1(A′) ⇔ f 1

x (y) ∈ A′ ⇔ f (x , y) ∈ A′ ⇔ y ∈ ( f −1(A′))1x

also ( f 1
x )
−1(A′) = ( f −1(A′))1x . Auf Grund der Messbarkeit von f gilt f −1(A′) ∈ A1 ⊗A2, und mit Lemma 8.8 über die

Messbarkeit der Schnitte erhalten wir ( f −1(A′))1x ∈A2. □

Satz 8.13 (Satz von Tonelli)

Sei f : Ω1 ×Ω2→R+ eine (A1 ⊗A2)-messbare Funktion. Dann gilt

(i) Die Abbildung Ω2→ R̄+, y 7→
∫

f 2
y dµ1 ist A2-messbar.

(ii) Die Abbildung Ω1→ R̄+, x 7→
∫

f 1
x dµ2 ist A1-messbar.

(iii) Es gilt

∫

f d(µ1 ⊗µ2) =

∫ �∫

f 2
y dµ1

�

dµ2(y) =

∫ �∫

f 1
x dµ2

�

dµ1(x).

Beweis: Sei Ω= Ω1×Ω2, A=A1⊗A2 und µ= µ1⊗µ2. Wir beweisen den Satz zunächst für den Spezialfall, dass f
eine Stufenfunktion ist. Sei also f =

∑r
i=1αi · 1Ci

mit α1, ...,αr ∈ R+ und C1, ..., Cr ∈ A paarweise disjunkte Menge,
deren Vereinigung Ω ergibt. Für jedes y ∈ Ω2 gilt dann

f 2
y =

r
∑

i=1

αi · (1Ci
)2y =

r
∑

i=1

αi · 1(Ci)2y
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und somit
∫

f 2
y dµ1 =
∑r

i=1αiµ1((Ci)2y). Nach Lemma 8.10 ist die Abbildung y 7→ µ1((Ci)2y) jeweils A2-messbar, also
auch die Funktion y 7→

∫

f 2
y dµ1 als Linearkombination dieser Funktionen. Mit Hilfe der Formel aus dem Existenzsatz

für Produktmaße erhalten wir außerdem

∫ �∫

f 2
y dµ1

�

dµ2(y) =

∫

�

r
∑

i=1

αiµ1((Ci)
2
y)

�

dµ2(y)

=
r
∑

i=1

αi

∫

µ1((Ci)
2
y) dµ2(y) =

r
∑

i=1

αiµ(Ci) =

∫

f dµ.

Nun sei f : Ω→ R̄+ eine beliebige nicht-negative, A-messbare Funktion und ( fn)n∈N eine monoton wachsende Folge
von A-Stufenfunktionen mit der Eigenschaft supn∈N fn = f . Dann gilt supn∈N( fn)2y = f 2

y für alle y ∈ Ω2, und die
Folge (( fn)2y)n∈N ist jeweils monoton wachsend. Mit dem Satz über die monotone Konvergenz erhalten wir

∫

f 2
y dµ1 = sup

n∈N

∫

( fn)
2
y dµ1 für alle y ∈ Ω2.

Dabei ist die Folge der Integrale auf der rechten Seite monoton wachsend. Auf Grund der bereits bewiesenen Aussage
ist die Abbildung Ω2→ R̄+, y 7→

∫

( fn)2y dµ1 für jedes n ∈N eine A2-messbare Funktion. Als punktweises Supremum
der monoton wachsenden Funktionenfolge A2-messbaren Funktionen y 7→

∫

( fn)2y dµ1 ist auch y 7→
∫

f 2
y dµ1 A2-

messbar. Nochmalige Anwendung des Satzes von der monotonen Konvergenz liefert

∫ �∫

f 2
y dµ1

�

dµ2(y) = sup
n∈N

∫ �∫

( fn)
2
y dµ1

�

dµ2(y) = sup
n∈N

∫

fn dµ =

∫

f dµ.

Der Beweis der Aussage (ii) und der zweiten Gleichung unter (iii) verläuft völlig analog. □

Satz 8.14 (Satz von Fubini)

Sei f : Ω1 ×Ω2→ R̄ eine µ1 ⊗µ2-integrierbare Funktion. Dann gilt

(i) Die Funktion f 1
x ist für µ1-fast alle x ∈ Ω1 µ2-integrierbar.

(ii) Die Funktion f 2
y ist für µ2-fast alle y ∈ Ω2 µ1-integrierbar.

(iii) Die µ1-fast überall definierte Funktion x 7→
∫

f 1
x dµ2 ist µ1-integrierbar, und die µ2-fast

überall definierte Funktion y 7→
∫

f 2
y dµ1 ist µ2-integrierbar. Es gilt

∫

f d(µ1 ⊗µ2) =

∫ �∫

f 2
y dµ1

�

dµ2(y) =

∫ �∫

f 1
x dµ2

�

dµ1(x).

Beweis: Nach Voraussetzung ist das Integral
∫

| f | d(µ1 ⊗µ2) endlich, und aus dem Satz von Tonelli folgt

∫ �∫

| f 2
y | dµ1

�

dµ2(y) =

∫ �∫

| f |2y dµ1

�

dµ2(y) =

∫

| f | d(µ1 ⊗µ2)< +∞
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Nach Satz 6.27 bedeutet dies
∫

| f |2y dµ1 < +∞ für µ2-fast alle y ∈ Ω2, die Aussage (ii) ist also erfüllt. Genauso
beweist man (i). Die erste Gleichung unter (iii) erhält man unter erneuter Anwendung des Satzes von Tonelli durch
die Rechnung

∫

f d(µ1 ⊗µ2) =

∫

f + d(µ1 ⊗µ2) −
∫

f − d(µ1 ⊗µ2) =

∫ �∫

( f +)2y dµ1

�

dµ2(y) −
∫ �∫

( f −)2y dµ1

�

dµ2(y) =

∫ �∫

( f 2
y )
+ dµ1

�

dµ2(y) −
∫ �∫

( f 2
y )
− dµ1

�

dµ2(y) =

∫ �∫

f 2
y dµ1

�

dµ2(y) ,

der Beweis der zweiten Gleichung funktioniert analog. □

Folgerung 8.15 Seien a, b, c, d ∈ R mit a < b und c < d, sei Q = [a, b] × [c, d], und sei
f : Q → R eine stetige Funktion. Dann ist f Lebesgue-integrierbar, die Funktion [c, d] → R,
y 7→ f (x , y) ist für jedes x ∈ [a, b] Riemann-integrierbar, und es gilt

∫

Q

f dµ2 =

∫ b

a

�

∫ d

c

f (x , y) d y

�

d x .

Beweis: Als stetige Funktion ist f auf jedenfalls Lebesgue-messbar. Auf Grund des Maximumsprinzips nimmt die
stetige Funktion f auf dem kompakten Bereich Q ihr Minimum und ihr Maximum an; insbesondere existiert ein
γ ∈R+ mit | f (x , y)| ≤ γ für alle (x , y) ∈ Q. Die Abschätzung | f | ≤ γ · 1Q liefert

∫

| f | dµ2 ≤ γµ2(Q) < +∞. Also ist
f eine Lebesgue-integrierbare Funktion; die Voraussetzung des Satzes von Fubini ist damit erfüllt. Mit f ist auch die
Funktion y 7→ f (x , y) für jedes [a, b] eine stetige Funktion, mit [c, d] als Definitionsbereich, somit Riemann- und
damit nach Satz 7.6 auch Lebesgue-integrierbar. Die auf [a, b] definierte Funktion, die jedem x ∈ [a, b] den Wert
∫ d

c f (x , y) d y =
∫

[c,d] f 1
x dµ1 zuordnet, ist nach Satz 7.3 stetig, und damit ebenfalls Riemann-integrierbar. Auf Grund

des Satzes von Fubini und der Übereinstimmung von Riemann- und Lebesgue-Integral erhalten wir
∫

Q

f dµ2 =

∫

[a,b]

�

∫

[c,d]
f 1
x dµ2

�

dµ1(x) =

∫ b

a

�

∫ d

c

f (x , y) d y

�

d x . □

Als konkretes Anwendungsbeispiel können wir die Funktion f : Q → R, (x , y) 7→ x y auf dem Quader Q = [0, 1]×
[0, 1] berechnen. Es gilt
∫

Q

f dµ2 =

∫ 1

0

�

∫ 1

0

x y d y

�

d x =

∫ 1

0

�

1
2 x y2
�y=1

y=0 d x =

∫ 1

0

1
2 x d x =
�

1
4 x2
�1

0 = 1
4 .

Natürlich lässt sich diese Aussage problemlos auf höhere Dimension verallgemeinern: Ist Q ⊆ R3 ein kompakter
Quader, Q = [a, b]× [c, d]× [u, v] mit a, b, c, d, u, v ∈R mit a < b, c < d, u< v, dann ist auch jede stetige Funktion
f : Q→R Lebesgue-integrierbar, und es gilt

∫

Q

f dµ3 =

∫ b

a

�

∫ d

c

�∫ v

u

f (x , y, z) dz

�

d y

�

dz.
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Die Voraussetzung der Integrierbarkeit von f über Ω1×Ω2 ist wesentlich für die Hauptaussage des Satzes von Fubini,
die Vertauschbarkeit der beiden Integrationsschritte. Das sie im allgemeinen tatsächlich notwendig ist, sieht man zum
Beispiel anhand der Funktion

f : ]0, 1]× ]0,1] −→R , (x , y) 7→
x2 − y2

(x2 + y2)2
,

die über ihren Definitionsbereich nicht Lebesgue-integrierbar ist. Einerseits gilt

∫

]0,1]

�

∫

]0,1]

x2 − y2

(x2 + y2)2
dµ(x)

�

dµ(y) =

∫

]0,1]

�

−
x

x2 + y2

�

�

�

�

�

1

0

dµ(y) =

−
∫

]0,1]

1
1+ y2

dµ(y) = −arctan(y)

�

�

�

�

1

0

= −π4 .

Die Vertauschung der Integrationsschritte liefert aber das Ergebnis

∫

]0,1]

�

∫

]0,1]

x2 − y2

(x2 + y2)2
dµ(y)

�

dµ(x) =

∫

]0,1]

�

y
x2 + y2

�

�

�

�

�

1

0

dµ(x) =

∫

]0,1]

1
1+ x2

dµ(x) = arctan(x)

�

�

�

�

1

0

= π
4 .

Als Anwendung der Produktmaße behandeln wir den Zusammenhang zwischen der Messbarkeit einer Funktion und
der Messbarkeit der Fläche unter ihrem Funktionsgraphen. Auch hier sei (Ω,A,µ) ein beliebiger Maßraum. Mit B1

bezeichnen wir die Borelsche σ-Algebra in R1 und mit µ1 : B1→ R̄+ das Lebesgue-Borelsche Maß.

Definition 8.16 Sei f : Ω→ R̄+ eine nicht-negative Funktion. Dann bezeichnen wir die Menge

A f = {(x , y) ∈ Ω×R | 0≤ y < f (x)}

als Teilmenge unter dem Funktionsgraphen von f .

Der folgende Satz besagt nun, dass das Maß solcher Mengen durch ein Integral ausgedrückt werden kann.

Satz 8.17 Eine nicht-negative Funktion f : Ω → R̄+ ist genau dann A-messbar, wenn A f ∈
A⊗B1 erfüllt ist. In diesem Fall gilt

(µ⊗µ1)(A f ) =

∫

f dµ.
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Beweis: „⇐“ Setzen wir A f ∈A⊗B1 voraus. Nach Lemma 8.8 gilt dann (A f )y ∈A für alle y ∈R+. Für jedes x0 ∈ Ω
gelten die Äquivalenzen

x0 ∈ (A f )y ⇔ (x0, y) ∈ A f ⇔ f (x0)> y ⇔ x0 ∈ {x ∈ Ω | f (x)> y} ⇔ x0 ∈ Λ+( f , y).

Es gilt also Λ+( f , y) = (A f )y ∈ A für alle y ∈ R+. Für y < 0 gilt Λ+( f , y) = Ω ∈ A, weil f nicht-negativ ist. Nach
Folgerung 5.7 ergibt sich daraus insgesamt die Messbarkeit von f .

„⇒“ Ist f messbar, dann gilt insbesondere Λ+( f ,α) ∈ A für alle α ∈ Q+ und somit Λ+( f ,α)× [0,α] ∈ A⊗ B1. Wir
beweisen nun die Gleichung

A f =
⋃

α∈Q+

�

Λ+( f ,α)× [0,α]
�

Als Vereinigung abzählbar vieler Mengen aus A⊗ B1 ist dann auch A f in A⊗ B1 enthalten. „⊆“ Sei (x , y) ∈ A f .
Dann gilt f (x)> y . Es gibt also ein α ∈Q+ mit y < α < f (x), und wir erhalten x ∈ Λ+( f ,α) sowie y ∈ [0,α]. „⊇“
Sei (x , y) ∈ Λ+( f ,α)× [0,α] für ein α ∈ Q+. Dann gilt f (x) > α und 0 ≤ y ≤ α. Insbesondere gilt f (x) > y und
somit (x , y) ∈ A f .

Die im Satz angegebene Gleichung beweisen wir mit Hilfe von Satz 8.11. Es gilt

(µ⊗µ1)(A f ) =

∫

µ1(A f )
1
x dµ(x) =

∫

µ1([0, f (x)[) dµ(x) =

∫

f (x) dµ(x) =

∫

f dµ. □

Insbesondere ist eine Funktion f : D→ R̄+ auf einem Definitionsbereich D ⊆Rn also genau dann Lebesgue-messbar,
wenn die Teilmenge A f ⊆ D ×R ⊆ Rn+1 Lebesgue-messbar ist, und Lebesgue-integrierbar genau dann, wenn A f

darüber hinaus ein endliches Lebesgue-Maß besitzt.

Als Standardsimplex im R3 bezeichnet man die Menge

S = {(x , y, z) ∈ [0,1]3 | x + y + z ≤ 1}.

Definieren wir die Funktion f : [0, 1]2→R durch

f (x , y) =

(

1− x − y falls x + y ≤ 1

0 sonst ,

so kann man leicht überprüfen, dass S = A f erfüllt ist. Denn für alle (x , y, z) ∈R3 gilt die Äquivalenz

(x , y, z) ∈ A f ⇔ (x , y) ∈ [0, 1]2 ∧ 0≤ z ≤ f (x , y) ⇔ (x , y) ∈ [0, 1]2 ∧ 0≤ z ≤ 1− x − y ⇔

(x , y) ∈ [0, 1]2 ∧ 0≤ x + y + z ≤ 1 ⇔ (x , y, z) ∈ [0, 1]3 ∧ 0≤ x + y + z ≤ 1 ⇔ (x , y, z) ∈ S.

Ist x ∈ [0, 1] vorgegeben, dann gilt f (x , y) = 1− x− y für alle y ∈ [0,1]mit x+ y ≤ 1⇔ y ≤ 1− x , und f (x , y) = 0
für 1− x ≤ y ≤ 1. Durch Anwendung von Satz 8.17 erhalten wir

µ2(S) = µ2(A f ) =

∫

f dµ2 =

∫ 1

0

�

∫ 1

0

f (x , y) d y

�

d x =

∫ 1

0

�

∫ 1−x

0

(1− x − y) d y

�

d x =

∫ 1

0

�

y − x y − 1
2 y2
�1−x

0 d x =

∫ 1

0

�

(1− x)− x(1− x)− 1
2 (1− x)2
�

d x =

∫ 1

0

�

1− x − x + x2 − 1
2 + x − 1

2 x2
�

d x =

∫ 1

0

�

1
2 x2 − x + 1

2

�

d x =

�

1
6 x3 − 1

2 x2 + 1
2 x
�1

0 = 1
6 −

1
2 +

1
2 = 1

6 .

Durch einen einfachen Induktionsbeweis in Verbindung mit dem Satz von Fubini kann man zeigen, dass das Volumen
entsprechender Teilmengen des Rn (gegeben durch die Ungleichung x1 + ...+ xn ≤ 1) jeweils gleich (n!)−1 ist.
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§ 9. Bildmaße und die Transformationsformel

Zusammenfassung. In diesem Abschnitt untersuchen wir, wie sich das Lebesgue-Maß unter Transformatio-
nen verhält. Zunächst betrachten wir bijektive lineare Abbildungen. Hier bestätigen sich durch die Anschauung
zu erwartende Eigenschaften, wie beispielsweise die Invarianz des Volumens unter Translationen, Drehungen
und Spiegelungen, die Zunahme des Flächeninhalts um den Faktor c2 und des Volumens um den Faktor c3 bei
Skalierung der Menge um einen positiven Faktor c usw.

Anschließend befassen wir uns mit dem Verhalten des Lebesgue-Maßes und des Lebesgue-Integrals unter Dif-
feomorphismen. Dieses wird durch den Transformationssatz beschrieben, das zentrale Ergebnis dieses Kapi-
tels. In vielen Fällen, zum Beispiel in Anwendungen aus der Physik, kann mit diesem Satz die Berechnung der
Integrale vereinfacht werden, beispielsweise in die Rotationssymmetrie von Funktionen und ihren Definitions-
bereichen genutzt wird.

Wichtige Grundbegriffe

– Bildmaß

– translationsinvariantes Maß

– bewegungsinvariantes Maß

Zentrale Sätze

– Transformationsverhalten des Lebesgue-Maßes unter
linearen Transformationen

– Transformationssatz für das Lebesgue-Integral

Definition 9.1 Sei (Ω,A,µ) ein Maßraum, (Ω′,A′) ein Messraum und f : Ω→ Ω′ eine A-A′-
messbare Abbildung. Dann nennt man die Abbildung f (µ) : A′→ R̄+ gegeben durch

f (µ)(A′) = µ( f −1(A′)) für alle A′ ∈A′

das Bildmaß von µ unter f .

Man überprüft unmittelbar, dass es sich bei f (µ) um ein Maß handelt: Zunächst gilt f (µ)(∅) = µ( f −1(∅)) = µ(∅) =
0. Ist (An)n∈N eine Folge paarweise disjunkter Mengen aus A′, dann sind wegen f −1(Am)∩ f −1(An) = f −1(Am ∩ An)
für Am, An ∈A′ auch die Urbildmengen f −1(An) paarweise disjunkt, und es folgt

f (µ)

�∞
⋃

n=1

An

�

= µ

�

f −1

�∞
⋃

n=1

An

��

= µ

�∞
⋃

n=1

f −1(An)

�

=
∞
∑

n=1

µ( f −1(An)) =
∞
∑

n=1

f (µ)(An).

Wir erinnern an die folgenden Begriffe aus der Linearen Algebra: Sei n ∈N undRn ausgestattet mit dem euklidischen
Standard-Skalarprodukt 〈·, ·〉. Eine Translation auf Rn ist eine Abbildung der Form τv : Rn→ Rn, x 7→ v + x , wobei
v einen beliebigen Vektor aus Rn bezeichnet. Eine orthogonale Abbildung ist eine lineare Abbildungψ :Rn→Rn mit
〈ψ(x),ψ(y)〉 = 〈x , y〉 für alle x , y ∈ Rn. Eine Abbildung der Form τv ◦ψ bestehend aus einer Translation τv und
einer orthogonalen Abbildung ψ bezeichnen wir als Bewegung.
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Eine Abbildung der Form τv ◦ψmit einer beliebigen Abbildungψ ∈ GL(Rn) nennt man eine Affinität. Die Affinitäten
umfassen die Bewegungen. Jede Affinität ist stetig. Daraus folgt, dass jede Affinität eine Bn-Bn-messbare Abbildung
ist.

Definition 9.2 Ein Maß µ auf (Rn,Bn) wird translationsinvariant genannt, wenn τv(µ) = µ
für alle v ∈Rn erfüllt ist. Gilt sogarφ(µ) = µ für jede Bewegungφ, dann spricht man von einem
bewegungsinvarianten Maß.

Nach Definition ist ein Maß µ genau dann translations- bzw. bewegungsinvariant, wenn µ(τv(A)) = µ(A) bzw.
µ(φ(A)) = µ(A) für alle v ∈Rn bzw. alle Bewegungen φ und alle A∈ Bn erfüllt ist.

Proposition 9.3 Das Lebesgue-Borelsche Maß µn ist translationsinvariant.

Beweis: Die Borelsche σ-Algebra Bn wird von den Quadern der Form Q = I1 × ...× In erzeugt, wobei Ik jeweils ein
endliches Intervall mit den Endpunkten ak, bk ∈ R, ak ≤ bk bezeichnet. Ist v = (v1, ..., vn) ∈ Rn vorgegeben, dann
gilt τ−1

v (Q) = Ĩ1 × ...× Ĩn, wobei Ĩk jeweils ein Intervall mit den Endpunkten ak − vk und bk − vk bezeichnet. Es folgt

τv(µn)(Q) = µn(τ
−1
v (Q)) =

n
∏

k=1

((bk − vk)− (ak − vk)) =
n
∏

k=1

(bk − ak) = µn(Q).

Sowohl µn als auch τv(µn) sind offenbarσ-endliche Maße. Wir können somit Proposition 4.4 anwenden und erhalten
die Übereinstimmung von µn und τv(µn) auf der gesamten σ-Algebra Bn. □

Wir zeigen nun, dass das Lebesgue-Borelsche Maß im wesentlichen das einzige translationsinvariante Maß auf Bn

ist.

Lemma 9.4 Sei S ⊆ R eine dichte Teilmenge von R. Dann wird die σ-Algebra Bn von den
Quadern der Form Q = [a1, b1[ ×...× [an, bn[ mit ai , bi ∈ S für 1≤ i ≤ n erzeugt.

Beweis: Zunächst einmal lassen sich die Mengen der Form {(x1, ..., xn) | x i ≥ a} mit i ∈ {1, ..., n} und a ∈ S
als abzählbare Vereinigung solcher Quader darstellen. Lassen wir eine Folge (an)n∈N in S streng monoton fallend
gegen ein beliebiges α ∈ R laufen, dann erhalten wir {(x1, ..., xn) | x i > α} als abzählbare Vereinigung der Mengen
{(x1, ..., xn) | x i ≥ an}. Durch Komplementbildung erhalten wir alle Mengen der Form {(x1, ..., xn) | x i ≤ α} mit
i ∈ {1, ..., n} und α ∈ R, und die Menge {(x1, ..., xn) | x i < α} wiederum als abzählbare Vereinigung. Nun ist jeder
Quader offenbar ein endlicher Durchschnitt von Mengen der bereits konstruierten Form, und die Quader bilden ein
Erzeugendensystem der σ-Algebra Bn. □

Satz 9.5 Sei µ ein translationsinvariantes Maß auf Bn, und sei α = µ([0,1[n) ∈ R̄+. Dann
gilt µ = αµn. Das Lebesgue-Borelsche Maß µn ist das einzige translationsinvariante Maß µ auf
(Rn,Bn) mit µ([0,1[n) = 1.
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Beweis: Sei m ∈ N eine beliebig vorgegebene natürliche Zahl. Definieren wir Am = {0, 1, ..., m − 1}n und Qk =
[ k1

m , k1+1
m [ ×... × [ kn

m , kn+1
m [ für alle k = (k1, ..., kn) ∈ Am, dann ist durch [0, 1[n=

⋃

k∈Am
Qk offenbar eine disjunkte

Zerlegung von [0, 1[n definiert. Jeder Quader Qk geht durch Translation in [0, 1
m [

n über, aus der Translationsinvarianz
von µ folgt also µ(Qk) = µ([0, 1

m [
n) für alle k ∈ Am. Wir erhalten somit

α = µ([0,1[n) =
∑

k∈Am

µ(Qk) =
∑

k∈Am

µ([0, 1
m [

n) = mnµ([0, 1
m [

n) ,

also µ([0, 1
m [

n) = m−nα. Nun zeigen wir: Sind a1, ..., an, b1, ..., bn ∈ Q mit ai < bi für 1 ≤ i ≤ n, und ist Q =
[a1, b1[ ×...× [an, bn[, dann gilt µ(Q) = α

∏n
i=1(bi − ai) = αµn(Q). Auf Grund der Translationsinvarianz können wir

a1 = ... = an = 0 voraussetzen. Sei nun m der größte gemeinsame Nenner der Zahlen b1, ..., bn und b̃i = mbi ∈ N
für 1≤ i ≤ n. Sei A= {(k1, ..., kn) | 0≤ ki < b̃i} und

Q̃k = [ k1
m , k1+1

m [ × ... × [ kn
m , kn+1

m [ für k = (k1, ..., kn) ∈ A.

Wiederum auf Grund der Translationsinvarianz gilt µ(Q̃k) = µ([0, 1
m [

n) = α
mn für alle k ∈ A. Mit Hilfe der disjunkten

Zerlegung Q =
⋃

k∈A Q̃k erhalten wir

µ(Q) =
α|A|
mn

=
α
∏n

i=1 b̃i

mn
= α

n
∏

i=1

bi = αµn(Q).

Die Menge Q der rationalen Zahlen liegt dicht in R, nach Lemma 9.4 wird die σ-Algebra Bn also von den Mengen
der Form Q erzeugt. Wir haben also gezeigt, dass die Maße µ und αµn auf einem ∩-stabilen Erzeugendensystem von
Bn übereinstimmen. Nach Proposition 4.4 sind sie damit auf ganz Bn gleich. □

Lemma 9.6 Ist µ : Bn→ R̄+ ein translationsinvariantes Maß auf Rn und ist φ :Rn→Rn eine
Affinität, dann ist auch φ(µ) translationsinvariant.

Beweis: Nach Definition der Affinitäten gilt φ = τv ◦ψ für ein v ∈ Rn und eine invertierbare lineare Abbildung
ψ. Sei w ∈ Rn. Zu zeigen ist τw(φ(µ)) = φ(µ). Nach Definition des Bildmaßes ist dies ist gleichbedeutend mit
µ((τw ◦φ)−1(A)) = µ(φ−1(A)) für alle A∈ Bn. Durch Einsetzen von φ führt dies auf die Gleichung

µ((τv+w ◦ψ)−1(A)) = µ((τv ◦ψ)−1(A)).

Wir man unmittelbar nachrechnet, gilt τv+w ◦ψ= τv ◦ψ◦τw′ für den Vektor w′ =ψ−1(w). Tatsächlich gilt für jeden
Vektor u ∈Rn jeweils

(τv ◦ψ ◦τw′)(u) = v +ψ(w′ + u) = v +ψ(w′) +ψ(u) = v +w+ψ(u) = (τv+w ◦ψ)(u).

Zu zeigen bleibt also
µ((τv ◦ψ ◦τw′)

−1(A)) = µ((τv ◦ψ)−1(A)).

Nach Definition des Bildmaßes ist dies äquivalent zu τw′(µ)((τv ◦ψ)−1(A)) = µ((τv ◦ψ)−1(A)). Nun sieht man, dass
die Gleichung direkt aus der Translationsinvarianz von µ folgt. □

Satz 9.7 Das Lebesgue-Borelsche Maß µn ist bewegungsinvariant.
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Beweis: Weil µn invariant unter Translationen ist, genügt es, die Invarianz unter orthogonalen Abbildungen zu bewei-
sen. Sei alsoφ :Rn→Rn eine orthogonale Abbildung. Weil mit µn nach Lemma 9.6 auchφ(µn) translationsinvariant
ist, gibt es nach Satz 9.5 ein α ∈R+ mit φ(µn) = αµn. Sei B = {x ∈Rn | ∥x∥2 ≤ 1} die abgeschlossene Einheitskugel
bezüglich der 2-Norm ∥·∥2. Wegen 〈φ(x),φ(x)〉= 〈x , x〉 ist diese invariant unter φ, es gilt also φ−1(B) = B. Für alle
x ∈ Rn gilt ∥x∥∞ ≤ ∥x∥2 ≤

p
n∥x∥∞. Aus ∥x∥∞ ≤

1p
n folgt ∥x∥2 ≤ 1, also enthält B den n-dimensionalen Würfel

mit Kantenlänge 2p
n , dessen Zentrum mit dem Nullpunkt 0Rn zusammenfällt. Es folgt µn(B) ≥ 2nn−n/2 > 0. Aus

∥x∥2 ≤ 1 folgt andererseits ∥x∥∞ ≤ 1, d.h. B ist im Würfel mit Kantenlänge 2 und demselben Mittelpunkt enthalten.
Das liefert die Abschätzung µn(B)≤ 2n < +∞. Weil µn(B) endlich und positiv ist, folgt aus der Gleichung

αµn(B) = φ(µn)(B) = µn(φ
−1(B)) = µn(B)

also α= 1 und somit φ(µn) = µn. □

Folgerung 9.8 Jede Hyperebene H ⊆Rn ist eine Lebesguesche Nullmenge.

Beweis: Aus der Linearen Algebra ist bekannt, dass H durch eine Bewegung φ in die Koordinatenhyperebene H0 =
{(0, x2, ..., xn) | x i ∈ R für 2 ≤ i ≤ n} überführt werden kann. Weil H0 als abzählbare Vereinigung der Nullmengen
Nm = {0} × [−m, m]n−1 dargestellt werden kann, ist auch H0 =

⋃∞
m=1 Nm eine Nullmenge. Aus φ(H) = H0 folgt

µn(H) = φ−1(µn)(H) = µn(φ(H)) = µn(H0) = 0. □

Wir erinnern an die folgende Notation aus der Linearen Algebra: Ist A∈M(m×n,R), dann bezeichnetφA :Rn→Rm

die Abbildung v 7→ Av gegeben durch das Matrix-Vektor-Produkt.

Proposition 9.9 Ist D ∈ GLn(R) eine Diagonalmatrix mit positiven Einträgen auf der Haupt-
diagonalen, dann gilt φD(µn) = (det D)−1µn.

Beweis: Weil mit µn nach Lemma 9.6 auch φD(µn) translationsinvariant ist, existiert nach Satz 9.5 ein α ∈ R̄+ mit
φD(µn) = αµn. Zu zeigen ist, dass α = (det D)−1 ist. Sind d1, ..., dn ∈ R+ die Diagonaleinträge von D, dann gilt
det D =
∏n

i=1 di und φD(x1, ..., xn) = (d1 x1, ..., dn xn) für alle x = (x1, ..., xn) ∈ Rn. Sei Q = [0,1]n. Dann ist das
Urbild von Q unter φD gegeben durch φ−1

D (Q) = [0, d−1
1 ]× ...× [0, d−1

n ], und wir erhalten

αµn(Q) = φD(µn)(Q) = µn(φ
−1
D (Q)) =

n
∏

i=1

d−1
i = (det D)−1. □

Satz 9.10 (Transformationsverhalten des Lebesgue-Maßes)

Ist A∈ GLn(R), dann gilt φA(µn) = |det A|−1µn.
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Beweis: Sei A ∈ GLn(R). Die Matrix B = tAA erfüllt die Gleichung tB = t(tAA) = tAt(tA) = tAA und ist somit
symmetrisch. Außerdem ist sie positiv definit, denn für jeden Vektor v ∈Rn mit v ̸= 0Rn gilt Av ̸= 0Rn (auf Grund der
Invertierbarkeit von A) und somit tvBv = t(Av)(Av)> 0. Auf Grund des Satzes über die Hauptachsentransformation
existiert eine ON-Basis (v1, ..., vn) des Rn bestehend aus Eigenvektoren von B mit positiven Eigenwerten λ1, ...,λn.
Die Vektoren u j = λ

−1/2
j Av j bilden ebenfalls eine ON-Basis des Rn, denn für 1≤ j < k ≤ n gilt jeweils

〈u j , u j〉 = λ−1
j 〈Av j , Av j〉 = λ−1

j 〈
tAAv j , v j〉 = λ−1

j 〈Bv j , v j〉

= λ−1
j 〈λ j v j , v j〉 = λ−1

j λ j〈v j , v j〉 = 1 · 1 = 1

und

〈u j , uk〉 = λ
−1/2
j λ

−1/2
k 〈Av j , Avk〉 = λ

−1/2
j λ

−1/2
k 〈tAAv j , vk〉 = λ

−1/2
j λ

−1/2
k 〈Bv j , vk〉

= λ
−1/2
j λ

−1/2
k 〈λ j v j , vk〉 = λ

1/2
j λ

−1/2
k 〈v j , vk〉 = λ

1/2
j λ

−1/2
k · 0 = 0.

Sei nun U die Matrix mit den Vektoren u1, ..., un als Zeilen, und V die Matrix mit v1, ..., vn als Spalten. Dann gilt
UAV = D mit D = diag(λ1/2

1 , ...,λ1/2
n ). Weil U und V orthogonale Matrizen sind, gilt det(U), det(V ) ∈ {±1}. Die

Gleichung A = U−1DV−1 liefert somit |det(A)| = |det(D)| = det(D). Außerdem gilt φA = φU−1 ◦ φD ◦ φV−1 mit
den orthogonalen Abbildungen φU−1 und φV−1 . Auf Grund der Bewegungsinvarianz von µn (und weil orthogonale
Matrizen Bewegungen definieren), folgt mit Proposition 9.9 die Gleichung

φA(µn) = (φ−1
U ◦φD ◦φ−1

V )(µn) = φ−1
U (φD(φ

−1
V (µn))) = φ−1

U (φD(µn)) =

φ−1
U ((det D)−1µn) = (det D)−1µn = |det A|−1µn. □

Man kann das Ergebnis folgendermaßen umformulieren: Sei B ⊆ Rn und φ : Rn → Rn eine Bewegung der Form
x 7→ v + Ax mit v ∈ Rn und A ∈ GLn(R). Genau dann liegt B ∈ Bn, wenn φA(B) in Bn enthalten ist, und in diesem
Fall gilt

µn(φA(B)) = |det(A)|µn(B).

Es ist nicht schwer, dieses Ergebnis von der Borelschen σ-Algebra Bn auf die σ-Algebra An der Lebesgue-messbaren
Mengen zu übertragen. Hier werden wir dieses Resultat etwas weiter unten in allgemeinerer Form beweisen.

Zur Erinnerung: Ein C 1-Diffeomorphismus φ : U → V zwischen zwei offenen Teilmengen U , V ⊆Rn ist eine bijektive
Abbildung mit der Eigenschaft, dass sowohl φ als auch die Umkehrabbildung φ−1 in jedem Punkt ihres Definitions-
bereich stetig differenzierbar ist. Inbesondere sind φ und φ−1 dann beide stetig; das bedeutet, dass in U liegende
Teilmengen aus Bn unter Anwendung von φ erhalten bleiben.

Lemma 9.11 Seien U , V ⊆ Rn offene Umgebungen von 0Rn und φ : U → V ein C 1-
Diffeomorphismus mit φ(0Rn) = 0Rn und φ′(0Rn) = idRn . Dann gibt es für jedes δ ∈ R+ eine
Umgebung Uδ von 0Rn mit der folgenden Eigenschaft: Ist W ⊆ Uδ ein abgeschlossener Würfel
mit 0Rn ∈W , dann gilt

µn(φ(W )) ≤ (1+δ)µn(W ).

Beweis: Wegen φ′(0Rn) = idRn gibt eine Funktion h : U →Rn mit φ(x) = φ(0Rn) +φ′(0Rn)(x) + h(x) = idRn(x) +
h(x) = x + h(x) und

lim
x→0
∥x∥−1
∞h(x) = 0.
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Für jedes ϵ ∈ R+ gibt es also ein α ∈ R+, so dass ∥h(x)∥ ≤ ϵ∥x∥∞ für alle x ∈ U mit ∥x∥∞ < α erfüllt ist. Sei nun
Vα = {x ∈ U | ∥x∥∞ < α} und W ⊆ Vα ein abgeschlossener Würfel mit Kantenlänge r und 0Rn ∈W . Ist x ∈W und
y = φ(x), dann gilt ∥x∥∞ ≤ r und

∥y − x∥∞ = ∥x + h(x)− x∥∞ = ∥h(x)∥∞ ≤ ϵ∥x∥∞ ≤ ϵr.

Schreiben wir x = (x1, ..., xn) und y = (y1, ..., yn), dann gilt also |yi − x i | ≤ ϵr und somit x i − ϵr ≤ yi ≤ x i + ϵr für
1≤ i ≤ r. Dies zeigt, dass φ(W ) in einem Würfel der Kantenlänge r(1+ 2ϵ) enthalten ist, und es folgt

µn(φ(W )) ≤ (1+ 2ϵ)nµn(W ).

Sei nunδ ∈R+ vorgegeben und ϵ ∈R+ so klein gewählt, dass (1+2ϵ)n < 1+δ ist. Seiα ∈R+ der zu ϵ gehörende Wert
mit ∥h(x)∥ ≤ ϵ∥x∥∞ für alle x ∈ Vα. Dann ist Uδ = Vα eine Umgebung von 0Rn mit der gewünschten Eigenschaft:
Ist W ⊆ Uδ ein Würfel mit Kantenlänge r ∈R+ und 0Rn ∈W , dann ist µn(φ(W ))≤ (1+δ)µn(W ) erfüllt. □

Lemma 9.12 Seien U , V ⊆ Rn offene Mengen, und sei φ : U → V ein C 1-Diffeomorphismus
mit |detφ′(x)|= 1 für alle x ∈ U . Dann gilt µn(φ(Q))≤ µn(Q) für jeden Quader Q ⊆ U .

Beweis: Zunächst führen wir die Aussage von Quadern auf den Fall von Würfeln zurück. Angenommen, die Aussage
ist für Würfel bereits bewiesen. Ist Q ⊆ U ein Quader, dann gibt es eine Diagonalmatrix D ∈ GLn(R) mit positiven
Diagonaleinträgen, so dass W = φD(Q) zu einem Würfel wird. Setzen wir Ũ = φD(U), Ṽ = φD(V ), und definieren
wir die Abbildung φ̃ : Ũ → Ṽ durch φ̃ = φD ◦ φ ◦ φ−1

D , dann gilt φ̃′(x) = φD ◦ φ′(φ−1
D (x)) ◦ φ

−1
D und somit

|det φ̃′(x)|= |detφ′(φ−1
D (x))|= 1 für alle x ∈ Ũ . Auf Grund unserer Annahme folgt µn(φ̃(W ))≤ µn(W ), also

µn(φ̃(φD(Q)))≤ µn(φD(Q)) ⇒ µn(φD(φ(Q)))≤ µn(φD(Q)) ⇒

(det D)µn(φ(Q))≤ (det D)µn(Q) ⇒ µn(φ(Q))≤ µn(Q).

Es genügt also, die Abschätzung unter den gegebenen Voraussetzungen für einen Würfel W ⊆ U zu beweisen. Nehmen
wir nun an, die Abschätzung ist nicht erfüllt. Dann gibt es ein δ ∈R+ mit µn(φ(W ))> (1+δ)µn(W ). Sei W =

⋃2n

i=1 Wi

eine disjunkte Zerlegung von W in 2n Würfel der halben Kantenlänge. Wäre µn(φ(Wi))≤ (1+δ)µn(Wi) für 1≤ i ≤ 2n

erfüllt, dann würde daraus

µn(φ(W )) =
2n
∑

i=1

µn(φ(Wi)) ≤
2n
∑

i=1

(1+δ)µn(Wi) = (1+δ)µn(W )

folgen, im Widerspruch zur Annahme. Also muss es ein i mit µn(φ(Wi))> (1+δ)µn(Wi) geben. Indem wir nun die-
selbe Argumentation auf W (1) anstelle von W anwenden, erhalten wir einen Würfel W (2) mit der halben Kantenlänge
von W (1), der die Abschätzung µn(φ(W (2))) > (1 + δ)µn(W (2)) erfüllt. Indem wir so fortfahren, erhalten wir in U
eine Folge W ⊇W (1) ⊇W (2) ⊇ ... von Würfeln mit

µn(φ(W
(m))) > (1+δ)µn(W

(m)) für alle m ∈N ,

deren Kantenlänge gegen Null konvergiert. Bezeichnet W
(m)

jeweils den topologischen Abschluss von W (m), dann ist
wegen

µn(φ(W
(m)
)) ≥ µn(φ(W

(m))) > (1+δ)µn(W
(m)) = (1+δ)µn(W

(m)
)
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für die abgeschlossenen Würfel dieselbe Abschätzung erfüllt.

Weil die Kantenlänge der abgeschlossenen Würfel W
(m)

gegen Null konvergiert, gibt es einen Punkt v ∈ U mit
⋂∞

m=1 W
(m)
= {v}. Setzen wir w = φ(v) und φ̃ = τ−w ◦φ ◦ τv , dann gilt φ̃′(x) = φ′(τ−v(x)) für alle x ∈ τv(U).

Wir können also φ durch φ̃ ersetzen, ohne dass sich an der Voraussetzung bezüglich der Ableitung von φ etwas
ändert. Ebensowenig ändern sich die Volumina der Bildmengen µn(φ(W

(m)
)). Wir dürfen also ohne Beschränkung

der Allgemeinheit v = w= 0 annehmen. Schließlich ersetzen wir noch φ durch φ̃ = φ′(0Rn)−1◦φ und können damit
von der Ableitung φ′(0Rn) = idRn ausgehen. Die Zahlen µn(φ(W

(m)
)) bleiben wegen |detφ′(0)| = 1 und Satz 9.10

über das Transformationsverhalten des Lebesgue-Maßes hierdurch unverändert.

Auf diese Situation wird nun Lemma 9.11 angewendet. Demnach gibt es eine Umgebung Uδ von 0Rn mit der Eigen-
schaft, dass µn(φ(W ))≤ (1+δ)µn(W ) für alle Würfel W ⊆ Uδ mit 0Rn ∈W erfüllt ist. Wählen wir m aber hinreichend
groß, dann ist W

(m)
in Uδ enthalten, es gilt 0Rn ∈W

(m)
und µn(φ(W ))> (1+δ)µn(W

(m)
), im Widerspruch zur Aus-

sage des Lemmas. □

Weil jede Figur in Rn als disjunkte Vereinigung von Quadern darstellbar ist, gilt Lemma 9.12 an Stelle von Quadern
offenbar auch für Figuren.

Lemma 9.13 Seien U , V ⊆ Rn offene Mengen, und sei φ : U → V ein C 1-Diffeomorphismus
mit |detφ′(x)|= 1 für alle x ∈ U . Dann gilt

(i) µ∗n(φ(A))≤ µ
∗
n(A) für jede Teilmenge A⊆ U , und darüber hinaus

(ii) µn(φ(A)) = µn(A) für jede Borel-messbare Teilmenge A⊆ U .

Beweis: zu (i) Sei A ⊆ U beliebig. Wir können µ∗n(A) < +∞ voraussetzen, weil die Ungleichung ansonsten
offensichtlich erfüllt ist. Nach Definition ist das äußere Lebesgue-Maß µ∗n(A) von A das Infimum über alle Summen
∑∞

m=1µn(Fm), wobei (Fm)m∈N alle Folgen von Figuren mit
⋃∞

m=1 Fm ⊇ A durchläuft. Sei nun ϵ ∈ R+ vorgegeben.
Dann gibt es also eine Folge (Fm)m∈N von Figuren mit

∑∞
m=1µ

∗
n(Fm)< µ∗n(A) + ϵ und

⋃∞
m=1 Fm ⊇ A. Es folgt

µ∗n(φ(A)) ≤
∞
∑

m=1

µ∗n(φ(Fm)) ≤
∞
∑

m=1

µ∗n(Fm) ≤ µ∗n(A) + ϵ.

Weil ϵ beliebig klein gewählt werden kann, erhalten wir µ∗n(φ(A))≤ µ
∗
n(A) wie gewünscht.

zu (ii) Sei nun A ⊆ U Borel-messbar. In diesem Fall ist φ(A) eine Borel-messbare Teilmenge von V . Das äußere
Maß stimmt dann jeweils mit dem Lebesgue-Maß überein, so dass wir µn(φ(A))≤ µn(A) erhalten. Da mit φ auch die
Umkehrabbildung φ−1 ein C1-Diffeomorphismus ist, und da auf Grund der Umkehrregel auch det |(φ−1)′(x)|= 1 für
alle x ∈ V gilt, erhalten wir ebenso µn(A)≤ µn(φ−1(φ(A)))≤ µn(φ(A)). Insgesamt gilt also µn(A) = µn(φ(A)). □
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Satz 9.14 (Transformationssatz)

Seien U , V ⊆ Rn offene Teilmengen, und sei φ : U → V ein C 1-Diffeomorphismus. Sei A ⊆ U
und B = φ(A). Sei außerdem f : B→ R̄ eine Funktion.

(i) Die Teilmenge A ist genau dann Lebesgue-messbar, wenn B Lebesgue-messbar ist, und in
diesem Fall gilt

µn(B) =

∫

A

|detφ′| dµn(x).

Genau dann ist A eine (Lebesguesche) Nullmenge, wenn B eine Nullmenge ist.

(ii) Ist A Lebesgue-messbar, und ist f ≥ 0 und Lebesgue-messbar, dann gilt

∫

B

f dµn =

∫

A

( f ◦φ)|detφ′| dµn. (*)

(iii) Sei A Lebesgue-messbar. Unter dieser Voraussetzung ist die Funktion f auf B genau dann
Lebesgue-integrierbar, wenn die Funktion ( f ◦φ)|detφ′| auf A Lebesgue-integrierbar ist,
und es gilt dann ebenfalls die Gleichung (*).

Beweis: Wir beweisen die Gleichung (*) zunächst unter der stärkeren Voraussetzung, dass A eine Borel-messbare
Teilmenge von U ist. In diesem Fall ist B als Urbild von A unter der stetigen Abbildung φ−1 : V → U ebenfalls
Borel-messbar. Zur Abkürzung setzen wir γ(x) = |detφ′(x)| für alle x ∈ U . Zu zeigen ist die Gleichung

∫

B f dµn =
∫

A( f ◦φ)γ dµn. Sei Ã⊆Rn+1 gegeben durch

Ã = {(x , u) ∈Rn+1 | x ∈ A , 0≤ u< f (φ(x))γ(x)}

Offenbar gilt Ã= A( f ◦φ)γ, d.h. Ã ist die Teilmenge unter dem Funktionsgraphen der auf A definierten Funktion ( f ◦φ)γ.
Nach Satz 8.17 folgt aus der Borel-Messbarkeit von f die Borel-Messbarkeit von Ã, und es gilt µn(Ã) =

∫

( f ◦φ)γ dµn.
Wir betrachten nun die Funktion φ̃ : U ×R+ → V ×R+, (x , u) 7→ (φ(x), uγ(x)−1). Die Jacobi-Matrix von φ̃ an der
Stelle (x , u) hat die Form

φ̃′(x , u) =

�

φ′(x) 0
∗ γ(x)−1

�

,

es ist also det φ̃′(x , u) = (detφ′(x))γ(x)−1 = (detφ′(x))|detφ′(x)|−1 überall vom Betrag 1. Wir können somit
Lemma 9.13 anwenden und erhalten µn(Ã) = µn(φ̃(Ã)). Wie wir weiter unten gleich zeigen werden, gilt φ̃(Ã) = A f .
Eine nochmalige Anwendung von Satz 8.17 liefert dann µn(φ̃(Ã)) = µn(Γ f ) =

∫

B f dµn, wodurch die Gleichung (*)
insgesamt bewiesen ist.

Sei (y, z) ∈ B ×R+ vorgegeben, x ∈ A mit φ(x) = y und u ∈ R+ so gewählt, dass uγ(x)−1 = z erfüllt ist (wobei
γ(x)−1 > 0 zu beachten ist). Dann gilt φ̃(x , u) = (y, z), und wir erhalten die Äquivalenz

(y, z) ∈ A f ⇔ (φ(x), uγ(x)−1) ∈ A f ⇔ 0≤ uγ(x)−1 < f (φ(x)) ⇔

0≤ u< ( f ◦φ)(x)γ(x) ⇔ (x , u) ∈ Ã ⇔ (y, z) ∈ φ(Ã).

Damit ist der Beweis der Mengengleichung φ̃(Ã) = A f abgeschlossen. Wendet man die soeben bewiesene Aussage
auf die Funktion f : V → R+ gegeben durch 1B = 1φ(A) an, für Borel-messbares A⊆ U , so erhält man die Gleichung
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unter (i). In Verbindung mit Folgerung 6.24 ergibt sich daraus, dass das Bild einer Borelschen Nullmenge N ⊆ U eine
Borelsche Nullmenge unter φ eine Borelsche Nullmenge ist.

Für den uneingeschränkten Beweis von (i) sei nun A ⊆ U Lebesgue-messbar. Wie wir in § 4 gezeigt haben, existiert
dann eine Borel-messbare Teilmenge Ã ⊆ A und eine Borelsche Nullmenge Ñ ⊆ U , die N = Ã \ A enthält. Aus
A = Ã∪ N folgt dann φ(A) = φ(Ã) ∪φ(N). Mit Ñ auch φ(Ñ) eine Borelsche Nullmenge, und mit Ã ist auch φ(Ã)
Borel-messbar. Wegen φ(N) ⊆ φ(Ñ) folgt aus der Gleichung φ(A) = φ(Ã)∪φ(N), dass φ(A) Lebesgue-messbar ist.
Das Bild einer Lebesgue-messbaren Teilmenge von U unter φ ist also eine Lebesgue-messbare Teilmenge von V . Da
wir diese Feststellung statt auf φ auch auf φ−1 anwenden können, ist die „genau dann“-Aussage in Teil (i) bewiesen.
Da sich Lebesguesche Nullmengen nach Satz 6.25 nicht auf den Wert der Integrale auswirken, ist die Gleichung unter
(i) auch für Lebesgue-messbare Teilmengen gültig, und nicht nur für Borel-messbare. Aus demselben Grund ist auch
(ii) ohne weitere Einschränkungen gültig.

Kommen wir nun zum Beweis der Aussage (iii). Die Lebesgue-Integrierbarkeit von f auf B ist nach Satz 6.14
äquivalent zu
∫

B | f | dµn < +∞, und die Lebesgue-Integrierbarkeit von |( f ◦ φ)||detφ′| auf A ist äquivalent zu
∫

A |( f ◦φ)||detφ′| dµn < +∞. Die „genau dann“-Aussage zur Integrierbarkeit folgt also aus der Gleichung (*) unter
(ii), angewendet auf | f |. Die Gleichung (*) unter (iii) ergibt sich nun unmittelbar dadurch, dass man (ii) auf die
nicht-negativen Funktionen f + und f − anwendet: Es gilt

∫

A

( f ◦φ)|detφ′| dµn =

∫

A

( f + ◦φ)|detφ′| dµn −
∫

A

( f − ◦φ)|detφ′| dµn

=

∫

B

f + dµn −
∫

B

f − dµn =

∫

B

f dµn. □

Besonders häufig, zum Beispiel bei Anwendungen in der Physik, wird die Transformationsformel im Zusammenhang
mit Polar-, Zylinder- oder Kugelkoordinaten genutzt.

Folgerung 9.15

(i) Sei ρ : R+ ×R → R2, (r,ϕ) 7→ (r cos(ϕ), r sin(ϕ)) die Polarkoordinaten-Abbildung. Ist
A ⊆ R+ × [0,2π] eine Lebesgue-messbare Teilmenge und f : ρ(A) → R̄ eine Lebesgue-
integrierbare Funktion, dann gilt

∫

ρ(A)
f dµ2 =

∫

A

( f ◦ρ)(r,ϕ) · r dµ2(r,ϕ).

(ii) Sei ρ : R+ × R × R → R3, (r,ϕ, h) 7→ (r cos(ϕ), r sin(ϕ), h) die Zylinderkoordinaten-
Abbildung. Ist A⊆R+×[0,2π]×R eine Lebesgue-messbare Teilmenge und f : ρ(A)→ R̄
eine Lebesgue-integrierbare Funktion, dann gilt

∫

ρ(A)
f dµ3 =

∫

A

( f ◦ρ)(r,ϕ, h) · r dµ3(r,ϕ, h).

(iii) Sei ρ : R+ × R × R → R3, (r,ϑ,ϕ) 7→ (r sin(ϑ) cos(ϕ), r sin(ϑ) sin(ϕ), r cos(ϑ)) die
Kugelkoordinaten-Abbildung. Ist A⊆ R+ × [0,π]× [0, 2π] eine Lebesgue-messbare Teil-
menge und f : ρ(A)→ R̄ eine Lebesgue-integrierbare Funktion, dann gilt
∫

ρ(A)
f dµ3 =

∫

A

( f ◦ρ)(r,ϑ,ϕ) · r2 sin(ϑ) dµ3(r,ϑ,ϕ).
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Der Faktor unter dem Integralzeichen ist jeweils der Betrag der Determinante der Jacobi-Matrix von ρ an der Stelle
(r,ϕ) bzw. (r,ϕ, h) bzw. (r,ϑ,ϕ). Man beachte, dass die Polarkoordinaten-Abbildung nicht auf ihrem gesamten De-
finitionsbereich R+ ×R ein C 1-Diffeomorphismus auf ihre Bildmenge ist, sondern nur nach Einschränkung auf die
TeilmengeR+×]0, 2π[. Das Komplement vonR+×]0,2π[ inR+×[0,2π], die Menge {0}×[0,2π]∪R+×{2π}, und
dasselbe gilt für die Bildmenge des Komplements unter dieser Abbildung. Die Integrale in der Gleichung unter (i)
bleiben durch Hinzu- oder Wegnahme dieser Menge unverändert. Entsprechend muss man die Zylinderkoordinaten-
Abbildung unter (ii) aufR+×]0, 2π[×R einschränken, um einen C1-Diffeomorphismus auf die Bildmenge zu erhalten,
und die Kugelkoordinaten-Abbildung entsprechend auf die Teilmenge R+ × ]0,π[× ]0,2π[.

Als Anwendung der Transformationsformel mit Polarkoordinaten berechnen wir das Volumen eines Kegels K der
Höhe h ∈R+ mit Grundflächenradius r ∈R+, also das Volumen der Teilmenge des R3 gegeben durch

K =

�

(x , y, z) ∈R3

�

�

�

�

z ∈ [0, h] , x2 + y2 < r2
�

1−
z
h

�2
�

= {(x , y, z) ∈R3 | z ∈ [0, h] , (hx)2 + (hy)2 < r2(h− z)2}.

Für alle (x , y, z) ∈ K gilt insbesondere x2 + y2 < r2. Setzen wir B = {(x , y) ∈ R2 | x2 + y2 < r2}, dann gilt für alle
(x , y, z) ∈R3 mit (x , y) ∈ B die Äquivalenz

(x , y, z) ∈ K ⇔ x2 + y2 < r2
�

1−
z
h

�2
⇔

Æ

x2 + y2 < r
�

1−
z
h

�

⇔ h
Æ

x2 + y2 < r (h− z) ⇔

h
r

Æ

x2 + y2 < h− z ⇔ z < h−
h
r

Æ

x2 + y2 ⇔ z < h
�

1−
1
r

Æ

x2 + y2

�

.

Es gilt also K = A f für die Funktion f : B→R+, (x , y) 7→ h(1− 1
r

p

x2 + y2), und aus Satz 8.17 folgtµ3(K) =
∫

B f dµ2.
Wir berechnen dieses Integral durch Verwendung der Polarkoordinaten-Abbildung, die wir mit ρ bezeichnen. Da es
sich bei B um die offene Kreisscheibe vom Radius r handelt, erfüllt A= [0, r[× [0,2π] die Gleichung ρ(A) = B. Für
alle (s,ϕ) ∈ A gilt

( f ◦ρ)(s,ϕ) = f (s cos(ϕ), s sin(ϕ)) = h(1− 1
r

Æ

s2 cos(ϕ)2 + s2 sin(ϕ)2) = h(1− s
r ) ,

und wir erhalten

µ3(K) =

∫

B

f dµ2 =

∫

A

( f ◦ρ)(s,ϕ) · s dµ2(s,ϕ) =

∫

A

hs(1− s
r ) dµ2(s,ϕ)

=
h
r

∫

A

s(r − s) dµ2(s,ϕ) =
h
r

∫ r

0

�

∫ 2π

0

s(r − s) dϕ

�

ds =
2πh

r

∫ r

0

s(r − s) ds

=
2πh

r
·
�

1
2 rs2 − 1

3 s3
�r

0 =
2πh

r
· 1

6 r3 = 1
3 · (πr2) · h.

Damit ist die aus der Schulmathematik bekannte Formel „Kegelvolumen = 1
3 × Grundfläche × Höhe“ bestätigt.
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Als weiteres Anwendungsbeispiel betrachten wir eine wichtige Funktion aus der Stochastik.

Definition 9.16 Seien µ ∈ R und σ ∈ R+. Die Dichtefunktion der Normalverteilung zum
Mittelwert µ und der Standardabweichung σ ist die Funktion fµ,σ :R→R gegeben durch

fµ,σ(x) =
1

σ
p

2π
e−

1
2 (

t−µ
σ )

2
.

Ist µ= 0 und σ = 1, dann spricht man von der Standard-Normalverteilung.

Wir erinnern kurz an die Bedeutung der Normalverteilung. Für alle α,β ∈Rmit α < β gibt das Integral
∫ β

α
fµ,σ(x) d x

die Wahrscheinlichkeit dafür an, dass in einer Menge mit einem mit den Parametern µ und σ normalverteilten
numerischen Merkmal (zum Beispiel Körpergröße oder Intelligenzquotient) ein zufällig gewähltes Element seinen
Wert im Intervall [α,β] hat. Für [µ − σ,µ + σ] beträgt diese Wahrscheinlichkeit beispielsweise ≈ 68 , 3%, für das
größere Intervall [µ− 2σ,µ+ 2σ] bereits ungefähr 95%.

Man erhält eine solche Normalverteilung unter anderem dadurch, dass man ein diskretes Zufallsexperiment X sehr
oft wiederholt. Betrachtet man für großes N ∈N beispielsweise das Zufallsexperiment „N -faches Würfeln“ mit dem
Merkmal „durchschnittlich gewürfelte Augenzahl“, nähert sich die Verteilung für N →∞ einer Normalverteilung mit
dem Mittelwert µ= 3 ,5 und der Standardabweichung σ ≈ 1 ,71 an. Hierbei ist der Mittelwert wenig überraschend,
denn E(X ) = 1

6 (1+2+3+4+5+6) = 7
2 ist das durchschnittliche Ergebnis beim Würfeln. Die Standardabweichung

σ ergibt sich als Quadratwurzel aus der Varianz, die man wiederum durch die Formel

Var(X ) = E((X −µ))2 = 1
6

6
∑

k=1

(k− 7
2 )

2 = 35
12

berechnen kann. Das Verhalten, dass sich eine Zufallsverteilung einer Normalverteilung annähert, ist in der Stochastik
als „Gesetz der großen Zahlen“ bekannt. Offenbar kann durch fµ,σ nur dann eine Zufallsverteilung gegeben sein,
wenn die Wahrscheinlichkeit für ein Ergebnis zwischen −∞ und +∞ gleich 1 ist.

Satz 9.17 (Gauß’sches Fehlerintegral)

Für alle µ ∈R und σ ∈R+ gilt
+∞
∫

−∞
fµ,σ(x) d x = 1.

Dabei steht
∫ +∞
−∞ fµ,σ(x) d x für den Grenzwert von

∫ r

−r fµ,σ(x) d x für r → +∞. Offenbar genügt es, die Gleichung
∫ +∞
−∞ e−x2

d x =
p
π zu beweisen, denn dann folgt das Ergebnis leicht aus der eindimensionalen Substitutionsregel:

Für alle α,β ∈Rmit α < β erhalten wir mit der Substitutionsfunktion ϕ(t) = t−µp
2σ

und deren Ableitung ϕ′(t) = 1p
2σ

das Ergebnis

∫ β

α

fµ,σ(x) d x =
1

σ
p

2π

∫ β

α

e−
1
2 (

t−µ
σ )

2
d x =

1
p
π

∫ β

α

ϕ′(t)e−ϕ(t)
2
d t =

1
p
π

∫ ϕ(β)

ϕ(α)
e−x2

d x ,
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und wegen lim
α→−∞

ϕ(α) = −∞ und lim
β→+∞

ϕ(β) = +∞ folgt daraus

∫ +∞

−∞
fµ,σ(x) d x = lim

r→∞

∫ r

−r

fµ,σ(x) d x = lim
r→∞

1
p
π

∫ ϕ(r)

ϕ(−r)
e−x2

d x =
1
p
π
·
p
π = 1.

Kommen wir nun zum Beweis der Gleichung
∫ +∞
−∞ e−x2

d x =
p
π. Definieren wir für jedes r ∈ R+ das Quadrat

Q r = [−r, r]2, dann gilt jeweils

�∫ r

−r

f (x) d x

�2

=

�∫ r

−r

f (x) d x

��∫ r

−r

f (y) d y

�

=

∫ r

−r

�∫ r

−r

f (x) d x

�

f (y) d y =

∫ r

−r

�∫ r

−r

f (x) f (y) d x

�

d y =

∫

Q r

f (x) f (y) d(x , y) =

∫

Q r

e−x2−y2
d(x , y).

Es gilt also
�∫ +∞

−∞
f (x) d x

�2

= lim
r→+∞

∫

Q r

e−x2−y2
d(x , y).

Nun betrachten wir für jedes r ∈R+ auch die abgeschlossene Kreisscheibe B̄r ⊆R2 vom Radius r um den Ursprung.
Aus den Inklusionen Q r/

p
2 ⊆ B̄r ⊆ Q r und der Tatsache, dass die Funktion (x , y) 7→ e−x2−y2

nur positive Werte
annimmt, folgt die Abschätzung

∫

Q r/
p

2

e−x2−y2
d(x , y) ≤
∫

B̄r

e−x2−y2
d(x , y) ≤
∫

Q r

e−x2−y2
d(x , y)

und daraus wiederum die Übereinstimmung lim
r→+∞

∫

B̄r
e−x2−y2

d(x , y) = lim
r→+∞

∫

Q r
e−x2−y2

d(x , y).
Mit Hilfe des Transformationssatzes, angewendet auf Polarkoordinaten, erhalten wir nun weiter

∫

B̄r

e−x2−y2
d(x , y) =

∫

ρ([0,r]×[0,2π])

e−x2−y2
d(x , y) =

∫

ρ([0,r]×[0,2π])

e−r2 cos(ϕ)2−r2 sin(ϕ)2 r d(r,ϕ) =

∫

ρ([0,r]×[0,2π])

e−r2
r d(r,ϕ) = 2π

∫ r

0

re−r2
dr = π

∫ r

0

(2r)e−r2
dr

= −π
∫ r2

0

e−t d t = −π
�

e−t
�r2

0 = π(1− e−r2
) ,

also

�∫ +∞

−∞
f (x) d x

�2

= lim
r→+∞

∫

Q r

e−x2−y2
d(x , y) = lim

r→+∞

∫

B̄r

e−x2−y2
d(x , y) = lim

r→+∞
π(1− e−r2

) = π

und damit
∫ +∞
−∞ f (x) d x =

p
π wie behauptet.
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