Definition der Winkelfunktionen

Definition (14.10)

Sei $(V,\|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum mit einer Orthogonalität \bot und $V^\times = V \setminus \{0_V\}$. Eine Winkelfunktion bezüglich $(V,\|\cdot\|,\bot)$ ist eine Abbildung $\angle:V^\times\times V^\times \to [0,\pi]$, die für alle $v,w\in V^\times$ folgende Bedingungen erfüllt.

- (i) $\angle(v,v) = 0$ und $\angle(v,w) = \angle(w,v)$
- (ii) $\angle(v,w) = \angle(v,\lambda w)$ für alle $\lambda \in \mathbb{R}^+$
- (iii) $\angle(v, w) + \angle(w, -v) = \pi$
- (iv) Aus $v \perp w$ folgt $\angle(v, w) = \frac{1}{2}\pi$.
- (v) Aus $v \perp (w v)$ folgt $\cos \angle (v, w) = \frac{\|v\|}{\|w\|}$.

Eindeutigkeit der Winkelfunktion

Satz (14.11)

Sei $\|\cdot\|$ eine Norm auf dem \mathbb{R}^n , und sei \bot eine Orthogonalität auf dem normierten \mathbb{R} -Vektorraum $(\mathbb{R}^n,\|\cdot\|)$ mit den Eigenschaften aus Satz 14.9. Sei \angle eine Winkelfunktion bezüglich $(\mathbb{R}^n,\|\cdot\|,\bot)$. Dann ist \angle die eindeutig bestimmte Abbildung mit

$$\cos \angle (v, w) = \frac{\langle v, w \rangle}{\|v\| \|w\|}$$
 für alle $v, w \in (\mathbb{R}^n)^{\times}$.

Beneis von Sate 14.11 (Absoluss)
(V, W)
que v, w e (R") x, 22g, cos x (v, w) = (v, w)
2. Fall. V. W hiers unabhängig. VIW (> (v, w) = 0)
Regel (iv) Aus V+W folgh \times (VIW) = $\frac{1}{2}$ TT Sos \times (VIW) = cos ($\frac{1}{2}$ TT) = 0 = $\frac{0}{\ V\ }$
= cos x (v, w) = cos (1/2 TT) = 0 = v
3 Fall: v. w linear unalthorage, also mich VIW
Rogally) Aus VI(W-V) tologh cos + (N.W) = V
W Thin-v

in what marrange, all mily VIW
Road (v): Aus VI (w-v) loket cos x (v,w) = v
Fix alle 2 & R gilt die Aquivalenz
$V \perp (w - \lambda v) = \langle v, w - \lambda v \rangle = 0 \Rightarrow \langle v, w \rangle - \lambda \langle v, v \rangle = 0$
$\lambda \langle v, v \rangle = \langle v, w \rangle \iff \lambda = \frac{\langle v, w \rangle}{\langle v, v \rangle} (*)$
Sei nun à disch (x) definert
Fall 3.1. 2>0 [200 * (21,11) = 000 * (21,11) = 00 10 10 10 10 10 10 10
(0, w) = cos x (x, w) = cos x (x, w) = w
= > 11/11 = (x'm) 11/11 = (x'm) 11/11 = (x'm)
(10 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Rechemogely Kosinus. $\cos(x+\pi) = -\cos(x)$, $\cos(-x) = \cos(x)$ $\cos(x+\pi) = -\cos(x)$, $\cos(-x) = \cos(x)$ $\cos(x+\pi) = -\cos(-x) = \cos(x+\pi) = -\cos(x)$
$\cos \star (v, u) = \cos (v, u)$

$$-\cos\left(\chi(-v,w)\right) = -\cos\left(\chi(-\lambda)(-v),w\right)$$

$$= -\cos\left(\chi(-v,w)\right) = -\cos\left(\chi(-\lambda)(-v),w\right)$$

$$= -\cos\left(\chi(-v,w)\right) = -\sin\left(\frac{|v|}{|w|}\right)$$

$$= -\cos\left(\chi(-v,w)\right) = -\sin\left(\frac{|v|}{|w|}\right)$$

$$= -\cos\left(\chi(-v,w)\right) = -\sin\left(\frac{|v|}{|w|}\right)$$

$$= -\cos\left(\chi(-v,w)\right) = -\cos\left(\chi(-\lambda)(-v),w\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\sin\left(\frac{v}{v}\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\sin\left(\frac{v}{v}\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\sin\left(\frac{v}{v}\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\sin\left(\frac{v}{v}\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

$$= -\sin\left(\frac{v}{v}\right)$$

$$= -\cos\left(\chi(-v,w)\right)$$

Orthogonalprojektionen auf lineare Geraden

Lemma (14.12)

Sei V ein \mathbb{R} -Vektorraum und b eine symmetrische Bilinearform auf V. Seien $v,w\in V$ mit $b(v,v)\neq 0$ vorgegeben und

$$\lambda = \frac{b(v,w)}{b(v,v)}.$$

Dann gilt $b(v, w - \lambda v) = 0$. Wir bezeichnen den Vektor λv als die Orthogonalprojektion von w auf den Untervektorraum $\langle v \rangle_{\mathbb{R}}$ von V.

 $\mathcal{E}(\mathbf{v}, \mathbf{w} - \lambda \mathbf{v}) = \mathcal{E}(\mathbf{v}, \mathbf{w}) - \lambda \mathcal{E}(\mathbf{v}, \mathbf{v}) =$ Orthogonalprojektron auf evien Unter-

Definition der Orthogonalprojektionen

Sei V ein \mathbb{R} -Vektorraum und b eine symmetrische Bilinearform auf V. Wir definieren eine Relation \bot_b auf der Menge der Teilmengen von V durch

$$A \perp_b B \Leftrightarrow b(v,w) = 0 \ \forall v \in A, w \in B.$$

für beliebige $A, B \subseteq V$.

Definition (14.13)

Sei V ein \mathbb{R} -Vektorraum, b eine symmetrische Bilinearform auf V und U ein Untervektorraum von V. Eine Orthogonalprojektion von V auf U ist eine lineare Abbildung $\pi_U:V\to U$ mit der Eigenschaft

$$\pi_U|_U = \mathrm{id}_U$$
 und $(v - \pi_U(v)) \perp_b U$

für alle $v \in V$.

Definition der Orthonormalbasen

Definition (14.14)

Sei V ein n-dimensionaler \mathbb{R} -Vektorraum und b eine symmetrische Bilinearform auf V. Eine geordnete Basis $\mathscr{B}=(v_1,...,v_n)$ von V wird Orthonormalbasis (kurz ON-Basis) genannt, wenn

$$b(v_k, v_\ell) = \delta_{k\ell}$$
 für $1 \le k, \ell \le n$ erfüllt ist.

Existenz der Orthogonalproj. auf Untervektorräume

Proposition (14.15)

Sei (V, b) ein \mathbb{R} -Vektorraum mit einer symmetrischen Bilinearform. Sei $U \subseteq V$ ein Untervektorraum der endlichen Dimension n und $(u_1, ..., u_n)$ eine ON-Basis von U. Dann ist durch

$$\pi_U(v) = \sum_{k=1}^n b(u_k, v) u_k$$

eine Orthogonalprojektion auf U definiert.

Beweis von Prop. 14.15 V R-Wetorraum, & symm Bluerform out V B = (u1,..., un) ON-Basis con U Beh: T: V - U V - Z & (ULV) UK is are Orthogonalprejettion and U ibeprife: (i) IT it breve ARB () (ii) Yve V: (v-π(v)) L Ux, frig 15 ks n (v)

$$\frac{2u(1)}{2u(1)} = \frac{1}{2u(1)} + \frac{1}{2u(1)$$

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}$$

=> 7 /2, /4 = R mit u = 2 /2 uk > ((v-17/v), u)
= &(v-17(v), 5 deux) = = = 0 (= 1) (ii)
zuliv) Sei ue U zzg. T(u) = 4 Ang., die Gleichung est fin u = uk nit kel1 nt etill. Shreibe u = 2 hkuk mit
fine u = uk mit kel1 not estable. Should u = 2 heur mit
71, In ER = etalte T(11) = T (5) 26 m) - 2=1
E THETTURE = Z TRUK = U. K=1 IT liveage ABB.
So no belo De anth Thus = 5 Poly us is he =
Sai num kehl,, nf Dann griff $Tr(u_k) = \sum_{l=1}^{n} l_r(u_l u_k) \cdot u_l = \sum_{l=1}^{n} \delta_{rk} u_l = 1 \cdot u_k = u_k$
2-01k41 - 1. 4k = 4k.

3.0

Die Cauchy-Schwarz'sche Ungleichung

Satz (14.16)

Sei (V,b) ein euklidischer \mathbb{R} -Vektorraum, und sei $\|\cdot\|_b:V\to\mathbb{R}_+$ die Funktion definiert durch $\|v\|_b=\sqrt{b(v,v)}$ für $v\in V$. Dann gilt für alle $v,w\in V$

- (i) die sog. Cauchy-Schwarz'sche Ungleichung $|b(v, w)| \le ||v||_b ||w||_b$,
- (ii) die Dreiecksungleichung $||v + w||_b \le ||v||_b + ||w||_b$.

Dabei ist die Ungleichung (i) genau dann mit Gleichheit erfüllt, wenn v, w linear abhängig sind. Darüber hinaus ist durch $\|\cdot\|_b$ eine Norm auf V definiert. Man nennt sie die von b induzierte Norm.

Beweis con Sate 14.16
geg enclidische Veztorraum 229.
(1) Y v, w ∈ V : (v, w) ≤ 11 v 11 c 11 w 11 c
(2) \\v. w \in V: \le\(\v. w)\ = \ \v\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(3) Yvive V: llutulle = lulet llulle
(4) 1. Ve ist one Norm and V
$\frac{2\alpha(1)}{2\alpha(1)}$ Behochte zinachst den Fall $V = 0V$. Dann gilt $ S(v, \omega) = S(0v, \omega) = 0 = 0$, Wenso

110 v 16 1 1 w 11 0 = 0 1 w 11 c = 0. Fall w = 0 v : analogy Sucon nun v, w & V \ 10 v }

Down gild
$$|G(v, w)| = |G(v, w)| = |V| = 0$$
, where

Setze $\lambda = \frac{g(v, w)}{g(v, v)}$ is positive definit $\Rightarrow g(w, w - \lambda v) = 0$

E gilt $(g(w, w) - \lambda v) = (g(w, w - \lambda v) - \lambda g(w, w - \lambda v)) = 0$
 $(g(w, w) - \lambda g(w, w) - \lambda g(w, w) + \lambda^2 g(w, v) = 0$
 $(g(w, w) - \lambda g(w, w) - \lambda g(w, w) + \lambda^2 g(w, v) = 0$
 $(g(w, w) - \lambda g(w, w) + \lambda^2 g(w, v) = 0$
 $(g(w, w) - \lambda g(w, w) + \lambda^2 g(w, w) + \lambda g(w, w$

24(2) It v = Or odes w = Or, dann sind v. w lunear alshängig und die Country - Silwarzelle ugleiding ist ofallt (s.o. beide Seifen hall) alch = Fr R mit w = IV Es fort b posi > IIWIE = IXI IIVIE Setze dies oben un

= α (i)

Teil

Zu li

= &(v,v)+ &(v,w)+ &(w,v)+ &(w,w) Couchy-

1416 + 21146 11416 + halle = (1416+1416)2 5 11 × w 16 = 1 × 11 € + 1 × 1 okes Za(4) Seien V, WE V. En liber printer. ull) (11) 11+ w/16 = 11/16+ 11/16 大 Teil hii) it besents erledigt, hii) auch, under (2) zu/1) , -> " ||v||6=0 => ||v||8=0 -> ((v,v)=0 0 positivi del

Charakterisierung der induzierten Normen

Satz (14.17)

Sei V ein \mathbb{R} -Vektorraum. Eine Norm $\|\cdot\|$ auf V wird genau dann durch ein Skalarprodukt b induziert, wenn für alle $v,w\in V$ die sog. Parallelogrammgleichung

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$
 erfüllt ist.

mit IVI = VG(V,V) YVEV, For bel VINEV grift