Bem. E gelt zwar det () = ad-be fix bel Matrizen (a b) = Mz, k (K Kórper), aber nicht det (AB) = det (A) det (D) - det (B) det (C) fine Matricen A.B. C. DE Mz. K. Gegabaspiel: 0110 dat (A) det (D) - det (B) det (C) = 1.3-(-2)(-1)=1 = 0 = det (AB) Bem. And Prop 12.27 engelod sich fix Matorian A = (a b) in $GL_2(K)$ die Formel $A^{-1} = (\det A)^{-1} \widetilde{A} = \frac{1}{ad-c} \begin{pmatrix} d-c \\ -c \\ a \end{pmatrix}$

Notation zum Laplace'schen Entwicklungssatz II

Mit $A_{ij} \in \mathcal{M}_{n-1,K}$ bezeichnen wir die Matrix, die aus A durch Streichung der i-ten Zeile und j-ten Spalten zu Stande kommt, also

$$A_{ij} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{n,n} \end{pmatrix}$$

Definition der komplementären Matrix

Definition (12.25)

Sei $A \in \mathcal{M}_{n,K}$. Die Matrix $\tilde{A} \in \mathcal{M}_{n,K}$ mit den Einträgen

$$\widetilde{a}_{ij} = \det(A'_{ji}) = (-1)^{i+j} \det(A_{ji})$$

wird die zu A komplementäre oder adjunkte Matrix genannt.

Bedeutung der komplementären Matrix

Proposition (12.27)

Sei \tilde{A} die zu $A \in \mathscr{M}_{n,K}$ komplementäre Matrix. Dann gilt

$$\tilde{A}A = A\tilde{A} = \det(A)E^{(n)}.$$

Der Laplace'sche Entwicklungssatz

Satz (12.28)

Sei $A \in \mathcal{M}_{n,K}$.

(i) Für alle
$$i \in \{1,...,n\}$$
 gilt $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$.

(ii) Für alle
$$j \in \{1,...,n\}$$
 gilt $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$.

Wird die Determinante von A mittels (i) berechnet, spricht man von einer Entwicklung zur *i*-ten Zeile. Die Berechnung mittels (ii) bezeichnet man als Entwicklung zur *j*-ten Spalte.

ZND Sei i Ell, ..., n } Behackte de Matrix AA = del(A)E

Die Cramersche Regel

Satz (12.29)

Sei $A \in \mathcal{M}_{n,K}$ invertierbar und $b \in K^n$. Für $1 \leq j \leq n$ bezeichnen wir mit $A^{(j)} \in \mathcal{M}_{n,K}$ die Matrix, die dadurch entsteht, dass man in A die j-te Spalte durch b ersetzt. Dann ist der Vektor $v = (v_1, ..., v_n) \in K^n$ mit den Komponenten

$$v_j = \frac{\det A^{(j)}}{\det A}$$
 für $1 \le j \le n$

die eindeutig bestimmte Lösung des linearen Gleichungssystems Ax = b.

det A(1) = det (05-6) = 14 Bours was Satz 12.29 Sei je him, n. j. Enterville die Determinante von A'd' zur j. ken Spale = det A(8) = \(\sum_{-1}\)^{ito} Bi det(A(8))is 5 (-1) " bi det Aij I nach Del won A(8) Detriver VE K" durch Uj = det A(1) Betrachte die i-te Komponente was AV, fix 1515 N whalfe $(Av)_i = \sum_{k=1}^{\infty} a_k \int_{a_k}^{A} \int_{a_k}^{\infty} (-1)^{k-3} R_k dat Ak$ 1 5 5 bk (-1) ktd and det Aked

ach(A) (=1 &=1 det (AA) E GR (AA) ER det(A) = Bi Siedet(A) = Bi => v ist Loring ion Ax = 1

Anwendung der Cramerschen Regel 3x - 2y + 2z = 1 Koeff.—matrix $A = \begin{pmatrix} 3 - 2 & 2 \\ -2 & 5 - 6 \end{pmatrix}$ 2x + 5y - 6z = 0 4x + 3y - 2z = 3 $6 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$ det A = 28-2x + 5y - 6z = 0 $\det A^{(1)} = \det \begin{pmatrix} 1-2 & 2 \\ 0 & 5-6 \\ 3 & 3-2 \end{pmatrix} = 14$ det $A^{(2)} = \det \begin{pmatrix} \frac{3}{2} & \frac{1}{2} & \frac{2}{2} \\ \frac{1}{4} & \frac{3}{3} & -2 \end{pmatrix} = 14$, $\det A^{(3)} = \det \begin{pmatrix} \frac{3}{2} & \frac{2}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{3} & -2 \end{pmatrix} = 7$ = and each as Lossung: $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$

Eigenwerte und Eigenvektoren eines Endomorphismus

Definition (13.1)

Sei V ein K-Vektorraum und ϕ ein Endomorphismus von V, also eine lineare Abbildung $V \to V$. Man nennt

- (i) $\lambda \in K$ einen Eigenwert von ϕ , wenn es ein $v \in V$ mit $v \neq 0_V$ und $\phi(v) = \lambda v$ gibt, und
- (ii) $v \in V$ einen Eigenvektor von ϕ , wenn $v \neq 0_V$ ist und ein $\lambda \in K$ mit $\phi(v) = \lambda v$ existiert.

Seien nun $v \in V$ und $\lambda \in K$ vorgegeben. Man nennt v einen Eigenvektor zum Eigenwert λ , wenn $v \neq 0_V$ und die Gleichung $\phi(v) = \lambda v$ erfüllt ist.

Beispielo Per Eigenvelzforen (1) Dretratoix A = (020) had ei,ez, ez Aez = 2ez, Aez = 3ez. Dageger 3

2

$$\begin{bmatrix} 2 & -10 & 0 & -40 \\ -27 & -13 & -8 & -68 \\ 15 & 30 & 8 & 120 \\ 6 & 7 & 2 & 20 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 16 \\ 0 \\ -36 \\ -6 \end{bmatrix} = \begin{bmatrix} 43 \\ 0 \\ -96 \\ -6 \end{bmatrix}, \quad B \begin{bmatrix} 0 \\ 7 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 16 \\ 0 \\ -4 \end{bmatrix}$$

Die Eigenräume eines Endomorphismus

Definition (13.2)

Sei V ein K-Vektorraum und $\phi \in \operatorname{End}_K(V)$. Für jedes $\lambda \in K$ bezeichnet man die Menge $\operatorname{Eig}(\phi,\lambda) = \{v \in V \mid \phi(v) = \lambda v\}$ als den Eigenraum von ϕ zum Wert $\lambda \in K$. Er besteht aus dem Nullvektor 0_V und den Eigenvektoren zum Eigenwert λ .

Die Untervektorraum-Eigenschaft der Eigenräume

Proposition (13.3)

Sei V ein K-Vektorraum und $\phi \in \operatorname{End}_K(V)$. Für jedes $\lambda \in K$ ist der Eigenraum gegeben durch

$$\operatorname{Eig}(\phi, \lambda) = \ker(\phi - \lambda \operatorname{id}_{V}).$$

Das Element λ ist ein Eigenwert von ϕ genau dann, wenn $\mathrm{Eig}(\phi,\lambda) \neq \{0_V\}$ gilt.

Die Proposition zeigt also, dass $\mathrm{Eig}(\phi,\lambda)$ für jedes $\lambda \in K$ und jedes $\phi \in \mathrm{End}_K(V)$ ein Untervektorraum von V ist.

Bureis ion Prop 13.3 geg: K-Veletarranin V DE Endik (V), X E K Bolk (1) Eng (p, x) = ker (p- ridy) (ii) I ist Eigenwest son \$ => Eig(\$, A) \$ 10 v } Zall Soire V. Dann gill die Admiralenz

zulii) , = ") ist Eizenwot un \$ => fre v mit

Eigenwerte und -vektoren im Matrixkalkül

Sei $A \in \mathcal{M}_{n,K}$ eine quadratische Matrix.

- Wir bezeichnen $v \in K^n$ als einen Eigenvektor von A, wenn v ein Eigenvektor der Abbildung $\phi_A : K^n \to K^n$, $v \mapsto Av$ ist.
- Die Eigenwerte von A nach Definition die Eigenwerte des Endomorphismus ϕ_A .
- Für jedes $\lambda \in K$ definieren wir

$$\operatorname{Eig}(A,\lambda) = \operatorname{Eig}(\phi_A,\lambda) = \{v \in K^n \mid Av = \lambda v\}.$$

Wiederum besteht $\mathrm{Eig}(A,\lambda)$ aus den Eigenvektoren von A zum Eigenwert λ und dem Nullvektor 0_{K^n} , und darüber hinaus gilt

$$\operatorname{Eig}(A,\lambda) = \ker(A-\lambda E^{(n)}).$$

Darstellungsmatrizen von Endomorphismen

Erinnerung: Ist \mathscr{A} eine Basis von V und \mathscr{B} eine Basis von W, dann bezeichnet

$$\mathscr{M}^{\mathscr{A}}_{\mathscr{B}}(\phi)$$

die Darstellungsmatrix von ϕ bezüglich der Basen $\mathscr A$ und $\mathscr B$. Für alle $v\in V$ gilt

$$\mathscr{M}_{\mathscr{B}}^{\mathscr{A}}(\phi)\Phi_{\mathscr{A}}(v) = \Phi_{\mathscr{B}}(\phi(v)).$$

Ist ϕ nun ein Endomorphismus von V, also V=W, dann braucht man nur noch eine Basis von V, um ϕ zu beschreiben. Wir setzen

$$\mathscr{M}_{\mathscr{A}}(\phi) = \mathscr{M}_{\mathscr{A}}^{\mathscr{A}}(\phi)$$

und nennen diese quadratische Matrix die Darstellungsmatrix von ϕ bezüglich der Basis \mathscr{A} .

Ähnlichkeit von Matrizen

Definition (13.4)

Zwei Matrizen $A, B \in \mathcal{M}_{n,K}$ werden ähnlich genannt, wenn eine invertierbare Matrix $T \in \operatorname{GL}_n(K)$ mit $B = TAT^{-1}$ existiert. Zwei Matrizen $A, B \in \mathcal{M}_{m \times n,K}$ bezeichnet man als äquivalent, wenn Elemente $S \in \operatorname{GL}_m(K)$ und $T \in \operatorname{GL}_n(K)$ mit B = SAT existieren.

Ähnliche Matrizen sind also stets äquivalent zueinander, aber die Umkehrung ist im Allgemeinen falsch.

Darstellungsmatrizen bezüglich verschiedener Basen

Proposition (13.5)

Sei V ein n-dimensionaler K-Vektorraum, und sei $\phi \in \operatorname{End}_K(V)$. Sind $A, B \in \mathcal{M}_{n,K}$ Darstellungsmatrizen von ϕ bezüglich unterschiedlicher Basen von V, dann sind A und B ähnlich. Beweis for Prop. 13.5 gez K-Vectoraum V des Dimensión ne N Q E Budk (V) Seien A B gesthele Bosen on V und A = Mx(\$), B = MB(\$). Boh. And B sind abulich Setse T= TB. beteamt: TE GLn(K) ansodem: Sule von Basiswichtel $\Rightarrow B = M_B^3(\phi) = J_B^4 M_A^4(\phi) J_A^B = TAT^{-1}$ - A B sud ahalish

Bestimmung von Eigenvektoren durch Darstellungsmatrizen

Proposition (13.6)

Sei V ein endlich-dimensionaler K-Vektorraum, $\phi \in \operatorname{End}_K(V)$ und $A \in \mathcal{M}_{n,K}$ die Darstellungsmatrix von ϕ bezüglich einer beliebigen Basis \mathscr{A} von V. Genau dann ist $v \in V$ ein Eigenvektor von ϕ zu einem Eigenwert $\lambda \in K$, wenn der Koordinatenvektor $\Phi_{\mathscr{A}}(v)$ ein Eigenvektor von A zum Eigenwert λ ist.

= Shall) and solem $= B = M_B^3(\phi) = J_B^4 M_A^4(\phi) J_A^B = TAT^{-1}$ Benses war Prop 13.6 geg ne N. n-dun K-Veltorram V, il geordiele Basis und $v \in V$ Sei $A = M_A(\phi)$. Dan gilt $A = \Phi_A(v) = \Phi_A(\phi(v))$ Son dek Beh V ist Eigenveston zum on A zum Eigenvert) Erguvert) $\Phi_{A}(u)$ Eigenbest on $A = \Phi_{A}(u) + O_{K} = \Phi_{A}(u) + \Phi_{A}(O_{V})$ and $\Phi_{A}(u) = \lambda \Phi_{A}(u)$ and $\Phi_{A}(\phi(u)) = \Phi_{A}(u)$ February 1+01 mal = viet Egenveston zum Eigenvert ?

Berechung der Eigenvelstoren einer Matrix on anom Eighwest) E gell Eg(A.) = ker(A-)E(") Beispiel: Berechung von Eig (A,-2) fine die Matrix A = 1-2-5 10 $E_{ig}(A,-2) = ke(A+2E^{(5)})$ A+2 = -20-15 40

Eig(A, -2) = Res(A+2)

$$0-5(0)$$

 $-20-1540$ = $-4-38$
 $11-5/2$ = $01-2$
 $-10-1025$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = $01-2$
 $01-2$ = 01