Wiederholung einiger Grundbegriffe

Definition

Eine abelsche Gruppe ist ein Paar (A, +) bestehend aus einer Menge A und einer assoziativen und kommutativen Verknüpfung + mit den folgenden beiden Eigenschaften.

- Es gibt ein Element 0_A , so dass $0_A + a = a$ und $a + 0_A = a$ für alle $a \in A$ erfüllt ist.
- Für jedes $a \in A$ existiert ein Element $-a \in A$, so dass $a + (-a) = 0_A$ und $(-a) + a = 0_A$ erfüllt ist.

Wiederholung einiger Grundbegriffe (Forts.)

Definition

Ein Ring ist ein Tripel $(R, +, \cdot)$ bestehend aus einer Menge R und zwei Verknüpfungen + und \cdot auf R mit folgenden Eigenschaften.

- (i) Das Paar (R, +) ist eine abelsche Gruppe.
- (ii) Das Paar (R, \cdot) ist ein abelsches Monoid.
- (iii) Es gilt das Distributivgesetz a(b+c) = ab + ac für alle $a, b, c \in R$.

Wenn die Menge R^{\times} der invertierbaren Elemente des Monoids (R,\cdot) mit $R\setminus\{0_R\}$ übereinstimmt, dann bezeichnet man den Ring auch als Körper.

Wiederholung einiger Grundbegriffe (Forts.)

Definition (6.1)

Sei K ein Körper. Ein K-Vektorraum ist ein Tripel $(V,+,\cdot)$ bestehend aus einer nichtleeren Menge V und Abbildungen $+:V\times V\to V$ und $\cdot:K\times V\to V$ genannt Vektoraddition und skalare Multplikation, so dass folgende Bedingungen erfüllt sind.

- (i) Das Paar (V, +) ist eine abelsche Gruppe.
- (ii) Für alle $v, w \in V$ und $\lambda, \mu \in K$ gelten die Rechenregeln

(a)
$$(\lambda + \mu) \cdot v = (\lambda \cdot v) + (\mu \cdot v)$$

(b)
$$\lambda \cdot (v + w) = (\lambda \cdot v) + (\lambda \cdot w)$$

(c)
$$(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v)$$

(d)
$$1_K \cdot v = v$$

Die Elemente der Menge V werden Vektoren genannt.

Wiederholung einiger Grundbegriffe (Forts.)

Definition

Sei V ein K-Vektorraum. Eine Teilmenge $U \subseteq V$ wird Untervektorraum von V genannt, wenn folgende Bedingungen erfüllt sind.

- (i) $0_V \in U$
- (ii) $v + w \in U$ für alle $v, w \in U$
- (iii) $\lambda \cdot v \in U$ für alle $\lambda \in K$ und $v \in U$

wichtig:

Unter den gegebenen Voraussetzungen ist $(U, +_U, \cdot_U)$ selbst ein Vektorraum, wobei die Abbildungen $+_U: U \times U \to U$ und $\cdot_U: K \times U \to U$ durch Einschränkung der Vektoraddition und der skalaren Multiplikation von V zu Stande kommen.

· 10 / " Nullpundi", " Koodha ten unsprang lineare Geraden Sei v∈ V, v + Ov lineare Elenen Son V, WEV, mit V + OV and N + (V)

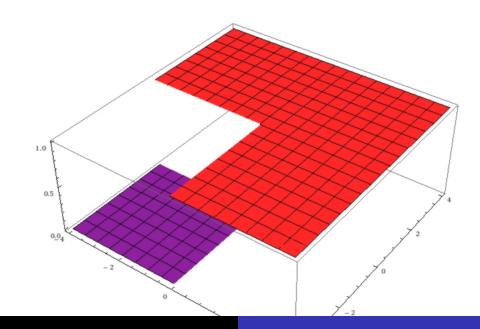
Vorlesungsthemen - Teil 1 (Lineare Algebra)

- Basen von Vektorräumen, Dimensionsbegriff
- Koordinatensysteme
- Determinanten
- Eigenwerte und Eigenvektoren

Vorlesungsthemen - Teil 2 (Mehrdimensionale Analysis)

- metrische und topologische Räume
- Grenzwerte von Folgen und Funktionen, Stetigkeit
- partielle und totale Differenzierbarkeit
- mehrdimensionale Taylor-Entwicklung
- Bestimmung lokaler Extrema

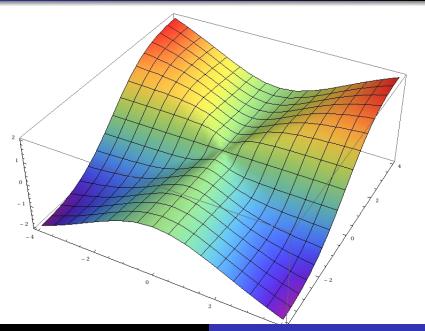
Beispiel einer mehrdimensionalen unstetigen Funktion



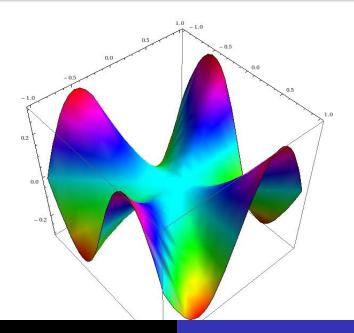
Grenzwertverhalten mehrdimensionaler Funktionen



Beispiel einer nicht differenzierbaren Funktion



Richtungsabhängige Ableitungen im Mehrdimensionalen



Linearkombinationen eines Tupels von Vektoren

Definition (8.1)

Sei V ein K-Vektorraum, $r \in \mathbb{N}_0$ und $(v_1,...,v_r)$ ein Tupel von Elementen aus V. Wir bezeichnen einen Vektor $w \in V$ als Linearkombination des Tupels, wenn ein Tupel $(\lambda_1,...,\lambda_r) \in K^r$ existiert, so dass

$$w = \sum_{i=1}^{r} \lambda_i v_i$$
 erfüllt ist.

Beispiele foi Linea combenationen con ((1), (-2)) (falle K= 1R, V= 1R2) $\bullet \quad (-1) \left(\frac{1}{3} \right) + 5 \left(\frac{-2}{4} \right) = \left(\frac{-11}{17} \right)$

Definition des erzeugten Untervektorraums

Definition (8.2)

Sei V ein K-Vektorraum und $S\subseteq V$ eine beliebige Teilmenge. Dann bezeichnen wir mit

$$\langle S \rangle_{\mathcal{K}} = \left\{ \sum_{k=1}^{r} \lambda_k v_k \mid r \in \mathbb{N}_0, \lambda_1, ..., \lambda_r \in \mathcal{K}, v_1, ..., v_r \in S \right\}$$

die Menge aller Linearkombinationen von Tupeln bestehend aus Vektoren der Menge S. Man nennt $\langle S \rangle_K$ den von S erzeugten oder aufgespannten Untervektorraum.

Bespiel fin even aufgegranten Untereletorraum

Eine áhuliche Rechnug Zeigt, dass in V=R3 (AVI) >R = 1 AV+ MW A, ME R & gold $|S_{SP}| \leq \sqrt{\binom{n}{0}} \binom{n}{0} = \langle S \rangle_{R} = \sqrt{2} \binom{n}{0} + \sqrt{\binom{n}{0}}$ r, me R] = d (2) | r, me R] (xy-Ebene")

Zur Bedeutung von $\langle S \rangle_K$

Satz (8.3)

Sei V ein K-Vektorraum und $S \subseteq V$ eine Teilmenge. Dann gilt

- (i) Die Menge $\langle S \rangle_K$ bildet einen Untervektorraum von V mit $\langle S \rangle_K \supseteq S$.
- (ii) Ist U ein weiterer Untervektorraum von V mit $U\supseteq S$, dann gilt $U\supseteq \langle S\rangle_K$.

Es handelt sich also bei $\langle S \rangle_K$ um den kleinsten Untervektorraum von V, der S als Teilmenge enthält.

Benevis ion Soits 8.3 geg: Kkoiper, VK-Velstorraum, SE (S) = 1 = 1 = 1; v4 | r = No. 71, 2 = K, VI. VES 3/11) (5) x ist Unterveloperarum con V Werprafe (1) Ov & (5) (2) Yuwe (S>K VTHE (S>K Zer (3) AJEK ALE (Z)K: JAE (Z)K ght zy(1) Nach Def to Ov evic Linear trong des lueren Tapels () (setse r=0) = Or E (5) That.

20(2) Seich V, WE (5) K, 229. V+WE (5) K = 7, ENO, 1, ..., 7, EK, V1, ..., VE ES = 5 3/1/2 he (5) = FSENO, M, ME Kud WSES MIN W = 5 MRNE 1+M = = 2 yivi+ > WENE = x u u mit x = / 7/ falls 15 15 15 1

Mi

Ve falls 15 (< r Wer falls +15 (5 rts zu (3) Seven let und ve (5) 22g. lu e (5) VE (S) = Fre No. M. ..., MEK, W. ..., VES my 1 = = 1 y 1 1 -> y 1 = = (y) 1

noch zzg: S⊆ (S)K Sei v∈ S 237. VE (S) Setz 1=1, V1=V, 21=1K Dana gill Styl = 211 = 1KV = V. zuli) Sei U ein Intervettoraum con V mis U25 27 U2 (S) Dafai muss gezeigt madey: Are No Y Minight & YVIIIIVES and Signife U Bowers durch will and wife + Ind-Ang. += O In diesem Fall ist jude Ausdoral de Ov € (S>

∑d; v; glack Ov, and es gild Ov ∈ U, da U lake Jul-Shritt: Sei re No, sake du Aussage fair r Wans Such VIII VITIES and AI. Artjet En zugen. U 7d-V > S Dive U anserdam: VI+1 € S S S U > VI+1 € U France Merchanaum = 5/3/4+2minnell = 5/3/4 ell

Erzeugendensystem eines Untervektorraums

Definition (8.4)

Ist V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum, dann wird jede Teilmenge $S\subseteq V$ mit der Eigenschaft $U=\langle S\rangle_K$ ein Erzeugendensystem von U genannt.

Beispiele:

• Die Menge $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$ ist ein Erzeugendensystem des Untervektorraums

$$U = \left\{ \begin{pmatrix} \lambda \\ \mu \\ 0 \end{pmatrix} \mid \lambda, \mu \in \mathbb{R} \right\} \quad \mathsf{des} \ \mathbb{R}^3.$$

Weitere Beispiele für Erzeugendensysteme

- Nimmt man den dritten Einheitsvektor $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ zu der Menge aus dem letzten Beispiele hinzu, so erhält man ein Erzeugendensystem des gesamten \mathbb{R} -Vektorraums \mathbb{R}^3 .
- Für jeden K-Vektorraum V ist sowohl \varnothing als auch $\{0_V\}$ ein Erzeugendensystem des Untervektorraums $\{0_V\}$ von V.
- Für jede Teilmenge $S \subseteq V$ gilt $\langle S \rangle_K = S$ genau dann, wenn S selbst ein Untervektorraum von V ist. (Beweis als Übung)