Der Separabilitatsgrad einer Erweiterung

Satz (19.8)

Sei L|K eine endliche Erweiterung und K ein algebraisch
abgeschlossener Erweiterungskorper von L. Dann gilt

[Homk (L, K)| < [L: K]

mit Gleichheit genau dann, wenn die Erweiterung L|K separabel ist.

Definition (19.9)

Sei L|K eine endliche Erweiterung und K ein algebraisch
abgeschlossener Erweiterungskorper von L. Dann nennt man

[L:Klsep = |HomK(L,R)|

den Separabilitatsgrad der Erweiterung L|K.
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Das Minimalpolynom iiber einem Zwischenkorper

Lemma (19.10)

Sei L|K eine einfache algebraische Erweiterung, also L = K(«) fiir
ein « € L. Sei M ein Zwischenkérper von L|K und

n—1
T—— PaM = X”—l—Za;xi € M[X]
i=0
das Min.-polynom von « . Dann gilt M = K(ao, ..., an-1)-
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Charakterisierung der einfachen Erweiterungen

Eine endliche Erweiterung L|K besitzt genau dann nur endlich viele
Zwischenkdorper, wenn sie einfach ist.

Folgerung (19.12)

Jede endliche, separable Erweiterung L|K besitzt nur endlich viele
Zwischenkorper.
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§20. Kreisteilungspolynome

Definition (20.1)

Sei n € IN. Eine n-te Einheitswurzel in C ist ein Element ¢ € C mit
(" = 1. Mit pu, bezeichnen wir die Menge aller n-ten
Einheitswurzeln. Es handelt sich um eine von C*.

Sei k € Z. Genau dann gilt ju, = (CX), wenn ggT(k,n) =1 ist.
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Korrektur Beweis von Lemma 20 2
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Definition der Kreisteilungspolynome

Definition (20.3)
SeinelN, n>2.
@ Eine primitive n-te Einheitswurzel ist ein Element ¢ € u,
mit i, = <<>
@ Wir bezeichnen mit p) C pu, die Menge der primitiven n-ten
Einheitswurzeln.

@ Das Polynom ¢, € C[x]| gegeben durch

o, = H(X_C)

Cepn

wird das n-te Kreisteilungspolynom genannt.
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Die Ganzzahligkeit der Kreisteilungspolynome

@ Aus technischen Griinden setzen wir ®; = x — 1, obwohl wir
fiir n = 1 keine primitiven n-ten Einheitswurzeln definiert
haben.

o Fiir alle n € IN ist (n) = grad ®,.

Lemma (20.4)

Fiir alle n € IN gilt x" — 1 = Hd|n¢d’ wobei d die nattrlichen
Teiler von n durchlauft.
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