§19. Separable Erweiterungen und Galois-Erweiterungen

Definition (19.1)

Sei K ein Korper. Ein irreduzibles Polynom f € K|x] wird
separabel genannt, wenn ggT(f, f') =1 gilt.

Nach Proposition 18.4 ist die Separabilitdt von f gleichbedeutend
damit, dass das irreduzible Polynom f in jedem Erweiterungskorper
L von K nur besitzt.



Separable Elemente und separable Korpererweiterungen

Definition (19.2)

Sei L|K eine Korpererweiterung. Ein Element o € L wird separabel
tiber K genannt, wenn es algebraisch iiber K ist und sein
Minimalpolynom f € K|[x] separabel ist. Wir nennen die
Erweiterung L|K separabel, wenn jedes e € L iiber K separabel ist.

Proposition (19.3)

Ist L|K eine Korpererweiterung, « € L ein iiber K separables
Element und M ein Zwischenkdrper von L|K, dann ist « auch
separabel iiber M.
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Hinreichende Bedingungen fiir Separabilitat

Ist K ein Korper der Charakteristik 0, dann ist jede algebraische
Erweiterung L|K separabel.

€

Ist K ein endlicher Korper, dann ist jede algebraische Erweiterung
L|K separabel.

Anmerkung:

Es gibt (also nicht separable) algebraische
Erweiterungen. Ist zum Beispiel p eine Primzahl, bezeichnet

K = IFp(t) den rationalen Funktionenkorper iiber IFp, und ist u
eine Nullstelle von xP —t € K[x] in einer algebraischen Erweiterung
von K (die man auch mit /t bezeichnen kénnte), dann ist

K(u)|K eine inseparable Erweiterung.
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Der Satz vom primitiven Element

Definition (19.6)

Eine Korpererweiterung L|K wird einfach genannt, wenn ein
Element o € L mit L = K(«) existiert. In diesem Fall nennt man «
eine primitives Element der Erweiterung.

Jede endliche, separable Erweiterung L|K ist einfach.
I
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Der Separabilitatsgrad einer Erweiterung

Satz (19.8)

Sei L|K eine endliche Erweiterung und K ein algebraisch
abgeschlossener Erweiterungskorper von L. Dann gilt

[Homk (L, K)| < [L: K]

mit Gleichheit genau dann, wenn die Erweiterung L|K separabel ist.

Definition (19.9)

Sei L|K eine endliche Erweiterung und K ein algebraisch
abgeschlossener Erweiterungskorper von L. Dann nennt man

[L:Klsep = |HomK(L,R)|

den Separabilitatsgrad der Erweiterung L|K.
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