§18. Endliche Korper

Erinnerung:
Der kleinste Teilkorper eines Kérpers K wird der von
K genannt.

Sei K ein Korper und P sein Primkérper.

(i) Ist char(K) =0, dann gilt P = Q.
(i) Ist char(K) = p fiir eine Primzahl p, dann gilt P = IF,.

Ist K ein endlicher Korper, dann ist |K| eine Primzahlpotenz.
Es gilt also |K| = p” fiir eine Primzahl p und ein n € IN.




Endliche Korper als Zerfallungskorper

Proposition (18.5)

Sei p eine Primzahl, n € IN und K ein Korper mit p” Elementen.
Dann ist der Primkorper P von K zu IF, isomorph, und K ist ein
Zerfillungskorper von f, = xP" — x € P[x] iiber dem Kérper P.




»Freshman’s Dream™ und Frobenius-Endomorphismus

Proposition (18.6)
Sei p eine Primzahl, R ein Ring der Charakteristik p und n € IN.
Dann gilt

(a+b)P" = & + b fir alle a,b e R.

Definition (18.7)

Ist R ein Ring der Charakteristik p, dann bezeichnet man die
Abbildung v : R — R, a — aP als Frobenius-Endomorphismus
des Rings R.
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Zur Existenz endlicher Korper

Proposition (18.8)

Sei p eine Primzahl, P ein Korper mit p Elementen, n € IN und K
ein Zerfallungskdrper von f, = xP" — x € P[x] iiber P. Dann gilt
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Existenz und Eindeutigkeit der endlichen Korper

Satz (18.9)

Sei p eine Primzahl und n € IN. Dann gibt es einen Kérper mit p”
Elementen, und je zwei Korper mit p” Elementen sind zueinander
isomorph.
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Der algebraische Abschluss von I,

Folgerung (18.10)

Sei p eine prim und IE‘;",lg ein algebraischer Abschluss von IF,.

(i) Fiir jedes n € IN gibt es genau einen Teilkdrper Fpn C IF?,lg

mit p” Elementen.
(i) Fir m,n € IN gilt Fpm € Fpn genau dann, wenn m ein Teiler
von n ist.

(iii) Es gilt F5® = o Fpr-
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§19. Separable Erweiterungen und Galois-Erweiterungen

Definition (19.1)

Sei K ein Korper. Ein irreduzibles Polynom f € K|x] wird
separabel genannt, wenn ggT(f, f') =1 gilt.

Nach Proposition 18.4 ist die Separabilitdt von f gleichbedeutend
damit, dass das irreduzible Polynom f in jedem Erweiterungskorper
L von K nur besitzt.



Separable Elemente und separable Korpererweiterungen

Definition (19.2)

Sei L|K eine Korpererweiterung. Ein Element o € L wird separabel
tiber K genannt, wenn es algebraisch iiber K ist und sein
Minimalpolynom f € K|[x] separabel ist. Wir nennen die
Erweiterung L|K separabel, wenn jedes a € L iiber K separabel ist.




