Normale Erweiterungen

Definition (17.13)

Eine algebraische Korpererweiterung L|K heiBt normal, wenn
folgende Bedingung erfiillt ist: Ist f € K[x] ein irreduzibles
Polynom, das in L eine Nullstelle besitzt, dann zerfillt f tber L in
Linearfaktoren.

Proposition (17.14)

Sei L|K eine Korpererweiterung vom Grad 2. Dann ist L|K normal.




Charakterisierung der normalen Erweiterungen

Sei K ein Korper, und seien K D L D K Erweiterungen von K,
wobei L|K endlich und K algebraisch abgeschlossen ist. Dann sind
folgende Aussagen aquivalent:

(i) L|K ist normal.

(ii) Es gibt ein nicht-konstantes Polynom f € K[x], so dass L
der Zerfallungskorper von f iiber K ist.

(iii) Es gilt Homy (L, K) = Autk(L).
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Die Konjugierten eines Elements

Definition (17.16)

Sei L|K eine normale Erweiterung und o € L. Dann werden die
Nullstellen des Minimalpolynoms i, i in L die Konjugierten des
Element « {iber K genannt.

alternative Charakterisierung:

Sei L|K eine normale Erweiterung. Zwei Elemente «, 8 sind genau
dann zueinander konjugiert (also 3 ein Konjugiertes von «), wenn
ein 0 € Autk(L) mit o(a) = [ existiert.



Teilerweiterungen normaler Erweiterungen

Proposition (17.17)

Ist L|K eine normale Erweiterung und M ein Zwischenkérper von
L|K, dann ist auch die Erweiterung L|M normal.

Hinweis:
Die Teilerweiterung M|K der normalen Erweiterung L|K ist im
Allgemeinen nicht normal.

K=Q M=Q(2), L=Q(¥Z () mit = ~1+1v/3
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§18. Endliche Korper

Erinnerung:
Der kleinste Teilkorper eines Kérpers K wird der von
K genannt.

Sei K ein Korper und P sein Primkérper.

(i) Ist char(K) =0, dann gilt P = Q.
(i) Ist char(K) = p fiir eine Primzahl p, dann gilt P = IF,.




Die Elementezahl der endlichen Korper

Ist K ein endlicher Korper, dann ist |K| eine Primzahlpotenz. Es
gilt also |K| = p” fiir eine Primzahl p und ein n € IN.
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Formale Ableitung und mehrfache Nullstellen

Sei K ein Kérper und f = >°7_ akx* € K[x], mit n € Ny und
ag, ..., ap € K. Dann nennt man

n
7= Z kayxk1 die formale Ableitung von f.
k=1
W
Proposition (18.4)

Sei K ein Kérper, f € K[x] ein Polynom vom Grad n > 1 und L
ein Erweiterungskorper von K, liber dem f in Linearfaktoren
zerfallt. Dann sind die folgenden beiden Aussage dquivalent:

(i) Es gilt ggT(f,f") =1in K[x].

(ii) Das Polynom f besitzt in L nur einfache Nullstellen, d.h. es
ein a € K* und n verschiedene Elemente a1, ...,a, € L, so
dass f = a[]l_;(x — ).
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Endliche Korper als Zerfallungskorper

Proposition (18.5)

Sei p eine Primzahl, n € IN und K ein Korper mit p” Elementen.
Dann ist der Primkorper P von K zu IF, isomorph, und K ist ein
Zerfillungskorper von f, = xP" — x € P[x] iiber dem Kérper P.
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