§17. Zerfallungskorper und normale Erweiterungen

Definition (17.1)

Sei L|K eine Korpererweiterung und f € K[x] ein nicht-konstantes
Polynom. Zerfallt f Giber L in Linearfaktoren, und bezeichnen

ai, ..., a, die Nullstellen von f in L, dann nennt man K(ag, ..., ;)
den Zerfallungskorper von f in L {iber dem Grundkéorper K.

Sei K ein Korper. Dann existiert zu jedem nicht-konstanten
Polynom f € K|[x] ein Zerfallungskdrper von f iiber K.




Zerfallungskorper von Polynommengen

Definition (17.3)

Sei L|K eine Korpererweiterung, und S C K|[x] eine
(mdglicherweise unendliche) Menge von nicht-konstanten
Polynomen, die iiber L alle in Linearfaktoren zerfallen. Weiter sei
N C L die Menge aller Nullstellen samtlicher Polynome aus S in L,
also

N = {ael|f(a)=0fireinf e S}

Dann wird K(N) als Zerfallungskorper von S iiber dem
Grundkorper K bezeichnet.

Ist K ein Korper und S C K|x] eine Menge nicht-konstanter
Polynome, dann existiert ein Zerfallungskdrper von S iiber K.




zum Beweis von Satz 17.4: Zornsches Lemma

Definition (17.18)

Sei (X, =) eine Menge mit einer Halbordnung. Eine Teilmenge

T C X heiBt Kette in X, wenn sie nichtleer ist und jeweils zwei

Elemente x,y € T miteinander vergleichbar sind. Dies ist

aquivalent dazu, dass die Einschriankung der Relation < auf T eine
Ist.

Ein Element s € X heiBt obere Schranke einer Teilmenge T C X,
wenn s = t fiir alle t € T gilt. Ein Element x € X wird maximal
genannt, wenn kein y € X mit y > x und y # x existiert.

Satz (Zornsches Lemma)

Sei X eine nichtleere Menge und =< eine Halbordnung auf X mit
der Eigenschaft, dass jede Kette in X eine obere Schranke in X
besitzt. Dann existiert in X ein Element.




zum Beweis von Satz 17.4 (Fortsetzung)

Sei K ein Kérper und S C K|[x] eine Menge nicht-konstanter
Polynome. Unser Ziel ist der Nachweis der Existenz eines
Zerfallungskdrpers von S iiber K.

e Mit Hilfe der Mengenlehre zeigt man, dass eine Menge Q2 O K
existiert, die so groB ist, dass fiir algebraische
Erweiterung L|K eine surjektive Abbildung L — Q existiert.

@ Es sei nun F die Menge aller Erweiterungskorper (L, 4+, 1)
von K mit L C Q und der Eigenschaft, dass L Zerfillungs-
korper einer Teilmenge T C S ist.

@ Wir definieren eine Relation < auf F, indem wir fordern, dass
genau dann (L, +,,1,) = (L2, +1,,1,) erfiillt ist, wenn Ly
ein Teilkorper von Ly ist.



zum Beweis von Satz 17.4 (Fortsetzung)

e Man iiberpriift nun, dass (F, <) die Voraussetzungen des
Zornschen Lemmas erfiillt. Demnach existiert ein maximales
Element L € F.

@ Die Annahme, dass in S ein Polynom f existiert, die iiber dem
Korper L in Linearfaktoren zerfillt, fiihrt man zu einem
Widerspruch mit der Maximalitat von Z indem man einen
Erweiterungskarper L; mit [ C L3 C Q konstruiert,
iiber den f in Linearfaktoren zerfallt.



Zerfallungskorper als algebraische Erweiterungen

Proposition (17.5)

Sei K ein Korper und S C K|[x] eine beliebige Menge nicht-
konstanter Polynome. Dann ist jeder Zerfallungskorper von S iiber
K eine algebraische Erweiterung von K.




Definition des algebraischen Abschlusses

Definition (17.6)

Ein Korper K heiBt algebraisch abgeschlossen, wenn jedes
nicht-konstante Polynom f € K[x] in K eine Nullstelle besitzt.

Definition (17.7)

Sei K ein Korper. Ein Erweiterungskorper L von K wird
algebraischer Abschluss von K genannt, wenn L|K algebraisch und
L algebraisch abgeschlossen ist.




Charakterisierung des algebraischen Abschlusses

Proposition (17.8)

Fiir jede Erweiterung L|K sind die folgende Aussagen dquivalent.

(i) Der Korper L ist ein algebraischer Abschluss von K.

(i) Die Erweiterung L|K ist algebraisch, und jedes
nicht-konstante Polynom f € K|[x] zerfillt iiber L in
Linearfaktoren.

(iii) Die Erweiterung L|K ist minimal mit der Eigenschaft, dass
jedes nicht-konstante Polynom f € K|[x] iiber L in Linear-
faktoren zerfallt. Es gibt also abgesehen von L selbst keinen
Zwischenkdrper von L|K mit dieser Eigenschaft.
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Charakterisierung des algebraischen Abschlusses

Folgerung (17.9)

Sei L|K eine Korpererweiterung und Sk C K|[x] die Menge aller
nicht-konstanten Polynome iiber K. Genau dann ist L ein
algebraischer Abschluss von K, wenn L ein Zerfallungsk&rper von
Sk ist.

@ Wegen Satz 17.4 ergibt sich aus Folgerung 17.9, dass jeder
Korper K einen algebraischen Abschluss besitzt.

o Ist K ein Kérper und L ein algebraisch abgeschlossener
Erweiterungskorper von K, dann ist

K = {ael]a«algebraisch iiber K}

der eindeutig bestimmte algebraische Abschluss von K in L.



Ein Fortsetzungssatz fiir Zerfallungskorper

Proposition (17.10)

Sei L|K eine algebraische Erweiterung, K ein algebraisch
abgeschlossener Korper und ¢ : K — K ein Homomorphismus von
Korpern. Dann gibt es eine Fortsetzung 1 von ¢ auf den Korper L,
also einen Homomorphismus 1 : L — K mit 1| = ¢.
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Eindeutigkeit der Zerfallungskorper

Sei K ein Kérper und S C K|[x] eine Menge bestehend aus
nicht-konstanten Polynomen. Sei ¢ : K — K ein Isomorphismus
von Kdrpern und S={¢(f) | f € S}. Sei L ein Zerfillungskdrper
von S und L ein Zerfallungskdrper von 5 Dann gibt es einen
Isomorphismus ¢ : L — [ mit 9|, =

Folgerung (17.12)

Sei K ein Korper, und seien L, L algebraische Abschliisse von K.
Dann existiert ein K-Isomorphismus zwischen L und L.
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Normale Erweiterungen

Definition (17.13)

Eine algebraische Korpererweiterung L|K heiBt normal, wenn
folgende Bedingung erfiillt ist: Ist f € K[x] ein irreduzibles
Polynom, das in L eine Nullstelle besitzt, dann zerfillt f tber L in
Linearfaktoren.

Proposition (17.14)

Sei L|K eine Korpererweiterung vom Grad 2. Dann ist L|K normal.




Charakterisierung der normalen Erweiterungen

Sei K ein Korper, und seien K D L D K Erweiterungen von K,
wobei L|K endlich und K algebraisch abgeschlossen ist. Dann sind
folgende Aussagen aquivalent:

(i) L|K ist normal.

(ii) Es gibt ein nicht-konstantes Polynom f € K[x], so dass L
der Zerfallungskorper von f iiber K ist.

(iii) Es gilt Homy (L, K) = Autk(L).




