Eindeutigkeit der Fortsetzungen

Sei L|K eine Korpererweiterung, S C L eine Teilmenge mit
L =K(S) und ¢ : K — K ein Homomorphismus in einen weiteren
Kérper K. Sind dann 1,0 1 L — K zwei Fortsetzungen von ¢
mit ¥1]s = 92|s, dann gilt 1 = 1.

wichtiger Spezialfall:

Gilt L = K(a) fiir ein a € L und ist 8 € K, dann gibt es fiir jeden
Homomorphismus ¢ : K — K und jedes 8 € K

Fortsetzung 15 : K(a) — K von ¢ mit der Eigenschaft 15(a) = 3.



Der Fortsetzungssatz

@ Seigp: K— K ein Isomorphismus von Korpern.
e Seien L|K und L|K Korpererweiterungen.

@ Sei « € L ein iiber K algebraisches Element und f das
Minimalpolynom von « iiber K.

@ Sei @ € L eine Nullstelle von f = ¢(f) € K[x].
Dann gibt es eine eindeutig bestimmte Fortsetzung v von ¢ auf
K(a) mit ¢(a) = &. Dieser Homomorphismus 1 definiert einen
zwischen den beiden Kérpern K(a) und K(&).




. Nullstellen auf Nullstellen*

Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auBerdem
L|K und L|K Kérpererweiterungen, o € L und f € K[x] ein
Polynom mit f(a) = 0. Ist dann ¢ : K(a) — L ein
Koérperhomomorphismus mit |k = ¢, dann ist & = ¥ («) eine
Nullstelle von f = ¢(f).

.




Die Anzahl der Fortsetzungen eines Korperhomomorph.

Folgerung (16.4)

Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auBerdem
LK, Z|R Korpererweiterungen, oo € L algebraisch iiber K und

f = ik, - Dann stimmt die Anzahl der Fortsetzungen

¥ K(o) — L von ¢ iiberein mit der von
f=o(f)in L

Folgerung (16.5)

Fiir jede algebraische Erweiterung L|K gilt
Homgk (L, L) = Autgk(L).
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Korperhomomorphismen und Erzeugendensysteme

Lemma (16.6)

Sei ¢ : K — K ein Isomorphismus von Kérpern und L|K und §|R
Korpererweiterungen. Sei S C L eine Teilmenge und ¢ : L — L
eine Fortsetzung von ¢. Dann gilt

Y(K(S)) = K((S))-
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§17. Zerfallungskorper und normale Erweiterungen

Definition (17.1)

Sei L|K eine Korpererweiterung und f € K[x] ein nicht-konstantes
Polynom. Zerfallt f Giber L in Linearfaktoren, und bezeichnen

ai, ..., a, die Nullstellen von f in L, dann nennt man K(ag, ..., ;)
den Zerfallungskorper von f in L {iber dem Grundkéorper K.

Sei K ein Korper. Dann existiert zu jedem nicht-konstanten
Polynom f € K|[x] ein Zerfallungskdrper von f iiber K.
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Zerfallungskorper von Polynommengen

Definition (17.3)

Sei L|K eine Korpererweiterung, und S C K|[x] eine
(mdglicherweise unendliche) Menge von nicht-konstanten
Polynomen, die iiber L alle in Linearfaktoren zerfallen. Weiter sei
N C L die Menge aller Nullstellen samtlicher Polynome aus S in L,
also

N = {ael|f(a)=0fireinf e S}

Dann wird K(N) als Zerfallungskorper von S iiber dem
Grundkorper K bezeichnet.

Ist K ein Korper und S C K|x] eine Menge nicht-konstanter
Polynome, dann existiert ein Zerfallungskdrper von S iiber K.




