Algebraische Korpererweiterungen

Definition (15.13)

Eine Korpererweiterung L|K wird algebraisch genannt, wenn jedes
Element o € L algebraisch iiber K ist.

Proposition (15.14)

Sei L|K eine Kérpererweiterung.

(i) Ist L|K endlich, dann auch algebraisch.

(i) Sind aq, ..., € L algebraisch tiber K und gilt
L =K(ai,...,a,), dann ist die Erweiterung L|K endlich
(also insbesondere algebraisch).

Es gibt aber unendliche algebraisch Erweiterungen, zum Beispiel
Q(S)Q mit S={V2|neN}.
I



Eigenschaften algebraischer Erweiterungen

(i) Sei L|K eine Korpererweiterung und T C L die Teilmenge
bestehend aus den Elementen, die algebraisch iiber K sind.
Dann ist T ein Teilkorper von L.

(ii) Seien L|K und M|L Korpererweiterungen. Genau dann ist die
Erweiterung M|K algebraisch, wenn die Erweiterungen L|K
und M|L beide algebraisch sind.

Folgerung (15.16)

Ist L|K eine Korpererweiterung und S C L eine Teilmenge mit der
Eigenschaft, dass jedes o € S algebraisch liber K ist, dann ist
K(S)|K eine algebraische Erweiterung.




Anhang: Quadratische Erweiterungen von @

Proposition (15.17)

Sei K ein Korper mit char(K) # 2 und L|K eine Erweiterung mit
[L: K] = 2. Dann existiert ein v € L mit L = K(v) und 72 € K.
(Man sagt dazu auch, dass L aus K durch Adjunktion einer
Quadratwurzel entsteht.)

Folgerung (15.18)

Sei K|Q eine Erweiterung mit [K : Q] = 2. Dann gibt es eine
quadratfreie Zahl m € Z \ {0,1} mit K = Q(/m).

Seien m,n € Z\ {0, 1} zwei verschiedene quadratfreie Zahlen.

Dann gilt \/n ¢ Q(v/m), vm ¢ Q(y/n), also insbesondere
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§16. Fortsetzung von Kérperhomomorphismen

Notation:

(i) Sind L und M Korper, dann bezeichnen wir mit Hom(L, M)
die Menge der Kérperhomomorphismen L — M.

(ii) Ist K ein gemeinsamer Teilkdrper von L und M, dann
bezeichnet Hom (L, M) die Menge der Kérperhomo-
morphismen ¢ : L — M mit ¢(a) = a fiir alle a € K. Solche
Korperhomomorphismen werden auch K-Homomorphismen
genannt.



Weitere Grundbegriffe

(iii)
(iv)

Fiir jeden Korper L sei Aut(L) die Menge der
Automorphismen von L.

Ist K ein Teilkorper L, dann bezeichnet Auty(L) die
Teilmenge von Aut(L) bestehend aus den Automorphismen
von L, die zugleich K-Homomorphismen sind. Man spricht in
diesem Zusammenhang von K-Automorphismen. Offenbar

handelt es sich bei Autk(L) um eine Untergruppe von
Aut(L).

Sei L|K eine Korpererweiterung und ¢ : K — K ein
Homomorphismus von K in einen weiteren Kérper K. Ein
Homomorphismus v : L — K wird Fortsetzung von ¢
genannt, wenn 9|k = ¢ erfiillt ist.



Eindeutigkeit der Fortsetzungen

Sei L|K eine Korpererweiterung, S C L eine Teilmenge mit
L =K(S) und ¢ : K — K ein Homomorphismus in einen weiteren
Kérper K. Sind dann 1,0 1 L — K zwei Fortsetzungen von ¢
mit ¥1]s = 92|s, dann gilt 1 = 1.

wichtiger Spezialfall:

Gilt L = K(a) fiir ein a € L und ist 8 € K, dann gibt es fiir jeden
Homomorphismus ¢ : K — K und jedes 8 € K

Fortsetzung 15 : K(a) — K von ¢ mit der Eigenschaft 15(a) = 3.
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Der Fortsetzungssatz

@ Seigp: K— K ein Isomorphismus von Korpern.
e Seien L|K und L|K Korpererweiterungen.

@ Sei « € L ein iiber K algebraisches Element und f das
Minimalpolynom von « iiber K.

@ Sei @ € L eine Nullstelle von f = ¢(f) € K[x].
Dann gibt es eine eindeutig bestimmte Fortsetzung v von ¢ auf
K(a) mit ¢(a) = &. Dieser Homomorphismus 1 definiert einen
zwischen den beiden Kérpern K(a) und K(&).
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. Nullstellen auf Nullstellen*

Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auBerdem
L|K und L|K Kérpererweiterungen, o € L und f € K[x] ein
Polynom mit f(a) = 0. Ist dann ¢ : K(a) — L ein
Koérperhomomorphismus mit |k = ¢, dann ist & = ¥ («) eine
Nullstelle von f = ¢(f).

.
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