§ 3. Zyklische Gruppen

Definition (3.1)

Sei *G* eine Gruppe.

- Die Anzahl |G| der Elemente von G wird die Ordnung von G genannt.
- Ist $g \in G$ ein beliebiges Element, dann bezeichnen wir $\operatorname{ord}(g) = |\langle g \rangle|$ als die Ordnung von g.

Charakterisierung der Elementordnung

Satz (3.3)

Sei G eine Gruppe und $g \in G$ ein beliebiges Element. Dann sind für jedes $n \in \mathbb{N}$ die folgenden Aussagen äquivalent.

- (i) $n = \operatorname{ord}(g)$
- (ii) Es gibt ein $m \in \mathbb{N}$ mit $g^m = e_G$, und darüber hinaus ist n die minimale natürliche Zahl mit dieser Eigenschaft.
- (iii) Für alle $m \in \mathbb{Z}$ gilt $g^m = e_G$ genau dann, wenn m ein Vielfaches von n ist.

Die Ordnung der Permutationen

Satz (3.6)

Sei $n \in \mathbb{N}$ und $\sigma \in S_n$.

- (i) Ist σ ein k-Zykel ($2 \le k \le n$), dann gilt $\operatorname{ord}(\sigma) = k$.
- (ii) Ist σ ein Element vom Zerlegungtyp $(k_1, ..., k_r)$, dann gilt $\operatorname{ord}(\sigma) = \operatorname{kgV}(k_1, ..., k_r)$.

Die Untergruppen einer zyklischen Gruppe, Teil I

Satz (3.7)

Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Genauer gilt: Sei G eine zyklische Gruppe, g ein Element mit $G = \langle g \rangle$ und U eine Untergruppe $\neq \{e_G\}$. Dann gibt es ein $m \in \mathbb{N}$ mit

$$U = \langle g^m \rangle.$$

Ist ord(g) = n endlich, dann kann die Zahl m so gewählt werden, dass sie ein Teiler von n ist.

Beweis von Salz 3.7 (Absoluss) geg G Grippe, ne N geG mit G= (g) Ind ord (9) = n (=> 16| = n) außordam U Untergo won G. U + 1063 227. Bylot einen Teiler mc M con n mit U = (8m) Sei MEN miginal mit gm EU (Existenz anies solden in worde school gozeigt). Bels. in In Direction mul Rost => Fq, TE Z mit n = qm+r mit 05 = < m. Ang. m ist trein Tech won n

=> r EN, r < m Esqua g = g^-9" = g1. (gm)-9 = e.(gm)-9 E U vegen gm E U 4 zoo Thrimalitat won m I n=ord(g)

Das Lemma von Bézout

Satz (3.8)

Seien $m,n\in\mathbb{Z}$, $(m,n)\neq (0,0)$. Dann gibt es $a,b\in\mathbb{Z}$ mit

$$am + bn = ggT(m, n).$$

Buseis von Satz 3.8 gest m. N = Z mit (m, n) = (0,0) Sei d = ggT (m, n) Bel: Es gilt a be 2 mit amt lon = d Bebrachte in der zyklishen Gorppe (Z,+) die Untergrappe U= (m,n) = 1 km+ln | k, le 27. Sate 3.7 -> U ist explision Wegen (m, 4) + (0,0) gelt U + 40] Sale 3.7 => 7 de IN mit U = (d') zuize. d'hesitzt die definivenden Ei-

le

L

genschaften des gett von mind u defin zu ûterprêfen : 11) d'Im, d'In (ii) Yd" EN: d" Im, d" In -> d" Id' Zu =ali) (d')=U=(m.n) => me(d') ma ne (d') => Fk l \ Z : m=kd', n=ld' " C > d' | m, d' | n Zulii) Seid" EIN mild" Im d" In -> 2 7 k, h = 2 mit m= k,d", n= l,d" => 2 m m, n < <d"> -> <m, n > \ < <d"> -> 7 (1) = (d") = (d") = d' ∈ (d") zu (ii => 3 rez mil d'= rd" -> d" |d'

Dus dem Gezongten folgt d'= 99T (m, n) = d. d' E U => d' E (m, n) = Fall E Z mit der Eigenschaft d'= am + b n

Rechenregeln für Elementordnungen

Satz (3.9)

Sei G eine Gruppe und $g \in G$ ein Element der Ordnung $n \in \mathbb{N}$.

- (i) Für beliebiges $m \in \mathbb{Z}$ gilt $\operatorname{ord}(g^m) = n$ genau dann, wenn $\operatorname{ggT}(m,n) = 1$ ist.
- (ii) Ist $d \in \mathbb{N}$ ein Teiler von n, dann gilt $\operatorname{ord}(g^d) = \frac{n}{d}$.
- (iii) Für beliebiges $m \in \mathbb{Z}$ gilt $\operatorname{ord}(g^m) = \frac{n}{d}$ mit $d = \operatorname{ggT}(m, n)$.

Beweis ion Sate 3.9 geg: Grippe G, NEN, ge G mit ord (g) = n zull) Sei me Z mit get (m,n) = 1 E semight zn zergen, dass (9"> = (9) guld " Elas, denn ans g" < (g) folgot (g"> = (g) = (gm) = e = (gm) = < (gm) > > (8) < (gm) n=kd fin ein ke M

fix alle we Z. 229 ord $(9^d) = \frac{\pi}{1}$ See me Z. Danngill and die Aguiralenz \Rightarrow k | m Ans Sake 3.3 folget and $(g^d) = k = \frac{n}{d}$ Seien m', n' E IN die natifichen Zahlen mit m = m'd ind

Sei
$$h = g^d$$
 Regel (ii) $(d \mid n) \Rightarrow ad(h) = \frac{n}{i} = n!$

Regel (i) $(qgT(m', n') = 1, ad(h) = n') \Rightarrow ad(h) = ad(h^{n'})$

Es gell $g^m = (g^d)^{m'} = h^{m'} \Rightarrow ad(g^m) = ad(h^{m'}) = ad(h) = \frac{h}{d} = \frac{n}{ggT(n,n)}$

Die Eulersche φ -Funktion

Die Eulersche φ -Funktion ist für jedes $n \in \mathbb{N}$ definiert durch

$$\varphi(n) = |\{k \in \mathbb{Z} \mid 0 \le k < n, \operatorname{ggT}(k, n) = 1\}|.$$

Sie erfüllt die folgenden Rechenregeln:

- Für alle $m, n \in \mathbb{N}$ mit ggT(m, n) = 1 gilt $\varphi(mn) = \varphi(m)\varphi(n)$.
- ullet Für jede Primzahl p und jedes $r\in\mathbb{N}$ gilt

$$\varphi(p^r) = p^{r-1}(p-1) = p^r - p^{r-1}.$$

Bedeutung der φ -Funktion für die Gruppentheorie

Sei G eine zyklische Gruppe der Ordnung n und $g \in G$ ein erzeugendes Element.

- Nach Folgerung (3.4) sind g^k mit $0 \le k < n$ die n verschiedenen Elemente von G.
- Aus Satz (3.9) (i) kann daher abgeleitet werden, dass G insgesamt $\varphi(n)$ Elemente der vollen Ordnung n enthält. Mit anderen Worten, es gibt genau $\varphi(n)$ Elemente h in G mit der Eigenschaft $G = \langle h \rangle$.

Weitere Rechenregel für die Elementordnung

Satz (3.10)

Sei G eine Gruppe und $n\in\mathbb{N}$. Ein Element $g\in G$ hat genau dann die Ordnung n, wenn $g^n=e_G$ und für jeden Primteiler p von n jeweils $g^{n/p}\neq e_G$ gilt.

Anwerdings beispiel frit Satz 3.10 Ser G ene grappe and g & G mit g to = e, g = e ud g = e Dann gilt ord (g) = 48 (denn: 2 and 3 sand die einzigen Posinteiler von 48 = 24.31 und es ist = 24, = 16) wichtige Anne king: Ist G ene enclude Grappe. dann ist and (9) his dedos ge G state em Teiler con IG! (Gond: Sate on Eagrange, angewender and U=(8>)

Beneis was Satz 310 geg. G gamppe, geG, neM mile g" = 2 ml no als x, d h, $\frac{n}{d} \in \mathbb{N}$ and $\frac{n}{d} > 1$. See p em Premterles for $\frac{n}{d}$

Die Untergruppen einer zyklischen Gruppe, Teil II

Satz (3.11)

Sei G eine zyklische Gruppe und $g \in G$ mit $G = \langle g \rangle$.

- (i) Ist $\operatorname{ord}(g) = \infty$, dann sind die verschiedenen Untergruppen von G gegeben durch $U_0 = \{e_G\}$ und $U_m = \langle g^m \rangle$, wobei m die natürlichen Zahlen durchläuft.
- (ii) Ist $\operatorname{ord}(g) = n$ endlich, dann sind $U_d = \langle g^d \rangle$ die verschiedenen Untergruppen von G, wobei d die Teiler von n durchläuft. Dabei gilt jeweils $|U_d| = \frac{n}{d}$.
- In (i) und (ii) gilt $U_m\subseteq U_{m'}$ für $m,m'\in\mathbb{N}$ genau dann, wenn m' ein Teiler von m ist.

Beweis von Satz 3.11 apag: zyblische Grappe G, g & G ein Element mit G=(g) For jedes m & IN sei Um = (gm), außerdan Uo = leg] Seien m, m' E N Beh: Um = Um' (= m' | m m'Im => FREN mit m = km" g"= g = (g") = (g") = Um. > Um = <9m> € Um.

Au:

 \underline{Reh} . Under du Voransselzung ord $(g) = \infty$ gild auch die Umkehoring, d.h. aus Um = Umi folgt m' In Sobre also and (g) = 00 and Um = Umi voiaus. 2. 29 . m' | m Um = Um, Um = (gm) => gm = Um, => gm ∈ (gm) = Fre Z mit gm = (gm') = g (em') Nach Sale 3.5 (st he ARR Z=G, a=gq milleti also: gm = gkm' -> m=km' -> m' | M

Betrachte nun den Fall, dass n=ord (g) endlich und m, m' beides Teile von n sind. Bel. Auch dans gilt die Implikation Um & Um, >> m'/m uBes-Ans Um & Um, folgot uze oben dass ein kt Z mit do Figurshaft gm = gkm' existrent . -> gm-ten' = e Wegger Satz 3.3 and n = ord (g) foly darans n (m-km') => 7 (2 min m-km'=ln => m=km'+ln Da km' ym, und In Vielfache worm' sind (bransselving miln) gelt dasselve for m => m' | m