Rückblick auf die ersten beiden Vorlesungswochen (§ 1)

- Gruppendefinition und Beispiele (abelsche Gruppen als Bestandteile algebraischer Strukturen, Permutationsgruppen, lineare Gruppen, Bewegungs- und Symmetriegruppen)
- Halbgruppen und Monoide (Die invertierbaren Elemente eines Monoid bilden mit der eingeschränkten Verknüpfung eine Gruppe.)
- wichtiges Ziel:
 Klassifikation der Gruppen einer bestimmten Ordnung (Elementezahl)
- Potenzen in Gruppen, Rechenregeln, multiplikative und additive Schreibweise

Rückblick auf die ersten beiden Vorlesungswochen (§2)

- Definition der Untergruppen, Beispiele
- ullet Definition der von einer Teilmenge $S\subseteq G$ erzeugten Untergruppe $\langle S
 angle$
- zyklische und endlich erzeugte Gruppen
- Erzeugendensysteme der Permutationsgruppen
- Äquivalenzrelationen und Zerlegungen
- Satz von Langrange: Ist G eine endliche Gruppe und U eine Untergruppe, dann ist |U| ein Teiler von |G|. (Grund: Die Menge G kann in endlich viele Teilmengen zerlegt werden, die alle genauso viele Elemente besitzen wie U, nämlich in die Linksnebenklassen gU, wobei g ein Repräsentantensystem von G/U durchläuft.)

§ 3. Zyklische Gruppen

Definition (3.1)

Sei *G* eine Gruppe.

- Die Anzahl |G| der Elemente von G wird die Ordnung von G genannt.
- Ist $g \in G$ ein beliebiges Element, dann bezeichnen wir $\operatorname{ord}(g) = |\langle g \rangle|$ als die Ordnung von g.

Die Elemente einer zyklischen Gruppe

Lemma (3.2)

Sei G eine Gruppe, $g \in G$ und $m \in \mathbb{N}$ mit $g^m = e_G$. Dann ist die von g erzeugte Untergruppe gegeben durch

$$\langle g \rangle = \{g^r \mid 0 \le r < m\}.$$

Blues for Lemma 3.2 greg. Ggrappe, geG, me N mit g"= eg Beh. (9) = 19 / 0 s r < m / (> 169> | 5 m) 1,2" blos, da <9>= {g° | a ∈ Z} " Sei he (g> - Jac 2 mit h = ga Rusion and Rest => 79, TEZ mit a = 9m+ T und OET < m Es gult h = g = g q m + i = (gam) gr = (gm) ar = eq gr = gr

Charakterisierung der Elementordnung

Satz (3.3)

Sei G eine Gruppe und $g \in G$ ein beliebiges Element. Dann sind für jedes $n \in \mathbb{N}$ die folgenden Aussagen äquivalent.

- (i) $n = \operatorname{ord}(g)$
- (ii) Es gibt ein $m \in \mathbb{N}$ mit $g^m = e_G$, und darüber hinaus ist n die minimale natürliche Zahl mit dieser Eigenschaft.
- (iii) Für alle $m \in \mathbb{Z}$ gilt $g^m = e_G$ genau dann, wenn m ein Vielfaches von n ist.

Beweix un Satz 3.3 geg Cgrappe, geG, neN 22g Aguivalent des Anssagen (i) (9>1 = n Doese high alle in (9> Walles in 69> nor n vesilie - gold n<n gm=e Femma 3.2 (g> = {g[| 05 = m] - | (g> | 5 m < n 1 3m (1) 1<9> = n Also ist j-i=n, ies gilt g" = e, un es gult tain ME N mit gm = e und m < n "(ii) = (iii)" browsering: ne N mirimal mit 8"= e, zzg ist die Aquiralent Sci m & Z . " = " Va : 8" = e , ang n+m Division mut Rost => 39, re Z mil m=qutr, Osren

Wegen nom gilt = 21, d.h. r EN Es gill g" = g"-9" = g" (g')-9 = e. e-9 = e year thindualitat non n. da r<n " Va: NIM => 7 g ∈ Z mit m = g n = q" = q1 = (q1) = e9 = e (, lii)" bransgescht ist die Giltigkeit der Ägurabuz = = = |(g) | = n | n | n | g = e Lemma 32 (97=1e,9,...,8-1) -> (9>) = N Aug. 1587 5 n-1 500 - 5 906+ 1, fe N nit g'= go and i < f & n Setze n = f-i. Down of a gn= e 15 m=n-1 => n bun Terles was m

Korrektur: in der sechsten Zeile ersetze "(iii)" durch "(iii) \Rightarrow (i)"

And Grand des be folglians gm = c aler, does h/m. I also Annahue was falsel as gild (9) = n

Die Elemente einer zyklischen Gruppe

Folgerung (3.4)

Sei G eine Gruppe. Besitzt $g \in G$ die endliche Ordnung n, dann sind durch

$$e_G, g, g^2, ..., g^{n-1}$$

die n verschiedenen Elemente der zyklischen Gruppe $\langle g \rangle$ gegeben.

Elemente unendlicher Ordnung

Satz (3.5)

Ist G eine Gruppe und $g \in G$, dann sind die folgenden Aussagen äquivalent.

- (i) $\operatorname{ord}(g) = \infty$
- (ii) Es gibt kein $n \in \mathbb{N}$ mit $g^n = e_G$.
- (iii) Die Abbildung $\phi : \mathbb{Z} \to G$, $k \mapsto g^k$ ist injektiv.

Bureis ion Sala 3.5 geg G Grippe, g & G 2.29 Aguvalenz des Aussagen (i) 1(g>1= ∞ (ii) ¬ (FreN: g"= e) (iii) \$ Z=G, k= gk st injetali g" = e Lemma 3.2 / (97 | 5 h, mish (97 end) / it mild ing. =]k, l = 2, k < 1 mil $\phi(k) = \phi(l) = g^k = g^l \Rightarrow g^{l-k} = e$

außerdem $1-k\in\mathbb{Z}$ / its Voransschung |||iii) = |i|)" Voc. ϕ ist injoistil = $\phi(Z)$ it mendleche Tolunge ion $(g) = |(g)| = \infty$

Korrektur: in der ersten Zeile ersetze $\ell - k \in \mathbb{Z}$ durch $\ell - k \in \mathbb{N}$

Definition von ggT und kgV

Seien $a_1,...,a_r \in \mathbb{Z}$.

- Eine Zahl $d \in \mathbb{N}$ heißt gemeinsamer Teiler dieser Zahlen, wenn $d \mid a_k$ für $1 \le k \le r$ gilt.
- Man nennt d den größten gemeinsamen Teiler dieser Zahlen und schreibt $d = \operatorname{ggT}(a_1, ..., a_r)$, wenn d'|d für jeden gemeinsamen Teiler d' von $a_1, ..., a_r$ gilt.
- Zwei Zahlen a und b werden als teilerfremd bezeichnet, wenn ggT(a,b)=1 ist.
- Eine natürliche Zahl $d \in \mathbb{N}$ heißt gemeinsames Vielfaches von $a_1,...,a_r$, wenn $a_k \mid d$ für $1 \leq k \leq r$ gilt, und kleinstes gemeinsames Vielfaches (Notation $d = \text{kgV}(a_1,...,a_r)$), wenn $d \mid d'$ für jedes gemeinsame Vielfache d' dieser Zahlen erfüllt ist.

Die Ordnung der Permutationen

Satz (3.6)

Sei $n \in \mathbb{N}$ und $\sigma \in S_n$.

- (i) Ist σ ein k-Zykel ($2 \le k \le n$), dann gilt $\operatorname{ord}(\sigma) = k$.
- (ii) Ist σ ein Element vom Zerlegungtyp $(k_1, ..., k_r)$, dann gilt $\operatorname{ord}(\sigma) = \operatorname{kgV}(k_1, ..., k_r)$.

Beweis un Sate 3. 6 zull) geg ne IN, ke(2.3. .. n], & & Sn k-Zykel -] a,...ak ∈ Mn, alle roschieden mit = (a, a2...ak) 5.52 ag(a) = 6 Boh Fir alle i, je 11 ..., bf und me No mit 3" (a;) = a; qild i+m = ; mod k (*) Zeige (*) durch wilst Ind über m m=0 22g 3°(ai) = aj => (= j mod k Hijeh.) 0°(ai) = aj => ai = aj => (= j => 1= j mod le

m=0 229 d'(a;) = a; => i= j mod k TryE1 MI= M+1 Setze die Anssage fir, m worans Vosanssetzing außerdem; 3m+1(ai) = aj 229: it m+1= j mod k Soi jo = 11... tel geg duch o" (ai) = ajo Ind-V. - i+m= fo mod k 1 Fall: do = k = aj = 0"1 (ai) = o(3"(ai)) = o(ajo) 2. Fall: $j_0 = k \implies \alpha_j = \beta^{n+1}(\alpha_i) = \beta(\beta^n(\alpha_i)) = \beta(\alpha_j)$ = or (a) = a1 -> f=1 -> i+m+1= fo+1= 6+1=1= j mod k

Zeize run, ord (o) = = gleichtedontend made Satz 3.3. he ist die klainste natürlike Zahl mit 3k = id Seire N mil TTE - 3 (a1) = art1 24 Mi = a, = d + id andverseds Fir 1sist gill or (ai) = aj wolen 0d jedn, befeund lest duch ite = j mod k also i=j must be (suche Beh.) 1, je 11, ..., le], (= j mod k = (= j -> d = (a:) = a: fix 1515 k >> d = id

zulii) Sei ∂∈ Su lon Zulegnestyp (MI, Mr) Soi d= ord (3) zerge d'offille die define rendon Ergenschaften lan teg V (MI,..., Mr) datas su absporter (1) MEI d for 15 k = 1 (2) It d'EN mit Mxld fin 15k5r dann folgt d d' mil 2. Fa d=ord(0) => 01= (d => (0,0 ... 00,) = (d) = o,do o o, d = id New O,d, o, d Loi o, etaushborfic itj Dan

Be

promeise disj. Trages haben, folget of de id oil = id, and (oi) = mi = 5.1=53 mild fin 15/51 (Prin 1 EiEr Zu(2) Seid EN mit mild fix 15151 mild and (01) = m1 Sate 3.3. 3 d' = id => 31' 20 0, d' 0 0, d' 0 ... 0 0, d' = id o id o ... o id = id

Die Untergruppen einer zyklischen Gruppe, Teil I

Satz (3.7)

Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Genauer gilt: Sei G eine zyklische Gruppe, g ein Element mit $G=\langle g\rangle$ und U eine Untergruppe $\neq \{e_G\}$. Dann gibt es ein $m\in \mathbb{N}$ mit

$$U = \langle g^m \rangle.$$

Ist ord(g) = n endlich, dann kann die Zahl m so gewählt werden, dass sie ein Teiler von n ist.

Berreis con Solte 3.7 gag. Eyteliscle Grappe G. g = G mit G = (g) Boh I me N mit g e U mit go = U 1 Fall: a> 0 = setze m = a 2. Fall a = 0 g° ∈ U, U ≤ G -> (g°) - ∈ U Dann ist gm EU und me IV in jeden Fall skills

Ser han me IN unimed mit g " E U Bel. U = (9") ,2" Was ans g" < U folgot <9"> < U ,s' Sei hell = he(g> = fac Z mit h=ga Director and Rest -> 7 9, 1 = 2 mil a = 9m+1 md 05 - 5 m 1 Fell -= 0 = a = qu = k = 3 = 39m = (gm) 9 E < gm> 2 Fall: 15 = M 8 = ga-9M = go (gm) of EU / su this malifat wor M (Fell and (g) endlish: nichter Stude)