Links- und Rechtsnebenklassen einer Untergruppe

Definition (2.13)

Sei (G, \cdot) eine Gruppe und U eine Untergruppe. Eine Teilmenge von G, die mit einem geeigneten $g \in G$ in der Form

$$gU = \{gu \mid u \in U\}$$

geschrieben werden kann, wird Linksnebenklasse von U genannt. Ebenso bezeichnet man die Teilmengen der Form $Ug = \{ug \mid u \in U\}$ mit $g \in G$ als Rechtsnebenklassen von U.

Im Folgenden bezeichnet G/U für die Menge der Links- und $U\backslash G$ die Menge der Rechtsnebenklassen von U.

Gleichmächtigkeit der Linksnebenklassen

Lemma (2.14)

Sei G eine Gruppe, U eine Untergruppe von G und $g \in G$ ein beliebiges Element. Dann sind die Abbildungen

$$\tau_g^\ell: \, U \to gU \,\,, \,\, h \mapsto gh \qquad \text{ und } \qquad \tau_g^r: \, U \to Ug \,\,, \,\, h \mapsto hg$$

jeweils bijektiv. Ist U endlich, dann gilt also |U|=|gU|=|Ug| für alle $g\in G$.

U = C bedentet : U ist Untergrappe Notation: des Grappe G Zerlegung ene Menge X = Mengersystem Z = P(X) mit den Eigenschaften li) Ø & Z lii) U A = X MIN YABEZ ANB+& - A= B Zwordning 1 Aquivalenced and X] - 1 Zeologinger con X] Jedes Aguiralenzrel wird die Monge der Aquiralenz blossen zagrordnet Ist ungeliebst 2 one Zologing von X; dann ist durch

X = Z y => JA & Z: X & A M & A him Achinist.

Zerlegung einer Gruppe in Linksnebenklassen

Lemma (2.15)

Sei G eine Gruppe und U eine Untergruppe von G. Dann folgt für alle $g,h\in G$ aus $h\in gU$ jeweils gU=hU.

Satz (2.16)

Sei G eine Gruppe und $U \leq G$. Dann ist sowohl durch G/U als auch durch $U \setminus G$ eine Zerlegung von G gegeben. Die zugehörigen Äquivalenzrelationen auf G sind definiert durch $g \equiv_{\ell} h \Leftrightarrow h \in gU$ bzw. $g \equiv_{r} h \Leftrightarrow h \in Ug$.

Berses for Lemma 2.15 geg: grappe G. USG, g. he G mit he g U Beh. gl = hU hegl = fuell h-gu Bowers for Satz 2.16; geg. Greeppe G, UE G GIU Menge der Kinksnebenklassen won U 220 G/U ist and Zelegung won G = überprifen li) Ø & G/U (i) G = AEGILA Mis) Y A, B & G/U: AnB + Q = A = B zuli) Jedes AEGIU hat die Form A=gU für em geG. eseU - g. ese A = g = A = A = 8

Zulu), 2" klas, da jedes Ac G/M rach Del eine Teilnenge von G ist "≤" Sei ge G -> ge gU (s.o), und gU ∈ A Enlin Seien A, B & G/U mit A 1 B + D 239 A=B A,BEGIU - tg, KEG mit A=gU, B=hU AOB + 20 => TREG mit keA mol ke B kegU => kU=gU REAU (215) KU= hU asgesand: A=gu=ku=hu=15

Sei = 1 die Relation and G gag duch g=1 h > h e gU. 1 229 Für jedes ge G it gl genan die Aguivalenz classe [9], won g bigl =1 Seien g, h & G. Dunn gelt die Frankalenz helg] = g = 1 h = heg U I Def du Aquiralmebluse A=13 Also gilt tatsichlich 1974 = 9 M

Repräsentantensysteme von Äquivalenzklassen

Definition (2.17)

Sei X eine Menge und \equiv eine Äquivalenzrelation auf X. Eine Teilmenge $R\subseteq X$ wird Repräsentantensystem der Äquivalenzklassen von \equiv genannt, wenn durch $R\to X/\equiv, x\mapsto [x]$ eine bijektive Abbildung gegeben ist. Mit anderen Worten, in jeder Äquivalenzklasse ist genau ein Element aus R enthalten.

Zusammenhang zwischen Links- und Rechtsnebenklassen

Proposition (2.18)

Sei G eine Gruppe und U eine Untergruppe.Ist R ein Repräsentantesystem der Linksnebenklassen, dann ist $R' = \{g^{-1} \mid g \in R\}$ ein Repräsentantensystem der Rechtsnebenklassen, und durch $g \mapsto g^{-1}$ ist eine Bijektion zwischen R und R' definiert.

Beweis von Prop. 2.18 geg C grappe, U Untergrappe R Reprosentantensystem was G/U R' = (g' | g ∈ R) Belo. R' ist ein Repräsentantensystem zu überprifer: li) Jede Menge A & UNG enthalf mindestens ein Eleman aus R' (ii) Jedes A & MIG enthalt hichstens ein Element aus R'

zull) See A E UIG who g E G mil A = Ug Erg: The R' mit he A - Fhier mit hieg U her - h=hi ligh in R = u'g => hellg => he A

Aus h, h' e R' folgh a-1, (h') - E R 1-1, (h')-'eR 1-1, (h')-'e g-14, R 14 Repr-system wor G/U -> h-1= (h')-1 -> h= h' Offenbar it R' -> R, h -> h - die Umbehrabl ion R = R', y = g-! Also ist & one Bijothion Zother RudR'

Der Index einer Untergruppe

Definition (2.19)

Sei G eine Gruppe und U eine Untergruppe. Die Mächtigkeit |G/U| der Menge G/U wird der Index von U in G genannt und mit (G:U) bezeichnet.

Der Satz von Lagrange

Satz (2.20)

Sei G eine endliche Gruppe und U eine Untergruppe. Dann gilt |G| = (G : U)|U|. Insbesondere ist die Ordnung |U| der Untergruppe immer ein Teiler der Gruppenordnung |G|.

Folgerung (2.21)

Sei G eine Gruppe und U eine Untergruppe. Genau dann ist G endlich, wenn sowohl U als auch G/U endliche Mengen sind (und in diesem Fall gilt dann natürlich der Satz von Lagrange).

Beweis on Satz 2 20 geg. endliche Grappe G, USG 229: 1G1 = (G:U) 1U1, wober (G:U) die Anzahl der Kirksnebenklassen augelt. Sei REG ein Reprosentantensystem um G/U Dann gilt IRI = (G:U), and an Buden IGI = S IAI = E IgUI (214) COIVING ENGRGY-S GER 5 141 = 1RHU1 = (G:U) 141

Folgerung aus dem Satz von Lagrange

Satz (2.22)

- (i) Jede Gruppe von Primzahlordnung ist zyklisch.
- (ii) Sei G eine Gruppe, und seien $U, V \subseteq G$ endliche Untergruppen teilerfremder Ordnung. Dann gilt $U \cap V = \{e_G\}.$

Dann gill $ R = (G:U)$, and an Bodem $ C = \sum_{i=1}^{n} A = \sum_{i=1}^{n} A = \sum_{i=1}^{n} A $
Beweis von Salz 2.22
Entil Sei p and Frinzahl G and Grippa mid G = p. Rate G it zylohich J.h. 7 g & G mit G = (g) Soi g & G lef (enistrat wagen G > 1) (g) ist (intergrappe von G Lagrange (g) tou(t p= G -> (g) & 11.p] kg> = 1 ist anyoshlossen da e G g & (g) verschieden mid also: (g) = p = G (g) & G = (g)

znlii) Seren U. V Untergrappen einer Grappe G, endlich mit teilerfronden Ordningen Ill ma IV Beh. UNV = lea] Mit U and V est and UNV are Untryspe con G, vegen UNV S U and one Untergrappe ion U Lagrange => |UNV | tall |U| analog: MAVI tall IVI 141.1VI tale frend - luny |= 1 - unv=fea]

§ 3. Zyklische Gruppen

Definition (3.1)

Sei G eine Gruppe.

- Die Anzahl |G| der Elemente von G wird die Ordnung von G genannt.
- Ist $g \in G$ ein beliebiges Element, dann bezeichnen wir $\operatorname{ord}(g) = |\langle g \rangle|$ als die Ordnung von g.