Die Bewegungsgruppen

Erinnerung:

- Eine Bewegung im \mathbb{R}^n ist eine Abbildung $\phi : \mathbb{R}^n \to \mathbb{R}^n$ mit $\|\phi(v) \phi(w)\| = \|v w\|$ für alle $v, w \in \mathbb{R}^n$.
- Ist ϕ eine Bewegung, dann gibt es eindeutig bestimmte $u \in \mathbb{R}^n$ und $A \in \mathcal{O}(n)$, so dass $\phi(v) = u + Av$ für alle $v \in \mathbb{R}^n$ gilt.
- Ist det(A) = +1, dann spricht man von einer orientierungserhaltenden, im Fall det(A) = -1 von einer orientierungsumkehrenden Bewegung.

Definition (1.5)

Die Menge der Bewegungen im \mathbb{R}^n bildet zusammen mit der Komposition eine Gruppe, die wir mit \mathcal{B}_n bezeichnen. Die orientierungserhaltenden Bewegungen bilden ebenso eine Gruppe; diese bezeichnen wir mit \mathcal{B}_n^+ .

Die Symmetriegruppe einer Menge $T \subseteq \mathbb{R}^n$

Definition (1.5)

Die Menge der Bewegungen im \mathbb{R}^n bildet zusammen mit der Komposition eine Gruppe, die wir mit \mathcal{B}_n bezeichnen. Die orientierungserhaltenden Bewegungen bilden ebenso eine Gruppe; diese bezeichnen wir mit \mathcal{B}_n^+ .

Definition (1.6)

Ist $T \subseteq \mathbb{R}^n$ eine beliebige Teilmenge, dann bezeichnet man

$$Sym(T) = \{ \phi \in \mathcal{B}_n \mid \phi(T) = T \}$$

als Symmetriegruppe von T. Die Elemente von $\operatorname{Sym}^+(T) = \operatorname{Sym}(T) \cap \mathcal{B}_n^+$ bezeichnet man als orientierungserhaltende Symmetrien der Menge T.

Die Diedergruppen

Definition (1.7)

Sei $n \in \mathbb{N}$ mit $n \geq 3$, und für $0 \leq k < n$ sei der Punkt $P_{n,k} \in \mathbb{R}^2$ gegeben durch

$$P_{n,k} = \left(\cos\left(\frac{2\pi k}{n}\right), \sin\left(\frac{2\pi k}{n}\right)\right).$$

Dann bezeichnen wir die konvexe Hülle der endlichen Punktmenge

$$\{P_{n,k} \mid 0 \le k < n\}$$

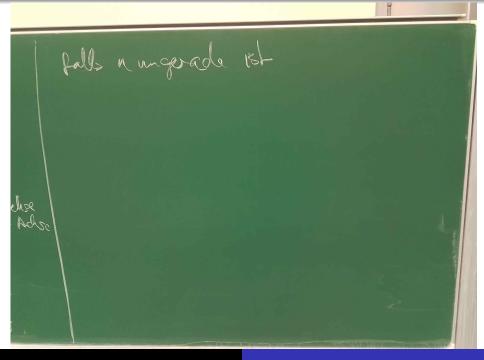
als das regelmäßiges Standard-n-Eck Δ_n . Die Symmetriegruppe $D_n = \operatorname{Sym}(\Delta_n)$ wird die n-te Diedergruppe genannt.

Elemento de Diedergrappen Drehmatrix $R_{x} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ ac R (Diehung um (0,0) mit Winted a, gegen den Uhrzeigersinn) Spiegeling un de x - Achse $S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$ Die Dieder gruppe Dr (123) ist geg. durch Dn = 1 ph | Osken) U (phot | Osken]. Drehunger Spugelungen wslei p: R2 -> R2, V -> Rayn

Dn = {P OSKEN } U { ptot OSKEN]. Drehungen Spigelingen
und $T: \mathbb{R}^2 \to \mathbb{R}^2$, $V \mapsto SV$ • Dn ist milk kommutativ, denn. $S\mathbb{R}_X S = \mathbb{R}_{-X} \ \forall \alpha \in \mathbb{R}$ $\Rightarrow \tau \circ \rho^{k} \circ \tau = \rho^{-k} \ \forall k \in \{0,1,,n-1\}$ $\Rightarrow \tau \circ \rho^{k} = \rho^{-k} \circ \tau^{-1} \ \tau^{2} = id \ \tau \circ \rho^{k} = \rho^{-k} \tau^{-1}$ inse $\tau \circ \rho = \rho^{-1} \circ \tau$ Hegen $\rho \neq \rho^{-1} \circ \tau \neq \rho^{-1}$ $\Rightarrow \tau \circ \rho \neq \rho \circ \tau \Rightarrow Beh$

· Frage, Wasum beschreiben die Elemente por ot (0 = k = n) Spiegelingen? 1. Mözl. Wegen det (R2T/n 5) = det (R2T/n) det (S) = (+1) (-1) = -1 wird pto t bealtrailen duch ene orthogonale Matrix mit Determinante - 1. Aus der Lin. Alg. ist bekannt, dass dies Spiegelugen in R2 suid:

2. Moglichtent, geometischer Ansatz Spiegeling and Achseduchden Purlit dehe die drehe die Achse auf die x-Achse Achse on Spiegeling
Thicke am down-Alloe Boyld protop = proprot = por ot Fir Oslo = n dwellant Bot die Elmente (Plot) Oslan)



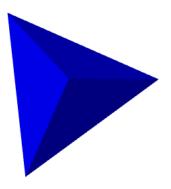
Definition der Plantonischen Körper

Zwei Teilmengen $S, T \subseteq \mathbb{R}^3$ werden als kongruent bezeichnet, wenn ein $\phi \in \mathcal{B}_n$ mit $\phi(S) = T$ existiert.

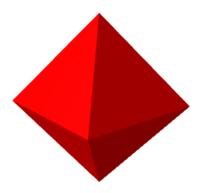
Definition (1.8)

Ein nicht ausgeartetes Polytop im \mathbb{R}^3 bezeichnet man als regulär oder auch als Platonischen Körper, wenn all seine Seiten zueinander kongruente regelmäßige n-Ecke sind und sich an jeder Ecke dieselbe Anzahl von Seiten treffen.

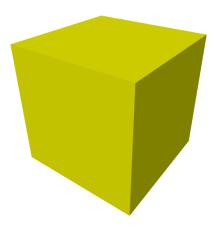
Platonische Körper - Tetraeder



Platonische Körper - Oktaeder

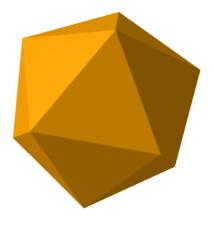


Platonische Körper - Würfel



Platonische Körper - Dodekader

Platonische Körper - Ikosaeder



Die Symmetriegruppen der platonischen Körper

Definition (1.9)

Bezeichnet $\mathbb T$ einen beliebigen Tetraeder, dann nennt man $\mathrm{Sym}(\mathbb T)$ eine Tetraedergruppe und $\mathrm{Sym}^+(\mathbb T)$ eine eigentliche Tetraedergruppe. Ist $\mathbb O$ ein Oktaeder, dann wird $\mathrm{Sym}(\mathbb O)$ eine Oktaedergruppe und $\mathrm{Sym}^+(\mathbb O)$ eine eigentliche Oktaedergruppe. Entsprechend werden (eigentliche) Würfelgruppen, Dodekaedergruppen und Ikosaedergruppen definiert.

Äußeres direktes Produkt

Definition (1.10)

Seien G und H Gruppen. Dann bildet das kartesische Produkt $G \times H$ mit der Verknüpfung * gegeben durch

$$(g_1, h_1) * (g_2, h_2) = (g_1g_2, h_1h_2)$$

für alle $(g_1, h_1), (g_2, h_2) \in G \times H$ ebenfalls eine Gruppe. Man nennt sie das (äußere) direkte Produkt von G und H. Sind G und H abelsch, dann gilt dasselbe für $(G \times H, *)$.

Nachwes, dass (G×H, *) ene grape ist Associativasele: Seien (g1, h1) (g2, h2), (g3, h3) € Gx H vorgeg. Dann gilt ((g1, h1)*(g2, h2))* (g3, h3) = $(q_1q_2, h_1h_2) + (q_3, h_3) = ((q_1q_2)q_3, (h_1h_2)h_3) = Associatinges$ $= (q_1(q_2q_3), h_1(h_2h_3)) = (q_1, h_1) * (q_2q_3, h_2h_3) \qquad (H. \cdot)$ = $(q_1, h_1) * ((q_2, h_2) * (q_3, h_3))$ Neutralebouent: Seien ec. en die Neutralebenante von G bzw. H. Beh. (ec. en) ist Neutralebenant in (C×H, *), dh. es gelf ecxH = (ec. en)

Halbgruppen und Monoide

Definition (1.11)

- (i) Eine Halbgruppe ist ein Paar (G, *) bestehend aus einer nichtleeren Menge G und einer assoziativen Verknüpfung * auf G.
- (ii) Ein Element $e \in G$ der Halbgruppe wird als Neutralelement bezeichnet, wenn e*a=a und a*e=a für alle $a \in G$ erfüllt ist.
- (iii) Eine Halbgruppe mit mindestens einem Neutralelement bezeichnet man als Monoid.

Jede Halbgruppe besitzt höchstens ein Neutralelement.

Invertierbare Elemente in einem Monoid

Definition (1.12)

Sei (G, *) ein Monoid mit dem Neutralelement e_G . Ein Element $g \in G$ wird invertierbar in (G, *) genannt, wenn ein $h \in G$ mit $g * h = h * g = e_G$ existiert. Man nennt h in diesem Fall ein Inverses von g.

Rechenregeln für invertierbare Elemente

Proposition (1.13)

Sei (G, *) ein Monoid.

- (i) Jedes Element $g \in G$ besitzt höchstens ein Inverses; sofern es existiert, wird es mit g^{-1} bezeichnet.
- (ii) Seien $g, h \in G$ invertierbare Elemente. Dann sind auch die Elemente g*h und g^{-1} invertierbar, und es gilt $(g*h)^{-1} = h^{-1}*g^{-1}$ und $(g^{-1})^{-1} = g$.
- (iii) Das Neutralelement e_G ist invertierbar, und es gilt $e_G^{-1} = e_G$.

Beweis con Prop. 1.13, Tei (li) geg Monord (G,*), g. h investissions Elemente zeige: (1) h-+ g- ist Triverses was g+h (2) of 1st Thorses von g $z_{u}(1)$ zn überpsüfen (g*h)*(h'+g')=eand (ht gt) = (q + h) = e (g*h)*(1-xg-1) = g*(h*h-1)*g-1= g*exg-1 = g + g = 2 , zwite Gleiching analog Z1(2)

is and Grand de Datinition von g' offensichtlich

Unter einer Verknüpfung abgeschlossene Mengen

Definition (1.14)

Sei (X, \circ) eine Menge mit einer Verknüpfung. Eine Teilmenge $U \subseteq X$ wird abgeschlossen unter \circ genannt, wenn für alle $x, y \in U$ auch das Element $x \circ y$ in U liegt.

Die Gruppe der invertierbaren Elemente

Satz (1.15)

Sei (G,*) ein Monoid und $G^\times\subseteq G$ die Teilmenge der invertierbaren Elemente. Dann ist G^\times abgeschlossen unter der Verknüpfung *, und $(G^\times, *_{G^\times})$ ist eine Gruppe. Das Neutral-'element e_G von G ist zugleich das Neutralelement von $(G^\times, *_{G^\times})$.

Der Isomorphiebegriff

Definition (1.16)

Man bezeichnet zwei Gruppen (G,\cdot) und (H,*) als isomorph und schreibt $G\cong H$, wenn eine bijektive Abbildung $\phi:G\to H$ existiert, so dass

$$\phi(\mathbf{g} \cdot \mathbf{g}') = \phi(\mathbf{g}) * \phi(\mathbf{g}')$$

für alle $g, g' \in G$ erfüllt ist.

Beispiele für Isomorphien (Beweise folgen)

- (i) Es gilt $\mathbb{Z}/15\mathbb{Z}\cong\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- (ii) Jede Diedergruppe D_n (mit $n \ge 3$) ist isomorph zu einer 2n-elementigen Untergruppe von S_n .
- (iii) Für die Symmetriegruppen des Tetraeders gilt $\operatorname{Sym}^+(\mathbb{T}) \cong A_4$ und $\operatorname{Sym}(\mathbb{T}) \cong S_4$.
- (iv) Es gilt $\operatorname{Sym}^+(\mathbb{O}) \cong \operatorname{Sym}^+(\mathbb{W}) \cong S_4$ und $\operatorname{Sym}(\mathbb{O}) \cong \operatorname{Sym}(\mathbb{W}) \cong S_4 \times \mathbb{Z}/2\mathbb{Z}$ für die Symmetriegruppen von Würfel und Oktaeder.
- (v) Für die Symmetriegruppen von Dodekaeder und Ikosaeder gilt $\operatorname{Sym}^+(\mathbb{D}) \cong \operatorname{Sym}^+(\mathbb{I}) \cong A_5$ und $\operatorname{Sym}(\mathbb{D}) \cong \operatorname{Sym}(\mathbb{I}) \cong A_5 \times \mathbb{Z}/2\mathbb{Z}$.

Das Klassifikationsproblem

Definition (1.17)

Das Klassifikationsproblem für endliche Gruppen kann folgendermaßen formuliert werden: Gegeben ein $n \in \mathbb{N}$, bestimme alle Gruppen mit n Elementen bis auf Isomorphie.

Damit ist gemeint: Bestimme eine Zahl r(n) und Gruppen $G_1, G_2, ..., G_{r(n)}$ mit der Eigenschaft, dass jede Gruppe G mit |G| = n zu genau einer dieser Gruppen isomorph ist.

Ergebnisse der Klassifizierung

Im weiteren Verlauf der Vorlesung werden wir zeigen

- Ist p eine Primzahl, dann ist jede Gruppe G mit |G| = p isomorph zu $\mathbb{Z}/p\mathbb{Z}$. Es gilt also r(p) = 1.
- Für jede Primzahl p gilt: Jede Gruppe G mit $|G| = p^2$ ist entweder isomorph zu $\mathbb{Z}/p^2\mathbb{Z}$ oder isomorph zu $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Es gilt also $r(p^2) = 2$.
- Für jede ungerade Primzahl p gilt außerdem: Jede Gruppe der Ordnung 2p ist entweder isomorph zu $\mathbb{Z}/2p\mathbb{Z}$ oder zur Diedergruppe D_p . Es gilt also auch r(2p) = 2.

Gruppen der Ordnung ≤ 15 bis auf Isomorphie

n	<i>r</i> (<i>n</i>)	Gruppen bis auf Isomorphie
1	1	$\mathbb{Z}/1\mathbb{Z}$
2	1	$\mathbb{Z}/2\mathbb{Z}$
3	1	$\mathbb{Z}/3\mathbb{Z}$
4	2	$\mathbb{Z}/4\mathbb{Z},\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
5	1	$\mathbb{Z}/5\mathbb{Z}$
6	2	$\mathbb{Z}/6\mathbb{Z}, S_3$
7	1	$\mathbb{Z}/7\mathbb{Z}$
8	5	$\mathbb{Z}/8\mathbb{Z}, \ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \ (\mathbb{Z}/2\mathbb{Z})^3, \ D_4, \ Q_8$

Gruppen der Ordnung ≤ 15 bis auf Isomorphie (Forts.)

n	r(n)	Gruppen bis auf Isomorphie
9	2	$\mathbb{Z}/9\mathbb{Z},\ \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
10	2	$\mathbb{Z}/10\mathbb{Z},\ D_5$
11	1	$\mathbb{Z}/11\mathbb{Z}$
12	5	$\mathbb{Z}/12\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, \ D_6, \ A_4, \ \mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$
13	1	$\mathbb{Z}/13\mathbb{Z}$
14	2	$\mathbb{Z}/14\mathbb{Z}, D_7$
15	1	$\mathbb{Z}/15\mathbb{Z}$