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Zusammenfassung

Algebraische Strukturen wie Gruppen, Ringe und Körper bilden die unverzichtbare Grundlage für jedes
Teilgebiet der Mathematik, angefangen beim Lösen elementarer zahlentheoretischer Probleme oder al-
gebraischer Gleichungen, über die Klassifikation diskreter geometrischer Strukturen und topologischer
Räume bis hin zu fortgeschrittenen Bereichen wie der Algebraischen Geometrie oder der Harmonischen
Analysis. Auch in vielen Anwendungsgebieten, in der Informatik beispielsweise in der Kryptographie
und in der Theorie der Programmiersprachen, innerhalb der Physik etwa in der Klassischen Mechanik,
der Quantenmechanik und der Elementarteilchenphysik, spielen sie eine wichtige Rolle.

Jeder der drei oben genannten algebraischen Strukturen ist ein eigener Vorlesungsteil gewidmet, wobei
wir allerdings den theoretischen Konzepten, die in allen drei Gebieten auftreten (zum Beispiel Faktor-
strukturen und Homomorphiesätze), besondere Beachtung schenken. Beim Aufbau der Gruppentheorie
orientieren uns unter anderem am sog. Klassifikationsproblem, bei dem wir vor allem durch die zuletzt
behandelten Sylowsätze noch entscheidende Fortschritte erzielen. Bei der Ringtheorie stehen als Moti-
vation vor allem Probleme der klassischen Zahlentheorie im Vordergrund. Im letzten Teil der Vorlesung
befassen wir uns mit der Theorie der algebraischen Körpererweiterungen. Den krönenden Abschluss
der Algebra wird die (im Sommersemester behandelte) Galoistheorie bilden, bei der die Gruppen- und
die Körpertheorie miteinander verbunden werden. Im Einzelnen werden in der zweisemestrigen Vorle-
sung folgende Themen behandelt.

• Definition der algebraischen Grundstrukturen: Gruppen, Ringe und Körper

• Homomorphismen, Unter- und Faktorstrukturen, Konstruktion von Erweiterungen

• zyklische und abelsche Gruppen

• semidirekte Produkte und Auflösbarkeit

• Gruppenoperationen und Sylowsätze

• Kongruenzrechnung

• Teilbarkeit und eindeutige Primfaktorzerlegung

• endliche und algebraische Körpererweiterungen

• Fortsetzung von Körperhomomorphismen

• normale Körperweiterungen

• Theorie der endlichen Körper

• Galoistheorie und Anwendungen
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§ 1. Definition der Gruppen, Beispiele

Zusammenfassung. Das Ziel dieses Kapitels besteht darin, mit dem Gruppenbegriff, den wir schon aus der
Linearen Algebra kennen, besser vertraut zu werden. Zunächst betrachten wir eine große Anzahl konkre-
ter Beispiele von Gruppen: Gruppen als Bestandteile algebraischer Strukturen, Permutationsgruppen, lineare
Gruppen und Symmetriegruppen. Anschließend sehen wir uns an, wie der Begriff der Gruppe auf einfacheren
Konzepte, denen der Halbgruppe und des Monoids, aufgebaut ist. Mit Hilfe von direkten Produkten können
gegebene Gruppen zu komplexeren Gruppen zusammengesetzt werden. Zum Schluss erläutern wir noch ein
großes fernes Ziel der Gruppentheorie, die Klassifikation der Gruppen.

Wichtige Grundbegriffe

– Halbgruppen, Monoide und Gruppen

– Permutationsgruppe, symmetrische Gruppe

– Bewegung, Symmetriegruppe

– Abgeschlossenheit einer Teilmenge unter einer Verknüpfung

– direktes Produkt zweier Gruppen

Im gesamten ersten Teil der Vorlesung dreht sich alles um die folgende Definition, die bereits aus der Linearen Algebra
bekannt ist.

Definition 1.1 Eine Gruppe ist ein Paar (G, ∗ ) bestehend aus einer nichtleeren Menge G und
einer Verknüpfung ∗ auf G (also einer Abbildung G×G→ G), so dass die folgenden Bedingungen
erfüllt sind.

(i) Die Verknüpfung ist assoziativ, d.h. es gilt (a ∗ b) ∗ c = a ∗ (b ∗ c) für alle a, b, c ∈ G.

(ii) Es gibt ein ausgezeichnetes Element e ∈ G, genannt das Neutralelement der Gruppe, mit
der Eigenschaft, dass e ∗ a = a ∗ e = a für alle a ∈ G gilt.

(iii) Für jedes Element a ∈ G gibt es ein Element a−1 ∈ G, genannt das zu a inverse Element,
mit a ∗ a−1 = a−1 ∗ a = e.

Gilt darüber hinaus a ∗ b = b ∗ a für alle a, b ∈ G, dann spricht man von einer abelschen oder
auch einer kommutativen Gruppe.

Bevor wir uns mit dieser Definition genauer auseinandersetzen, sollten wir uns zunächst klarmachen, dass uns viele
konkrete Beispiele von Gruppen bereits bekannt sind.
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(1) Gruppen kommen als Bestandteile anderer, uns bereits bekannter algebraischer Strukturen, vor. Ist etwa
(R, + , · ) ein Ring, ist (R, +) eine abelsche Gruppe, mit dem Neutralelement 0R. Zum Beispiel ist (Z, +) eine
abelsche Gruppe.

(2) Wichtige Beispiele für abelsche Gruppen erhält man durch die bereits bekannten Restklassenringe Z/nZ. Für
jedes n ∈N ist (Z/nZ, +) eine abelsche Gruppe bestehend aus n Elementen. Hier ist 0̄= 0+nZ, die Restklasse
der Null, das Neutralelement.

(3) Ist (K , + · ) ein Körper, dann ist (K×, · ) eine Gruppe. Dabei bezeichnet K× die Menge K \ {0K}, also die Ge-
samtheit aller Körperelemente ungleich dem Nullelement 0K . Beispielsweise ist (C×, · ) eine abelsche Gruppe,
und für jede Primzahl p ist (F×p , · ) ist eine abelsche Gruppe mit p − 1 Elementen. (Wir erinnern daran, dass
für jede Primzahl p der Restklassenring Z/pZ ein Körper ist, den wir dann auch mit Fp bezeichnet hatten.)

(4) Ist K ein Körper und (V, + , · ) ein K-Vektorraum, dann ist (V, +) eine abelsche Gruppe. Beispielsweise ist
(R2, +) eine abelsche Gruppe, wobei + die Vektoraddition durch (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)
bezeichnet.

Mit den symmetrischen Gruppen sind uns aus der Linearen Algebra auch schon Beispiele für nicht-abelsche Gruppen
bekannt. Im Hinblick auf spätere Anwendungen führen wir hier einen etwas allgemeineren Begriff ein. Für jede
Menge X sei Abb(X ) die Menge der Abbildungen X → X .

Definition 1.2 Sei X eine Menge. Dann ist das Paar (Per(X ), ◦ ) bestehend aus der Teilmenge
Per(X ) ⊆ Abb(X ) der bijektiven Abbildungen X → X und der Komposition ◦ von Abbildungen ei-
ne Gruppe, die man als Permutationsgruppe der Menge X bezeichnet. Die Elemente von Per(X )
nennt man auch Permutationen von X .

Ist n ∈ N und Mn = {1, ..., n}, dann ist Sn = Per(Mn) die bereits aus der Lineare Algebra bekannte symmetrische
Gruppe. Wir haben in der Linearen Algebra die Gruppeneigenschaft nur für Sn nachgewiesen, aber der Beweis ist für
eine beliebige Permutationsgruppe Per(X ) derselbe: Zunächst erinnern wir daran, dass die Komposition σ◦τ zweier
bijektiver Abbildungen σ,τ : X → X wiederum eine bijektive Abbildung ergibt, so dass es sich bei ◦ tatsächlich um
eine Verknüpfung auf Per(X ) handelt. Auch wissen wir bereits, dass sich die Komposition von Abbildungen assoziativ
verhält, also (ρ ◦ σ) ◦ τ = ρ ◦ (σ ◦ τ) für alle ρ,σ,τ ∈ Per(X ) gilt. Der Grund dafür war, dass die Anwendung
der beiden Abbildungen links und rechts auf ein beliebiges Element x ∈ X jeweils übereinstimmend das Element
ρ(σ(τ(x))) ergibt.

Für jedes σ ∈ Per(X ) gilt jeweils σ ◦ idX = σ und idX ◦σ = σ. Auch dies überprüft man durch, dass man σ ◦ idX und
idX ◦σ auf ein beliebiges x ∈ X anwendet; das Ergebnis ist in beiden Fällen σ(x). Also ist idX das Neutralelement
der Gruppe (Per(X ), ◦ ). Schließlich gilt noch σ ◦ σ−1 = idX und σ−1 ◦ σ = idX für jedes σ ∈ Per(X ), wobei σ−1

jeweils die Umkehrabbildung bezeichnet. Dies folgt direkt aus der Definition der Umkehrabbildung. Die Gleichungen
zeigen, dass σ−1 jeweils das zu σ inverse Element ist.
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Wir geben einige Eigenschaften der symmetrischen Gruppe Sn an, die zum Teil in der Lineare Algebra hergeleitet
wurden, und die wir von nun an als bekannt voraussetzen.

(i) Die Gruppe Sn besteht aus n! Elementen.

(ii) Die Elemente der Gruppe Sn können in der sog. Tabellenschreibweise dargestellt werden: Sind a1, ..., an ∈ Mn

vorgegeben, dann verwenden wir den Ausdruck

σ =

�

1 2 · · · n
a1 a2 · · · an

�

zur Darstellung der Abbildung σ : Mn → Mn gegeben durch σ(k) = ak für 1 ≤ k ≤ n. Offenbar ist σ genau
dann in Sn enthalten, wenn jede Zahl aus Mn unter den Werten a1, ..., an genau einmal vorkommt.

(iii) Sei n ∈ N und k ∈ {2, ..., n}. Ein k-Zykel in Sn ist ein Element σ ∈ Sn mit der folgenden Eigenschaft: Es gibt
eine k-elementige Teilmenge {m1, ..., mk} ⊆ Mn, so dass

σ(x) =











mi+1 falls x = mi , 1≤ i < k

m1 falls x = mk

x sonst

für alle x ∈ Mn erfüllt ist. Für ein solches Element wird die Notation σ = (m1 ... mk) verwendet. Die 2-Zykel
in Sn bezeichnet man auch als Transpositionen.

(iv) Die Signumsfunktion ist eine Abbildung sgn : Sn → {±1}, die die Gleichung sgn(σ ◦ τ) = sgn(σ)sgn(τ) für
alle σ,τ ∈ Sn erfüllt. Ist σ ein k-Zykel, dann gilt sgn(σ) = (−1)k−1.

(v) Die Teilmenge An ⊆ Sn gegeben durch An = {σ ∈ Sn | sgn(σ) = +1} wird als alternierende Gruppe bezeichet.

Sind σ,τ ∈ An, dann gilt dasselbe für das Produkt σ ◦ τ, denn es gilt sgn(σ ◦ τ) = sgn(σ)sgn(τ) = (+1)(+1) = +1.
Die Gleichungskette

sgn(σ−1) = (+1)sgn(σ−1) = sgn(σ)sgn(σ−1) = sgn(σ ◦σ−1) = sgn(idRn) = +1

zeigt, dass auchσ−1 in An enthalten ist. Es lässt sich nun leicht zeigen, dass An mit der Komposition ◦ als Verknüpfung
tatsächlich ebenfalls eine Gruppe bildet.

Wir werden später mit Hilfsmitteln der Gruppentheorie beweisen, dass jedes Element aus Sn auf im wesentlichen
eindeutige Weise als Produkt disjunkter Zyklen dargestellt werden kann. Eine solche Darstellung bezeichnet man als
Zykelschreibweise. Die Zykelschreibweise ermöglicht es, die Elemente von Sn in Klassen einzuteilen und auf diese
Weise eine bessere Übersicht herzustellen.

Definition 1.3 Ist r ∈ N und sind k1, ..., kr ∈ N mit k1 ≥ ... ≥ kr ≥ 2, dann bezeichnet man
das Tupel (k1, ..., kr) als Zerlegungstyp eines Elements σ ∈ Sn, wenn σ als Produkt disjunkter
Zyklen der Längen (k1, ..., kr) dargestellt werden kann.

Beispielsweise ist σ = (1 2 3)(4 5)(6 7) ∈ S7 ein Element vom Zerlegungstyp (3,2, 2). Der Identität id wird per
Konvention das leere Tupel () als Zerlegungstyp zugeordnet.
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Beispielsweise sind die Elemente der Gruppe S3 durch die folgenden Tabellen gegeben.

id =

�

1 2 3
1 2 3

�

,

�

1 2 3
2 1 3

�

,

�

1 2 3
3 2 1

�

,

�

1 2 3
1 3 2

�

,

�

1 2 3
2 3 1

�

,

�

1 2 3
3 1 2

�

In Zykelschreibweise ermöglicht eine übersichtlichere Aufzählung der Elemente, wenn man diese nach Zerlegungstyp
ordnet; es ist

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

Auch die Elemente der Gruppe S4 lassen sich noch leicht in Zykelschreibweise angeben. Schreiben wir nacheinander
alle Elemente der Zerlegungstypen (), (2), (3), (4) und (2, 2) hin, so erhalten wir die Aufzählung

S4 = { id , (1 2) , (1 3) , (1 4) , (2 3) , (2 4) , (3 4) ,

(1 2 3) , (1 3 2) , (1 2 4) , (1 4 2) , (1 3 4) , (1 4 3) , (2 3 4) , (2 4 3) ,

(1 2 3 4) , (1 3 2 4) , (1 4 3 2) , (1 2 4 3) , (1 3 4 2) , (1 4 2 3) , (1 2)(3 4) , (1 3)(2 4) , (1 4)(2 3) }.

Zu beachten ist noch, dass die Zykelschreibweise nicht ganz eindeutig ist. So gilt in S4 beispielsweise

(1 2 3 4) =

�

1 2 3 4
2 3 4 1

�

= (2 3 4 1) ,

also bezeichnen die Schreibweisen (1 2 3 4) und (2 3 4 1) dasselbe Element der Gruppe S4.

Satz 1.4 Die Gruppe Sn ist für n≤ 2 abelsch und für n≥ 3 nicht abelsch.

Beweis: Im Fall n= 1 ist die Aussage klar, denn es gilt S1 = {id}. Für n= 2 besteht Sn aus den beiden Elementen id
und (1 2). Hier kann man die Gleichung σ ◦ τ = τ ◦σ für alle σ,τ ∈ S2 leicht „von Hand“ überprüfen, indem man
die vier Möglichkeiten einzeln durchgeht; beispielsweise ist (1 2) ◦ id = (1 2) = id ◦ (1 2). Für n ≥ 3 gilt dagegen
(1 2) ◦ (2 3) = (1 2 3) und (2 3) ◦ (1 2) = (1 3 2), und diese Elemente sind offenbar voneinander verschieden. □

Aus der Linearen Algebra sind uns noch weitere Beispiele für nicht-abelsche Gruppen bekannt.

(1) Ist n ∈N und K ein Körper, dann ist das Paar (GLn(K), · ) bestehend aus der Menge GLn(K) der invertierbaren
n×n-Matrizen über K mit der Multiplikation · von Matrizen als Verknüpfung eine Gruppe, die sog. allgemeine
lineare Gruppe über dem Körper K . Sie ist nur für n= 1 abelsch, ansonsten nicht-abelsch.

(2) Auch die Teilmenge SLn(K) bestehend aus den Matrizen A ∈ GLn(K) mit det(A) = 1K bildet mit der Multipli-
kation von Matrizen eine Gruppe. Man bezeichnet sie als spezielle lineare Gruppe. Auch sie ist für alle n≥ 2
nicht-abelsch.

(3) Über dem Körper K = R haben wir im dritten Semester noch für beliebiges n ∈ N die orthogonale Gruppe
O(n) kennengelernt. Diese besteht aus den orthogonalen Matrizen von GLn(R), also den Matrizen A mit der
Eigenschaft tA·A= En. Eine zur Orthogonalität äquivalente Bedingung kann, wie wir wissen, mit dem euklidi-
schen Standard-Skalarprodukt formuliert werden und lautet, dass 〈Av, Aw〉= 〈v, w〉 für alle Vektoren v, w ∈Rn

gilt. Die Matrizen der Teilmenge SO(n) =O(n)∩SLn(R) bilden ebenfalls mit der Multiplikation von Matrizen
eine Gruppe, die spezielle orthogonale Gruppe. In der Vorlesung hatten wir gesehen, dass beispielsweise
SO(3) aus Drehungen besteht (um eine beliebige Achse durch 0R3 , den Koordinatenursprung), und dass bei
O(3) die Spiegelungen an einer Ebene durch 0R3 hinzukommen.

— 6 —



(4) Über dem Körper K = C gibt es entsprechend die unitäre Gruppe U(n) = {A ∈ GLn(C) | tĀ · A = En}
und die spezielle unitäre Gruppe SU(n) = U(n) ∩ SLn(C). Die Elemente von U(n) werden auch als unitäre
Matrizen bezeichnet. Eine Matrix A∈ GLn(C) ist genau dann unitär, wenn 〈Av, Aw〉 = 〈v, w〉 für alle v, w ∈ Cn

erfüllt ist, wobei 〈·, ·〉 in diesem Fall das hermitesche Standard-Skalarprodukt gegeben durch 〈v, w〉=
∑n

j=1 v j w̄ j

bezeichnet.

Auch bei den allgemeinen und den speziellen linearen Gruppen kann man sich die Frage stellen, aus wievielen
Elemente diese bestehen. Ist K ein unendlicher Körper (z.B. K = R), dann ist die Elementezahl von GLn(K) und
SLn(K) ebenfalls unendlich. Wir werden später in der Körpertheorie zeigen, dass es für jede Primzahlpotenz q einen
im Wesentlichen eindeutig bestimmten Körper Fq im q Elementen gibt. (Vorsicht: Ist q keine Primzahl, dann stimmt
Fq nicht mit dem Restklassenring Z/qZ überein.) Es gilt nun

|GLn(Fq)| = q
1
2 n(n−1)

n
∏

k=1

(qk − 1) für alle n ∈N und jede Primzahlpotenz q.

Diese Gleichung kann man sich folgendermaßen klarmachen: Aus der Linearen Algebra wissen wir, dass eine Matrix
A ∈Mn(Fq) genau dann invertierbar ist, wenn ihre n Spaltenvektoren, die wir hier mit v1, ..., vn ∈ Fn

q bezeichnen
wollen, linear unabhängig sind, was wegen dimFn

q = n dazu äquivalent ist, dass diese Vektoren eine Basis des Fq-
Vektorraums Fn

q bilden. Der Basisergänzungssatz aus der Linearen Algebra besagt, dass wir jedes linear unabhängige
System von Vektoren zu einer Basis ergänzen können. Dies bedeutet, dass wir jede Basis von Fn

q dadurch aufbauen
können, dass wir die Vektoren v1, v2, ..., vn nacheinander geeignet wählen.

Wir überlegen uns nun, wieviele Möglichkeiten es für die Wahl einer Basis gibt. Für jeden Vektor v1 ∈ Fn
q ist {v1}

genau dann linear unabhängig, wenn v1 ̸= 0Fn
q

gilt. Dies bedeutet, dass wir qn − 1 Möglichkeiten haben, das erste
Element v1 unserer Basis zu wählen. Ist nun v1 bereits bewählt, so ist für jeden Vektor v2 die Menge {v1, v2} genau
dann linear unabhängig, wenn v2 nicht in 〈v1〉Fq

, dem von v1 aufgespannten Untervektorraum, enthalten ist. Da dieser
Untervektorraum aus q Elementen besteht, bleiben also qn−q Möglichkeiten für die Wahl von v2. Bei der Wahl von v3

sind entsprechend die q2 Elemente von 〈v1, v2〉Fq
ausgeschlossen usw. Auf diese Weise kommen wir auf

∏n−1
k=0(q

n−qk)
Möglichkeiten für das gesamte System v1, v2, ..., vn. Für den k-ten Faktor gilt qn − qk = qk(qn−k − 1). Schreiben wir
die Faktoren qk vor das Produkt, so erhalten wir die angegebene Formel, mit dem Vorfaktor q

∑n−1
k=0 k = q

1
2 (n−1)n, wobei

die Gleichheit
∏n−1

k=0(q
n−k − 1) =

∏n
k=1(q

k − 1) durch Umparametrisierung zu Stande kommt. Mit Hilfe von etwas
Gruppentheorie beweisen wir später noch die Gleichung

|SLn(Fq)| = q
1
2 n(n−1)

n
∏

k=2

(qk − 1).

Gruppen spielen unter anderem in der Geometrie, und hier besonders bei der Klassifikation geometrischer Strukturen,
eine wichtige Rolle. Auf diesen Aspekt soll nun etwas genauer eingegangen werden. Im Linearen Algebra-Teil des
dritten Semesters war uns der Begriff der Bewegung begegnet. Dabei handelte es sich um eine Abbildung φ :Rn→
Rn, unter der Abstände zwischen beliebigen gleich bleiben, d.h. es gilt ∥φ(v)−φ(w)∥ = ∥v − w∥ für alle v, w ∈Rn,
wobei ∥ · ∥ die bekannte eudklidische Standard-Norm auf dem Rn bezeichnet. Dort hatten wir auch erfahren, dass
für jede Bewegung φ jeweils ein eindeutig bestimmter Vektor u ∈Rn und eine eindeutig bestimmte Matrix A∈O(n)
existieren, so dass φ(v) = u+Av für alle v ∈Rn erfüllt ist. Wir verwenden für die Bewegung, die durch diesen Vektor
u und diese Matrix A gegeben ist, die Bezeichnung φu,A. In dem Fall, dass A in SO(n) liegt, hatten wir von einer
orientierungserhaltenden Bewegung gesprochen, ansonsten von einer orientierungsumkehrenden Bewegung.

— 7 —



Definition 1.5 Die Menge der Bewegungen imRn bildet zusammen mit der Komposition eine
Gruppe, die wir mit Bn bezeichnen. Die orientierungserhaltenden Bewegungen bilden ebenso
eine Gruppe; diese bezeichnen wir mit B+n .

Für den Nachweis der Gruppeneigenschaften müssen wir zunächst überprüfen, dass die Komposition zweier Bewe-
gungen wiederum eine Bewegung ist. Seien dazu A, A′ ∈O(n) und u, u′, v ∈Rn vorgegeben. Es gilt

(φu,A ◦φu′,A′)(v) = φu,A(u
′ + A′v) = u+ A(u′ + A′v) = (u+ Au′) + AA′v.

Dies zeigt, dass φu,A ◦φu′,A′ mit φu+Au′,AA′ übereinstimmt, und dies ist wiederum eine Bewegung, weil mit A und A′

auch AA′ ein Element von O(n) ist. Da sich die Komposition beliebiger Abbildungen assoziativ verhält, gilt auch in
Bn das Assoziativgesetz. Das Neutralelement in Bn ist durch die identische Abbildung idRn gegeben. Dass es sich
dabei um eine orthogonale Abbildung handelt, erkennt man daran, dass idRn = φ0Rn ,En

gilt und die Einheitsmatrix
En orthogonal ist. Schließlich müssen wir noch zeigen, dass jedes Element φu,A ∈ Bn (mit u ∈Rn und A∈ O(n)) ein
Inverses besitzt. Für alle v, w ∈Rn gilt die Äquivalenz

w= φu,A(v) ⇔ w= u+ Av ⇔ A−1w= A−1u+ v ⇔ v = A−1(−u) + A−1w ⇔ v = φA−1(−u),A−1 .

Dies zeigt, dass φA−1(−u),A−1 die Umkehrabbildung von φu,A ist, und weil mit A auch A−1 in O(n) liegt, handelt es sich
dabei um eine Bewegung. In der Gruppe Bn ist also φA−1(−u),A−1 das zu φu,A inverse Element. Nach demselben Schema
zeigt man, dass auch B+n eine Gruppe ist.

Definition 1.6 Ist T ⊆Rn eine beliebige Teilmenge, dann bezeichnet man

Sym(T ) = {φ ∈ Bn | φ(T ) = T}

als Symmetriegruppe von T . Die Elemente von Sym+(T ) = Sym(T ) ∩ B+n bezeichnet man als
orientierungserhaltende Symmetrien der Menge T .

Für alle φ,ψ ∈ Sym(T ) sind auch φ ◦ψ und φ−1 in Sym(T ) enthalten. Denn auf Grund der Gruppeneigenschaft
von Bn sind die beiden Abbildungen ebenfalls in Bn enthalten; außerdem gilt (φ ◦ψ)(T ) = φ(ψ(T )) = φ(T ) = T
und auf Grund der Bijektivität von φ auch φ−1(T ) = φ−1(φ(T )) = (φ−1 ◦ φ)(T ) = idRn(T ) = T . Der Nachweis
der Gruppeneigenschaften von Sym(T ) ist nun reine Routine. (Er wird sich im nächsten Kapitel noch etwas weiter
vereinfachen, wenn wir Sym(T ) als sog. Untergruppe von Bn erkennen.) Auch der Nachweis, dass Sym+(T ) eine
Gruppe ist, bereitet keine Schwierigkeiten.

Zu interessanten geometrischen Anwendungen kommt man nun, indem man Teilmengen T ⊆Rn mit einer bestimm-
ten geometrischen Bedeutung betrachtet. In der Analysis mehrerer Variablen haben wir den Begriff der konvexen
Teilmenge des Rn eingeführt. Eine Teilmenge T ⊆ Rn haben wir konvex genannt, wenn für alle v, w ∈ T jeweils die
Verbindungsstrecke [v, w] ganz in T enthalten ist. Ist X ⊆ Rn eine beliebige Teilmenge des Rn und sind T, T ′ ⊆ Rn

beliebige konvexe Mengen mit T ⊇ X und T ′ ⊇ X , dann ist auch T ∩ T ′ eine konvex Menge mit dieser Eigenschaft.

Die kleinste konvexe Teilmenge des Rn, die eine Teilmenge X ⊆Rn enthält, wird die konvexe Hülle von X genannt
und mit conv(X ) bezeichnet. Die konvexe Hülle einer endlichen Teilmenge vom Rn bezeichnet man als Polytop. Ist
X nicht in einem echten affinen Unterraum des Rn enthalten, spricht man von einem nicht ausgearteten Polytop.
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Definition 1.7 Sei n ∈N mit n≥ 3, und für 0≤ k < n sei der Punkt Pn,k ∈R2 gegeben durch
Pn,k = (cos( 2πk

n ), sin(
2πk

n )). Dann bezeichnen wir die konvexe Hülle der endlichen Punktmenge
{Pn,k | 0≤ k < n} als das regelmäßiges Standard-n-Eck ∆n. Die Symmetriegruppe Dn = Sym(∆n)
wird die n-te Diedergruppe genannt.

Es bezeichne ρ ∈ B+n die Drehung um den Koordinatenursprung 0R2 mit dem Winkel 2π
n und τ ∈ Bn die Spiegelung

an der x-Achse. Wie man leicht überprüft, bleibt die Punktmenge {Pn,k | 0 ≤ k < n} unter ρ und τ unverändert,
und daraus kann auch leicht ρ(∆n) = ∆n und τ(∆n) = ∆n abgeleitet werden. Dies bedeutet, dass ρ und τ in
Dn = Sym(∆n) enthalten sind. Auf Grund der Gruppeneinschaft liegen auch beliebige Kompositionen von ρ und τ
in Dn. Mit den Methoden der Diskreten Geometrie kann man zeigen, dass Dn aus genau 2n Elementen besteht; es gilt

Dn = {ρk | 0≤ k < n} ∪ {ρk ◦τ | 0≤ k < n}.

Wir werden später sehen, wie sich zumindest mit geringem Aufwand überprüfen lässt, dass die Elemente der Menge
rechts eine Gruppe bilden. Der erste Teil der Menge aus Drehungen; genauer gesagt ist ρk die Drehung um 0Rn mit
dem Winkel 2kπ

n . Bei den Abbildungen ρk◦τ handelt es sich um Spiegelungen unterschiedlichen Typs. Ist n ungerade,
dann durchläuft die Achse jeder Spiegelung durch eine Ecke und eine gegenüberliegende Kante des Polytops. Ist n
dagegen gerade, dann läuft die Spiegelungsachse entweder durch zwei gegenüberliegende Ecken oder durch zwei
gegenüberliegende Seiten von ∆n.

Dass die Abbildungen der Form ρk ◦ τ Spiegelungen sind, ist keineswegs offensichtlich, deshalb betrachten wir die
Sache etwas genauer. Für jedes α ∈ R sei Rα ∈ SO(2) die Matrix, welche die Drehung um 0R2 mit dem Winkel α
beschreibt, also

Rα =

�

cos(α) − sin(α)
sin(α) cos(α)

�

.

Wie man sich leicht anschaulich klar macht (oder auch nachrechnen kann), gilt Rα ◦Rβ = Rα+β und τ ◦Rα ◦τ= R−α
für beliebige α,β ∈R, wobei wir Rα der Einfachheit halber als Bezeichnung für die Abbildung v 7→ Rαv verwenden.
Nach Definition gilt ρk = R2kπ/n für 0≤ k < n.

Der Einfachheit halber beschränken wir uns auf den Fall, dass n ungerade ist. Sei k ∈Zmit 0≤ k < n. Die Spiegelung
an der Achse, die durch 0Rn und den Punkt Pn,k verläuft, ist gegeben durch ρk ◦ τ ◦ρ−k. Denn durch ρ−k wird der
Punkt Pn,k auf den Punkt Pn,0 der x-Achse gedreht, anschließend durch τ gespiegelt und anschließend der Punkt Pn,0

durch ρk wieder zurückbewegt. Wendet man die Gleichung τ◦Rα◦τ= R−α auf den Wert α= − 2kπ
n an, so erhält man

die Gleichung τ ◦ρ−k ◦ τ = ρk, was auf Grund der Identität τ2 = idR2 ⇔ τ−1 = τ zu τ ◦ρ−k = ρk ◦ τ umgeformt
werden kann. Einsetzen ergibt

ρk ◦τ ◦ρ−k = ρk ◦ρk ◦τ = ρ2k ◦τ.

Es gilt ρn = Rn
2π/n = R2π = idR2 . Wählen wir m ∈ {0,1} so, dass ℓ = 2k − mn die Bedingung 0 ≤ ℓ < n erfüllt,

dann gilt ρ2k = R2kπ/n = R2kπ/n−2mπ = R(2k−mn)π/n = R2ℓπ/n = ρℓ. Es gilt also ρk ◦ τ ◦ ρ−k = ρℓ ◦ τ. Damit ist
nachgewiesen, dass es sich bei dem Element ρℓ ◦ τ tatsächlich um eine Spiegelung von ∆n handelt. Wie man leicht
überprüft, durchläuft ℓ alle ganzen Zahlen mit 0 ≤ ℓ < n, wenn k denselben Bereich durchläuft (sofern n ungerade
ist). Dies zeigt, dass der zweite Teil der Menge von oben tatsächlich vollständig aus Spiegelungen besteht.
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Es gibt noch eine andere Möglichkeit, dies zu überprüfen. Wie ρ wird auch die Bewegung τ durch eine orthogonale
Matrix dargestellt, nämlich durch

S =

�

1 0
0 −1

�

.

Diese Matrix hat die Determinate −1, während für alle α ∈ R jeweils det(Rα) = +1 gilt. Die Abbildung ρℓ ◦ τ
besitzt nun die Darstellungsmatrix R2ℓπ/nS, und deren Determinante ist gleich det(R2ℓπ/nS) = det(R2ℓπ/n)det(S) =
(+1)(−1) = −1. Nun verwendet man die bekannte Tatsache, dass die orthogonalen Matrizen mit Determinante −1
genau die linearen Abbildungen sind, welche die Spiegelung bzgl. einer Achse durch 0R2 beschreiben. Die Matri-
zen dieser Form besitzen immer die beiden Eigenwerte ±1, und die Spiegelungsachse ist durch einen beliebigen
Eigenvektor zum Eigenwerte +1 gegeben.

Wir betrachten nun einige geometrisch interessante Polytope in Dimension 3. Ein Punkt, den man als Durchschnitt
eines Polytops P mit einer (affinen) Ebene erhält, wird als Ecke von von P bezeichnet. Eine Strecke, die als Durch-
schnitt von P mit einer Ebene zu Stande kommt, wird Kante von P genannt. Jede nichtleere Teilmenge, die als
Durchschnitt von P mit einer Ebene E zu Stande kommt, bei der der Rest P vollständig auf einer Seite von E liegt
und die weder eine Ecke noch eine Kante ist, wird als Seite von P bezeichnet. Wir bezeichnen zwei Teilmengen
S, T ⊆ R3 als kongruent, wenn ein φ ∈ Bn mit φ(S) = T existiert. Von grundlegender Bedeutung in der Geometrie
ist nun die folgende Definition.

Definition 1.8 Ein nicht ausgeartetes Polytop im R3 bezeichnet man als regulär oder auch
als Platonischen Körper, wenn all seine Seiten zueinander regelmäßige kongruente n-Ecke sind
und sich an jeder Ecke dieselbe Anzahl von Seiten treffen.

Zwei Teilmengen S, T ⊆R3 bezeichnet man als ähnlich, wenn ein Skalierungsfaktor r ∈R+ und ein φ ∈ Bn existie-
ren, so dass T = φ(rS) gilt. Dabei ist rS = {rp | p ∈ S} die Teilmenge des R3, die durch Skalierung von S mit dem
Faktor r zu Stande kommt. Seit der Antike ist bekannt, dass es bis auf Ähnlichkeit genau fünf Platonische Körper
gibt.

(1) Einen Tetraeder erhält man als konvexe Hülle der vier Punkte P1 = (1, 1,1), P2 = (1,−1,−1), P3 = (−1, 1,−1),
P4 = (−1,−1,1). Allgemein kommt eine Tetrader dadurch zu Stande, dass man über dem Schwerpunkt eines
gleichseitigen Dreiecks eine weitere Ecke hinzufügt und dabei die Höhe so wählt, dass alle Kanten gleich lang
werden. Jeder Tetraeder hat vier regelmäßige Dreiecke als Seiten, außerdem sechs Kanten und vier Ecken.

(2) Einen Oktader erhält man zum Beispiel als konvexe Hülle der sechselementigen Punktmenge bestehend aus
(±1,0, 0), (0,±1, 0), (0, 0,±1). Allgemein konstruiert man einen Oktaeder dadurch, dass man über und unter
dem Mittelpunkt eines Quadrats zwei weitere Ecken hinzufügt, wobei die Abstände so gewählt werden, dass
alle Kanten dieselbe Länge haben. Jeder Oktaeder hat acht Seiten, zwölf Kanten und sechs Ecken.

(3) Einen Würfel erhält man unter anderem als konvexe Hülle der achtelementigen Punktmenge bestehend aus
(±1,±1,±1) (d.h. man bildet alle acht Vorzeichenkombinationen). Geometrisch wird jeder Würfel dadurch
konstruiert, indem man von einem Quadrat im Raum ausgeht, durch Parallelverschiebung ein weiteres Qua-
drat bildet und dann die korrespondierenden Ecken miteinander verbindet, wobei der Verschiebungsvektor
so gewählt wird, dass die neu entstandenen Kanten auf den Quadraten senkrecht stehen und dieselbe Länge
wie die Seiten der Quadrate haben. Jeder Würfel besitzt sechs Seiten, zwölf Kanten und acht Ecken.
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(4) Einen Dodekaeder erhält man zum Beispiel als konvexe Hülle der 20 Punkte

(±τ,±τ,±τ), (±τ1,±1, 0), , (±1,0,±τ1), , (0,±τ1,±1) ,

wobei jeweils alle Vorzeichenkombinationen zu berücksichtigen sind, τ = 1
2 (
p

5+ 1) das Verhältnis des gol-
denen Schnitts bezeichnet und τ1 = τ + 1 ist. (Wenn eine Strecke s im Verhältnis τ : 1 in zwei Teilstrecken
a und b geteilt wird, dann gilt τ = a

b =
s
a .) Für eine geometrische Konstruktion geht man von einem regel-

mäßigen Fünfeck aus, setzt an jede Seite ein gleichartiges Fünfeck und fügt anschließend die sechs Fünfecke
zu einer Halbkugelschale zusammen. Zwei identische Halbkugelschalen dieser Form können dann zu einem
Dodekaeder zusammengesetzt werden. Jeder Dodekaeder besitzt 12 Seiten, 30 Kanten und 20 Ecken.

(5) Einen Ikosaeder erhält man unter anderem als konvexe Hülle der zwölf Punkte

(0,±1,±τ), (±1, 0,±τ), (±1,±τ, 0).

Für eine geometrische Konstruktion geht man von zwei parallel übereinanderliegenden, regelmäßigen Fünf-
ecken aus und verdreht diese in einem 36◦-Winkel gegeneinander. Jede Ecke des oberen Fünfecks wird mit
den zwei nächstgelegenen Ecken des unteren Fünfecks verbunden. Man erhält auf diese Weise zwischen den
beiden Fünfecken zehn gleichschenklige Dreiecke. Anschließend wird der Abstand zwischen den parallelen
Fünfecken so eingestellt, dass die zehn gleichschenkligen Dreicke zu gleichseitigen Dreiecken werden. Nun
setzt man noch einen Punkt senkrecht über den Mittelpunkt des oberen Fünfecks und verbindet diesen Punkt
mit den Eckpunkten des Fünfecks. Auf diese Weise erhält man fünf weitere Dreiecke. Die Höhe des neuen
Punkts wird so gewählt, dass die fünf Dreiecke zu gleichseitigen Dreiecken werden. Zum Schluss setzt man
einen Punkt unter das untere Fünfeck und erzeugt auf dieselbe Weise fünf weitere gleichseitige Dreiecke, die
an dem neuen Punkt anliegen. Jeder Ikosaeder besteht aus 20 Seiten, 30 Kanten und besitzt 12 Ecken.

Definition 1.9 Bezeichnet T einen beliebigen Tetraeder, dann nennt man Sym(T) eine Te-
traedergruppe und Sym+(T) eine eigentliche Tetraedergruppe. Ist O ein Oktaeder, dann wird
Sym(O) eine Oktaedergruppe und Sym+(O) eine eigentliche Oktaedergruppe. Entsprechend
werden (eigentliche) Würfelgruppen, Dodekaedergruppen und Ikosaedergruppen definiert.

Ein typische Element von Sym+(O) erhält man dadurch, dass man zwei gegenüberliegen Ecken, die Mittelpunkte
zweier gegenüberliegender Kanten oder die Mittelpunkte zweier gegenüberliegender Seiten durch Achsen mitein-
ander verbindet und dann Rotationen um diese Achse betrachtet, die das Polytop O in sich überführen. Auf diese
Weise erhält man sogenannte dreizählige bzw. zweizählige bzw. vierzählige Symmetrien. Jedes nicht orientierungs-
erhaltende Element aus Sym(O) kommt durch eine Spiegelung zu Stande, wobei die Spiegelungsebene durch zwei
gegenüberliegende Ecken, Kanten oder Seiten laufen kann.
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Nachdem wir nun eine Vielzahl konkreter Beispiele von Gruppen zu sehen bekommen haben, wenden wir nun wieder
allgemeineren, abstrakten Konzepten zu.

Definition 1.10 Seien G und H Gruppen. Dann bildet das kartesische Produkt G × H mit der
Verknüpfung ∗ gegeben durch

(g1, h1) ∗ (g2, h2) = (g1 g2, h1h2) für alle (g1, h1), (g2, h2) ∈ G ×H

ebenfalls eine Gruppe. Man nennt sie das (äußere) direkte Produkt von G und H. Sind G und
H abelsch, dann gilt dasselbe für (G ×H,∗).

Beweis: Zunächst beweisen wir das Assoziativgesetz. Seien (g1, h1), (g2, h2), (g3, h3) ∈ G × H vorgegeben. Nach
Definition der Verknüpfung ∗ und auf Grund der Assoziativität der Verknüpfungen von G und H erhalten wir

((g1, h1) ∗ (g2, h2)) ∗ (g3, h3) = (g1 g2, h1h2) ∗ (g3, h3) = ((g1 g2)g3, (h1h2)h3) =

(g1(g2 g3), h1(h2h3)) = (g1, h1) ∗ (g2 g3, h2h3) = (g1, h1) ∗ ((g2, h2) ∗ (g3, h3)).

Seien nun eG , eH die Neutralelemente der Gruppen G und H. Für alle (g, h) ∈ G × H gilt dann (g, h) ∗ (eG , eH) =
(geG , heH) = (g, h) und ebenso (eG , eH) ∗ (g, h) = (eG g, eHh) = (g, h). Dies zeigt, dass eG×H = (eG , eH) das Neutral-
element von (G ×H,∗) ist. Schließlich gilt auch (g, h) ∗ (g−1, h−1) = (g g−1, hh−1) = (eG , eH) = eG×H und (g−1, h−1) ∗
(g, h) = (g−1 g, h−1h) = (eG , eH) = eG×H . Dies zeigt, dass (g−1, h−1) jeweils ein Inverses von (g, h) ist, für alle
(g, h) ∈ G ×H. Insgesamt sind damit alle Gruppenaxiome verifiziert.

Beweisen wir nun noch die zusätzliche Aussage. Laut Annahme sind G und H abelsch. Seien (g1, h1), (g2, h2) ∈ G×H
vorgegeben. Dann gilt (g1, h1) ∗ (g2, h2) = (g1 g2, h1h2) = (g2 g1, h2h1) = (g2, h2) ∗ (g1, h1). □

Beispielsweise ist Z/2Z×Z/4Z eine achtelementige abelsche Gruppe, und S4×S5 ist eine nicht-abelche Gruppe be-
stehend aus (4!)·(5!) = 24·120= 2880 Elementen. Als nächstes sehen wir uns, auf welche Weise der Gruppenbegriff
auf einfacheren algebraischen Strukturen aufgebaut ist.

Definition 1.11

(i) Eine Halbgruppe ist ein Paar (G, ∗ ) bestehend aus einer nichtleeren Menge G und einer
assoziativen Verknüpfung ∗ auf G.

(ii) Ein Element e ∈ G der Halbgruppe wird als Neutralelement bezeichnet, wenn e ∗ a = a
und a ∗ e = a für alle a ∈ G erfüllt ist.

(iii) Eine Halbgruppe mit mindestens einem Neutralelement bezeichnet man als Monoid.

Jede Halbgruppe besitzt höchstens ein Neutralelement. Sei nämlich (G, ∗, ) eine Halbgruppe, und seien e, e′ Neu-
tralelemente von (G, ∗ ). Weil e Neutralelement ist, gilt a ∗ e = a für alle a ∈ G, insbesondere also e′ ∗ e = e′. Weil e′

Neutralelement ist, gilt e′ ∗ a = a für alle a ∈ G, also insbesondere e′ ∗ e = e. Insgesamt erhalten wir e′ = e′ ∗ e = e.
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Jedes Monoid (G, ∗ ) besitzt also ein eindeutig bestimmtes Neutralelement, für das wir, wie beiden Gruppen, die
Bezeichung e oder eG einführen.

Definition 1.12 Sei (G, ∗ ) ein Monoid mit dem Neutralelement eG . Ein Element g ∈ G wird
invertierbar in (G, ∗ ) genannt, wenn ein h ∈ G mit g ∗ h= h ∗ g = eG existiert. Man nennt h in
diesem Fall ein Inverses von g.

Wir formulieren einige einfache Regeln für das Rechnen mit inversen Elementen.

Proposition 1.13 Sei (G, ∗ ) ein Monoid.

(i) Jedes Element g ∈ G besitzt höchstens ein Inverses; sofern es existiert, wird es mit g−1

bezeichnet.

(ii) Seien g, h ∈ G invertierbare Elemente. Dann sind auch die Elemente g ∗h und g−1 inver-
tierbar, und es gilt (g ∗ h)−1 = h−1 ∗ g−1 und (g−1)−1 = g.

(iii) Das Neutralelement eG ist invertierbar, und es gilt e−1
G = eG .

Beweis: zu (i) Nehmen wir an, dass h und h′ beides Inverse von g sind. Dann gilt g ∗ h = eG und h′ ∗ g = eG , und
es folgt h= eG ∗ h= (h′ ∗ g) ∗ h= h′ ∗ (g ∗ h) = h′ ∗ eG = h′.

zu (ii) Die Gleichungen (h−1 ∗ g−1)∗(g ∗h) = h−1 ∗(g−1 ∗ g)∗h= h−1 ∗eG ∗h= h−1 ∗h= eG und (g ∗h)∗(h−1 ∗ g−1) =
g ∗ (h ∗ h−1) ∗ g−1 = g ∗ eG ∗ g−1 = g ∗ g−1 = eG zeigen, dass h−1 ∗ g−1 das (eindeutig bestimmte) Inverse von G ist.
Ebenso sieht man anhand der Gleichungen g−1 ∗ g = eG und g ∗ g−1 = eG , dass es sich bei g um das Inverse von g−1

handelt.

zu (iii) Wie unter (ii) folgt dies direkt aus der Gleichung eG ∗ eG = eG . □

Als Folge dieser Proposition ist nun klar, dass die Gruppen genau diejenigen Monoide sind, bei denen alle Elemente
invertierbar sind. Wie wir nun aber sehen werden, lässt sich aus jedem Monoid stets eine Gruppe gewinnen.

Definition 1.14 Sei (X ,◦) eine Menge mit einer Verknüpfung. Eine Teilmenge U ⊆ X wird
abgeschlossen unter ◦ genannt, wenn für alle x , y ∈ U auch das Element x ◦ y in U liegt.

Ist U ⊆ X abgeschlossen unter ◦, dann ist die Abbildung ◦U : U × U → X , die man durch Einschränkung von ◦ auf
die Teilmenge U × U ⊆ X × X erhält, zugleich eine Abbildung U × U → U , also eine Verknüpfung auf U .

Beispielsweise ist die Teilmenge N ⊆ Z abgeschlossen unter der Addition und der Multiplikation auf Z, denn die
Summe und das Produkt von zwei positiven ganzen Zahlen ist wiederum positiv. Dagegen ist die Menge A= {1, 2,3}
nicht abgeschlossen unter der Addition aufZ, denn es gilt 1, 3 ∈ A, aber das Element 4= 1+3 ist nicht in A enthalten.
Die Menge A ist auch nicht abgeschlossen unter der Multipliktation, denn einerseits gilt 2, 3 ∈ A, andererseits aber
6= 2 · 3 /∈ A.
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Satz 1.15 Sei (G, ∗ ) ein Monoid und G× ⊆ G die Teilmenge der invertierbaren Elemente. Dann
ist G× abgeschlossen unter der Verknüpfung ∗, und (G×, ∗G× ) ist eine Gruppe. Das Neutralele-
ment eG von G ist zugleich das Neutralelement von (G×, ∗G× ).

Beweis: Nach Proposition 1.13 (ii) ist das Produkt zweier invertierbarer Elemente wiederum invertierbar. Die Teil-
menge G× ⊆ G ist also unter ∗ abgeschlossen, und somit existiert, wie oben erläutert, eine Verknüpfung ∗G× auf G×.
Wir überprüfen nun für (G×, ∗G× ) die Gruppenaxiome. Das Assoziativgesetz ist in G× erfüllt, denn für alle g, h, k ∈ G×

gilt

g ∗G× (h ∗G× k) = g ∗ (h ∗ k) = (g ∗ h) ∗ k = (g ∗G× h) ∗G× k.

Das Assoziativgesetz „überträgt“ sich also von (G,∗) auf (G,∗G×). Nach Proposition 1.13 (iii) ist eG in G× enthalten,
und für alle g ∈ G× gilt g ∗G× eG = g ∗ eG = g und eG ∗G× g = eG ∗ g = g. Dies zeigt, dass eG in der Halbgruppe
(G×,∗G×) ein Neutralelement ist. Somit ist (G×, ∗G× ) ein Monoid, mit Neutralelement eG× = eG .

Wiederum auf Grund von Proposition 1.13 (ii) folgt aus g ∈ G× auch g−1 ∈ G×. Wegen g ∗G× g−1 = g ∗ g−1 = eG

und g−1 ∗G× g = g−1 ∗ g = eG ist g−1 das Inverse von g in (G×, ∗ ). Jedes Element aus G× ist also im Monoid (G×, ∗ )
invertierbar. Somit ist (G×,∗G×) eine Gruppe. □

Der Einfachheit halber wird die Verknüpfung der Gruppe (G×,∗G×) von nun an einfach wieder mit ∗ bezeichnet.

Wie wir anhand der bisherigen Beispiele bereits deutlich geworden ist, werden bei Halbgruppen, Monoiden und
Gruppen in zwei unterschiedlichen Schreibweisen verwendet, die von der Form des Verknüpfungssymbols abhängen.
Bei einem „punktähnlichen“ Symbol wie · oder ⊙ bezeichnet man das Neutralelement eines Monoids neben eG auch
mit 1G , und die Schreibweise für das Inverse eines Elements g ist stets g−1. Man spricht in diesem Zusammenhang von
multiplikativer Schreibweise. Häufig wird ein punktähnliches Verknüpfungssymbol auch weggelassen, das Element
g · h also mit gh bezeichnet.

Bei einem „plusartigen“ Verknüpfungssymbol wie + oder ⊕ verwendet man für das Neutralelement die Notation 0G ,
und die Schreibweise für das Inverse von g ist −g statt g−1. Die Gleichungen (g · h)−1 = h−1 · g−1 und (g−1)−1 = g
haben bei additiver Schreibweise also die Form −(g + h) = (−h) + (−g) und −(−g) = g. Hier spricht man von
additiver Schreibweise; sie ist nur bei abelschen Halbgruppen (bzw. Monoiden oder Gruppen) gebräuchlich.

Ein wichtiges (und zugleich noch weit entferntes) Ziel der Algebra besteht darin, für jede Zahl n ∈N „alle“ Gruppen
mit n Elementen zu bestimmen. Ein grundsätzliches Problem besteht aber darin, dass es einerseits unüberschaubar
viele n-elementige Mengen M gibt, auf den man jeweils eine Gruppenstruktur definieren könnte (durch Angabe
einer Verknüpfung · , einem Neutralelement e ∈ M und einer Inversenabbildung M → M , a 7→ a−1), dass sich aber
andererseits viele dieser Gruppen anhand ihrer Strukturmerkmale gar nicht unterscheiden. (Was für Merkmale das
sein können, ist das Thema der folgenden Kapitel.) Um diesem Problem zu begegnen, für man den Isomorphiebegriff
in die Gruppentheorie ein.

Definition 1.16 Man bezeichnet zwei Gruppen (G, · ) und (H, ∗ ) als isomorph und schreibt
G ∼= H, wenn eine bijektive Abbildung φ : G→ H existiert, so dass φ(g · g ′) = φ(g) ∗φ(g ′) für
alle g, g ′ ∈ G erfüllt ist.
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Mit Hilfe des Chinesischen Restsatzes werden wir beispielsweise zeigen können, dass die GruppenZ/15Z undZ/3Z×
Z/5Z zueinander isomorph sind. Durch die Hilfsmittel, die wir im Kapitel über Gruppenoperationen entwickeln
werden, werden wir bezüglich der Diedergruppen und der Symmetriegruppen der platonischen Körper zeigen können

(i) Jede Diedergruppe Dn (mit n≥ 3) ist isomorph zu einer 2n-elementigen Untergruppe von Sn.

(ii) Für die Symmetriegruppen des Tetraeders gilt Sym+(T)∼= A4 und Sym(T)∼= S4.

(iii) Es gilt Sym+(O)∼= Sym+(W)∼= S4 und Sym(O)∼= Sym(W)∼= S4×Z/2Z für die Symmetriegruppen von Würfel
und Oktaeder.

(iv) Für die Symmetriegruppen von Dodekaeder und Ikosaeder gilt Sym+(D) ∼= Sym+(I) ∼= A5 und Sym(D) ∼=
Sym(I)∼= A5 ×Z/2Z.

Dass die Symmetriegruppe von Würfel und Oktaeder bzw. Dodekaeder und Ikosaeder isomorph sind, hat folgenden
Grund: Jedem nicht-ausgearteten Polytop P mit dem Nullpunkt 0R3 in seinem Inneren kann mit Hilfe des euklidischen
Skalarprodukts durch

P∨ = {x ∈R3 | 〈x , y〉 ≤ 1∀y ∈ P}

ein sogenanntes duales Polytop zugeordnet werden. Dieses ist ebenfalls nicht-ausgeartet und enthält 0R3 als inneren
Punkt. Jede Ecke von P entspricht einer Seite von P∨, jede Seite von P entspricht einer Ecke von P∨, und es gibt
eine bijektive Korrespondenz zwischen den Kanten von P und denen von P∨. Es ist relativ leicht zu sehen, dass stets
P und P∨ isomorphe Symmetriegruppen besitzen, und dass (P∨)∨ = P gilt. Durch Dualisierung eines Würfels erhält
man einen Oktaeder, und ein Dodekaeder wird durch diesen Vorgang in ein Ikosaeder überführt. Ein Tetrader geht
durch Dualisierung in einen anderen Tetraeder über.

Wie wir sehen werden, haben stimmen zwei isomorphe Gruppen bezüglich jedes Strukturmerkmals überein. Dazu
gehört zum Beispiel die Anzahl der Untegruppen und Normalteiler, die Anzahl der Elemente bestimmter Ordnung
und Eigenschaften wie „zyklisch“, „abelsch“ oder „auflösbar“, um nur ein paar der Merkmale zu nennen, mit denen
wir uns im weiteren Verlauf befassen. Die Frage, welche „wesentlich voneinander verschiedenen“ Untergruppen einer
bestimmten Ordnung n es gibt, lässt sich mit dem Isomorphiebegriff folgendermaßen konkretisieren.

Definition 1.17 Das Klassifikationsproblem für endliche Gruppen kann folgendermaßen
formuliert werden: Gegeben ein n ∈N, bestimme alle Gruppen mit n Elementen bis auf Isomor-
phie. Damit ist gemeint: Bestimme eine Zahl r(n) und Gruppen G1, G2, ..., Gr(n) mit der Eigen-
schaft, dass jede Gruppe G mit |G|= n zu genau einer dieser Gruppen isomorph ist.

Aus der Formulierung ergibt sich unmittelbar, dass in der Liste der r(n) Gruppen für 1≤ i, j ≤ r(n) nur dann Gi
∼= G j

gilt, wenn i = j ist. Mit Hilfe der Theorie, die wir hier entwickeln, werden wir zeigen können

• Ist p eine Primzahl, dann ist jede Gruppe G mit |G|= p isomorph zu Z/pZ. Es gilt also r(p) = 1.

• Für jede Primzahl p gilt: Jede Gruppe G mit |G| = p2 ist entweder isomorph zu Z/p2Z oder isomorph zu
Z/pZ×Z/pZ. Es gilt also r(p2) = 2.

• Für jede ungerade Primzahl p gilt außerdem: Jede Gruppe der Ordnung 2p ist entweder isomorph zu Z/2pZ
oder zur Diedergruppe Dp. Es gilt also auch r(2p) = 2.
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Des Weiteren werden wir in der Lage sein, alle Gruppen mit ≤ 15 Elementen bis auf Isomorphie zu bestimmen. Das
Ergebnis kann in der folgenden Tabelle zusammengefasst werden.

n r(n) Gruppen bis auf Isomorphie

1 1 Z/1Z

2 1 Z/2Z

3 1 Z/3Z

4 2 Z/4Z, Z/2Z×Z/2Z
5 1 Z/5Z

6 2 Z/6Z, S3

7 1 Z/7Z

8 5 Z/8Z, Z/4Z×Z/2Z, (Z/2Z)3, D4, Q8

9 2 Z/9Z, Z/3Z×Z/3Z
10 2 Z/10Z, D5

11 1 Z/11Z

12 5 Z/12Z, Z/2Z×Z/6Z, D6, A4, Z/3Z⋊Z/4Z
13 1 Z/13Z

14 2 Z/14Z, D7

15 1 Z/15Z

Dabei bezeichnet Q8 die sog. Quaternionengruppe bestehend aus der achtelementigen Menge {±E,±I ,±J ,±K} ⊆
GL2(C) mit den Matrizen

E =

�

1 0
0 1

�

, I =

�

−i 0
0 i

�

, J =

�

0 −1
1 0

�

und K =

�

0 i
i 0

�

.

Bei Z/3Z⋊Z/4Z handelt es sich um ein semidirektes Produkt, eine Verallgemeinerung des direkten Produkts aus
diesem Kapitel, das wir zu einem späteren Zeitpunkt noch definieren werden.
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§ 2. Untergruppen und der Satz von Lagrange

Zusammenfassung. Eine Untergruppe ist eine Teilmenge U einer Gruppe G mit der Eigenschaft, dass eG in
U liegt, und mit g, h ∈ U auch gh und g−1 in U enthalten sind. Durch diese Bedingungen ist sichergestellt,
dass auch U die Struktur einer Gruppe besitzt. Jeder Teilmenge S einer Gruppe G kann eine Untergruppe
〈S〉 zugeordnet werden. Es handelt sich dabei um die kleinste Untergruppe von G, die S enthält. Oft reicht
eine recht kleine Teilmenge S aus, um sogar ganz G zu erzeugen; bei den symmetrischen Gruppen Sn genügt
beispielsweise eine zweielementige Menge. Untergruppen, die von einem einzigen Element erzeugt werden,
nennt man zyklisch.

Der Satz von Lagrange besagt, dass bei einer endlichen Gruppe G die Ordnung jeder Untergruppe U ein Teiler
von |G| ist. Der Beweis beruht auf der Beobachtung, dass jede Untergruppe U eine Zerlegung der Gruppe in
gleich große Teilmengen ermöglicht, die sog. Links- und Rechtsnebenklassen der Untergruppe. Wir wiederho-
len den bereits aus der Linearen Algebra bekannten Zusammenhang zwischen Zerlegungen und Äquivalenz-
relationen. Für den praktischen Umgang mit Nebenklassenzerlegungen ist das Konzept der Repräsentantensy-
steme hilfreich.

Wichtige Grundbegriffe

– n-te Potenz eines Gruppenelements (n ∈Z) ´

– Definition der Untergruppen

– Erzeugendensysteme einer Gruppe

– zyklische Gruppe

– Konjugation von Gruppenelementen

– Links- und Rechtsnebenklassen einer Untergruppe

– Repräsentantensystem

– Index (G : U) einer Untergruppe

Zentrale Sätze

– Gruppen-Eigenschaft der Untergruppen

– Existenz und Eindeutigkeit der von einer Teilmenge
S ⊆ G erzeugten Untergruppe 〈S〉

– Vertauschbarkeit von Permutationen mit disjunktem
Träger

– Satz von Lagrange

– Kleiner Satz von Fermat

Bereits in der Analysis-Vorlesung wurde die n-te Potenz eines Körperelements für alle n ∈Z definiert. Die Definition
lässt sich problemlos auf die Elemente einer Halbgruppe bzw. eines Monoids übertragen.

Definition 2.1 Ist (G, ∗ ) eine Halbgruppe und g ∈ G ein beliebiges Element, dann definiert
man rekursiv g1 = g und gn+1 = gn ∗ g für alle n ∈ N. Ist (G, ∗ ) ein Monoid, dann setzt man
g0 = eG . Ist g darüber hinaus invertierbar, dann setzt man g−n = (gn)−1 für alle n ∈N und hat
damit insgesamt gn für alle n ∈Z definiert.

— 17 —



Lemma 2.2 Sei (G, ∗ ) eine Halbgruppe.

(i) Für alle g ∈ G und m, n ∈N gilt gm ∗ gn = gm+n und (gm)n = gmn.

(ii) Sind g, h ∈ G vertauschbare Elemente, gilt also g ∗h= h∗ g, dann folgt (g ∗h)n = gn ∗hn

für g, h ∈ G und n ∈N.

(iii) Ist allgemeiner {g1, ..., gr , h1, ..., hr} eine Menge in G bestehend aus paarweise vertausch-
baren Elementen (mit r ∈N), dann gilt die Regel

(g1 ∗ ... ∗ gr) ∗ (h1 ∗ ... ∗ hr) = (g1 ∗ h1) ∗ ... ∗ (gr ∗ hr)

und außerdem (g1 ∗ ... ∗ gr)m = gm
1 ∗ ... ∗ gm

r .

In einem Monoid gelten alle Regeln entsprechend für m, n ∈N0, im Falle invertierbarer Elemente
g, h für m, n ∈Z.

Den Beweis dieses Lemmas behandeln wir in den Übungen.

Liegt die Halbgruppe (G,+) in additiver Schreibweise vor, dann schreibt man ng statt gn. Die rekursive Definition
der n-ten Potenz lautet dann 1 · g = g und (n+ 1)g = ng + g, und die übrigen Rechenregeln nehmen die folgende
Form an.

mg + ng = (m+ n)g , n(mg) = (mn)g , n(g + h) = ng + nh ,

(g1 + ...+ gr) + (h1 + ...+ hr) = (g1 + h1) + ...+ (gr + hr) , g1 + ...+ gr = gr + ...+ g1 ,

m(g1 + ...+ gr) = mg1 + ...+mgr .

Man beachte, dass die dritte bis sechste Regel wiederum die Vertauschbarkeit der Elemente erfordert. Allerdings
hatten wir ja bereits bemerkt, dass die additive Schreibweise nur bei kommutativen Strukturen verwendet wird.

Definition 2.3 Sei (G, ·) eine Gruppe. Eine Teilmenge U ⊆ G wird Untergruppe von G genannt,
wenn eG in U liegt und für alle a, b ∈ U auch die Elemente a · b und a−1 in U liegen.

Die Schreibweise U ≤ G bedeutet, dass U eine Untergruppe von G ist.
Wir ergänzen die Definition um zwei Bemerkungen.

(1) In der Definition enthalten ist die Bedingung, dass U eine unter der Verknüpfung · abgeschlossene Teilmenge
ist. Wie in § 1 ausgeführt, erhält man somit durch Einschränkung eine Verknüpfung ·U auf U .

(2) Unmittelbar aus Definition ergibt sich auch, dass für alle a ∈ U und m ∈ Z auch am in U enthalten ist, und
das für jedes r ∈N mit a1, ..., ar ∈ U auch das Produkt a1 · ... · ar in U enthalten ist. Beide Aussagen zeigt man
durch einfache Induktionsbeweise.
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An die Bemerkung (1) schließt sich folgende Feststellung an, durch den Begriff „Untergruppe“ letztlich rechtfertigt.

Proposition 2.4 Das Paar (U , ·U) ist eine Gruppe.

Beweis: Die Verknüpfung ·U stimmt auf ihrem gesamten Definitionsbereich mit · überein. Wieder überträgt sich das
Assoziativgesetz von (G, ·) auf (U , ·U), d.h. für alle a, b, c ∈ U gilt (a ·U b) ·U c = (a · b) · c = a · (b · c) = a ·U (b ·U c)
für alle a, b, c ∈ U . Auf Grund der Voraussetzung eG ∈ U und wegen eG ·U a = eG · a = a, a ·U eG = a · eG = a ist
eG ein Neutralelement der Halbgruppe (U , ·U); die Halbgruppe ist also ein Monoid. Für jedes a ∈ U ist auch a−1 in
U enthalten. Die Gleichungen a ·U a−1 = a · a = eG und a−1 ·U a = a−1 · a = eG zeigen jeweils, dass a im Monoid
(U , ·U) ein invertierbares Element ist, und das Inverse von a in (G, ·) zugleich das Inverse von a in (U , ·U). Insgesamt
ist (U , ·U) also tatsächlich eine Gruppe. □

Bereits im ersten Kapitel sind uns eine Vielzahl von Untergruppen begegnet.

(i) Ist G eine beliebige Gruppe, dann sind {eG} und G Untergruppen von G. Man bezeichnet {eG} auch als die
triviale Untergruppe von G. Für beide Mengen kontrolliert man unmittelbar, dass die Untergruppen-Bedin-
gungen erfüllt sind.

(ii) Die Gruppe (Z, +) ist eine Untergruppe von (Q, +), und diese wiederum ist eine Untergruppe von (R, +).

(iii) Für jedes n ∈N ist die alternierende Gruppe An eine Untergruppe der symmetrischen Gruppe Sn. Des Weiteren
ist die vierelementige Menge

V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

ihrerseits eine Untergruppe von A4. Man nennt sie die Kleinsche Vierergruppe. Zum Nachweis der Untergruppen-
Eigenschaft bemerken wir zunächst, dass das Neutralelement id von A4 in V4 liegt. Die Verknüpfungstabelle

◦ id (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)
id id (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

(1 2)(3 4) (1 2)(3 4) id (1 4)(2 3) (1 3)(2 4)
(1 3)(2 4) (1 3)(2 4) (1 4)(2 3) id (1 2)(3 4)
(1 4)(2 3) (1 4)(2 3) (1 3)(2 4) (1 2)(3 4) id

hat nur Einträge in V4; dies zeigt, dass V4 eine bezüglich ◦ abgeschlossene Teilmenge von A4 ist. Außerdem
rechnet man unmittelbar nach, dass

((1 2)(3 4))2 = ((1 3)(2 4))2 = ((1 4)(2 3))2 = id

gilt und somit neben id auch jedes andere Element in V4 sein eignes Inverses ist. Für jedes σ ∈ V4 gilt also
insbesondere σ−1 ∈ V4, wodurch auch die letzte Untergruppen-Eigenschaft nachgewiesen ist.

(iv) Die spezielle lineare Gruppe SLn(K) ist eine Untergruppe der allgemeinen linearen Gruppe GLn(K) (für jeden
Körper K und n ∈ N). Ebenso ist O(n) eine Untergruppe von GLn(R), und U(n) ist eine Untergruppe von
GLn(C).

(v) Die Gruppe Bn der Bewegungen ist eine Untergruppe von Per(Rn), und B+n ist eine Untergruppe von Bn, und
wiederum auch von Per(Rn).
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(vi) Für jede Teilmenge T ⊆Rn ist die Symmetriegruppe Sym(T ) eine Untergruppe von Bn, und Sym+(T ) ist eine
Untergruppe von B+n .

Um die Struktur einer Gruppe G zu verstehen, ist es wichtig, einen Überblick über die Untergruppen von G zu
erhalten. Als nächstes befassen wir uns deshalb mit der Frage, wie sich die Untergruppen auf möglichst effiziente
Weise spezifieren lassen. Dies führt uns auf den Begriff des Erzeugendensystems.

Proposition 2.5 Sei (G, ·) eine Gruppe, und sei (Ui)i∈I eine Familie von Untergruppen von G.
Dann ist auch U =

⋂

i∈I Ui eine Untergruppe von G.

Beweis: Weil jedes Ui eine Untergruppe von (G, ·) ist, gilt eG ∈ Ui für alle i ∈ I und damit auch eG ∈ U . Seien nun
a, b ∈ U vorgegeben. Dann gilt a, b ∈ Ui für alle i ∈ I , und aus der Untergruppe-Eigenschaft von Ui folgt jeweils
ab ∈ Ui und a−1 ∈ Ui , für jedes i ∈ I . Daraus wiederum folgt ab ∈ U und a−1 ∈ U . □

In vielen Situationen ist es wünschenswert, Untergruppen auf möglichst kurze und einfache Art und Weise zu spezi-
fizieren. Eine einfache Möglichkeit ist die Beschreibung von Untergruppen durch Erzeugendensysteme.

Satz 2.6 Sei G eine Gruppe und S ⊆ G eine Teilmenge. Dann gibt es eine eindeutig bestimmte
Untergruppe U von G mit den folgenden Eigenschaften.

(i) U ⊇ S

(ii) Ist V eine weitere Untergruppe von G mit V ⊇ S, dann folgt V ⊇ U .

Beide Bedingungen lassen sich zusammenfassen in der Aussage, dass U die kleinste Untergruppe
von G ist, die S als Teilmenge enthält.

Beweis: Existenz: Sei (Ui) die Familie aller Untergruppen von G mit Ui ⊇ S. Dann ist nach Proposition 2.5 auch
U =

⋂

i∈I Ui eine Untergruppe von G, und aus Ui ⊇ S für alle i ∈ I folgt U ⊇ S. Sei nun V eine weitere Untergruppe
von G mit V ⊇ S. Dann gilt V = U j für ein j ∈ I , und weil nach Definition U ⊆ Ui für alle i ∈ I gilt, folgt V ⊇ U .

Eindeutigkeit: Seien U , U ′ zwei Untergruppen von G, die beide (i) und (ii) erfüllen. Dann gilt U ⊇ S und U ′ ⊇ S.
Aus der Eigenschaft (ii) für U folgt U ′ ⊇ U , und aus Eigenschaft (ii) für U ′ folgt U ⊇ U ′, insgesamt also U = U ′. □

Definition 2.7 Die Untergruppe U aus Satz 2.6 wird die von S erzeugte Untergruppe genannt
und mit 〈S〉 bezeichnet. Ist V eine beliebige Untergruppe von G, dann wird jede Teilmenge T
von G mit V = 〈T 〉 ein Erzeugendensystem von V genannt.

Ist S eine einelementige Teilmenge einer Gruppe G, S = {g} für ein g ∈ G, dann verwendet man die Notation 〈g〉 an
Stelle der korrekten, aber umständlichen Schreibweise 〈{g}〉. Auch bei endlichen Mengen mit mehr Elementen wird
häufig an Stelle von 〈{g1, ..., gn}〉 die einfachere Notation 〈g1, ..., gn〉 verwendet. Wir betrachten nun eine Reihe von
Beispielen für Erzeugendensysteme von Untergruppen.
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(i) In jeder Gruppe G gilt 〈∅〉 = {eG}. Denn wie wir bereits festgestellt haben, ist {eG} eine Untergruppe, und
diese enthält trivialerweise ∅ als Teilmenge. Andererseits ist eG in jeder Untergruppe U von G enthalten, also
ist {eG} eine Teilmenge jeder Untergruppe V von G mit V ⊇∅.

(ii) Es ist leicht zu sehen, dass die Gruppe (Z,+) von der einelementigen Menge {1} erzeugt wird, denn jedes
Element k ∈ Z kann in der Form k · 1 dargestellt werden, wobei k · 1 die k-te Potenz des Elements 1 in
additiver Schreibweise bedeutet. Ebenso ist {−1} ein Erzeugendensystem, denn jedes k ∈Z hat die Darstellung
k = (−k) · (−1). Allgemein gilt 〈m〉= mZ= {ma | a ∈Z} für jedes m ∈N0.

Wir werden später sehen, dass alle Untergruppen von (Z,+) diese Form haben. Dass sich alle Untergruppen
einer Gruppe so leicht angeben lassen, ist leider nur sehr selten der Fall.

Definition 2.8 Eine Gruppe G wird zyklisch genannt, wenn ein g ∈ G mit G = 〈g〉 existiert.
Existiert eine endliche Teilmenge S ⊆ G mit G = 〈S〉, dann nennt man G eine endlich erzeugte
Gruppe.

Die zyklischen Gruppen werden wir in § 3 ausführlich studieren. Ein einfaches Beispiel ist, wie wir oben gesehen
haben, die Gruppe (Z,+). Die endlich erzeugten Gruppen sind leider nicht so übersichtlich, aber in § 5 werden wir
zumindest die endlich erzeugten abelschen Gruppen bis auf Isomorphie klassifizieren. Es ist relativ leicht zu sehen,
dass beispielsweise die Gruppe (Q,+) nicht endlich erzeugt ist. Den Beweis behandeln wir in den Übungen.

Unser nächstes Ziel besteht darin, die in einer Untergruppe der Form 〈S〉 liegenden Elemente explizit anzugeben. Dazu
verwenden wir sowohl die im Anschluss an Definition 2.3 formulierte Eigenschaft von Untergruppen als auch die in
Proposition 1.13 formulierten Rechenregeln für invertierbare Elemente. Um die folgenden Aussagen zu vereinfachen,
führen wir die folgende Konvention ein: Das Neutralelement eG einer Gruppe G ist bei uns stets ein Produkt aus null
Faktoren. Der Ausdruck g1 · ... · gr steht also im Fall r = 0 für das Element eG .

Satz 2.9 Sei G eine Gruppe und S ⊆ G eine Teilmenge.

(i) Die Elemente von 〈S〉 sind gegeben durch

〈S〉 = {gϵ1
1 · ... · g

ϵr
r | r ∈N0 , g1, ..., gr ∈ S,ϵk ∈ {±1} für 1≤ k ≤ r}.

(ii) Sei S endlich, S = {g1, ..., gm} für ein m ∈N0, und setzen wir voraus, dass jedes Element
der Menge S mit jedem anderen vertauschbar ist. Dann gilt

〈S〉= {g e1
1 · ... · g

em
m | ek ∈Z für 1≤ k ≤ m}.

Beweis: zu (i) Sei U die Teilmenge auf der rechten Seiten der Gleichung. Zunächst überprüfen wir, dass U eine
Untergruppe von G ist. Da wir in der Definition von U Produkte der Länge r = 0 eingeschlossen haben, ist das
Neutralelement eG in U enthalten. Seien nun g, g ′ ∈ U vorgegeben. Dann gibt es nach Definition Elemente r, s ∈N0,
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g1, ..., gr , g ′1, ..., g ′s ∈ S und ϵ1, ...,ϵr ,ϵ
′
1, ...,ϵ′s ∈ {±1}, so dass g = gϵ1

1 · ... · g
ϵr
r und g ′ = (g ′1)

ϵ′1 · ... · (g ′s)
ϵs erfüllt ist.

Offenbar sind die Elemente

g g ′ = gϵ1
1 · ... · g

ϵr
r · (g

′
1)
ϵ′1 · ... · (g ′s)

ϵs und g−1 = g−ϵr
r · ... · g

−ϵ1
1

nach Definition ebenfalls in U enthalten. Also handelt es sich bei U tatsächlich um eine Untergruppe von G. Außerdem
enthält sie S als Teilmenge: Ist g ∈ S beliebig vorgegeben, dann setzt man g1 = g, ϵ1 = 1 und erhält g = gϵ1

1 ∈ U .

Nun müssen wir noch zeigen, dass U die kleinste Untergruppe von G mit U ⊇ S ist. Sei V eine beliebige Untergruppe
von G mit V ⊇ S; nachzuweisen ist V ⊇ U . Zunächst bemerken wir, dass das Produkt der Länge r = 0 in V enthalten
ist, denn als Untergruppe von G enthält V das Neutralelement eG . Seien nun r ∈N, g1, ..., gr ∈ S und ϵ1, ...,ϵr ∈ {±1}.
Wegen S ⊆ V gilt dann auch g1, ..., gr ∈ V . Weil V eine Untergruppe von G ist, folgt gϵk

k ∈ V für 1 ≤ k ≤ r und
schließlich gϵ1

1 · ... · g
ϵr
r ∈ V . Damit ist der Nachweis der Inklusion U ⊆ V erbracht.

zu (ii) Hier gehen wir nach demselben Schema vor und zeigen zunächst, dass die Menge auf der rechten Seite der
Gleichung, die wir mit U bezeichnen, eine Untergruppe von G ist. Durch Setzen von ek = 0 für 1≤ k ≤ m sieht man,
dass U das Neutralelement enthält. Seien nun g, g ′ ∈ U vorgegeben. Dann gibt es Elemente e1, ..., em, e′1, ..., e′m ∈ Z
mit g = g e1

1 · ... · g
em
m und g ′ = g

e′1
1 · ... · g

e′m
m . Es folgt

g g ′ = (g e1
1 · ... · g

em
m )(g

e′1
1 · ...... · g

e′m
m ) = (g e1

1 g
e′1
1 ) · ...(g

em
m g

e′m
m ) = g

e1+e′1
1 · ... · g em+e′m

m

und

g−1 = (g e1
1 · ... · g

em
m )
−1 = (g em

m )
−1 · ... · (g e1

1 )
−1 = g−em

m · ... · g
−e1
1 = g−e1

1 · ... · g
−em
m ∈ U .

Damit ist der Nachweis der Untergruppen-Eigenschaft abgeschlossen. Nun zeigen wir, dass U ⊇ S gilt. Sei dazu
k ∈ {1, ..., m} vorgegeben. Setzen wir ek = 1 und ei = 0 für 1≤ i ≤ m mit i ̸= k, dann erhalten wir gk = g e1

1 ·...·g
em
m ∈ U .

Sei nun V eine beliebige Untergruppe von G mit V ⊇ S. Dann gilt gk ∈ V für 1 ≤ k ≤ m. Sind e1, ..., em ∈ Z
beliebig vorgegeben, dann folgt auf Grund der Untergruppen-Eigenschaft g ek

k ∈ V für 1 ≤ k ≤ m und schließlich
g e1

1 · ... · g
em
m ∈ V . Damit ist der Nachweis von U ⊆ V abgeschlossen. □

Folgerung 2.10

(i) Ist G eine Gruppe und g ∈ G, dann gilt 〈g〉= {g e | e ∈Z}.

(ii) Jede zyklische Gruppe ist abelsch.

Beweis: Die Aussage (i) ist der Spezialfall von Satz 2.9 (ii) mit m = 1. Zum Beweis von (ii) sei G eine zyklische
Gruppe und g1 ∈ G ein Element mit G = 〈g1〉. Sind g, h ∈ G beliebig vorgegeben, dann gilt nach (i) g = gm

1 und
h= gn

1 für geeignete m, n ∈Z. Es folgt gh= gm
1 gn

1 = gm+n
1 = gn+m

1 = gn
1 gm

1 = hg. □

Als konkretes Beispiel betrachten wir nun Erzeugendensysteme der symmetrischen Gruppen Sn und der alternieren-
den Gruppen An. Für den Beweis benötigen wir den folgenden Begriff: Der Träger supp(σ) eines Elements σ ∈ Sn

ist die Menge aller j ∈ Mn mit σ( j) ̸= j. Wird σ als Produkt disjunkter Zykel dargestellt, so besteht der Träger aus
genau denjenigen Elementen, die in einem der Zykel vorkommen.
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Das Konzept des Trägers ist vor allem aus folgendem Grund wichtig: Seien σ,τ ∈ Sn mit supp(σ) ∩ supp(τ) = ∅.
Dann sind die Elemente σ und τ vertauschbar, d.h. es gilt

σ ◦τ = τ ◦σ.

Zum Beweis bemerken wir vorweg: Für jedes σ ∈ Sn und jedes k ∈ Mn gilt k ∈ supp(σ) genau dann, wenn auch σ(k)
in supp(σ) liegt. Denn wäre k ∈ supp(σ) und σ(k) /∈ supp(σ), dann würde σ(k) = σ(σ(k)) gelten, im Widerspruch
zur Bijektivität vonσ. Der Fall k /∈ supp(σ) undσ(k) ∈ supp(σ) kann ebenfalls nicht eintreten, denn aus k /∈ supp(σ)
folgt σ(k) = k.

Nun überprüfen wir, dass unter der Voraussetzung supp(σ) ∩ supp(τ) = ∅ die Abbildungen σ ◦ τ und τ ◦ σ auf
jedem k ∈ Mn übereinstimmen. Für k /∈ supp(σ) ∪ supp(τ) gilt (σ ◦ τ)(k) = k = (τ ◦ σ)(k). Betrachten wir nun
den Fall k ∈ supp(σ) und k /∈ supp(τ). Dann gilt (σ ◦ τ)(k) = σ(τ(k)) = σ(k) und wegen σ(k) ∈ supp(σ) und
σ(k) /∈ supp(τ) auch (τ ◦ σ)(k) = τ(σ(k)) = σ(k). Der Fall k /∈ supp(σ) und k ∈ supp(τ) läuft analog. Der Fall
k ∈ supp(σ) und k ∈ supp(τ) schließlich kann auf Grund der Voraussetzung nicht eintreten.

Satz 2.11 Sei n ∈N beliebig.

(i) Die Menge der Transpositionen bildet ein Erzeugendensystem von Sn.

(ii) Die Menge der 3-Zykel bilden ein Erzeugendensystem von An.

Beweis: zu (i) Wir beweisen durch vollständige Induktion über |supp(σ)|, dass jedes σ ∈ Sn als Produkt von
Transpositionen dargestellt werden kann, wobei wir id wie immer als „leeres“ Produkt mit null Faktoren ansehen.
Im Fall |supp(σ)|= 0 gilt supp(σ) =∅ und σ = id, also ist hier nichts zu zeigen. Elemente σ ∈ Sn mit |supp(σ)|= 1
existieren nicht, und die Elemente mit |supp(σ)|= 2 sind genau die Transpositionen.

Sei nun k ∈ {3, ..., n} undσ ∈ Sn mit |supp(σ)|= k, und setzen wir die Aussage für Werte< k per Induktionsannahme
voraus. Sei i ∈ supp(σ) beliebig gewählt und τ= (i σ(i))◦σ. Mit i auchσ(i) in supp(σ) enthalten. Damit ist klar, dass
jedes k /∈ supp(σ) auch nicht in supp(τ) enthalten ist, also supp(τ) ⊆ supp(σ) gilt. Andererseits ist offenbar τ(i) = i,
also i ∈ supp(σ) \ supp(τ) und deshalb sogar supp(τ) ⊊ supp(σ). Wir können damit die Induktionsvoraussetzung
auf τ anwenden und erhalten eine Darstellung τ = τ1 ◦ ... ◦ τr von τ als Produkt von Transpositionen τk. Folglich
ist auch σ = (i σ(i))−1 ◦τ= (i σ(i))−1 ◦τ1 ◦ ... ◦τr als Produkt von Transpositionen darstellbar.

zu (ii) Sei T ⊆ Sn die Menge der 3-Zyklen in Sn. Wir zeigen zunächst, dass jedes σ ∈ An das Produkt von 3-
Zyklen dargestellt werden kann und beweisen damit die Inklusion An ⊆ 〈T 〉. Nach (i) besitzt σ eine Darstellung
σ = τ1 ◦ ... ◦ τr als Produkt von Transpositionen, und wegen sgn(σ) = 1 und sgn(τk) = −1 für 1 ≤ k ≤ r ist r
gerade. Nun gilt allgemein für je zwei Transpositionen mit einem gemeinsamen Element im Träger die Gleichung
(i j) ◦ (i k) = (i k j), wie man unmittelbar überprüft. Stimmen zwei Elemente im Träger überein, dann gilt offenbar
(i j) ◦ (i j) = id. Sind (i j) und (k ℓ) schließlich disjunkte Zykel, dann gilt (i j) ◦ (k ℓ) = (i k j) ◦ (i k ℓ). Somit kann
jeder der Faktoren τ1 ◦τ2, τ3 ◦τ4, ..., τr−1 ◦τr als Produkt von 0 bis zwei 3-Zyklen dargestellt werden. Damit ist der
Beweis von An ⊆ 〈T 〉 abgeschlossen. Umgekehrt hat jeder 3-Zykel ein positives Signum, somit gilt T ⊆ An. Da 〈T 〉 die
kleinste Untergruppe ist, die T als Teilmenge enthält, folgt 〈T 〉 ⊆ An und insgesamt 〈T 〉= An. □

Wie wir gleich sehen werden, genügen sogar zwei Elemente, um die gesamte Gruppe Sn zu erzeugen; dieses Resultat
wird auch später in der Galoistheorie benötigt. Hierfür benötigen wir den Begriff der Konjugation. Sind g und h
Elemente einer Gruppe G, dann bezeichnet man ghg−1 als das Element, dass durch Konjugation h mit g entsteht.
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Proposition 2.12 Für jedes n ∈N ist die Menge {σ,τ} bestehend aus den beiden Elementen
σ = (1 2 ... n) und τ = (1 2) ein Erzeugendensystem von Sn. Ist n eine ungerade Primzahl,
dann wird Sn sogar von jeder zweielementigen Menge bestehend aus einem n-Zykel und einer
Transposition erzeugt.

Beweis: Für das Verständnis dieses Beweises ist es hilfreich, sich vorher die Auswirkung der Konjugation eines
Elements von Sn mit einem anderen Element klar zu machen. (Wir gehen im Kapitel über die Klassengleichung
detailliert darauf ein.) Beispielsweise entsteht durch Konjugation von τ mit σ das Element

στσ−1 = (σ(1) σ(2)) = (2 3).

Ebenso erhält man durch Konjugation von τmit σ2, σ3, ... die Transpositionen (3 4), (4 5), ... und durch Konjugation
von τ mit σn−2 schließlich die Transposition (n− 1 n). Sei nun i ∈ {1, ..., n− 1} vorgegeben. Dann gilt

(i + 1 i + 2) ◦ (i i + 1) ◦ (i + 1 i + 2) = (i i + 2) , (i + 2 i + 3) ◦ (i i + 2) ◦ (i + 2 i + 3) = (i i + 3) usw.

Insgesamt kann auf diese Weise jedes Element (i i + k) mit i + k ≤ n gebildet werden. Dies zeigt, dass 〈σ,τ〉 die
gesamte Menge T ⊆ Sn aller Transpositionen enthält. Es folgt 〈σ,τ〉 = 〈T 〉, und wegen 〈T 〉 = Sn nach Satz 2.11 ist
damit die erste Aussage bewiesen.

Der Beweis der zweiten Aussage ist recht umfangreich; darüber hinaus müssen wir im hinteren Teil auf ein wenig
Zahlentheorie und Kongruenzrechnung zurückgreifen, die wir erst später in der Vorlesung entwickeln. Sei p = n eine
ungerade Primzahl, σ = (i1 i2 ... ip) ein p-Zykel und τ eine beliebige Transposition. Definieren wir ρ ∈ Sp durch

ρ =

�

1 2 · · · p
i1 i2 ... ip

�−1

,

dann ist das Element σ̃ = ρσρ−1 gegeben durch σ̃ = (ρ(i1) ...ρ(ip)) = (1 2 ... p). Sei außerdem τ̃= ρτρ−1. Wie man
leicht überprüft, ist durch die Konjugationsabbildung φρ(α) = ραρ−1 ein Automorphismus von Sp definiert. Es gilt
φρ(〈σ,τ〉) = 〈φρ(σ),φρ(τ)〉= 〈σ̃, τ̃〉, denn einerseits ist {σ̃, τ̃} eine Teilmenge vonφρ(〈σ,τ〉), und andererseits gilt
{σ,τ} ⊆ φ−1

ρ (〈σ̃, τ̃〉), woraus 〈σ,τ〉 ⊆ φ−1
ρ (〈σ̃, τ̃〉) und φρ(〈σ,τ〉) = 〈σ̃, τ̃〉 folgt. Wenn wir nun zeigen können, dass

〈σ̃, τ̃〉= Sp gilt, dann folgt daraus 〈σ,τ〉= φ−1
ρ (Sp) = φρ−1(Sp) = Sp. Aus diesem Grund dürfen wir im nachfolgenden

Teil des Beweises σ,τ durch σ̃, τ̃ ersetzen und annehmen, dass σ = (1 2 ... p) gilt.

Sei τ = (i j) mit i, j ∈ Mp und i < j. Dann ist auch das Element σ1−iτσi−1 = (1 j − i + 1) in 〈σ,τ〉 enthalten. Nach
Ersetzung von τ durch dieses Element können wir annehmen, dass τ die Form (1 i) mit 1 < i ≤ p hat. Wir zeigen
nun: Sind k, r ∈ N mit 1 ≤ k ≤ p − 1 und r ∈ Mp, und gilt r ≡ 1 + k(i − 1) mod p, dann liegt das Element (1 r)
in 〈σ,τ〉. Wir beweisen die Aussage durch vollständige Induktion über k; die Zahl r ist durch k jeweils eindeutig
festgelegt. Für k = 1 ist r = i, und dass (1 i) in 〈σ,τ〉 liegt, ist bereits bekannt. Setzen wir nun die Aussage für ein
k ∈N mit 1 ≤ k < p− 1 voraus, und seien r, s ∈ Mp die eindeutig bestimmten Elemente mit r ≡ 1+ k(i − 1) mod p
und s ≡ 1 + (k + 1)(i − 1) mod p. Ist r + (i − 1) < p, dann gilt s = r + (i − 1) und somit σr−1(1 i)σ1−r = (r s).
Im Fall r + (i − 1) > p gilt s = r + (i − 1)− p und σr−1−p(1 i)σ1+p−r = (r s). In beiden Fällen zeigt die Gleichung
(r s)(1 r)(r s) = (1 s), dass auch (1 s) in 〈σ,τ〉 enthalten ist.

Wegen ggT(i − 1, p) = 1 existieren nun nach dem Lemma von Bézout k,ℓ ∈Z mit k(i − 1) + ℓp = 1. Dabei ist p kein
Teiler von k, da aus der Gleichung ansonsten p | 1 folgen würde. Sei x ∈Z so gewählt, dass 1≤ k+ px ≤ p− 1 gilt.
Dann folgt (k+ px)(i−1)+ (ℓ− x(i−1))p = 1; nach Ersetzung von k durch k+ px und ℓ durch ℓ− x(i−1) können
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wir also 1≤ k ≤ p−1 voraussetzen. Wenden wir nun die im vorherigen Abschnitt bewiesene Aussage auf dieses k an
und setzen wir r = 2, dann gilt r ∈ Mp, r = 1+1= 1+ k(i−1)+ ℓp ≡ 1+ k(i−1) mod p und (1 r) = (1 2) ∈ 〈σ,τ〉.
Wegen σ = (1 2 ... p) ∈ 〈σ,τ〉 enthält 〈σ,τ〉 auf Grund der ersten Aussage der Proposition also ein vollständiges
Erzeugendensystem von Sp. □

Wenden wir uns nun dem zweiten Thema dieses Kapitels zu, dem Satz von Lagrange.

Definition 2.13 Sei (G, ·) eine Gruppe und U eine Untergruppe. Eine Teilmenge von G, die mit
einem geeigneten g ∈ G in der Form

gU = {gu | u ∈ U}

geschrieben werden kann, wird Linksnebenklasse von U genannt. Ebenso bezeichnet man die
Teilmengen der Form U g = {ug | u ∈ U} mit g ∈ G als Rechtsnebenklassen von U .

Desweiteren führen wir die Bezeichnung G/U für die Menge der Linksnebenklassen und U\G für die Menge der
Rechtsnebenklassen von U ein. Es gilt also G/U = {gU | g ∈ G} und U\G = {U g | g ∈ G}. Sei beispielsweise G = S3

und U = 〈(1,2)〉= {id, (1 2)}. Dann sind die Linksnebenklassen von U gegeben durch

id ◦ U = {id ◦ id, id ◦ (1 2)} = {id, (1 2)}
(1 2) ◦ U = {(1 2) ◦ id, (1 2) ◦ (1 2)} = {(1 2), id}
(1 3) ◦ U = {(1 3) ◦ id, (1 3) ◦ (1 2)} = {(1 3), (1 2 3)}
(2 3) ◦ U = {(2 3) ◦ id, (2 3) ◦ (1 2)} = {(2 3), (1 3 2)}
(1 2 3) ◦ U = {(1 2 3) ◦ id, (1 2 3) ◦ (1 2)} = {(1 2 3), (1 3)}
(1 3 2) ◦ U = {(1 3 2) ◦ id, (1 3 2) ◦ (1 2)} = {(1 3 2), (2 3)}

Es gilt also S3/U = { {id, (1 2)} , {(1 3), (1 2 3)} , {(2 3), (1 3 2)} }.

Graphisch kann die Menge S3/U der Linksnebenklassen folgendermaßen dargestellt werden.

id (1 2)

(1 3)
(1 2 3)

(2 3)
(1 3 2)

U

(1 3) U (2 3) U

S3 / U

Die Elemente von S3/U sind die Linksnebenklassen U , (1 2)U und (2 3)U , also die blau gezeichneten Objekte. Die
Permutation (1 2 3) ist ein Element von S3 und auch ein Element der Linksnebenklasse (1 3)U , die ja ihrerseits eine
Teilmenge von S3 ist. Aber (1 2 3) ist kein Element von S3/U , denn die Elemente von S3/U sind nach Definition
bestimmte Teilmengen von S3, keine Elemente von S3!
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Offenbar ist es möglich, dass zwei Nebenklassen gU und hU übereinstimmen, ohne dass g = h ist. In unserem
Beispiel gilt etwa (1 3) ◦ U = (1 2 3) ◦ U . Nach dem gleichen Schema können wir auch die Rechtsnebenklassen von
U bestimmen.

U ◦ id = {id ◦ id, (1 2) ◦ id} = {id, (1 2)}
U ◦ (1 2) = {id ◦ (1 2), (1 2) ◦ (1 2)} = {(1 2), id}
U ◦ (1 3) = {id ◦ (1 3), (1 2) ◦ (1 3)} = {(1 3), (1 3 2)}
U ◦ (2 3) = {id ◦ (2 3), (1 2) ◦ (2 3)} = {(2 3), (1 2 3)}
U ◦ (1 2 3) = {id ◦ (1 2 3), (1 2) ◦ (1 2 3)} = {(1 2 3), (2 3)}
U ◦ (1 3 2) = {id ◦ (1 3 2), (1 2) ◦ (1 3 2)} = {(1 3 2), (1 3)}

Die Menge der Rechtsnebenklassen U\G ist also gegeben durch {U , {(1 3), (1 3 2)} , {(2 3), (1 2 3)}}.

Das Beispiel zeigt, dass Links- und Rechtsnebenklassen im Allgemeinen nicht übereinzustimmen brauchen. Beispiels-
weise ist {(1 3), (1 2 3)} zwar eine Links- aber keine Rechtsnebenklasse von U . Ist U aber Untergruppe einer abelschen
Gruppe, dann gilt gU = U g für alle g ∈ G. Ist nämlich h ∈ gU vorgegeben, dann gilt h= gu= ug für ein u ∈ U , und
es folgt h ∈ U g. Damit ist gU ⊆ U g nachgewiesen, und die umgekehrte Inklusion beweist man genauso.

Wir bemerken noch, dass jedes g ∈ G sowohl in der Linksnebenklasse gU als auch in der Rechtsnebenklasse U g
enthalten ist. Dies folgt direkt aus den Gleichungen g = g · eG = eG · g und der Tatsache, dass eG in U liegt.

Bei unserem Beispiel fällt auf, dass jede Links- oder Rechtsnebenklasse genauso viele Elemente enthält wie die Un-
tergruppe U selbst. Diese Beobachtung ist auch im allgemeinen Fall zutreffend.

Lemma 2.14 Sei G eine Gruppe, U eine Untergruppe von G und g ∈ G ein beliebiges Element.
Dann sind die Abbildungen

τℓg : U → gU , h 7→ gh und τr
g : U → U g , h 7→ hg jeweils bijektiv.

Ist U endlich, dann gilt also |U |= |gU |= |U g| für alle g ∈ G.

Beweis: Wir beschränken und auf den Beweis der Surjektivität und der Injektivität der Abbildung τℓg . Sei h ∈ gU
vorgegeben. Dann existiert nach Definition von gU ein u ∈ U mit h = gu. Es gilt also τℓg(u) = gu = h. Damit ist
die Surjektivität bewiesen. Seien nun u1, u2 ∈ U mit τℓg(u1) = τℓg(u2). Dann folgt u1 = g−1 gu1 = g−1τℓg(u1) =
g−1τℓg(u2) = g−1 gu2 = u2. Dies zeigt, dass τℓ auch injektiv ist. Die letzte Aussage folgt unmittelbar aus der Tatsache,
dass zwei Mengen, zwischen denen eine Bijektion existiert, gleichmächtig sind. □

Für das Hauptziel dieses Abschnitts, den Beweis des Satzes von Lagrange, ist die Beobachtung entscheidend, dass die
Linksnebenklassen in G/U eine Zerlegung der Menge G bilden, ein Begriff, den wir bereits aus der Linearen Algebra
kennen. Zur Erinnerung: Unter einer Zerlegung einer Menge X verstehen wir ein System Z ⊆ P(X ) von Teilmengen
von X mit den Eigenschaften ∅ /∈ Z,

⋃

A∈Z A= X und ∀A, B ∈ Z : A ̸= B⇒ A∩ B =∅; zwei verschiedene Mengen in
einer Zerlegung sind also disjunkt. Man vergewissere sich anhand des Beispiels vom Anfang des Kapitels mit G = S3

und U = 〈(1 2)〉, dass sowohl G/U als auch U\G in der Tat eine Zerlegung von S3 liefert.

Aus der Linearen Algebra wissen wir auch, dass der Begriff der Zerlegung mit dem Konzept der Äquivalenzrelation
eng verbunden ist. Eine Äquivalenzrelation ≡ auf einer Menge X ist eine reflexive, symmetrische und transitive
Relation. Für jedes x ∈ X wird [x] = {y ∈ X | x ≡ y} die Äquivalenzklasse von x bezüglich≡ genannt. Zwischen den
Äquivalenzrelationen auf einer Menge X und den Zerlegungen von X besteht nun der folgende Zusammenhang: Ist
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≡ eine Äquivalenzrelation auf X , so bilden die Äquivalenzklassen bezüglich ≡ eine Zerlegung von X . Ist umgekehrt
Z eine Zerlegung von X , so erhält man durch

x ≡Z y ⇔ ∃A∈ Z : x , y ∈ A

eine Äquivalenzrelation auf X . Für eine Menge X und eine Zerlegung Z von X gilt offenbar allgemein: Genau dann
ist X endlich, wenn sowohl |Z| als auch |A| für jedes A ∈ Z endlich ist, und in diesem Fall ist dann die Gleichung
|X | =

∑

A∈Z |A| erfüllt. Diese einfache Beobachtung wird später beim Beweis des Satzes von Lagrange eine wichtige
Rolle spielen.

Lemma 2.15 Sei G eine Gruppe und U eine Untergruppe von G. Dann folgt für alle g, h ∈ G
aus h ∈ gU jeweils gU = hU .

Beweis: Setzen wir h ∈ gU voraus. Dann gibt es ein u ∈ U mit h= gu. Zum Nachweis der Inklusion „⊆“ sei h1 ∈ gU
vorgegeben. Dann gibt es ein u1 ∈ U mit h1 = gu1, und es folgt h1 = h(u−1u1) ∈ hU . Ist umgekehrt h1 ∈ hU , dann
gilt h1 = hu2 für ein u2 ∈ U . Wir erhalten h1 = g(u1u2) ∈ gU . □

Satz 2.16 Sei G eine Gruppe und U ≤ G. Dann ist sowohl durch G/U als auch durch U\G eine
Zerlegung von G gegeben. Die zugehörigen Äquivalenzrelationen auf G sind definiert durch
g ≡ℓ h⇔ h ∈ gU bzw. g ≡r h⇔ h ∈ U g.

Beweis: Wir beweisen die beiden Teilaussagen lediglich für die Menge G/U der Linksnebenklassen. Zunächst zeigen
wir, dass es sich dabei um eine Zerlegung von G handelt, und überprüfen dafür die drei definierenden Bedingungen,
die wir gerade wiederholt haben. Jede Teilmenge A∈ G/U hat die Form A= gU für ein g ∈ G, und es gilt g = g · eG ∈
gU wegen eG ∈ U . Dies zeigt, dass A ̸= ∅ gilt, die leere Menge in G/U also nicht vorkommt. Weil jedes g ∈ G in
gU liegt, also einem Element von G/U , ist auch die Eigenschaft G =

⋃

A∈G/U A erfüllt. Seien nun A, B ∈ G/U mit
A∩ B ̸= ∅ vorgegeben, und sei h ∈ A∩ B. Nach Lemma 2.15 folgt daraus A = hU = B. Setzen wir für A, B ∈ G/U
umgekehrt A ̸= B voraus, dann muss also A∩ B =∅ gelten.

Nach Definition ist die zur Zerlegung G/U gehörende Äquivalenzrelation ≡ℓ definiert durch die Bedingung, dass für
je zwei Elemente g, h ∈ G jeweils genau dann g ≡ℓ h erfüllt ist, wenn ein A∈ G/U mit g, h ∈ A existiert. Aber wegen
Lemma 2.15 folgt aus g ∈ A bereits A = gU , so dass g ≡ℓ h also h ∈ gU impliziert. Setzen wir umgekehrt h ∈ gU
voraus, dann ist durch A= gU ein Element von G/U mit g, h ∈ A gegeben, und es folgt g ≡ℓ h. □

Im weiteren Verlauf bezeichnen wir mit X/≡ die Menge der Äquivalenzklassen einer Äquivalenzrelation≡. Es handelt
sich also nach Definition um die Menge { [x] | x ∈ X }.

Definition 2.17 Sei X eine Menge und≡ eine Äquivalenzrelation auf X . Eine Teilmenge R ⊆ X
wird Repräsentantensystem der Äquivalenzklassen von ≡ genannt, wenn durch R → X/≡,
x 7→ [x] eine bijektive Abbildung gegeben ist. Mit anderen Worten, in jeder Äquivalenzklasse ist
genau ein Element aus R enthalten.
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Im Beispiel G = S3, U = 〈(1 2)〉 von oben ist {id, (1 3), (2 3)} ein Repräsentantensystem von G/U . Gleiches gilt für
die Mengen {id, (1 2 3), (2 3)} und {(1 2), (1 3), (1 3 2)}. Die Wahl eines Repräsentantensystems ist also keineswegs
eindeutig.

Als nächstes zeigen wir, wie sich aus einem Repräsentantensystem der Linksnebenklassen ein Repräsentantensystem
der Rechtsnebenklassen gewinnen lässt.

Proposition 2.18 Sei G eine Gruppe und U eine Untergruppe. Ist R ein Repräsentantesystem
der Linksnebenklassen, dann ist R′ = {g−1 | g ∈ R} ein Repräsentantensystem der Rechtsneben-
klassen, und durch g 7→ g−1 ist eine Bijektion zwischen R und R′ definiert.

Beweis: Zu zeigen ist, dass für jedes h ∈ G die Rechtsnebenklasse Uh genau ein Element aus R′ enthält. Sei also
h ∈ G vorgegeben. Zunächst beweisen wir, dass in Uh ein Element aus R′ liegt. Nach Voraussetzung enthält die
Linksnebenklasse h−1U ein Element g ∈ R. Es gibt also ein u ∈ U mit g = h−1u. Daraus folgt g−1 = u−1h. Diese
Gleichung wiederum zeigt, dass die Rechtsnebenklasse Uh das Element g−1 ∈ R′ enthält.

Nehmen wir nun an, die Rechtsnebenklasse Uh enthält die beiden Elemente h1, h2 ∈ R′. Dann gibt es u, v ∈ U
mit h1 = uh und h2 = vh. Nach Definition von R′ gibt es außerdem g1, g2 ∈ R mit g−1

1 = h1, g−1
2 = h2. Es folgt

g1 = h−1
1 = h−1u−1 und g2 = h−1

2 = h−1v−1. Die Gleichungen zeigen, dass die Elemente g1, g2 ∈ R beide in der
Linksnebenklasse h−1U liegen. Weil R ein Repräsentantensystem der Linksnebenklassen ist, muss g1 = g2 gelten.
Daraus wiederum folgt h1 = h2.

Dass die Abbildung R → R′, g 7→ g−1 surjektiv ist, folgt direkt aus der Definition von R′. Andererseits folgt aus
g−1 = h−1 sofort g = h, somit ist die Abbildung auch injektiv. □

Aus der Proposition folgt unmittelbar, dass zwischen G/U und U\G eine Bijektion existiert, die aus den Bijektionen
G/U → R→ R′→ U\G zusammengesetzt ist. Dies bedeutet, dass die Mengen G/U und U\G gleichmächtig sind.

Definition 2.19 Sei G eine Gruppe und U eine Untergruppe. Die Mächtigkeit |G/U | der Menge
G/U wird der Index von U in G genannt und mit (G : U) bezeichnet.

Aus unserer Vorüberlegung folgt, dass man zur Definition des Index genauso gut die Mächtigkeit der Menge U\G der
Rechtsnebenklassen verwenden könnte. Im Beispiel oben haben wir gesehen, dass es im Fall G = S3 und U = 〈(1 2)〉
jeweils drei Links- und drei Rechtsnebenklassen gibt. Hier gilt also (G : U) = 3.

Satz 2.20 (Satz von Lagrange)

Sei G eine endliche Gruppe und U eine Untergruppe. Dann gilt |G| = (G : U)|U |. Insbesondere
ist die Ordnung |U | der Untergruppe immer ein Teiler der Gruppenordnung |G|.

Beweis: Sei R ⊆ G ein Repräsentantensystem der Linksnebenklassen. Weil nach Definition der Repräsentantensysteme
eine Bijektion R→ G/U existiert, gilt |R| = |G/U | = (G : U). Nach Proposition 2.16 ist G/U eine Zerlegung von G,
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und nach Lemma 2.14 gilt |gU |= |U | für alle Linksnebenklassen. Wir erhalten

|G| =
∑

A∈G/U

|A| =
∑

g∈R

|gU | =
∑

g∈R

|U | = |R| · |U | = (G : U)|U |. □

Im Beispiel oben ist die Gleichung aus dem Satz von Lagrange offenbar erfüllt, denn im Fall G = S3, U = 〈(1 2)〉 gilt
|G| = 6 und (G : U)|U | = 3 · 2 = 6. Die Untergruppe V = 〈(1 2 3)〉 in S3 ist von Ordnung 3, da (1 2 3) ein Element
der Ordnung 3 ist. Der Satz von Langrange liefert hier für den Index den Wert

(G : V ) =
|G|
|V |

=
6
3
= 2.

Die Zerlegung einer Gruppe in ihre Linksnebenklassen liefert auch eine Aussage für beliebige, nicht notwendigerweise
endliche, Gruppen.

Folgerung 2.21 Sei G eine Gruppe und U eine Untergruppe. Genau dann ist G endlich, wenn
sowohl U als auch G/U endliche Mengen sind (und in diesem Fall gilt dann natürlich der Satz
von Lagrange).

Beweis: „⇒“ Ist G endlich, dann ist U als Teilmenge von G offenbar ebenfalls endlich. Sei R ⊆ G ein Repräsentan-
tensystem der Menge G/U der Linksnebenklassen. Dann gibt es eine Bijektion von R nach G/U . Weil R als Teilmenge
von G endlich ist, handelt es sich auch bei G/U um eine endliche Menge.

„⇐“ Setzen wir nun voraus, dass U und G/U endlich sind. Weil für jedes g ∈ G zwischen U und gU jeweils
eine Bijektion existiert, ist damit auch jede Linksnebenklasse endlich. Weil es nach Voraussetzung nur endlich viele
Linksnebenklassen gibt, ist G als Vereinigung der endlich vielen Linksnebenklassen selbst eine endliche Menge. □

Wir haben beim Beweis der bisherigen Sätze mehrmals verwendet, dass für die Linksnebenklassen einer Untergruppe
U in einer Gruppe G stets ein Repräsentantensystem existiert. Dass dies tatsächlich der Fall ist, wird durch das soge-
nannte Auswahlaxiom der Mengenlehre gewährleistet. Dieses stellt sicher, dass aus jeder Linksnebenklasse ein Re-
präsentant ausgewählt und die ausgewählten Elemente zu einer neuen Menge R zusammengeführt werden können.
Da in den Vorlesungen die Axiome der Mengenlehre normalerweise nicht behandelt werden, fällt die Verwendung
des Auswahlaxioms nicht auf, zumal seine Gültigkeit selbstverständlich und trivial erscheint.

Wir notieren noch zwei Folgerungen aus dem Satz von Lagrange.

Satz 2.22

(i) Jede Gruppe von Primzahlordnung ist zyklisch.

(ii) Sei G eine Gruppe, und seien U , V ⊆ G endliche Untergruppen teilerfremder Ordnung.
Dann gilt U ∩ V = {eG}.
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Beweis: zu (i) Wegen |G| > 1 gibt es mindestens ein Element g ∈ G \ {eG}. Nach dem Satz von Lagrange ist
ord(g) = |〈g〉| ein Teiler der Gruppenordnung p. Weil p eine Primzahl ist, gibt es nur die beiden Möglichkeiten
ord(g) = 1 oder ord(g) = p. Wegen g ̸= eG scheidet die erste Möglichkeit aus. Es gilt damit |〈g〉| = p = |G|, also
G = 〈g〉.

zu (ii) Sei U1 = U ∩V . Dann ist U1 eine Untergruppe von U , und nach dem Satz von Lagrange ist |U1| ein Teiler von
|U |. Ebenso ist U1 eine Untergruppe von V , also teilt |U1| auch |V |. Die Zahl |U1| ist also ein gemeinsamer Teiler von
|U | und |V |. Weil |U | un d |V | teilerfremd sind, folgt |U1|= 1 und U1 = {eG}. □
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§ 3. Elementordnungen und die Struktur zyklischer Gruppen

Zusammenfassung. Die Ordnung ord(g) eines Gruppenelements ist die kleinste natürliche Zahl m mit
gm = eG; existiert eine solche Zahl nicht, dann setzt man ord(g) =∞. Die Ordnung kann auf zwei weite-
re Arten charakterisiert werden. Kennt man ord(g), so kann ord(ga) für jedes a ∈ Z berechnet werden. Im
weiteren Verlauf des Kapitels untersuchen wir die Untergruppenstruktur zyklischer Gruppen. Eine Besonder-
heit dieser Gruppen besteht darin, dass die Anzahl der Untergruppen mit der Anzahl der Teiler ihrer Ordnung
übereinstimmt.

Wichtige Grundbegriffe

– Ordnung einer Gruppe

– Ordnung eines Gruppenelements

– Eulersche ϕ-Funktion

Zentrale Sätze

– äquivalente Charakterisierung der Elementordnung

– Rechenregeln für die Elementordnung

– Beschreibung der Untergruppen zyklischer Gruppen

– Charakterisierung zyklischer Gruppen

– Kleiner Satz von Fermat

Wir beginnen mit der Definition der Gruppen- und Elementordnung.

Definition 3.1 Sei G eine Gruppe. Die Anzahl |G| der Elemente von G wird die Ordnung von G
genannt. Ist g ∈ G ein beliebiges Element, dann bezeichnen wir ord(g) = |〈g〉| als die Ordnung
von g.

Da 〈g〉 für jedes g ∈ G jeweils eine Untergruppe von G ist, folgt aus dem Satz von Lagrange unmittelbar: Ist n= |G|
endlich, dann folgt

ord(g) | n für alle g ∈ G.

In § 2 wurde gezeigt, dass die Elemente einer zyklischen Gruppe 〈g〉 genau die ganzahligen Potenzen von a sind, also
die Elemente der Form ga mit a ∈Z. Es kann allerdings vorkommen, dass ga = g b gilt, obwohl a ̸= b ist.

Lemma 3.2 Sei G eine Gruppe, g ∈ G und m ∈ N mit gm = eG . Dann ist die von g erzeugte
Untergruppe gegeben durch 〈g〉= {g r | 0≤ r < m}.

Beweis: Die Inklusion „⊇“ ergibt sich direkt aus Folgerung 2.10. Zum Nachweis von „⊆“ sei h ∈ 〈g〉 vorgegeben.
Wiederum auf Grund der Proposition gibt es ein n ∈ Z mit h = gn. Dividieren wir n durch m mit Rest, so erhalten
wir ein q, r ∈ Z mit n = qm+ r und 0 ≤ r < m. Es gilt h = gn = gqm+r = (gm)q · g r = eq

G · g
r = g r . Also ist h in der

Menge auf der rechten Seite enthalten. □
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Satz 3.3 Sei G eine Gruppe und g ∈ G ein beliebiges Element. Dann sind für jedes n ∈N die
folgenden Aussagen äquivalent.

(i) n= ord(g)

(ii) Es gibt ein m ∈ N mit gm = eG , und darüber hinaus ist n die minimale natürliche Zahl
mit dieser Eigenschaft.

(iii) Für alle m ∈Z gilt gm = eG genau dann, wenn m ein Vielfaches von n ist.

Beweis: „(i) ⇒ (ii)“ Da ord(g) und damit die Menge 〈g〉 nach Voraussetzung endlich ist, können die Elemente
g, g2, g3, ... nicht alle voneinander verschieden sein. Es gibt also i, j ∈N mit i < j und g i = g j . Setzen wir m= j− i,
dann gilt gm = g j−i = g j · (g i)−1 = eG , also existiert ein m ∈N mit gm = eG .

Weil die zyklische Gruppe 〈g〉 insgesamt nur n verschiedene Elemente besitzt, können bereits die Elemente g, g2, ...,
gn+1 nicht alle verschieden sein. Wir können also für das j von oben j ≤ n+ 1 und damit m≤ n voraussetzen. Wäre
m < n, dann würde 〈g〉 auf Grund des Lemmas aus der höchstens m-elementigen Menge {eG , g, ..., gm−1} bestehen,
im Widerspruch zu |〈g〉|= n. Es gilt also m= n, und n ist die minimale natürliche Zahl mit der Eigenschaft gn = eG .

„(ii) ⇒ (iii)“ Sei m ∈ Z mit gm = eG vorgegeben. Dann gibt es q, r ∈ Z mit m = qn + r und 0 ≤ r < n. Es gilt
g r = gm−qn = gm · (gn)−q = eG ◦ eG = eG . Da n nach Voraussetzung die minimale natürliche Zahl mit gn = eG ist,
muss r = 0 gelten, und m ist somit ein Vielfaches von n. Setzen wir umgekehrt voraus, dass m ein Vielfaches von n
ist, m= kn für ein k ∈Z, dann gilt gm = gkn = (gn)k = ek

G = eG .

„(iii)⇒ (i)“ Nach Voraussetzung gilt gn = eG , und auf Grund des Lemmas ist 〈g〉 = {eG , g, ..., gn−1}. Würden zwei
Elemente in dieser Menge übereinstimmen, dann gäbe es i, j ∈ Z mit 0 ≤ i < j ≤ n− 1 und g i = g j , es wäre also
g j−i = eG . Dies aber wäre ein Widerspruch zur Voraussetzung, da n wegen 0< j− i < n kein Teiler von j− i ist. Dies
zeigt, dass 〈n〉 tatsächlich aus genau n verschiedenen Elementen besteht, also ord(g) = |〈g〉|= n gilt. □

Wir geben einige Beispiele für Elementordnungen an.

(i) Ist n ∈N und G = (Z/nZ,+), dann ist 1̄ = 1+ nZ ein Element der Ordnung n, denn es gilt k · 1̄ = k̄ ̸= 0̄ für
1≤ k < n und n · 1̄= n+ nZ= 0+ nZ= 0̄.

(ii) In § 1 (auf Seite 9) haben wir für jedes α ∈ R das Element Rα der orthogonalen Gruppe O(2) definiert. Es
handelte sich dabei um die Matrix, die eine Drehung um den Ursprung 0R2 mit dem Winkel α im Bogenmaß
beschreibt. Wie man leicht überprüft, ist R2π/n für jedes n ∈N ein Element der Ordnung n in O(2).

(iii) In den Diedergruppen Dn (mit n≥ 3) sind die n Spiegelungen alles Elemente der Ordnung 2.

Mit Hilfe von Satz 3.3 können wir die Elemente einer endlichen, zyklischen Gruppe nun genau angeben.

Folgerung 3.4 Sei G eine Gruppe. Besitzt g ∈ G die endliche Ordnung n, dann sind durch
eG , g, g2, ..., gn−1 die n verschiedenen Elemente der zyklischen Gruppe 〈g〉 gegeben.

— 32 —



Beweis: Nach Satz 3.3 gilt gn = eG , und auf Grund von Lemma 3.2 gilt 〈g〉 = {eG , g, g2, ..., gn−1}. Wegen |〈g〉| = n
sind alle Elemente in dieser Aufzählung verschieden. □

Für Elemente unendlicher Ordnung lässt sich eine zu Satz 3.3 weitgehend analoge Äquivalenzaussage formulieren.

Satz 3.5 Ist G eine Gruppe und g ∈ G, dann sind die folgenden Aussagen äquivalent.

(i) ord(g) =∞

(ii) Es gibt kein n ∈N mit gn = eG .

(iii) Die Abbildung φ :Z→ G, k 7→ gk ist injektiv.

Beweis: „(i) ⇒ (ii)“ Angenommen, es gilt gn = eG für ein n ∈ N. Dann würde aus Lemma 3.2 die Gleichung
〈g〉= {eG , g, ..., gn−1} folgen, im Widerspruch dazu, dass ord(g) = |〈g〉| unendlich ist.

„(ii)⇒ (iii)“ Angenommen, φ ist nicht injektiv. Dann gäbe es Elemente k,ℓ ∈Z mit k < ℓ und φ(k) = φ(ℓ). Daraus
würde gk = gℓ⇔ gℓ(gk)−1 = eG⇔ gℓ−k = eG folgen, was aber wegen ℓ− k ∈N im Widerspruch zur Voraussetzung
steht.

„(iii) ⇒ (i)“ Es gilt φ(Z) = {gk | k ∈ Z} = 〈g〉. Auf Grund der Injektivität von φ erhalten wir ord(g) = |〈g〉| =
|φ(Z)|= |Z|=∞. □

Beispielsweise ist 1 ein Element unendlicher Ordnung in (Z,+), denn es gilt n · 1 ̸= 0 für alle n ∈N.

In den symmetrischen Gruppen lassen sich die Ordnungen von Elementen leicht ermitteln. Zur Vorbereitung erinnern
wir an die Definition des größten gemeinsamen Teilers und des kleinsten gemeinsamen Vielfachen einer endlichen
Menge ganzer Zahlen. Seien a1, ..., ar ∈ Z vorgegeben. Eine Zahl d ∈ N heißt gemeinsamer Teiler dieser Zah-
len, wenn d | ak für 1 ≤ k ≤ r gilt. Man nennt d den größten gemeinsamen Teiler dieser Zahlen und schreibt
d = ggT(a1, ..., ar), wenn d ′|d für jeden gemeinsamen Teiler d ′ von a1, ..., ar gilt. Zwei Zahlen a und b werden als
teilerfremd bezeichnet, wenn ggT(a, b) = 1 ist.

Eine natürliche Zahl d ∈N heißt gemeinsames Vielfaches von a1, ..., ar , wenn ak | d für 1≤ k ≤ r gilt, und kleinstes
gemeinsames Vielfaches, wenn d | d ′ für jedes gemeinsame Vielfache d ′ dieser Zahlen erfüllt ist. Wir bezeichnen
das kleinste gemeinsame Vielfache mit kgV(a1, ..., ar). Sowohl der größte gemeinsame Teiler als auch das kleinste
gemeinsame Vielfache existieren, sobald die Zahlen a1, ..., ar nicht alle gleich Null sind, und sie sind in diesem Fall
auch eindeutig bestimmt.

Satz 3.6 Sei n ∈N und σ ∈ Sn.

(i) Ist σ ein k-Zykel (2≤ k ≤ n), dann gilt ord(σ) = k.

(ii) Ist σ ein Element vom Zerlegungtyp (k1, ..., kr), dann gilt ord(σ) = kgV(k1, ..., kr).
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Beweis: zu (i) Nach Voraussetzung gibt es eine k-elementige Teilmenge {a1, ..., ak} ⊆ Mn mit σ = (a1 a2 ... ak).
Durch vollständige Induktion über m ∈ N0 kontrollieren wir zunächst, dass für alle m ∈ N0 und ℓ, j ∈ {1, ..., k} mit
σm(aℓ) = a j jeweils die Kongruenz ℓ+m≡ j mod k erfüllt ist.

Für m = 0 gilt dies wegen σ0(aℓ) = id(aℓ) = aℓ und ℓ + 0 ≡ ℓ mod k. Sei nun m ∈ N0, und sei j ∈ {1, ..., k} die
eindeutig bestimmte Zahl mit σm(aℓ) = a j; dann gilt ℓ+m ≡ j mod k auf Grund der Induktionsvoraussetzung. Ist
nun j < k, dann gilt σm+1(aℓ) = σ(σm(aℓ)) = σ(a j) = a j+1 und ℓ + (m + 1) ≡ j + 1 mod k. Im Fall j = k gilt
σm+1(aℓ) = σ(ak) = a1, und wegen ℓ+ (m+ 1)≡ k+ 1≡ 1 mod k ist die Kongruenz auch in diesem Fall erfüllt.

Es ist nun leicht zu sehen, dass k die kleinste natürliche Zahl mit σk = id ist. Ist nämlich m ∈ N mit m < k und
σm(a1) = a j , dann gilt j ≡ 1+m ̸≡ 1 mod k, und somit erst recht j ̸= 1 und a j ̸= a1, also σm ̸= id. Für ℓ, j ∈ {1, ..., k}
mit σk(aℓ) = a j gilt dagegen ℓ+ k ≡ j mod k, also ℓ ≡ j mod k und damit ℓ = j. Die Zahlen a1, ..., ak werden also
durch σk auf sich abgebildet, und für die Elemente von i ∈ Mn \{a1, ..., ak} gilt dies wegen σ(i) = i natürlich ebenso.

zu (ii) Nach Definition des Zerlegungstyps existiert für 1 ≤ j ≤ r jeweils ein k j-Zykel σ j , so dass σ = σ1 ◦ ... ◦σr

gilt und die Zykel σ j paarweise disjunkt sind. Wie wir in § 2 festgestellt haben, sind σi und σ j für 1 ≤ i, j ≤ r als
Elemente mit disjunktem Träger jeweils vertauschbar, und wegen Lemma 2.2 folgt daraus σn = σn

1 ◦ ... ◦σn
r für alle

n ∈ Z. Auf Grund der Disjunktheit der Träger ist auch leicht zu sehen, dass genau dann σn = id gilt, wenn σn
j = id

für 1≤ j ≤ r erfüllt ist.

Sei nun m = ord(σ); wir zeigen, dass m die definierenden Eigenschaften des kgV von k1, ..., kr besitzt. Aus der
Gleichung σm

1 ◦ ... ◦σm
r = σ

m = id folgt σm
j = id für 1 ≤ j ≤ r. Nach Satz 3.3 zeigt dies, dass m ein gemeinsames

Vielfaches von k j = ord(σ j) mit 1 ≤ j ≤ r ist. Sei nun n ein beliebiges gemeinsames Vielfaches von k1, ..., kr . Dann
folgt σn

j = id für 1 ≤ j ≤ r mit Satz 3.3. Wir erhalten σn = σn
1 ◦ ... ◦σn

r = id und somit m | n, erneut durch eine
Anwendung von Satz 3.3. Es handelt sich bei m also tatsächlich um die Zahl kgV(k1, ..., kr). □

Der Satz zeigt uns zum Beispiel, dass in der Gruppe S5 nur Elemente der Ordnungen 1,2, 3,4, 5 und 6 existieren.
Denn neben der Identität, den 2-, 3-, 4- und 5-Zyklen gibt es in S5 noch Elemente der Zerlegungtypen (2,2) und
(3,2), und es gilt kgV(2, 2) = 2 und kgV(3, 2) = 6. Insbesondere ist σ = (1 2 3)(4 5) ein Element der Ordnung 6 in
S5. Im weiteren Verlauf beschäftigen wir uns nun mit der Untergruppenstruktur zyklischer Gruppen.

Satz 3.7 Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Genauer gilt: Sei G eine zy-
klische Gruppe, g ein Element mit G = 〈g〉 und U eine Untergruppe ̸= {eG}. Dann gibt es ein
m ∈N mit U = 〈gm〉. Ist ord(g) = n endlich, dann kann die Zahl m so gewählt werden, dass sie
ein Teiler von n ist.

Beweis: Weil U nichttrivial ist, gibt es ein r ∈ Z, r ̸= 0 mit g r ∈ U . Weil mit g r auch (g r)−1 = g−r in U enthalten
ist, gibt es auch natürliche Zahlen r mit g r ∈ U . Sei nun m ∈ N die minimale natürliche Zahl mit der Eigenschaft
gm ∈ U . Wir zeigen, dass dann U = 〈gm〉 gilt.

Die Inklusion „⊇“ gilt nach Definition der erzeugten Untergruppe. Nehmen wir nun an, dass „⊆“ nicht erfüllt ist.
Dann gibt es ein Element h ∈ U \ 〈gm〉 und ein b ∈ Z mit h = g b. Durch Division mit Rest erhalten wir q, r ∈ Z mit
b = qm+ r und 0≤ r < m. Dabei ist der Fall r = 0 ausgeschlossen, denn ansonsten wäre b ein Vielfaches von m und
h damit doch in 〈gm〉 enthalten. So aber gilt h · (gm)−q = g r ∈ U , im Widerspruch zur Minimalität von m. Damit ist
die Gleichung U = 〈gm〉 bewiesen.
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Sei nun n= ord(g) endlich, und nehmen wir an, dass m kein Teiler von n ist. Dann gibt es q, r ∈Zmit n= qm+r und
0 < r < m. Es gilt dann g r = gn−mq = gn · (gm)−q = (gm)−q ∈ U , im Widerspruch dazu, dass m mit der Eigenschaft
gm ∈ U minimal gewählt wurde. □

Aus der Klassifikation der Untergruppen einer zyklischen Gruppe können wir das folgende zahlentheoretische Resul-
tat herleiten.

Satz 3.8 (Lemma von Bézout)

Seien m, n ∈Z, (m, n) ̸= (0, 0). Dann gibt es a, b ∈Z mit am+ bn= ggT(m, n).

Beweis: Sei G = (Z,+) und U = 〈m, n〉, die von m und n erzeugte Untergruppe. Nach Satz 2.9 (ii) gilt U =
Zm+Zn = {am+ bn | a, b ∈ Z}. Weil (Z,+) zyklisch ist, gibt es nach Satz 3.7 ein d ∈ N mit U = 〈d〉. Wir zeigen,
dass d = ggT(m, n) erfüllt ist.

Wegen m, n ∈ 〈d〉 gibt es k,ℓ ∈ Z mit m = kd und n = ℓd. Dies zeigt, dass d jedenfalls ein gemeinsamer Teiler
von m und n ist. Sei nun d ′ ein weiterer gemeinsamer Teiler. Dann gibt es k′,ℓ′ ∈ Z mit m = k′d ′ und n = ℓ′d ′.
Die Elemente m, n liegen also in der Untergruppe 〈d ′〉, und nach Definition der erzeugten Untergruppe folgt 〈d〉 =
U = 〈m, n〉 ⊆ 〈d ′〉. Insbesondere ist d in 〈d ′〉 enthalten, es gibt also ein r ∈ Z mit d = rd ′. Folglich ist d ′ ein Teiler
von d. Damit ist der Beweis der Gleichung d = ggT(m, n) abgeschlossen. Wegen d ∈ U gibt es nun a, b ∈ Z mit
am+ bn= d = ggT(m, n). □

Mit Hilfe des Lemma von Bézout lassen sich wichtige Rechenregeln für Elementordnungen herleiten.

Satz 3.9 Sei G eine Gruppe und g ∈ G ein Element der endlichen Ordnung n.

(i) Für beliebiges m ∈Z gilt ord(gm) = n genau dann, wenn ggT(m, n) = 1 ist.

(ii) Ist d ∈N ein Teiler von n, dann gilt ord(gd) = n
d .

(iii) Für beliebiges m ∈Z gilt ord(gm) = n
d mit d = ggT(m, n).

Beweis: zu (i) „⇒“ Wegen gm ∈ 〈g〉 ist 〈gm〉 eine Untergruppe von 〈g〉. Ist ord(gm) = n = ord(g), dann muss
〈gm〉 = 〈g〉 gelten. Es existiert also ein k ∈ Z mit g = (gm)k = gkm. Wir erhalten g1−km = eG und damit n|(1− km),
weil n die Ordnung von g ist. Sei nun d ∈ N ein Teiler von n und m. Aus d|n folgt dann insbesondere d|(1− km).
Damit ist d auch ein Teiler von km+(1− km) = 1, also muss d = 1 sein. Wir haben damit gezeigt, dass 1 der einzige
(natürliche) gemeinsame Teiler von m und n ist, und es folgt ggT(m, n) = 1 wie gewünscht.

„⇐“ Wegen gm ∈ 〈g〉 ist 〈gm〉 eine Untergruppe von 〈g〉. Auf Grund des Lemmas von Bézout gibt es a, b ∈ Z mit
am+ bn= ggT(m, n) = 1. Es folgt

g = g1 = gam+bn = (gm)a · (gn)b = (gm)a · e b
G = gam ∈ 〈gm〉.

Also ist auch umgekehrt 〈g〉 eine Untergruppe von 〈gm〉. Insgesamt erhalten wir 〈g〉= 〈gm〉 und ord(gm) = |〈gm〉|=
|〈g〉|= ord(g) = n.
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zu (ii) Wegen n= ord(g) gilt für jedes k ∈Z die Äquivalenz (gd)k = eG⇔ gdk = eG⇔ n|(dk)⇔ n
d | k. Auf Grund

von Satz 3.3 (iii) folgt daraus ord(gd) = n
d

zu (iii) Seien m′ und n′ so gewählt, dass m = m′d und n = n′d gilt. Zu zeigen ist, dass ord(gm) = n′ gilt. Da d ein
Teiler von n ist, können wir zunächst den bereits bewiesenen Teil (ii) anwenden und erhalten ord(gd) = n′. Ferner
sind m′ und n′ teilerfremd. Denn wäre p ein gemeinsamer Primfaktor dieser beiden Zahlen, dann könnten wir m =
m′d = m′′pd und n= n′d = n′′pd mit geeigneten m′′, n′′ ∈N schreiben. Folglich wäre pd ein größerer gemeinsamer
Teiler von m und n als d, im Widerspruch zur Definition von d. So aber können wir (i) auf das Gruppenelement gd und
die Zahl m′ anwenden und erhalten ord(gd) = ord((gd)m

′
) = ord(gm′d) = ord(gm), insgesamt also das gewünschte

Ergebnis. □

Ist beispielsweise G eine Gruppe und g ∈ G ein Element der Ordnung 24, dann gilt ord(g7) = ord(g) = 24, ord(g6) =
4 und ord(g10) = 12.

Die in der Zahlentheorie eine wichtige Rolle spielende Eulersche ϕ-Funktion ist für jedes n ∈N definiert durch

ϕ(n) = |{k ∈Z | 0≤ k < n , ggT(k, n) = 1}| .

In der Ringtheorie (Kapitel § 13) werden wir zeigen, dass für alle m, n ∈ N mit ggT(m, n) = 1 stets ϕ(mn) =
ϕ(m)ϕ(n) gilt, außerdem ϕ(pr) = pr−1(p − 1) für jede Primzahl p und jedes r ∈ N. Damit lässt sich ϕ(n) für jede
natürliche Zahl n leicht berechnen.

Ist G = 〈g〉 eine zyklische Gruppe der Ordnung n, dann sind gk mit 0≤ k < n nach Folgerung 3.4 (i) die n verschie-
denen Elemente von G. Aus Satz 3.9 (i) kann daher unmittelbar abgeleitet werden, dass G insgesamt ϕ(n) Elemente
der vollen Ordnung n enthält. Es gibt also genau ϕ(n) Elemente h in G mit der Eigenschaft G = 〈h〉. Beispielsweise
besitzt jede zyklische Gruppe der Ordnung 24 jeweils genau ϕ(24) = ϕ(23)ϕ(3) = 4 · 2= 8 erzeugende Elemente.

Gelegentlich ist auch das folgende Kriterium für die Bestimmung der Ordnung hilfreich.

Satz 3.10 Sei G eine Gruppe und n ∈ N. Ein Element g ∈ G hat genau dann die Ordnung n,
wenn gn = eG und für jeden Primteiler p von n jeweils gn/p ̸= eG gilt.

Beweis: „⇒“ Ist n = ord(g), dann ist n ∈N nach Satz 3.3 minimal mit gn = eG . Insbesondere gilt dann gn/p ̸= eG

für jeden Primteiler p von n. „⇐“ Sei m = ord(g) und das angegebene Kriterium für ein n ∈ N erfüllt. Aus der
Gleichung gn = eG folgt zunächst m|n. Nehmen wir nun an, dass m ein echter Teiler von n ist. Dann besitzt die Zahl
n
m ∈ N einen Primteiler p. Ist k ∈ N mit n

m = kp, dann folgt n = kpm und n
p = km. Wegen gm = eG würden wir

gn/p = (gm)k = ek
G = eG erhalten, im Widerspruch zur Annahme gn/p ̸= eG . □

Satz 3.11 Sei G eine zyklische Gruppe und g ∈ G mit G = 〈g〉.

(i) Ist ord(g) =∞, dann sind die verschiedenen Untergruppen von G gegeben durch U0 =
{eG} und Um = 〈gm〉, wobei m die natürlichen Zahlen durchläuft.

(ii) Ist ord(g) = n endlich, dann sind Ud = 〈gd〉 die verschiedenen Untergruppen von G,
wobei d die Teiler von n durchläuft. Dabei gilt jeweils |Ud |=

n
d .

In (i) und (ii) gilt Um ⊆ Um′ für m, m′ ∈N genau dann, wenn m′ ein Teiler von m ist.
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Beweis: zu (i) Sei U eine beliebige Untergruppe ̸= {eG} von G. Nach Satz 3.7 gibt es ein m ∈ N mit U = 〈gm〉,
also ist U = Um für dieses m. Seien nun m, m′ ∈N vorgegeben. Setzen wir Um ⊆ Um′ voraus, dann gilt insbesondere
gm ∈ Um′ , und folglich gibt es ein k ∈Zmit gm = (gm′)k = gkm′ , also gkm′−m = eG . Weil die Ordnung von g unendlich
ist, folgt daraus km′ − m = 0⇔ m = km′, wie wir im Anschluss an Folgerung 3.4 gesehen haben. Also ist m′ ein
Teiler von m. Sei nun umgekehrt m′|m vorausgesetzt, also m = km′ für ein k ∈ Z. Dann gilt gm = (gm′)k ∈ Um′ und
somit Um ⊆ Um′ .

zu (ii) Sei auch hier eine beliebige Untergrupe U ̸= {eG} vorgegeben. In diesem Fall folgt aus Satz 3.7, dass U = Ud

für einen Teiler d von n gilt. Im Fall U = {eG} ist offenbar U = Un. Für jeden Teiler d von n gilt außerdem ord(gd) = n
d

nach Satz 3.9 (ii). Daraus folgt jeweils |Ud |=
n
d .

Der Beweis der Implikation „m′|m ⇒ Um ⊆ Um′“ läuft genau wie im Fall unendlicher Ordnung. Auch der Beweis
der Umkehrung braucht nur geringfügig modifiziert werden. Aus gm ∈ Um′ folgt gm = (gm′)k = gm′k und somit
gm−m′k = eG für ein k ∈ Z. Wegen ord(g) = n erhalten wir n | (m−m′k) nach Satz 3.3. Es gibt also ein ℓ ∈ Z mit
ℓn= m−m′k oder m′k = m− ℓn. Aus m′ | (m− ℓn) und m′ | (ℓn) folgt, dass m′ ein Teiler von m ist. □

Bei einer zyklischen Gruppe der Ordnung n ∈ N stimmt die Anzahl der Untergruppen also überein mit der Anzahl
der Teiler d ∈N von n. Die Zahl 12= 22 ·31 besitzt beipielsweise die sechs Teiler 2i3 j mit i ∈ {0, 1,2} und j ∈ {0, 1};
dies sind die Zahlen 1,2, 3,4, 6 und 12. Dementsprechend besitzt jede zyklische Gruppe der Ordnung 12 genau sechs
Untergruppen. Genauer gilt: Ist G zyklisch von Ordnung 12 und g ∈ G ein erzeugendes Element, dann sind die
Untergruppen von G durch folgende Tabelle gegeben.

Untergruppe U1 U2 U3 U4 U6 U12

Ordnung 12 6 4 3 2 1

Dabei ist Ud = 〈gd〉 für jeden Teiler d von 12, insbesondere U1 = 〈g1〉= G und U12 = 〈g12〉= 〈eG〉= {eG}.

Zum Abschluss zeigen wir noch, dass die zyklischen Gruppen durch die soeben beschriebene Untergruppeneigen-
schaft sogar charakterisiert werden können.

Satz 3.12 Sei G eine endliche Gruppe der Ordnung n mit der Eigenschaft, dass G für jedes
Teiler d ∈ N von n genau eine Untergruppe Ud mit |Ud | = d besitzt. Dann ist G eine zyklische
Gruppe.

Beweis: Wir beweisen zunächst die Gleichung
∑

d|nϕ(d) = n für die Eulersche ϕ-Funktion. Sei dazu H eine zyklische
Gruppe der Ordnung n. Nach Satz 3.11 gibt es für jeden Teiler d ∈N in H genau eine Untergruppe Vd der Ordnung d.
Diese ist nach Satz 3.7 ebenfalls zyklisch, und wie wir oben festgestellt haben, besitzt diese genau ϕ(d) Elemente der
Ordnung d. Umgekehrt muss jedes h ∈ H mit ord(h) = d in Vd liegen, weil ansonsten 〈h〉 eine von Vd verschiedene
Untergruppe der Ordnung d wäre. Also ist ϕ(d) die Gesamtzahl der Element der Ordnung d in H. Weil nun die
Ordnung jedes Elements nach dem Satz von Lagrange ein Teiler von n ist, und weil n auch die Gesamtzahl der
Elemente von H ist, erhalten wir die Gleichung

∑

d|nϕ(d) = n, wenn die Anzahlen der Elemente der Ordnung d in
H für alle Teiler d von n aufaddieren.
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Sei nun G eine Gruppe mit den im Satz angegebenen Eigenschaften, und sei d ein echter Teiler von n. Ist g ∈ G mit
ord(g) = d, dann ist 〈g〉 die einzige Untergruppe der Ordnung d von G, und diese ist zyklisch. Als solche besitzt sie
genau ϕ(d) Elemente der Ordnung d. Gäbe es in G mehr als ϕ(d) Elemente der Ordnung d, dann könnten diese nicht
alle in 〈g〉 liegen, und folglich hätte G mehr als eine Untergruppe der Ordnung d, im Widerspruch zur Voraussetzung.

Für jeden echten Teiler d von n gibt es also höchstens ϕ(d) Elemente der Ordnung d in G. Bezeichnet D die Menge
der echten Teiler von n inN, dann liefert der Beweisanfang die Ungleichung

∑

d∈Dϕ(d)< n. Dies zeigt, dass es in G
nicht nur Elemente geben kann, deren Ordnung ein echter Teiler von n ist. Statt dessen muss es in G auch Elemente
der Ordnung n geben. Daraus folgt, dass G zyklisch ist. □

Aus dem Satz von Lagrange und dem Konzept der Elementordnung ergibt sich noch eine für die elementare Zahlen-
theorie wichtige Folgerung.

Folgerung 3.13 (Kleiner Satz von Fermat)

Für jede Primzahl p und alle a ∈ Z gilt ap ≡ a mod p. Ist p kein Teiler von a, dann gilt darüber
hinaus ap−1 ≡ 1 mod p.

Beweis: Es gilt (Z/pZ)× = Z/pZ \ {0̄}, somit ist (Z/pZ)× eine Gruppe der Ordnung p − 1. Für jedes a ∈ Z ist
a+ pZ ∈ (Z/pZ)× äquivalent zu p ∤ a. Weil die Ordnung jedes Elements der Gruppe (Z/pZ)× die Gruppenordnung
teilt, gilt (a + pZ)p−1 = 1 + pZ für diese a, was zu ap−1 ≡ 1 mod p äquivalent ist. Durch Multiplikation dieser
Kongruenz mit a folgt ap ≡ a mod p. Diese Kongruenz ist auch im Fall p | a erfüllt, denn dann gilt auch p | ap und
somit ap ≡ 0≡ a mod p. □
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§ 4. Homomorphismen und Faktorgruppen

Zusammenfassung. Ein Homomorphismus zwischen zwei Gruppen G, H ist eine Abbildung G→ H, die ver-
träglich mit den Gruppenverknüpfungen ist. Diese spielen in der Gruppentheorie eine wichtige Rolle, weil man
durch sie die Struktur der Gruppen G und H zueinander in Beziehung setzen und sie miteinander vergleichen
kann. Beispielsweise hängen die Untergruppen von G und H sowie die in G und H auftretenden Elementord-
nungen miteinander zusammen.

Als zweites wichtiges Thema dieses Kapitels behanden wir die Faktorgruppen. Diese kommen dadurch zu Stan-
de, dass man auf der Menge G/N der Linksnebenklassen einer Untergruppe N von G eine Gruppenstruktur
definiert. Dies funktioniert allerdings nur bei Untergruppen N von G mit einer zusätzlichen Eigenschaft, den
sogenannten Normalteilern. Der Homomorphiesatz für Gruppen stellt zwischen den Homomorphismen und
den Faktorgruppen einen Zusammenhang her. Der Korrespondenzsatz bringt zum Ausdruck, dass sich ein Teil
der Struktur der Gruppe G auch in der Faktorgruppe G/N widerspiegelt. Allerdings ist Letzere häufig einfacher
zu untersuchen, da sie aus weniger Elementen besteht.

Wichtige Grundbegriffe

– Gruppenhomomorphismus

– Mono-, Epi- und Isomorphismus

– Endo- und Automorphismen einer Gruppe

– Normalteiler einer Gruppe (Notation N ⊴ G)

– Komplexprodukt zweier Teilmengen einer Gruppe

– inneres (semi-)direktes Produkt

– Faktorgruppe, kanonischer Epimorphismus

– induzierter Homomorphismus

Zentrale Sätze

– Erhaltung der Untergruppen-Eigenschaft un-
ter Homomorphismen

– Isomorphismus Aut(G) ∼= (Z/nZ)× für eine
zyklische Gruppe G der Ordnung n

– Isomorphismus zwischen innerem und äuße-
rem direkten Produkt zweier Normalteiler

– Homomorphiesatz für Gruppen

– Isomorphiesätze für Gruppen

– Korrespondenzsatz für Gruppen

Wir beginnen mit der Definition der Gruppenhomorphismen.

Definition 4.1 Sind (G, ∗ ) und (H, ◦ ) Gruppen, so bezeichnet man eine Abbildungφ : G→ H
als Gruppenhomomorphismus, wenn φ(g ∗ g ′) = φ(g) ◦φ(g ′) für alle g, g ′ ∈ G gilt.

Obwohl in der Definition nur gefordert wird, dass φ verträglich mit den Verknüpfungen der Gruppen G und H ist,
werden auch das Neutralelement und inverse Elemente aufeinander abgebildet.

Lemma 4.2 Sei φ ein Homomorphismus zwischen den Gruppen (G,∗) und (H,◦). Dann gilt

φ(eG) = eH und φ(g−1) = φ(g)−1 für alle g ∈ G.
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Beweis: Es gilt φ(eG) = φ(eG ∗ eG) = φ(eG) ◦φ(eG), und durch Multiplikation beider Seiten von links mit φ(eG)−1

erhält man
φ(eG)

−1 ◦φ(eG) = φ(eG)
−1 ◦φ(eG) ◦φ(eG) ,

also eH = eH◦φ(eG) und schließlich eH = φ(eG). Für jedes g ∈ G gilt außerdemφ(g)◦φ(g−1) = φ(g∗g−1) = φ(eG) =
eH . Multipliziert man beide Seiten von links mit φ(g)−1, so erhält man φ(g)−1 ◦φ(g) ◦φ(g−1) = φ(g)−1 ◦ eH , somit
eH ◦φ(g)−1 = φ(g)−1 und schließlich φ(g−1) = φ(g)−1. □

Definition 4.3 Seien (G, ∗ ) und (H, ◦ ) Gruppen und φ : G → H ein Homomorphismus von
Gruppen. Man bezeichnet φ als

(i) Monomorphismus, wenn φ injektiv

(ii) Epimorphismus, wenn φ surjektiv

(iii) Isomorphismus, wenn φ bijektiv ist.

Einen Gruppen-Homomorphismus φ : G → G von (G, · ) nach (G, · ) bezeichnet man als Endomorphismus von G.
Ist die Abbildung φ außerdem bijektiv, dann spricht man von einem Automorphismus der Gruppe G. Die Menge
der Automorphismen bezeichnen wir mit Aut(G). Wir bemerken, dass nach Definition 1.16 zwei Gruppen G und H
genau dann zueinander isomorph sind, wenn ein Isomorphismus φ : G→ H existiert.

Lemma 4.4 Ist φ : G → H ein Gruppenhomomorphismus, dann gilt φ(gn) = φ(g)n für alle
g ∈ G und n ∈Z.

Beweis: Sei g ∈ G vorgegeben. Zunächst beweist man die Gleichung für alle n ∈ N0 durch vollständige Induktion.
Für n= 0 ist die Gleichung wegen φ(g0) = φ(eG) = eH = φ(g)0 erfüllt, und setzen wir sie für n voraus, dann ist sie
wegen

φ(gn+1) = φ(gn · g) = φ(gn) ·φ(g) = φ(g)n ·φ(g) = φ(g)n+1

auch für n + 1 gültig. Für alle n ∈ N gilt außerdem φ(g−n) = φ((gn)−1) = φ(gn)−1 = (φ(g)n)−1 = φ(g)−n. Dies
zeigt, dass die Gleichung auch für negative Exponenten, und damit insgesamt für alle n ∈Z gültig ist. □

Der folgende Isomorphismus wird später im Kapitel über Gruppenoperationen eine wichtige Rolle spielen.

Satz 4.5 Seien X , Y Mengen und φ : X → Y eine Bijektion. Dann ist durch die Abbildung
φ̂ : Per(X )→ Per(Y ), σ 7→ φ ◦σ ◦φ−1 ein Isomorphismus von Gruppen definiert.

Beweis: Sei σ ∈ Per(X ) vorgegeben. Durch Komposition der Abbildungen φ−1 : Y → X , σ : X → X und φ : X → Y
erhält man eine Abbildung Y → Y , und als Komposition bijektiver Abbildungen ist φ ◦σ◦φ−1 ebenfalls bijektiv. Also
ist durch die angegebene Zuordnung φ̂ tatsächlich eine Abbildung Per(X )→ Per(Y ) definiert. Um zu zeigen, dass φ̂
ein Homomorphismus von Gruppen ist, seien σ,τ ∈ Per(X ) vorgegeben. Dann gilt
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φ̂(σ ◦τ) = φ ◦σ ◦τ ◦φ−1 = φ ◦σ ◦ (φ−1 ◦φ) ◦τ ◦φ−1 =

(φ ◦τ ◦φ−1) ◦ (φ ◦σ ◦φ−1) = φ̂(σ) ◦ φ̂(τ).

Um zu zeigen, dass φ̂ bijektiv ist, genügt es zu bemerken, dass durch die Zuordnung σ 7→ φ−1 ◦σ ◦φ eine Umkehr-
abbildung ψ̂ : Per(Y ) → Per(X ) von φ̂ gegeben ist. Für jedes σ ∈ Per(Y ) ist nämlich φ−1 ◦ σ ◦ φ eine Abbildung
X → X , und wiederum bijektiv als Komposition bijektiver Abbildungen. Also ist ψ̂ tatsächlich eine Abbildung von
Per(Y ) nach Per(X ). Außerdem gilt für alle σ ∈ Per(X ) jeweils

(ψ̂ ◦ φ̂)(σ) = ψ̂(φ̂(σ)) = ψ̂(φ ◦σ ◦φ−1) = φ−1 ◦ (φ ◦σ ◦φ−1) ◦φ =

(φ−1 ◦φ) ◦σ ◦ (φ−1 ◦φ) = idX ◦σ ◦ idX = σ = idPer(X )(σ) ,

also ψ̂ ◦ φ̂ = idPer(X ). Durch eine analoge Rechnung zeigt man φ̂ ◦ ψ̂ = idPer(Y ). Dies zeigt, dass ψ̂ tatsächlich die
Umkehrabbildung von φ̂ ist. □

Nach Satz 4.5 gilt Per(X ) ∼= Sn für jede n-elementige Menge X , denn die Gleichung |X | = n bedeutet ja gerade, dass
eine bijektive Abbildung zwischen Mn und X existiert.

Wir befassen uns noch mit den Endo- und Automorphismen einer Gruppe und legen dafür eine beliebige Gruppe
(G, · ) zu Grunde. Sind φ1,φ2 : G → G zwei Endomorphismen von G, dann ist auch φ1 ◦φ2 ein Endomorphismus
von G, denn für alle g, h ∈ G gilt

(φ1 ◦φ2)(gh) = φ1(φ2(gh)) = φ1(φ2(g) ·φ2(h)) =

φ1(φ2(g)) ·φ1(φ2(h)) = (φ1 ◦φ2)(g) · (φ1 ◦φ2)(h).

Ist φ3 ein weiterer Endomorphismus, dann gilt (φ1 ◦φ2)◦φ3 = φ1 ◦ (φ2 ◦φ3); diese Gleichung wurde früher bereits
für beliebge Kompositionen von Abbildungen verifiziert. Außerdem gilt φ1 ◦ idG = idG ◦φ1 = φ1. Dies zeigt, dass die
Menge End(G) der Endomorphismen von G zusammen mit der Komposition ◦ als Verknüpfung ein Monoid bildet,
mit idG als Neutralelement. Es gilt nun

Proposition 4.6 Die invertierbaren Elemente in End(G) sind genau die Automorphismen der
Gruppe G.

Beweis: Istφ in End(G) ein invertierbares Element, dann gibt es einψ ∈ End(G)mitψ◦φ = idG undφ◦ψ= idG . Aus
den Gleichungen folgt, dassφ bijektiv ist. Als bijektiver Homomorphismus istφ nach Definition ein Automorphismus.

Sei nun umgekehrt φ ein Automorphismus von G. Dann ist φ bijektiv. Wir zeigen weiter unten, dass die Umkehrab-
bildung φ−1 von φ ein Gruppenhomomorphismus ist. Weil mit φ auch φ−1 bijektiv ist, ist durch φ−1 dann insgesamt
ein Automorphismus gegeben. Darüber hinaus zeigen die Gleichungen φ−1 ◦φ = idG und φ ◦φ−1 = idG , dass es sich
bei φ im Monoid End(G) um ein invertierbares Element handelt.

Zum Nachweis der Homomorphismus-Eigenschaft von φ−1 seien g, h ∈ G vorgegeben. Auf Grund der Homomor-
phismus-Eigenschaft von φ gilt φ(φ−1(g) ·φ−1(h)) = φ(φ−1(g)) ·φ(φ−1(h)) = gh. Durch Anwendung von φ−1 auf
beide Seiten dieser Gleichung erhalten wir φ−1(g)φ−1(h) = φ−1(gh). Also ist φ−1 verträglich mit der Verknüpfung
von G und damit ein Homomorphismus. □
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Durch Anwendung von Satz 1.15 erhalten wir nun

Satz 4.7 Die Automorphismen einer Gruppe G bilden mit der Verknüpfung ◦ selbst eine Gruppe.
Man nennt sie die Automorphismengruppe Aut(G) der Gruppe G.

Ergänzend bemerken wir noch, dass allgemein gilt: Istφ : G→ H ein Isomorphismus von Gruppen, dann gilt dasselbe
für die Umkehrabbildung φ−1 : H → G. Der Nachweis dafür funktioniert genauso wie im zweiten Teil des Beweises
von Proposition 4.6. Allerdings lassen sich zwei Isomorphismen G → H in der Regel nicht verknüpfen (jedenfalls
nicht durch die Komposition von Abbildungen), also bilden die Isomorphismen zwischen G und H im Allgemeinen
keine Gruppe.

Als nächstes befassen wir uns mit der Beziehung zwischen Homomorphismen und Untergruppen.

Proposition 4.8 Sei φ : G→ H ein Gruppenhomomorphismus, außerdem U eine Untergruppe
von G und V eine Untergruppe von H. Dann gilt

(i) Die Bildmenge φ(U) ist eine Untergruppe von H.

(ii) Die Urbildmenge φ−1(V ) ist eine Untergruppe von G.

Beweis: zu (i) Wegen eG ∈ U und φ(eG) = eH ist eH ∈ φ(U) enthalten. Seien nun g ′, h′ ∈ φ(U) vorgegeben. Dann
gibt es Elemente g, h ∈ U mit φ(g) = g ′ und φ(h) = h′. Mit g, h liegen auch die Elemente gh und g−1 in U . Es folgt
g ′h′ = φ(g)φ(h) = φ(gh) ∈ φ(U), und ebenso erhalten wir (g ′)−1 = φ(g)−1 = φ(g−1) ∈ φ(U).

zu (ii) Aus φ(eG) = eH ∈ V folgt eG ∈ φ−1(V ). Sind g, h ∈ φ−1(V ) vorgegeben, dann gilt φ(g),φ(h) ∈ V . Es folgt
φ(gh) = φ(g)φ(h) ∈ V und somit gh ∈ φ−1(V ). Ebenso gilt φ(g−1) = φ(g)−1 ∈ V , also g−1 ∈ φ−1(V ). □

Eine besonders wichtige Rolle spielen in der Gruppentheorie der Kern ker(φ) = φ−1({eH}) und das Bild im(φ) =
φ(G) eines Gruppenhomomorphismus. Nach Proposition 4.8 ist ker(φ) eine Untergruppe von G und im(φ) ei-
ne Untergruppe von H. Beispielsweise ist für jedes n ∈ N die alternierende Gruppe An als Kern des Signums-
Homomorphismus sgn : Sn→ {±1} eine Untergruppe der symmetrischen Gruppe Sn.

Aus der Linearen Algebra ist bekannt, dass die Determinante auf der Menge Mn,K der (n× n)-Matrizen über einem
Körper K die Multiplikativitätsregel det(AB) = det(A)det(B) erfüllt. Außerdem gilt det(A) ̸= 0 genau dann, wenn A
invertierbar ist. Daraus folgt, dass die Determinantenfunktion einen Gruppenhomomorphismus det : GLn(K)→ K×

definiert. Die spezielle lineare Gruppe SLn(K) ist nach Definition genau der Kern dieses Homomorphismus.

Kerne und Bilder sind bereits aus der Linearen Algebra im Zusammenhang mit linearen Abbildungen bekannt. Wie
dort gilt auch hier der Zusammenhang

Proposition 4.9 Sei φ : G → H ein Gruppenhomomorphismus. Die Abbildung φ ist genau
dann injektiv, wenn ker(φ) = {eG} gilt.

Beweis: „⇒“ Ist φ ein Monomorphismus, dann ist eG das einzige Element, das auf eH abgebildet wird. Also gilt
ker(φ) = {eG}. „⇐“ Setzen wir ker(φ) = {eG} voraus, und seien g, h ∈ G mit φ(g) = φ(h) vorgegeben. Dann gilt
φ(g)φ(h)−1 = eH , und wir erhalten φ(gh−1) = φ(g)φ(h)−1 = eH . Nach Definition des Kerns folgt gh−1 ∈ ker(φ).
Auf Grund der Voraussetzung bedeutet dies gh−1 = eG und somit g = h. □
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In vielen Anwendungen erweist es sich als nützlich, dass ein Homomorphismus G→ H bereits durch die Bilder eines
Erzeugendensystems eindeutig festgelegt ist. Der Grund dafür besteht darin, dass viele bedeutende Gruppen (wie
zum Beispiel die symmetrische Gruppen) sehr kleine Erzeugendensysteme besitzen.

Satz 4.10 (Eindeutigkeit von Homomorphismen)

Seien G, H Gruppen und S ⊆ G ein Erzeugendensystem von G. Sind φ,φ′ : G→ H Gruppenho-
momorphismen mit φ(s) = φ′(s) für alle s ∈ S, dann folgt φ = φ′.

Beweis: Wir zeigen, dass die Teilmenge U = {g ∈ G | φ(g) = φ′(g)} eine Untergruppe von G ist. Wegen φ(eG) =
eH = φ′(eG) ist eG ∈ U . Sind g, h ∈ U beliebig vorgegeben, dann gilt

φ(gh) = φ(g)φ(h) = φ′(g)φ′(h) = φ′(gh) und φ(g−1) = φ(g)−1 = φ′(g)−1 = φ′(g−1) ,

also gilt gh ∈ U und g−1 ∈ U . Weil U nach Voraussetzung die Menge S enthält, gilt G = 〈S〉 ⊆ U und somit G = U .
Die Abbildungen φ und φ′ stimmen also auf der gesamten Gruppe G überein. □

Ist also beispielsweise S = {a, b} ein zweielementiges Erzeugendensystem einer Gruppe G, dann ist jeder Homomor-
phismus φ : G→ H in eine beliebige Gruppe H bereits durch die Bilder φ(a),φ(b) ∈ H eindeutig festgelegt.

Kommen wir nun zur Frage nach der Existenz von Homomorphismen. Für zwei beliebige Gruppen G und H ist durch
G → H, g 7→ eH ein Homomorphismus definiert; man bezeichnet ihn als den trivialen Homomorphismus. Ob es
weitere Homomorphismen zwischen G und H gibt, ist in der Regel nicht leicht zu entscheiden. Der Fall, dass es
sich bei G um eine zyklische Gruppe handelt, ist eine der seltenen Situationen, in denen weit reichende allgemeine
Aussagen möglich sind.

Proposition 4.11 Sei φ : G → H ein Gruppenhomomorphismus. Ist g ∈ G ein Element von
endlicher Ordnung n, dann ist auch ord(φ(g)) endlich, und ein Teiler von n.

Beweis: Auf Grund der Homomorphismus-Eigenschaft gilt φ(g)n = φ(gn) = φ(eG) = eH . Aus den Teilen (ii) und
(iii) von Satz 3.3 folgt sowohl die Endlichkeit von ord(φ(g)) als auch die Teiler-Eigenschaft. □

Proposition 4.12 (Existenz von Homomorphismen auf zyklischen Gruppen)

Sei G eine zyklische Gruppe, g ∈ G ein erzeugendes Element, H eine weitere Gruppe und h ∈ H.
Ist ord(g) =∞ oder ord(g) endlich und ein Vielfaches von ord(h), dann existiert ein (eindeutig
bestimmter) Gruppenhomomorphismus φ : G→ H mit φ(g) = h.

Beweis: Die Eindeutigkeit folgt in beiden Fällen aus Satz 4.10. Für die Existenz betrachten wir zunächst den Fall
ord(g) = ∞ und definieren die Abbildung φ durch φ(gn) = hn für alle n ∈ Z. Dann ist φ eine wohldefinierte
Abbildung und ein Homomorphismus, denn alle Elemente aus G lassen sich auf eindeutige Weise in der Form gm mit
m ∈Z darstellen, und für alle m, n ∈Z gilt φ(gm gn) = φ(gm+n) = hm+n = hmhn = φ(gm)φ(gn).
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Sei nun n = ord(g) endlich und ein Vielfaches von ord(h). Dann definieren wir φ als Abbildung durch φ(gk) = hk

für 0 ≤ k < n. Wir zeigen, dass dann φ(gm) = hm für alle m ∈ Z erfüllt ist. Division von m durch n mit Rest liefert
q, r ∈Z mit m= qn+ r und 0≤ r < n. Da n ein Vielfaches von ord(h) ist, gilt hn = eH , und es folgt

φ(gm) = φ(gqn+r) = φ((gn)q g r) = φ(g r) = hr = (hn)qhr = hqn+r = hm.

Wie im Fall unendlicher Ordnung prüft man nun die Homomorphismus-Eigenschaft von φ. □

Folgerung 4.13 Je zwei unendliche zyklische Gruppen sind isomorph. Ebenso sind zwei end-
liche zyklische Gruppen derselben Ordnung isomorph.

Beweis: Seien G und H unendliche zyklische Gruppen und g ∈ G, h ∈ H mit G = 〈g〉 sowie H = 〈h〉. Dann gibt
es nach Proposition 4.12 eindeutig bestimmte Homomorphismen φ : G → H und ψ : H → G mit φ(g) = h und
ψ(h) = g. Es gilt (ψ ◦ φ)(g) = g. Aber nach Satz 4.10 gibt es nur einen Homomorphismus G → G mit g 7→ g,
nämlich idG . Somit ist ψ ◦φ = idG . Ebenso schließt man aus der Gleichung (φ ◦ψ)(h) = h, dass φ ◦ψ = idH gilt.
Die Abbildungen φ und ψ sind also zueinander invers und damit bijektiv. Es folgt G ∼= H. Im Fall endlicher Ordnung
verläuft der Beweis analog. □

Mit Hilfe dieser Ergebnisse können wir nun die Automorphismengruppe zyklischer Gruppen bestimmen. Dazu be-
trachten wir die Teilmenge (Z/nZ)× der invertierbaren Elemente im Monoid (Z/nZ, · ). Nach Satz 1.15 bildet diese
Menge mit der Multiplikation als Verknüpfung eine Gruppe, die man als prime Restklassengruppe bezeichnet. Mit
dem folgenden Kriterium lasse sich die Elemente dieser Gruppen leicht bestimmen.

Proposition 4.14 Sei n ∈ N und a ∈ Z. Das Element a + nZ ∈ Z/nZ ist genau dann in
(Z/nZ)× enthalten, wenn ggT(a, n) = 1 ist.

Beweis: „⇒“ Ist a+nZ im Monoid (Z/nZ, · ) invertierbar, dann existiert ein b ∈Z mit (a+nZ)(b+nZ) = 1+nZ.
Daraus folgt ab+ nZ= 1+ nZ, was wiederum zu ab ≡ 1 mod n äquivalent ist. Die Zahl 1− ab ist also teilbar durch
n; es existiert also ein k ∈ Z mit 1 − ab = kn, was zu ab + kn = 1 umgeformt werden kann. Ist nun d ∈ N ein
gemeinsamer Teiler von a und n, dann folgt aus der letzten Gleichung, dass d auch ein Teiler von 1 sein und somit
d = 1 gelten muss. Damit ist ggT(a, n) = 1 nachgewiesen.

„⇐“ Aus ggT(a, n) = 1 folgt mit Satz 3.8, dem Lemma von Bézout, die Existenz von b, k ∈ Z mit ab + kn = 1.
Dasdurch erhalten wir im Restklassenring Z/nZ die Gleichung

(a+ nZ)(b+ nZ) = ab+ nZ = ab+ kn+ nZ= 1+ nZ.

Dies zeigt, dass a+ nZ in (Z/nZ, · ) invertierbar ist. □

Sei nun G eine zyklische Gruppe der endlichen Ordnung n und g ∈ G mit G = 〈g〉. Wegen Satz 3.9 ist ord(ga)
für jedes a ∈ Z ein Teiler von n. Wir können also Proposition 4.12 anwenden und erhalten für jedes a ∈ Z einen
eindeutig bestimmten Endomorphismus

τa : G→ G mit τa(g) = ga.
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Wir können nun eine Abbildung φ : Z/nZ→ End(G) durch φ(a + nZ) = τa für 0 ≤ a < n definieren. Es gilt dann
φ(a+ nZ) = τa für alle a ∈Z. Teilen wir nämlich a mit Rest durch n, ist also a = qn+ r mit q, r ∈Z und 0≤ r < n,
dann gilt τa(g) = ga = gqn+r = (gn)q · g r = eq

G · g
r = g r = τr(g), und somit τa = τr nach Satz 4.10. Es folgt

φ(a+ nZ) = φ(r + nZ) = τr = τa.

Satz 4.15 Durch Einschränkung der Abbildung φ auf (Z/nZ)× erhält man einen Isomorphis-
mus (Z/nZ)× ∼= Aut(G).

Beweis: Zunächst zeigen wir, dass φ verträglich mit der Multiplikation auf Z/nZ und der Komposition auf End(G)
ist. Für alle a, b ∈Z gilt

(τa ◦τb)(g) = τa(τb(g)) = τa(g
b) = τa(g)

b = (ga)b = gab = τab(g).

Eine Anwendung von Satz 4.10 liefert τa ◦ τb = τab, und es folgt φ(a + nZ) ◦ φ(b + nZ) = φ(ab + nZ). Als
nächstes überprüfen wir, dass φ die Teilmenge (Z/nZ)× ⊆Z/nZ der invertierbare Elemente von Z/nZ surjektiv auf
Aut(G) abbildet. Offenbar ist τ1 der eindeutig bestimmte Endomorphismus von G, der g auf g abbildet; daraus folgt
τ1 = idG . Ist nun a + nZ ein invertierbares Element, dann existiert ein b ∈ Z mit (a + nZ)(b + nZ) = 1+ nZ. Die
soeben bewiesene Gleichung liefert

τa ◦τb = φ(a+ nZ) ◦φ(b+ nZ) = φ(1+ nZ) = τ1 = idG ,

und ebenso erhält man τb ◦ τa = idG . Dies zeigt, dass τa ein Automorphismus von G und φ somit (Z/nZ)× nach
Aut(G) abbildet. Umgekehrt ist jedes Element τ ∈ Aut(G) ist im Bild vonφ|(Z/nZ)× enthalten. Denn wegen τ(g) ∈ 〈g〉
existiert ein a ∈ Z mit τ(g) = ga = τa(g), woraus τ = τa folgt, erneut auf Grund von Proposition 4.10. Wegen
τ(gm) = τ(g)m = (ga)m für alle m ∈ Z besteht das Bild τ(G) nur aus Potenzen von ga. Wegen τ ∈ Aut(G) gilt
insbesondere τ(G) = G; also muss ga in G ein Element der Ordnung n sein. Daraus folgt ggT(a, n) = 1 (nach Teil (i)
von Satz 3.9) und somit a+ nZ ∈ (Z/nZ)× (nach Proposition 4.14).

Also ist durch φ|(Z/nZ)× ein surjektiver Gruppenhomomorphismus (Z/nZ)× → Aut(G) gegeben. Dieser ist auch
injektiv. Ist nämlich a+ nZ ∈ (Z/nZ)× mit φ(a+ nZ) = idG vorgegeben, dann folgt ga = τa(g) = φ(a+ nZ)(g) =
idG(g) = g1. Wir erhalten ga−1 = eG , also n | (a− 1), damit a ≡ 1 mod n und a+ nZ= 1+ nZ. Die Injektivität folgt
nun aus Proposition 4.9. □

Auch im Fall, dass G = 〈g〉 unendlich ist, lässt sich die Automorphismengruppe leicht angeben. Nach Proposition
4.12 sind die Endomorphismen einer solchen Gruppe G genau die Abbildungen der Form τa(g) = ga, wobei a die
Menge Z der ganzen Zahlen durchläuft. Im Gegensatz zum endlichen Fall gilt hier τa = τb für a, b ∈Z genau dann,
wenn a = b ist, denn nur in diesem Fall ist ga = g b. Wie in Satz 4.15 überprüft man, dass durch Z → End(G),
a 7→ τa ein Isomorphismus zwischen den Monoiden (Z, ·) und (End(G),◦) gegeben ist. Wiederum ist τa genau dann
ein Automorphismus, wenn a in (Z, · ) invertierbar ist, und die invertierbaren Elemente in dieser Gruppen sind ±1.

Wie bei den zyklischen Gruppen endlicher Ordnung kommt man so zu dem Ergebnis (Aut(G),◦) ∼= ({±1}, · ). Da
es sich bei ({±1}, · ) und (Z/2Z,+) um zyklische Gruppen der Ordnung 2 handelt, sind diese nach Folgerung 4.13
isomorph. Somit gilt auch (Aut(G),◦)∼= (Z/2Z,+) für jede unendliche zyklische Gruppe G.
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Ist U eine Untergruppe, dann bilden die Nebenklassen gU lediglich eine Menge, die wir mit G/U bezeichnet haben.
Wir betrachten nun im weiteren Verlauf einen speziellen Typ von Untergruppen, die es uns ermöglichen werden, auf
der Menge G/U wiederum eine Gruppenstruktur zu definieren.

Definition 4.16 Sei G eine Gruppe. Eine Untergruppe U von G wird Normalteiler von G
genannt (Schreibweise U ⊴ G), wenn gU = U g für alle g ∈ G gilt.

Für die Normalteiler-Eigenschaft einer Untergruppe gibt es mehrere äquivalente Kriterien.

Proposition 4.17 Sei G eine Gruppe und U eine Untergruppe. Dann sind die folgenden Bedin-
gungen äquivalent:

(i) U ist Normalteiler von G.

(ii) Es gilt gU g−1 ⊆ U für alle g ∈ G, wobei gU g−1 = {gug−1 | u ∈ U} ist.

(iii) Es gilt gU g−1 = U für alle g ∈ G.

Beweis: „(i) ⇒ (ii)“ Seien g ∈ G und h ∈ gU g−1 vorgegeben. Dann gibt es ein u ∈ U mit h = gug−1. Auf Grund
der Gleichung gU = U g finden wir ein u′ ∈ U mit gu = u′g. Es folgt h = (u′g)g−1 = u′ ∈ U . Damit ist die Inklusion
gU g−1 ⊆ U nachgewiesen.

„(ii)⇒ (iii)“ Sei g ∈ G vorgeben. Auf Grund der Voraussetzung genügt es, die Inklusion U ⊆ gU g−1 zu beweisen.
Seien g ∈ G und u ∈ U vorgegeben. Nach Voraussetzung gilt auch g−1U g ⊆ U , also liegt das Element u′ = g−1ug in
U . Es folgt u= gu′g−1 ∈ gU g−1.

„(iii) ⇒ (i)“ Zunächst beweisen wir die Inklusion gU ⊆ U g. Sei dazu h ∈ gU vorgegeben. Dann gibt es ein u ∈ U
mit h = gu. Nach Voraussetzung liegt das Element u′ = gug−1 in U . Es gilt also h = u′g ∈ U g. Zum Beweis von
U g ⊆ gU sei nun umgekehrt h ∈ U g enthalten, also h = ug für ein u ∈ U . Wegen g−1U g = U liegt u′ = g−1ug in U .
Daraus folgt h= gu′ ∈ gU . □

Ist G eine beliebige Gruppe, dann sind {eG} und G stets Normalteiler von G. Man nennt eine Gruppe G einfach,
wenn G ̸= {eG} gilt und es neben diesen beiden keine weiteren Normalteiler von G gibt. Ist G abelsch, dann ist jede
Untergruppe von G ein Normalteiler; vgl. die Bemerkung unmittelbar vor Lemma 2.14. Eine abelsche Gruppe ist also
nur dann einfach, wenn sie außer {eG} und G keine weiteren Untergruppen besitzt. Wir werden später sehen, dass
dies bei abelschen Gruppen nur auf die Gruppen von Primzahlordnung zutrifft. Nicht-kommutative einfache Gruppen
haben dagegen (anders als die Bezeichung „einfach“ vermuten lässt) in der Regel eine sehr komplizierte Struktur.

Gilt N ⊴ G, dann gilt offenbar auch N ⊴ U für jede Untergruppe U von G mit U ⊇ N . Neben dem direkten Nachrech-
nen lässt sich die Normalteiler-Eigenschaft auch durch folgende Kriterien feststellen.
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Satz 4.18

(i) Ist G eine Gruppe und U eine Untergruppe mit (G : U) = 2, dann gilt U ⊴ G.

(ii) Ist G eine Gruppe und (Ni)i∈I eine Familie von Normalteilern, dann ist auch N =
⋂

i∈I Ni

ein Normalteiler von G.

(iii) Sei nun φ : G→ H ein Gruppenhomomorphismus. Ist N ein Normalteiler von H, dann ist
φ−1(N) ein Normalteiler von G.

(iv) Ist φ surjektiv und N Normalteiler von G, dann ist φ(N) Normalteiler von H.

Beweis: zu (i) Sei g ∈ G beliebig. Ist g in U enthalten, dann gilt gU = U = U g. Setzen wir nun g /∈ U voraus.
Dann ist gU eine von U verschiedene Linksnebenklasse in G. Wegen (G : U) = 2 sind U und gU die einzigen
Linksnebenklassen, und wir erhalten eine disjunkte Zerlegung G = U ∪ gU , also gU = G \ U . Ebenso zeigt man
U g = G \ U . Insgesamt erhalten wir gU = U g.

zu (ii) Für beliebiges g ∈ G ist zu zeigen, dass gN g−1 ⊆ N gilt. Sei also h ∈ gN g−1. Dann gibt es ein n ∈ N mit
h = gng−1. Weil jedes Ni Normalteiler und nach Voraussetzung n in jedem Ni enthalten ist, gilt h = gng−1 ∈ Ni für
alle i ∈ I . Also liegt h in N .

zu (iii) Sei n ∈ φ−1(N), also φ(n) ∈ N . Dann gilt hφ(n)h−1 ∈ N für alle h ∈ H. Insbesondere gilt φ(gng−1) =
φ(g)φ(n)φ(g)−1 ∈ N für alle g ∈ G, also gng−1 ∈ φ−1(N) für alle g ∈ G.

zu (iv) Sei n ∈ φ(N), also n = φ(n′) für ein n′ ∈ G. Ist nun h ∈ H beliebig vorgegeben, dann finden wir auf
Grund der Surjektivität von φ ein g ∈ G mit φ(g) = h. Weil N Normalteiler von G ist, gilt gn′g−1 ∈ N . Es folgt
hnh−1 = φ(g)φ(n′)φ(g)−1 = φ(gn′g−1) ∈ φ(N). □

Beispielsweise ist N = 〈(1 2 3)〉 ein Normalteiler von S3, denn aus |N | = 3 und |S3| = 6 folgt (G : N) = 2 nach dem
Satz von Lagrange. Die Untergruppe U = 〈(1 2)〉 ist dagegen kein Normalteiler von S3, denn wie wir bereits in §4
gesehen haben, stimmen Links- und Rechtsnebenklassen von U nicht überein. Für g = (1 2 3) beispielsweise gilt
gU = {(1 2 3), (1 3)} und U g = {(1 2 3), (2 3)}.

Aus Teil (iii) von Satz 4.18, angewendet auf den Normalteiler {eH} von H, folgt insbesondere, dass Kerne von
Homomorphismen stets Normalteiler sind. Umgekehrt werden wir in Kürze sehen, dass jeder Normalteiler auch
Kern eines geeigneten Homomorphismus ist.

Man beachte, dass Teil (iv) ohne die Voraussetzung der Surjektivität falsch wird. Als Beispiel betrachte man die
Inklusionsabbildung φ : 〈(1 2)〉 → S3, σ 7→ σ. Offenbar gilt φ(〈(1 2)〉) = 〈(1 2)〉 und 〈(1 2)〉 ⊴ 〈(1 2)〉. Aber
andererseits ist 〈(1 2)〉, wie bereits festgestetllt, kein Normalteiler von S3.

In bestimmten Situationen können Normalteiler verwendet werden, um Gruppen in äußere direkte Produkte kleine-
rer Gruppen zu zerlegen. Zur Vorbereitung definieren wir

Definition 4.19 Sei G eine Gruppe, und seien A, B ⊆ G beliebige Teilmengen. Dann nennt man
die Teilmenge AB = {ab | a ∈ A, b ∈ B} das Komplexprodukt von A und B.
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Bei Gruppen in additiver Schreibweise verwendet man für das Komplexprodukt die Schreibweise A+ B statt AB. Die
folgenden „Rechenregeln“ für Komplexprodukte werden wir im weiteren Verlauf der Vorlesung an mehreren Stellen
verwenden, in diesem Kapitel beispielsweise weiter unten beim Beweis des Korrespondenzsatzes.

Lemma 4.20 Sei G eine Gruppe, und seien U und N Untergruppen von G.

(i) Gilt U ∩ N = {e}, dann hat jedes Element g ∈ UN eine eindeutige Darstellung der Form
g = un, mit u ∈ U und n ∈ N .

(ii) Gilt U ⊆ N , dann folgt UN = N .

(iii) Gilt UN = NU , dann ist UN eine Untergruppe von G. Ersteres ist insbesondere dann
gegeben, wenn N ein Normalteiler von G ist.

(iv) Sind N und U beides Normalteiler von G, dann folgt UN ⊴ G.

Beweis: zu (i) Sei g ∈ UN . Die Existenz einer Darstellung der angegebenen Form ist auf Grund der Definition
des Komplexprodukts offensichtlich. Nehmen wir nun an, es gibt u, u′ ∈ U und n, n′ ∈ N mit g = un = u′n′. Dann
kann die Gleichung un = u′n′ umgeformt werden zu (u′)−1u = n′n−1. Dieses Produkt liegt in U ∩ N = {e}. Es folgt
(u′)−1u= e und n′n−1 = e, also u= u′ und n= n′.

zu (ii) Ist g ∈ N , dann gilt g = eG g ∈ UN . Liegt umgekehrt g in UN , dann gibt es u ∈ U und n ∈ N mit g = un. Da
N als Untergruppe von G unter der Verknüpfung abgeschlossen ist und u, n in N liegen, folgt g = un ∈ N .

zu (iii) Wir beweisen die Untergruppen-Eigenschaft von UN unter der gegebenen Voraussetzung. Zunächst ist das
Neutralelement eG = eGeG wegen eG ∈ U und eG ∈ N in UN enthalten. Seien nun g, g ′ ∈ UN vorgegeben. Dann gibt
es u, u′ ∈ U und n, n′ ∈ N mit g = un und g ′ = u′n′. Auf Grund der Voraussetzung finden wir ein u′′ ∈ U und n′′ ∈ N
mit nu′ = u′′n′′, so dass das Element

g g ′ = (un)(u′n′) = u(nu′)n′ = u(u′′n′′)n′ = (uu′′)(n′′n′)

in UN liegt. Aus g−1 = (un)−1 = n−1u−1 ∈ NU und NU = UN folgt auch g−1 ∈ UN .

Sei nun N ein Normalteiler von G und g ∈ UN . Dann gibt es Elemente u ∈ U und n ∈ N mit g = un. Auf Grund der
Normalteiler-Eigenschaft gilt uN = Nu, es existiert also ein n′ ∈ N mit un = n′u. Dies zeigt, dass g in NU enthalten
ist, und wir haben damit die Inklusion UN ⊆ NU bewiesen. Der Nachweis der Inklusion NU ⊆ UN funktioniert
analog.

zu (iv) Sei g ∈ G beliebig. Um zu zeigen, dass UN Normalteiler von G ist, müssen wir die Inklusion g(UN)g−1 ⊆ UN
nachrechnen. Ist h ∈ g(UN)g−1, dann gibt es Elemente u ∈ U und n ∈ N mit h= g(un)g−1. Da U Normalteiler von G
ist, gilt gug−1 ∈ U , und aus N ⊴ G folgt gng−1 ∈ G. Insgesamt erhalten wir h= g(un)g−1 = (gug−1)(gng−1) ∈ UN .
□

Selbst wenn U und N beides Untergruppen von G sind, braucht das Komplexprodukt UN im Allgemeinen keine
Untergruppe von G zu sein. Als Beispiel betrachten wir G = S3, U = 〈(1 2)〉 und N = 〈(1 3)〉. Dann ist UN =
{id, (1 2), (1 3), (1 3 2)}. Nach dem Satz von Lagrange kann diese vierelementige Teilmenge keine Untergruppe der
sechselementigen Gruppe S3 sein.
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In § 1 hatten wir die Diedergruppen Dn für n≥ 3 als Symmetriegruppen des regelmäßigen n-Ecks definiert. Mit dem
soeben eingeführten Konzept des Komplexprodukts können wir nun auf einfache Art nachweisen, dass die in § 1
angegebene Menge von Elementen eine Untergruppe der orthogonalen Gruppe O(2) bildet. Als weiteres Hilfsmittel
benötigen wir noch den folgenden Begriff.

Definition 4.21 Sei G eine Gruppe und U ⊆ G eine Untergruppe. Dann nennt man NG(U) =
{g ∈ G | gU g−1 = U} den Normalisator von U in G.

Die Bedeutung des Normalisators wird durch die folgende Proposition deutlich.

Proposition 4.22 Sei G eine Gruppe und U eine Untergruppe. Dann ist NG(U) die größte
Untergruppe H von G mit der Eigenschaft, dass U Normalteiler von H ist.

Beweis: Die Untergruppen-Eigenschaft von NG(U) haben wir in den Übungen nachgewiesen; wir werden sie später im
Kapitel über Gruppenoperationen noch einmal auf einem anderen Weg herleiten. Für jedes g ∈ NG(U) gilt gU g−1 = U
nach Definition von NG(U). Dies zeigt, dass U ⊴ NG(U) ist. Sei nun H eine beliebige Untergruppe von G mit der
Eigenschaft U ⊴ H. Für jedes h ∈ H gilt dann hUh−1 = U und somit h ∈ NG(U). Also ist H tatsächlich in NG(U)
enthalten. □

Sei n ∈ N mit n ≥ 3. In § 1 hatten wir die Bezeichnung ρ für die 2π
n -Drehung um den Punkt (0, 0) und τ für die

Spiegelung an der x-Achse eingführt. Wie man leicht überprüft, gilt ord(ρ) = n und ord(τ) = 2. Nach Folgerung 3.4
gilt für die erzeugten zyklischen Untergruppen somit 〈ρ〉= {ρk | 0≤ k < n} und 〈τ〉= {τ0,τ1}. Das Komplexprodukt
dieser beiden zyklischen Untergruppen von O(2) ist somit gegeben durch

〈ρ〉〈τ〉 = {ρ | 0≤ k < n} ∪ {ρkτ | 0≤ k < n} ;

dies sind genau die in § 1 angegebenen Elemente. Um zu zeigen, dass das Komplexprodukt eine Untergruppe vonO(2)
ist, genügt es nach Lemma 4.20 zu überprüfen, dass 〈ρ〉 ein Normalteiler von 〈ρ,τ〉 ist. Dazu wiederum reicht es nach
Proposition 4.22 nachzuweisen, dass ρ und τ beide im Normalisator N〈ρ,τ〉(〈ρ〉) enthalten sind, denn daraus folgt,
dass 〈ρ,τ〉 mit dem Normalisator übereinstimmt. Das Element ρ ist wegen ρ ∈ 〈ρ〉 offensichtlich im Normalisator
enthalten. Für τ verwenden wir die aus § 1 bekannte Gleichung τρ−kτ = ρk für 0 ≤ k < n, die wegen τ = τ−1

zu τρkτ−1 = ρ−k umgeformt werden kann. Diese zeigt, dass τ〈ρ〉τ−1 mit 〈ρ〉 übereinstimmt und τ somit auch im
Normalisator enthalten ist.

Als weitere Anwendungen des Komplexprodukts führen wir die folgenden Begriffe ein.

Definition 4.23 Sei G eine Gruppe, und seien U , N Untergruppen von G. Wir bezeichnen G als
inneres direktes Produkt von U und N , wenn U und N beides Normalteiler von G sind und G =
UN sowie U∩N = {e} gilt. Ist lediglich N eine Normalteiler von G, aber nicht notwendigerweise
die Untergruppe U , dann spricht man von einem inneren semidirekten Produkt.

Die inneren semidirekten Produkte werden wir erst später genauer untersuchen. Die wesentliche Motivation für die
Einführung der inneren direkten Produkte besteht in der Verbindung zu den äußeren direkten Produkten der Form
G ×H, die wir bereits in § 1 definiert haben.
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Proposition 4.24 Sei G eine Gruppe und inneres direktes Produkt ihrer Untergruppen U und
N . Dann gilt G ∼= U × N .

Beweis: Wir zeigen zunächst, dass für alle u ∈ U und n ∈ N die Gleichung un = nu erfüllt ist. Wir beweisen
die äquivalente Gleichung unu−1n−1 = e. Weil N ein Normalteiler von G ist, gilt unu−1 ∈ N , und somit liegt auch
unu−1n−1 in N . Andererseits ist auch U ein Normalteiler von G. Es folgt nu−1n−1 ∈ U und unu−1n−1 ∈ U . Insgesamt
gilt also unu−1n−1 ∈ U ∩ N = {e}, also unu−1n−1 = e.

Nun zeigen wir, dass durch die Abbildung φ : U × N → G, (u, n) 7→ un ein Isomorphismus von Gruppen definiert
ist. Zum Nachweis der Homomorphismus-Eigenschaft seien (u1, n1), (u2, n2) ∈ U×N vorgegeben. Durch Anwendung
der zu Beginn bewiesenen Gleichung u1n2 = n2u1 erhalten wir

φ(u1, n1)φ(u2, n2) = (u1n1)(u2n2) = u1(n1u2)n2 = u1(u2n1)n2 =

(u1u2)(n1n2) = φ(u1u2, n1n2) = φ((u1, n1)(u2, n2)).

Jedes g ∈ G kann als Produkt g = un mit u ∈ U und n ∈ N dargestellt werden. Dies beweist die Surjektivität von φ,
und die Eindeutigkeit der Darstellung folgt direkt aus Teil (i) von Lemma 4.20. □

Wir bemerken noch, dass die Bijektivität der Abbildung U × N → UN , (u, n) 7→ un auch dann noch gegeben ist,
wenn U und N nur Untergruppen, aber keine Normalteiler von G sind. Auch dies ist eine direkte Folgerung aus
Teil (i) von Lemma 4.20. Sind U und N insbesondere endliche Untergruppen von G mit U ∩ N = {e}, dann gilt also
|UN |= |U | · |N |.

Sei G eine Gruppe und N ⊴ G ein Normalteiler. Existiert ein weiterer Normalteiler U von G mit G = NU und
N ∩ U = {eG}, dann kann, wie wir soeben gesehen haben, die Gruppe G in die Bestandteile N und U „zerlegt“
werden. Aber auch, wenn ein solcher Normalteiler U nicht existiert, ist eine Zurückführung der Struktur von G auf
„einfachere“ Bestandteile möglich.

Hier kommen die sog. Faktorgruppen ins Spiel. Für die Definition der Verknüpfung auf diesen Gruppen wiederholen
wir einen wichtigen, bereits aus der Linearen Algebra bekannten, Satz.

Satz 4.25 Seien X und Y Mengen und sei ≡ eine Äquivalenzrelation auf X .

(i) Ist f : X → Y eine Abbildung mit der Eigenschaft, dass für alle x , x ′ ∈ X aus x ≡ x ′ jeweils
f (x) = f (x ′) gilt, dann existiert eine eindeutig bestimmte Abbildung f̄ : X/≡ → Y mit
f̄ ([x]) = f (x) für alle x ∈ X .

(ii) Ist g : X ×X → Y eine Abbildung mit der Eigenschaft, dass für alle x , x ′ ∈ X und y, y ′ ∈ X
aus x ≡ x ′ und y ≡ y ′ jeweils g(x , y) = g(x ′, y ′) folgt, dann existiert eine eindeutig
bestimmte Abbildung ḡ : (X/≡)× (X/≡)→ Y mit ḡ([x], [y]) = g(x , y) für alle x , y ∈ X
.Man nennt f̄ bzw. ḡ die durch f bzw. g induzierte Abbildung.

Beweis: Die Eindeutigkeit von f̄ und ḡ ist jeweils offensichtlich, denn durch die angegebenen Bedingungen sind f̄
und ḡ auf ihrem Definitionsbereich eindeutig festgelegt. Zum Nachweis der Existenz verwenden wir ein Repräsen-
tantensystem R ⊆ X der Äquivalenzklassen. Für jedes x ∈ X sei xR ∈ R jeweils das eindeutig bestimmte Element
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in der Äquivalenzklasse von x . Dann definieren wir f̄ und ḡ durch f̄ ([x]) = f (xR) und ḡ([x], [y]) = g(xR, yR).
(Diese Definitionen sind eindeutig auf Grund der Tatsache, dass xR und yR jeweils nur von den Äquivalenzklas-
sen [x], [y] ∈ X/≡ abhängen, nicht aber von der Wahl der Elemente x und y innerhalb ihrer jeweiligen Klasse.)
Auf Grund unserer Voraussetzungen an die Abbildungen f und g gilt für alle x , y ∈ X jeweils f (xR) = f (x) und
g(xR, yR) = g(x , y), insgesamt also f̄ ([x]) = f (x) und ḡ([x], [y]) = g(x , y) wie gefordert. □

Die Gültigkeit des Satzes ist keineswegs so selbstverständlich, wie es auf den ersten Blick erscheint. Beispielsweise
existiert keine Abbildung f : Z/3Z → Z/4Z mit f (a + 3Z) = a + 4Z für alle a ∈ Z. Denn aus der Existenz einer
solchen Abbildung würde sich auf Grund der Gleichung 2+3Z= 5+3Z inZ/3Z die Gleichung 2+4Z= f (2+3Z) =
f (5+ 3Z) = 5+ 4Z ergeben, im Widerspruch zu 5+ 4Z= 1+ 4Z ̸= 2+ 4Z.

Proposition 4.26 Sei G eine Gruppe und N ein Normalteiler von G. Dann gibt es auf der Menge
G/N eine eindeutig bestimmte Verknüpfung · mit der Eigenschaft

(gN) · (hN) = (gh)N für alle g, h ∈ G.

Beweis: Dies erhält man unmittelbar durch Anwendung von Satz 4.25 (ii) auf die Relation ≡ℓ gegeben durch
g ≡ℓ g ′⇔ g ′ ∈ gN für alle g, g ′ ∈ G und auf die Abbildung G × G → G/N , (g, h) 7→ (gh)N . Die Voraussetzungen
des Satzes sind erfüllt, denn sind g, g ′, h, h′ ∈ G mit g ≡ℓ g ′ und h≡ℓ h′ vorgegeben, dann gibt es Element n1, n2 ∈ N
mit g ′ = gn1 und h′ = hn2. Auf Grund der Normalteiler-Eigenschaft ist n′ = h−1n1h in N enthalten. Stellen wir diese
Gleichung zu n1h= hn′ um, so erhalten wir g ′h′ = (gn1)(hn2) = (gh)n′n2 ∈ (gh)N und somit g ′h′ ≡ℓ gh. □

Man kann übrigens zeigen, dass für eine beliebige Untergruppe U die Existenz einer Verknüpfung · auf der Menge
G/U mit (gU) · (hU) = (gh)U äquivalent zur Normalteiler-Eigenschaft von U ist. Den Beweis dieser Aussage sehen
wir uns in den Übungen an.

Um die soeben bewiesene Proposition zu illustrieren, betrachten wir als Beispiel die Gruppe G = S3 und die Unter-
gruppe N = 〈(1 2 3)〉. Dann besteht die Menge G/N der Linksnebenklassen aus den beiden Elementen

id N = {id, (1 2 3), (1 3 2)} , (1 2)N = {(1 2), (1 2)(1 2 3), (1 2)(1 3 2)}= {(1 2), (2 3), (1 3)}.

Wegen (G : N) = 2 ist N ein Normalteiler von G. Für die soeben definierte Verknüpfung · auf G/N gilt beispielsweise
(id N) · ((1 2)N) = (id ◦ (1 2))N = (1 2)N und ((1 2)N) · ((1 2)N) = ((1 2) ◦ (1 2)) = id N . Insgesamt ist die
Verknüpfungstabelle von · gegeben durch

· id N (1 2)N

id N id N (1 2)N
(1 2) N (1 2)N id N

Stellt man die Nebenklasse (1 2)N durch andere Repräsentanten dar, so liefert die Verknüpfung · dennoch dassel-
be Ergebnis. Beispielsweise gilt (1 2)N = (2 3)N = (1 3)N , und man erhält entsprechend ((2 3)N) · ((1 3)N) =
((2 3) ◦ (1 3))N = (1 2 3)N = N . Als nächstes zeigen wir nun, dass die Verknüpfung · auf der Menge G/N eine
Gruppenstruktur definiert.
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Satz 4.27 Sei G eine Gruppe und N ein Normalteiler. Dann ist die Menge G/N der Linksne-
benklassen mit der Verknüpfung gN · hN = (gh)N eine Gruppe, die sogenannte Faktorgruppe
von G modulo N . Die Abbildung πN : G → G/N , g 7→ gN ist ein Epimorphismus von Gruppen,
der sog. kanonische Epimorphismus.

Beweis: Wir müssen für die gegebene Verknüpfung die Gruppenaxiome überprüfen. Zum Nachweis der Assoziativität
seien g1, g2, g3 ∈ G vorgegeben. Dann gilt

(g1N · g2N) · g3N = (g1 g2)N · g3N = ((g1 g2)g3)N = (g1(g2 g3))N =

g1N · (g2 g3)N = g1N · (g2N · g3N).

Die Nebenklasse ē = eGN = N übernimmt die Rolle des Neutralelements, denn für alle g ∈ G gilt gN ·eGN = (geG)N =
gN und eGN ·gN = (eG g)N = gN . Außerdem gilt gN ·g−1N = (g g−1)N = eGN = ē und ebenso g−1N ·gN = eGN = ē,
also ist g−1N das zu gN inverse Element in G/N .

Überprüfen wir nun die angegebenen Eigenschaften der Abbildung πN . Für alle g, g ′ ∈ G gilt πN (g g ′) = (g g ′)N =
(gN)(g ′N) = πN (g)πN (g ′). Somit ist πN ein Homomorphismus. Ist gN ∈ G/N vorgegeben, dann gilt πN (g) = gN .
Also ist πN surjektiv. □

Wie wir bereits wissen, sind Homomorphismen nicht nur mit der Gruppenverknüpfung, sondern auch mit der Po-
tenzierung von Elementen verträglich. Damit können wir eine naheliegende Potenzierungsregel für Elemente in
Faktorgruppen herleiten: Für g ∈ G und n ∈Z gilt (gN)n = πN (g)n = πN (gn) = (gn)N .

Ein wichtiges Beispiel für Faktorgruppen sind die bereits bekannten Restklassengruppen. Sei G = (Z,+), n ∈N und
U = 〈n〉 = nZ. Dann sind die Elemente von G/U = Z/nZ die schon zuvor erwähnten Restklassen der Form a + nZ
mit a ∈ Z. Wir bemerken noch, dass jede zyklische Grupper der Ordnung n isomorph zu (Z/nZ,+) ist. Dies ergibt
sich unmittelbar aus Folgerung 4.13.

Für viele Anwendungen ist es nützlich, Faktorgruppen mit anderen, möglicherweise „natürlicher“ erscheinenden
Gruppen zu identifizieren. Das zentrale Hilfsmittel dazu ist der Homomorphiesatz, dem wir uns nun zuwenden.

Proposition 4.28 Sei φ : G→ H ein Gruppen-Homomorphismus und N ⊴ G ein Normalteiler
mit N ⊆ ker(φ). Dann gibt es einen eindeutig bestimmten Homomorphismus φ̄ : G/N → H mit

φ̄(gN) = φ(g) für alle g ∈ G.

Man nennt φ̄ den durch φ induzierten Homomorphismus.

Beweis: Die Eindeutigkeit von φ̄ ist klar, weil durch die Gleichung die Bilder aller Elemente von G/N festgelegt sind.
Zum Beweis der Existenz wenden wir wiederum Satz 4.25 an, diesmal Teil (i). Demnach genügt es zu zeigen, dass für
alle g, g ′ ∈ G mit g ≡ℓ g ′ jeweils φ(g) = φ(g ′) gilt. Aber dies ist der Fall, denn g ≡ℓ g ′ ist nach Definition äquivalent
zu g ′ ∈ gN , was wiederum mit (g ′)−1 g ∈ N gleichbedeutend ist. Wegen N ⊆ ker(φ) folgt daraus φ(g ′)−1φ(g) =
φ((g ′)−1 g) = eH und somit φ(g) = φ(g ′). Nun überprüfen wir noch, dass φ̄ ein Homomorphismus ist. Seien ḡ,
h̄ ∈ G/N und g, h ∈ G mit ḡ = gN und h̄ = hN . Dann gilt φ̄( ḡh̄) = φ̄((gN)(hN)) = φ̄((gh)N) = φ(gh) =
φ(g)φ(h) = φ̄(gN)φ̄(hN) = φ̄( ḡ)φ̄(h̄). □
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Satz 4.29 (Homomorphiesatz für Gruppen)

Sei φ : G→ H ein Gruppenhomomorphismus. Dann induziert φ einen Isomorphismus

φ̄ : G/ker(φ)
∼
−→ im(φ).

Ist der Homomorphismusφ surjektiv, dann erhält man also einen Isomorphismus G/ker(φ)∼= H.

Beweis: Nach Satz 4.18 (iii) ist N = ker(φ) ein Normalteiler von G. Anwendung von Proposition 4.28 auf diesen
Normalteiler liefert einen von φ induzierten Homomorphismus φ̄ : G/N → H. Auf Grund der Gleichung φ̄(gN) =
φ(g) für alle g ∈ G stimmen im(φ) und im(φ̄) überein. Wir können φ̄ somit als surjektiven Homomorphismus G/N →
im(φ) auffassen. Zusätzlich ist φ̄ injektiv. Ist nämlich ḡ ∈ ker(φ̄), ḡ = gN mit g ∈ N , dann gilt φ(g) = φ̄( ḡ) = eH . Es
folgt g ∈ ker(φ), also g ∈ N , und damit ist ḡ = gN = eGN = ē das Neutralelement in G/N . Es gilt also ker(φ̄) = {ē}.
Nach Proposition 4.9 folgt daraus die Injektivität von φ̄. □

Wir betrachten nun eine Reihe von Anwendungsbeispielen für den Homomorphiesatz.

(i) Sei G eine Gruppe und φ : G → {eG} gegeben durch g 7→ eG für alle g ∈ G. Dann ist im = {eG}, und φ
induziert einen Isomorphismus G/G ∼= {eG}.

(ii) Die identische Abbildung idG : G→ G hat den Kern {eG} und die gesamte Gruppe G als Bild. Sie induziert also
einen Isomorphismus G/{eG} ∼= G.

(iii) Sei K ein Körper und n ∈ N. Der Determinanten-Homomorphismus det : GLn(K) → K× besitzt, wie wir in
§ 2 gesehen haben, die Gruppe SLn(K) als Kern. Außerdem ist sie surjektiv, denn für jedes a ∈ K× gibt es
eine invertierbare Matrix mit Determinante a, beispielsweise die Diagonalmatrix mit den Einträgen a, 1, ..., 1.
Somit liefert der Homomorphiesatz einen Isomorphismus GLn(K)/SLn(K)∼= K×.

(iv) Die Signumsfunktion sgn : Sn→ {±1} hat als Kern die Untergruppe An = {σ ∈ Sn | sgn(σ) = 1}, die bereits aus
der Linearen Algebra bekannte alternierende Gruppe. Außerdem ist sie für n≥ 2 surjektiv, wegen sgn(id) = 1
und sgn((1 2)) = −1. Also induziert sgn einen Isomorphismus Sn/An

∼= {±1}.

Eine wichtige Anwendung der Faktorgruppen besteht darin, dass sie in vielen Fällen das Studium der Untergruppen
einer Gruppe G vereinfachen. Ist nämlich N ⊴ G, dann korrespondieren die Untergruppen von G/N , wie wir gleich
sehen werden, zu bestimmten Untergruppen der Gruppe G. Dies ist der Inhalt des Korrespondenzsatzes, den wir als
nächstes beweisen werden. Da G/N in der Regel eine einfachere Struktur als G besitzt, lassen sich die Untergruppen
dort im allgemeinen leichter bestimmen.

Proposition 4.30 Sei G eine Gruppe, N ⊴ G ein Normalteiler und πN : G→ G/N der kanoni-
sche Epimorphismus.

(i) Ist U eine Untergruppe von G, dann gilt π−1
N (πN (U)) = UN .

(ii) Ist Ū eine Untergrupe von G/N , dann gilt πN (π−1
N (Ū)) = Ū .

Beweis: zu (i) Sei g ∈ π−1
N (πN (U)). Dann liegt πN (g) in πN (U), es gibt also ein u ∈ U mit πN (g) = πN (u). Für

das Element n = u−1 g gilt nN = πN (n) = πN (u)−1πN (g) = ē = N , also ist nN = N und insbesondere n ∈ N . Es
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folgt g = un ∈ UN . Ist umgekehrt g ∈ UN , dann gibt es Elemente u ∈ U und n ∈ N mit g = un. Wir erhalten
πN (g) = πN (un) = πN (u)πN (n) = πN (u)ē = πN (u), und es folgt g ∈ π−1

N (πN (U)).

zu (ii) Die Inklusion πN (π−1
N (Ū)) ⊆ Ū folgt unmittelbar aus der Definition von Bild- und Urbildmenge. Für die

umgekehrte Inklusion sei ḡ ∈ Ū vorgegeben und g ∈ G mit gN = ḡ. Dann gilt πN (g) = ḡ und somit g ∈ π−1
N (Ū)

nach Definition der Urbildmenge π−1
N (Ū). Es folgt ḡ = πN (g) ∈ πN (π−1

N (Ū)). □

Satz 4.31 (Korrespondenzsatz für Gruppen)

Sei G eine Gruppe, N ein Normalteiler, Ḡ = G/N und πN : G → Ḡ der kanonische Epimorphis-
mus. Ferner sei Ḡ die Menge der Untergruppen von Ḡ und GN die Menge der Untergruppen U
von G mit U ⊇ N . Dann sind die beiden Abbildungen

GN −→ Ḡ , U 7→ πN (U) und Ḡ −→ GN , Ū 7→ π−1
N (Ū)

bijektiv und zueinander invers. Außerdem gilt:

(i) Für U , V ∈ GN gilt U ⊆ V genau dann, wenn πN (U) ⊆ πN (V ) erfüllt ist.

(ii) Genau dann ist U ∈ GN ein Normalteiler von G, wenn πN (U) ein Normalteiler von Ḡ ist.

(iii) Ist U ∈ GN von endlichem Index in G und Ū = πN (U), dann gilt (G : U) = (Ḡ : Ū).

Beweis: Sei U ∈ GN , also eine Untergruppe von G mit U ⊇ N . Dann gilt π−1
N (πN (U)) = UN = NU = U , wobei wir im

ersten Schritt Proposition 4.30 (i), im zweiten Lemma 4.20 (iii) und im dritten Lemma 4.20 (ii) verwendet haben.
Umgekehrt liefert Teil (ii) von Proposition 4.30 die Gleichung πN (π−1

N (Ū)) = Ū für alle Untergruppen Ū von Ḡ.

zu (i) Seien U , V ∈ GN mit U ⊆ V . Dann gilt offenbar πN (U) ⊆ πN (V ). Ist umgekehrt πN (U) ⊆ πN (V ) vorausgesetzt,
dann folgt U = π−1

N (πN (U)) ⊆ π−1
N (πN (V )) = V .

zu (ii) Weil der kanonische Homomorphismus πN surjektiv ist, folgen „⇒“ bzw. „⇐“ aus Satz 4.18 (iv) bzw. (iii).

zu (iii) Wir zeigen, dass durch ḡ Ū 7→ π−1
N ( ḡ Ū) eine Bijektion zwischen den Linksnebenklassen von Ū und den

Linksnebenklassen von U gegeben ist. Sei ḡ ∈ Ḡ und g ∈ G ein Element mit πN (g) = ḡ. Dann gilt gU = π−1
N ( ḡ Ū). Ist

nämlich gu ∈ gU mit u ∈ U vorgegeben, dann folgtπN (gu) = πN (g)πN (u) = ḡπN (u) ∈ ḡ Ū und somit gu ∈ π−1
N ( ḡ Ū).

Ist umgekehrt h ∈ π−1
N ( ḡ Ū) vorgegeben, dann folgt πN (h) ∈ ḡ Ū , also πN (h) = ḡū für ein ū ∈ Ū . Bezeichnet u ∈ U

ein Urbild von ū, dann gilt also hN = guN . Es gibt also ein n ∈ N mit h= gun, und wegen U ⊇ N folgt h ∈ gU .

Es ist unmittelbar klar, dass die Zuordnung surjektiv ist, denn jede Nebenklasse von U hat die Form gU mit einem
g ∈ G, und folglich ist gU = π−1

N ( ḡ Ū) mit ḡ = πN (g). Auch die Injektivität ist offensichtlich. Sind nämlich ḡ1Ū
und ḡ2Ū zwei verschiedene Nebenklassen in Ḡ/Ū , dann sind sie als Teilmengen von Ḡ disjunkt. Die Urbildmengen
π−1

N ( ḡ1Ū) und π−1
N ( ḡ2Ū) müssen dann erst recht disjunkt sein, und insbesondere voneinander verschieden. □

Wir verwenden nun den Korrespondenzsatz für Gruppen, um alle Untergruppen von (Z,+) zu bestimmen, die die
Untergruppe 〈44〉 enthalten. Sei π〈44〉 : Z → Z/44Z der kanonische Epimorphismus. Die Gruppe (Z/44Z,+) ist
eine zyklische Gruppe der Ordnung 44. Durch Satz 3.11 haben wir eine vollständige Beschreibung der Untergruppen
von (Z/44Z,+) zur Verfügung: Zu jedem Teiler der Gruppenordnung 44 gibt es eine eindeutig bestimmte Unter-
gruppe, und diese werden erzeugt durch gewisse Potenzen des Erzeugers 1̄ von Z/44Z. Die vollständige Liste der
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Untergruppen ist also gegeben durch

〈1̄〉 , 〈2̄〉 , 〈4̄〉 , 〈11〉 , 〈22〉 , 〈44〉= {0̄}.

Der Korrespondenzsatz besagt nun, dass es korrespondierend zu diesen sechs Untergruppen von Z/44Z genau sechs
Untergruppen von (Z,+) gibt, die 〈44〉 enthalten. Offenbar ist 〈44〉 in 〈a〉 enthalten für die Zahlen a ∈ {1, 2,4, 11,
22,44}, denn jedes ganzzahlige Vielfache von 44 ist auch ein Vielfaches von a für jede Zahl a in dieser Menge. Der
Korrespondenzsatz liefert uns die Information, dass es keine weiteren Untergruppen U von (Z,+) mit U ⊇ 〈44〉 gibt.

Auch die folgenden beiden Sätze, mit denen wir dieses Kapitel abschließen, erweisen sich beim Umgang mit Faktor-
gruppen immer wieder als nützlich.

Satz 4.32 (Isomorphiesätze)

Sei G eine Gruppe, N ⊴ G und U eine Untergruppe von G.

(i) Dann ist N ∩ U ein Normalteiler von U , und es gilt U/(N ∩ U)∼= (UN)/N .

(ii) Ist auch U ⊴ G und gilt U ⊇ N , dann gilt G/U ∼= (G/N)/(U/N).

Beweis: zu (i) Zunächst bemerken wir, dass UN nach Lemma 4.20 eine Untergruppe von G ist, und aus N ⊴ G
folgt N ⊴ UN . Wir wenden nun den Homomorphiesatz, Satz 4.29, an auf den Homomorphismus φ : U → (UN)/N ,
u 7→ uN der durch Komposition der Inklusionsabbildung U ,→ G mit dem kanonischen Epimorphismus πN zu Stande
kommt. Diese Abbildung ist surjektiv, denn jedes Element in (UN)/N hat die Form (un)N mit u ∈ U und n ∈ N .
Wegen u−1(un) = n ∈ N gilt (un)N = uN , und es folgt φ(u) = uN = (un)N . Der Kern von φ ist genau die Untergrupe
N ∩ U , denn für alle u ∈ U gilt die Äquivalenz

u ∈ ker(φ) ⇔ φ(u) = N ⇔ uN = N ⇔ u ∈ N ⇔ u ∈ N ∩ U .

Also liefert der Homomorphiesatz tatsächlich den angegebenen Isomorphismus.

zu (ii) Nach Definition gilt U/N = πN (U) mit dem kanonischen Epimorphismus πN : G → G/N . Aus U ⊴ G und
Satz 4.18 (iv) folgt somit, dass U/N ein Normalteiler von G/N ist. Wir wenden nun den Homomorphiesatz auf die
Abbildungψ : G→ (G/N)/(U/N), g 7→ gN(U/N) an, die durch Hintereinanderschaltung der beiden Epimorphismen
πN und πU/N zu Stande kommt. Als Komposition zweier Epimorphismen ist auch ψ ein Epimorphismus. Damit der
Homomorphiesatz das gewünschte Ergebnis liefert, müssen wir noch zeigen, dass ker(ψ) = U gilt. Tatsächlich gilt
für alle g ∈ G die Äquivalenz

g ∈ ker(ψ) ⇔ ψ(g) = U/N ⇔ gN(U/N) = U/N ⇔ gN ∈ U/N ⇔ ∃ u ∈ U : gN = uN ⇔

∃ u ∈ U : g−1u ∈ N ⇔ ∃ u ∈ U , n ∈ N : g−1u= n ⇔ ∃ u ∈ U , n ∈ N : g = un−1 U⊇N
⇔ g ∈ U . □
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In Teil (ii) von Satz 4.32 werden tatsächlich Faktorgruppen von Faktorgruppen gebildet, ein auf den ersten Blick
etwas unanschaulicher Vorgang. Wir illustrieren diese Aussage deshalb anhand eines Beispiels. Sei G = (Z,+). Weil
G abelsch ist, sind die Untergruppen N = 〈6〉 und U = 〈2〉 Normalteiler von G, und wegen 6 = 3 · 2 ∈ U gilt N ⊆ U .
Das Bild von U unter dem kanonischen Epimorphismus besteht aus allen Vielfachen von 2̄ = 2+ 6Z, ist also durch
〈2̄〉= {0̄, 2̄, 4̄} gegeben. Der zweite Isomorphiesatz liefert uns somit

Z/2Z = G/U ∼= (G/N)/(U/N) ∼= (Z/6Z)/〈2̄〉.

Nach demselben Schema zeigt man leicht: Sind m, n ∈N und ist m ein Teiler von n, dann gilt Z/mZ∼= (Z/nZ)/〈m̄〉,
mit m̄= m+ nZ.
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§ 5. Endlich erzeugte abelsche Gruppen

Zusammenfassung. In diesem Kapitel werden wir mit Hilfe der bisher entwickelten theoretischen Werkzeuge
alle endlich erzeugten abelschen Gruppen bis auf Isomorphie bestimmen. Genauer zeigen wir, dass jede solche
Gruppe isomorph zu einem äußeren direkten Produkt von (unendlichen und endlichen) zyklischen Gruppe ist.
Insbesondere können wir dann für jedes n ∈ N eine endliche Liste G1, ..., Gr von Gruppen angeben, so dass
jede abelsche Gruppe der Ordnung n zu einem der Gi isomorph ist. Dies wird am Ende des Kapitels für die
Zahl n= 100 exemplarisch vorgeführt.

Wichtige Grundbegriffe

– freie endlich erzeugte abelsche Gruppe

– Torsionsuntergruppen abelscher Gruppen

– torsionfreie abelsche Gruppe

Zentrale Sätze

– Zerlegung endlich erzeugter abelscher Gruppen in einen
freien Anteil und eine endliche abelsche Gruppe

– Zerlegung endlicher abelscher Gruppen in ein Produkt
endlicher zyklischer Gruppen

– Chinesischer Restsatz für Gruppen

In § 2 haben wir eine Gruppe G als endlich erzeugt bezeichnet, wenn eine endliche Teilmenge S ⊆ G mit G = 〈S〉
existiert. Im weiteren Verlauf werden wir wiederholt auf die folgende Hilfsaussage zurückgreifen.

Lemma 5.1 Seien G, H beliebige Gruppen. Ist G endlich erzeugt und existiert ein surjektiver
Homomorphismus φ : G→ H, dann ist auch H endlich erzeugt.

Beweis: Sei S = {g1, ..., gr} ein endliches Erzeugendensystem von G. Wir zeigen, dass φ(S) = {φ(g1), ...,φ(gr)} ein
Erzeugendensystem von H ist. Sei dazu U eine beliebige Untergruppe von H, die φ(S) enthält. Zu zeigen ist U = H.
Nun ist φ−1(U) nach Proposition 4.8 eine Untergruppe von G, und diese enthält S als Teilmenge. Wegen G = 〈S〉
folgt φ−1(U) = G. Aber daraus ergibt sich direkt U = H. Ist nämlich h ∈ H, dann existiert auf Grund der Surjektivität
von φ ein g ∈ G mit φ(g) = h. Dieses ist zugleich in φ−1(U) enthalten, und daraus folgt h= φ(g) ∈ U . □

Von nun an sind alle in diesem Kapitel vorkommenden Gruppen abelsch und werden in additiver Schreibweise darge-
stellt. Für das Komplexprodukt zweier Teilmengen A, B einer Gruppe G verwenden wir entsprechend die Schreibweise
A+ B statt AB. Für das innere direkte Produkt verwenden wir hier die folgende Notation: Wir schreiben G = U ⊕ V ,
wenn U und V Untergruppen von (G,+) sind und G ein inneres direktes Produkt von U und V ist. Diese Schreibweise
ist nur bei abelschen Gruppen üblich. Sie erinnert an die Notation für die direkte Summen von Untervektorräum-
en eines K-Vektorraums V . Tatsächlich werden wir in diesem Kapitel stellenweise den Vektorraum-Begriff zu Hilfe
nehmen.

Definition 5.2 Sei G eine abelsche Gruppe und m ∈N.

(i) Man nennt G[m] = {g ∈ G | mg = 0G} die m-Torsionsuntergruppe von G.

(ii) Die Teilmenge Tor(G) =
⋃

n∈N G[n] wird die Torsionsuntergruppe von G genannt.
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Man überprüft leicht, dass sowohl G[m] für jedes m ∈ N als auch Tor(G) tatsächlich Untergruppen von G sind.
Denn offenbar ist 0G sowohl in G[m] als auch in Tor(G) enthalten. Seien nun g, h ∈ G[m] vorgegeben. Dann gilt
mg = mh = 0G , und es folgt m(g + h) = mg + mh = 0G + 0G = 0G und m(−g) = −(mg) = −0G = 0G . Dies
zeigt, dass auch g +h und −g in G[m] liegen. Also ist G[m] tatsächlich eine Untergruppe von G. Zum Nachweis der
Untergruppen-Eigenschaft von Tor(G) seien nun g, h ∈ Tor(G). Dann gibt es nach Definition m, n ∈N mit g ∈ G[m]
und h ∈ G[n], also mg = 0G und nh = 0G . Es folgt (mn)g = n(mg) = n0G = 0G und (mn)h = m(nh) = m0G = 0G ,
also g, h ∈ G[mn]. Wie soeben gezeigt, sind damit auch g + h und −g in G[mn] enthalten, und damit erst recht in
Tor(G). Also ist auch Tor(G) eine Untergruppe von G. Man beachte aber, dass für eine nicht-abelsche Gruppe G die
Teilmenge {g ∈ G | gm = eG} im Allgemeinen keine Untergruppe von G ist!

Definition 5.3 Sei G eine endlich erzeugte abelsche Gruppe.

(i) Wir bezeichnen G als torsionsfrei, wenn Tor(G) = {0G} gilt.

(ii) Die Gruppe G ist frei, wenn für ein r ∈ N0 ein Isomorphismus zwischen G und (Zr ,+)
existiert, wobei Z0 = {0} gesetzt wird.

Wie man unmittelbar überprüft, ist jede freie endlich erzeugte abelsche Gruppe auch torsionsfrei. Unser erstes Ziel
in diesem Abschnitt ist der Nachweis, dass jede endlich erzeugte abelsche Gruppe als äußeres direktes Produkt einer
freien endlich erzeugten abelschen Gruppe und einer endlichen abelschen Gruppe dargestellt werden kann.

Proposition 5.4

(i) Jede Untergruppe einer freien endlich erzeugten abelschen Gruppe ist eine freie endlich
erzeugte abelsche Gruppe.

(ii) Jede torsionsfreie endlich erzeugte abelsche Grupe ist frei.

Beweis: zu (i) Da jede endlich erzeugte freie abelsche Gruppe nach Definition isomorph zu Zn für ein n ∈N0 ist,
genügt es, die Aussage für Gruppen dieser Form zu beweisen. Wir zeigen durch vollständige Induktion über n ∈N0: Ist
U eine Untergruppe von Zn, dann ist U eine freie endlich erzeugte abelsche Gruppe. Für n= 0 ist Zn = U = {0} und
die Aussage somit offensichtlich. Für n= 1 können wir Satz 3.7 anwenden, weil (Z,+) zyklisch ist. Die Untergruppe
U stimmt demnach mit mZ für ein m ∈N0 überein. Sie ist also selbst entweder unendlich zyklisch oder trivial, also
isomorph zu Z1 oder Z0.

Sei nun n ≥ 1, und setzen wir voraus, dass die Aussage für Untergruppen von Zn gültig ist. Sei U eine Untergruppe
von Zn+1 und π :Zn+1→Z die Projektionsabbildung auf die letzte Komponente, also gegeben durch (a1, ..., an+1) 7→
an+1. Nach Definition gilt ker(π) = Zn × {0} ∼= Zn, also ist ker(π|U) = ker(π) ∩ U isomorph zu einer Untergruppe
von Zn. Nach Induktionsvoraussetzung ist ker(π|U) ebenfalls eine freie endlich erzeugte abelsche Gruppe und somit
isomorph zu Zr für ein r ∈N0.

Das Bild π(U) ist eine Untergruppe von Z und somit, wie zu Beginn gezeigt, entweder gleich {0} oder gleich mZ für
ein m ∈N. Im Fall π(U) = {0} gilt U = ker(π|U) ∼= Zr , und wir sind fertig. Betrachten wir nun den Fall π(U) = mZ
mit m ∈N. Wählen wir ein v ∈ U mit π(v) = m, dann wird die Untergruppe 〈v〉 von U isomorph auf mZ abgebildet.
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Wir überprüfen nun, dass U ein inneres direktes Produkt von ker(π|U) und 〈v〉 ist. Zunächst einmal sind ker(π|U)
und 〈v〉 als Untergruppen der abelschen Gruppe U Normalteiler von U . Außerdem gilt ker(π|U)∩ 〈v〉 = {0Zn+1}. Ist
nämlich w ein Element im Durchschnitt, dann gilt w= kv für ein k ∈Z. Darüber hinaus gilt km= kπ(v) = π(kv) =
(π|U)(w) = 0, und somit k = 0 und w= kv = 0Zn+1 .

Für den Nachweis von U = ker(π|U)+〈v〉 stellen wir zunächst fest, dass „⊇“ wegen ker(π|U) ⊆ U und v ∈ U offenbar
erfüllt ist. Zum Beweis von „⊆“ sei w ∈ U vorgegeben. Wegen π(U) = mZ gilt π(w) = km für ein k ∈ Z. Setzen wir
nun w′ = w−kv, dann erhalten wir w= w′+kv mit kv ∈ 〈v〉 und (π|U)(w′) = π(w′) = π(w)−kπ(v) = km−km= 0,
also w′ ∈ ker(π|U). Damit ist w ∈ ker(π|U) + 〈v〉 nachgewiesen. Insgesamt sind damit die Voraussetzungen von
Proposition 4.24 erfüllt, und wir erhalten U ∼= ker(π|U)×π(U)∼=Zr ×mZ∼=Zr ×Z=Zr+1.

zu (ii) Sei G eine torsionsfreie endlich erzeugte abelsche Gruppe. Weiter sei S ein endliches Erzeugendensystem
und T = {g1, ..., gn} ⊆ S eine maximale Teilmenge von S mit der Eigenschaft, dass die Abbildung φ : Zn → G,
(a1, ..., an) 7→ a1 g1+ ...+ an gn injektiv ist. Dann ist die Untergruppe U = 〈T 〉 von G frei, denn als Abbildung Zn→ U
ist φ auch surjektiv, die Gruppe U also isomorph zu Zn.

Nun sei g ∈ S\T ein beliebiges Element. Auf Grund der Torsionsfreiheit gilt ag ̸= 0G für alle a ∈Z, a ̸= 0. Wegen der
Maximalität von T finden wir aber einen Satz (a, a1, ..., an) ganzer Zahlen mit ag + a1 g1+ ...+ an gn = 0G und a ̸= 0,
ai ̸= 0 für ein i ∈ {1, ..., n}. Wegen ag = −a1 g1−...−an gn ist dann ag in U enthalten. Auf diese Weise erhalten wir für
jedes g ∈ S ein ag ∈Zmit ag g ∈ U , wobei wir im Fall g ∈ T jeweils ag = 1 setzen können. Weil S endlich ist, können
wir das kleinste gemeinsame Vielfache dieser Zahlen bilden und finden so ein a ∈N mit aS ⊆ U . Wegen G = 〈S〉 gilt
dann auch aG ⊆ U . Nun ist ψ : G → G, g 7→ ag ein (auf Grund der Torsionsfreiheit) injektiver Homomorphismus,
dessen Bild ψ(G) in der freien abelschen Gruppe U enthalten ist. Nach Teil (i) ist G ∼=ψ(G) damit selbst eine freie,
endlich erzeugte abelsche Gruppe. □

Satz 5.5 Ist G eine endlich erzeugte abelsche Gruppe, dann gilt G ∼=Zr×Tor(G) für ein r ∈N0.
Darüber hinaus ist Tor(G) eine endliche abelsche Gruppe.

Beweis: Zunächst bemerken wir, dass die Faktorgruppe G/Tor(G) eine torsionsfreie endlich erzeugte abelsche Gruppe
ist. Zum Beweis sei ḡ ∈ Tor(G/Tor(G)) vorgegeben, mit ḡ = g + Tor(G) für ein g ∈ G. Dann gilt mḡ = 0G/Tor(G) für
ein m ∈ N. Es folgt mg + Tor(G) = m(g + Tor(G)) = mḡ = 0G/Tor(G) = 0G + Tor(G) und somit mg ∈ Tor(G). Daraus
wiederum folgt, dass ein n ∈ N mit (nm)g = n(mg) = 0G existiert. Aber damit ist auch g in Tor(G) enthalten und
ḡ = g + Tor(G) = 0+ Tor(G) = 0G/Tor(G). Insgesamt haben wir Tor(G/Tor(G)) = {0G/Tor(G)}, also die Torsionsfreiheit
der Gruppe G/Tor(G), nachgewiesen.

Weil G/Tor(G) torsionsfrei ist, gilt G/Tor(G)∼=Zr für ein r ∈N0, nach Proposition 5.4 (ii). Seiφ die Komposition des
kanonischen Epimorphismus G→ G/Tor(G)mit diesem Isomorphismus, seien v1, ..., vr Urbilder der Einheitsvektoren
e1, ..., er ∈Zr unter φ, und sei U = 〈v1, ..., vr〉. Wir zeigen, dass G = U⊕Tor(G) gilt. Weil G abelsch und U und Tor(G)
Untergruppen von G sind, handelt es sich um Normalteiler. Zum Nachweis von U ∩Tor(G) = {0G} sei g ein Element
im Durchschnitt. Wegen g ∈ Tor(G) gilt mg = 0G für ein m ∈ N. Wegen g ∈ U gibt es außerdem k1, ..., kr ∈ Z mit
g = k1v1 + ...+ kr vr . Es folgt mg = mk1v1 + ...+mkr vr und 0Zr = φ(mg) = mk1e1 + ...+mkr er = (mk1, ..., mkr).
Es gilt also mki = 0 und somit auch ki = 0 für 1 ≤ i ≤ r, und dies wiederum bedeutet g = 0G . Für den Nachweis
von G = U + Tor(G) sei g ∈ G vorgegeben. Sei (k1, ..., kr) = φ(g), h = k1v1 + ... + kr vr und g ′ = g − h. Dann ist
g = g ′ + h, h ∈ U und φ(g ′) = φ(g)−φ(h) = (k1, ..., kr)− (k1, ..., kr) = 0Zr , also g ′ ∈ ker(φ). Aber der Kern von
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φ stimmt mit dem Kern des kanonischen Epimorphismus G → G/Tor(G) überein, und dies ist Tor(G). Also ist g ′ in
Tor(G) enthalten. Also liegt g = h+ g ′ in U + Tor(G).

Insgesamt ist G = U+Tor(G) damit nachgewiesen. Mit Proposition 4.24 erhalten wir G ∼= U×Tor(G). Wie man leicht
überprüft, ist die Abbildung φ|U : U →Zr surjektiv (denn wegen φ(vi) = ei werden alle Einheitsvektoren getroffen)
und injektiv (denn das einzige Urbild von 0Zr ist 0G), außerdem ein Homomorphismus. Es gilt also U ∼=Zr . Damit ist
G ∼=Zr×Tor(G) gezeigt. Die Gruppe Tor(G) ist offenbar abelsch, außerdem ist sie als Bild von G unter dem surjektiven
Homomorphismus G → Tor(G), der durch Komposition von G ∼= U × Tor(G) mit der Projektion auf die zweite
Komponente zu Stande kommt, nach Lemma 5.1 endlich erzeugt. Sei {h1, ..., hs} ein endliches Erzeugendensystem
von Tor(G). Wegen hi ∈ Tor(G) gibt es jeweils ein mi ∈ N mit mihi = 0G , für 1 ≤ i ≤ s. Wegen Lemma 3.2 folgt
jeweils 〈hi〉= {khi | 0≤ k < mi}. Zusammen mit Satz 2.9 (ii) erhalten wir

Tor(G) = {k1h1 + ...+ kshs | k1, ..., ks ∈Z} = {k1h1 + ...+ kshs | 0≤ ki < mi}.

Es gibt in Tor(G) also höchstens
∏s

i=1 mi verschiedene Elemente. Insbesondere ist Tor(G) endlich. □

Wir werden nun zeigen, dass jede endliche abelsche Gruppe in ein äußeres direktes Produkt endlicher zyklischer
Gruppen zerlegt werden kann. In der Linearen Algebra wurde gezeigt, dass Z/pZ für jede Primzahl p ein Körper ist,
und die Bezeichnung Fp =Z/pZ für diesen Körper eingeführt.

Lemma 5.6

(i) Sei G eine abelsche Gruppe, seien s ∈N0, m1, ..., ms ∈N und g1, ..., gs ∈ G mit ord(gi) | mi

für 1 ≤ i ≤ s. Sei U = 〈g1, ..., gs〉. Dann gibt es einen surjektiven Gruppenhomomorphis-
mus φ :Z/m1Z× ...×Z/msZ→ U mit

φ(ā1, ..., ās) = a1 g1 + ...+ as gs für alle a1, ..., as ∈Z.

(ii) Ist G eine abelsche Gruppe mit G[p] = G, dann gibt es eine Abbildung · : Fp×G→ G mit
ā · g = ag für alle a ∈ Z und g ∈ G. Mit dieser Abbildung wird auf G die Struktur eines
Fp-Vektorraums definiert.

Beweis: zu (i) Wir definieren die Abbildung φ, indem wir φ(ā1, ..., ās) = a1 g1 + ...+ ar gr für 0 ≤ ai < mi setzen.
Die Gleichung ist dann automatisch für beliebige ai ∈ Z erfüllt. Wenden wir nämlich Division mit Rest auf jedes ai

an und schreiben ai = qimi + ri mit 0 ≤ ri < mi , dann gilt auf Grund der Elementordnungen jeweils mi gi = 0G und
somit ai gi = (qimi + ri)gi = qi(mi gi) + riai = qi · 0G + riai = riai . Wegen āi = r̄i in Z/miZ für 1 ≤ i ≤ r folgt dann
φ(ā1, ..., ār) = φ(r̄1, ..., r̄s) = r1 g1+...+rs gs = a1 g1+...+as gs. Mit Hilfe dieser Gleichung kann die Homomorphismus-
Eigenschaft nun unmittelbar nachgerechnet werden. Nach Satz 2.9 gilt U = {a1 g1 + ...+ as gs | a1, ..., as ∈Z}. Damit
ist auch klar, dass φ surjektiv ist.

zu (ii) Die Existenz einer solchen Abbildung erhalten wir, indem wir (i) für jedes g ∈ G auf s = 1, m1 = p und
g = g1 anwenden. Wir zeigen nun, dass (U ,+, ·) die Vektorraum-Axiome erfüllt. Nach Definition ist (U ,+) eine
abelsche Gruppe. Seien nun ā, b̄ ∈ Fp und g, h ∈ G vorgegeben, und seien a, b ∈ Z Urbilder von ā, b̄ unter dem
kanonischen Epimorphismus Z → Fp. Dann gilt (ā + b̄) · g = a+ b · g = (a + b)g = ag + bg = ā · g + b̄ · g,
ā · (g + h) = a(g + h) = ag + ah= ā · g + ā · h, (ā b̄) · g = ab · g = abg = a(bg) = ā · (b̄ · g) und 1̄ · g = 1g = g. □
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Satz 5.7 Sei G eine abelsche Gruppe.

(i) Sind m, n ∈N teilerfremd, dann gilt G[mn]∼= G[m]× G[n].

(ii) Sei n ∈Nmit G[n] = G, und sei n=
∏r

i=1 pei
i die Primfaktorzerlegung von n, mit r ∈N0,

Primzahlen p1, ..., pr und Exponenten e1, ..., er ∈N. Dann ist G ∼= G[pe1
1 ]× ...× G[per

r ].

Beweis: zu (i) Wegen Proposition 4.24 genügt es, G[mn] = G[m]⊕G[n] nachzuweisen. Offenbar gilt G[m] ⊆ G[mn],
denn ist g ∈ G[m], dann folgt mg = 0G , damit auch (mn)g = n(mg) = n0G = 0G und somit g ∈ G[mn]. Ebenso
erhält man G[n] ⊆ G[mn], und als Untergruppen der abelschen Gruppe G sind G[m] und G[n] auch Normalteiler.
Zum Nachweis von G[m]∩ G[n] = {0G} sei g ∈ G[m]∩ G[n] vorgegeben. Dann gilt mg = ng = 0G , also ist ord(g)
ein gemeinsamer Teiler von m und n. Auf Grund der Teilerfremdheit von m und n folgt ord(g) = 1, also g = 0G .
Daraus folgt G[m] ∩ G[n] ⊆ {0G}; die Inklusion „⊇“ ist offensichtlich. Es bleibt G[mn] = G[m] + G[n] zu zeigen.
Die Inklusion „⊇“ folgt direkt aus G[m] ⊆ G[mn] und G[n] ⊆ G[mn]. Zum Nachweis von „⊆“ sei g ∈ G[mn].
Nach dem Lemma 3.8 von Bézout gibt es k,ℓ ∈ Z mit km + ℓn = 1. Es folgt g = 1g = (km)g + (ℓn)g. Wegen
n(km)g = k(mn)g = k0G = 0G liegt (km)g in G[n], und wegen m(ℓn)g = ℓ(mn)g = ℓ0G = 0G ist (ℓn)g in G[m]
enthalten. Damit ist g = (km)g + (ℓn)g ∈ G[m] + G[n] nachgewiesen.

zum (ii) Wir schicken voraus: Ist G eine abelsche Gruppe und sind m, n ∈N mit m | n, dann gilt G[m] = G[n][m].
Nun beweisen wir die Aussage durch vollständige Induktion über die Anzahl r der verschiedenen Primfaktoren pi

von n. Im Fall r ∈ {0, 1} braucht nichts gezeigt werden. Sei nun r > 1, und setzen wir die Aussage für kleinere Werte
von r voraus. Sei n =

∏r
i=1 pei

i die Primfaktorzerlegung von n. Setzen wir m =
∏r−1

i=1 pei
i , dann gilt n = mper

r und
ggT(m, per

r ) = 1. Die Untergruppe H = G[m] erfüllt H[m] = H. Wir können also die Induktionsvoraussetzung auf H
anwenden; diese liefert einen Isomorphismus H ∼= H[pe1

1 ]× ...× H[per−1
r−1]
∼= G[pe1

1 ]× ...× G[per−1
r−1]. Nach Teil (i) gilt

außerdem G = G[n]∼= H × G[per
r ]. Insgesamt erhalten wir somit den angegebenen Isomorphismus. □

Als weiteres Hilfsmittel benötigen wir

Satz 5.8 (Chinesischer Restsatz für Gruppen)
Sind m, n ∈ N teilerfremd, dann existiert ein Isomorphismus Z/(mn)Z ∼= Z/mZ×Z/nZ abel-
scher Gruppen.

Beweis: Die Anwendung von Satz 5.7 auf G = G[mn] = Z/(mn)Z liefert G ∼= G[m] × G[n]. Dabei ist G[m] =
〈n+ (mn)Z〉. Denn wegen m · (n+ (mn)Z) = 0Z/(mn)Z ist einerseits n+ (mn)Z in G[m] enthalten, woraus sich die
Inklusion „⊇“ ergibt. Ist andererseits a + (mn)Z ∈ G[m] vorgegeben, mit a ∈ Z, dann folgt aus ma + (mn)Z =
0Z/(mn)Z = (mn)Z unmittelbar ma ∈ (mn)Z, und daraus wiederum, dass a ein Vielfaches von n ist, also a = rn für
ein r ∈ Z und a + (mn)Z = r(n+ (mn)Z) ∈ 〈n+ (mn)Z〉 gilt. Weil 1+ (mn)Z ein Element der Ordnung mn ist, ist
n+(mn)Z= n · (1+(mn)Z) ein Element der Ordnung m nach Satz 3.9 (ii), und somit G[m]∼=Z/mZ. Ebenso zeigt
man G[n]∼=Z/nZ, und insgesamt erhalten wir G ∼=Z/mZ×Z/nZ. □

Wir werden im Kapitel über Kongruenzrechnng zeigen, dass Z/(mn)Z und Z/mZ×Z/nZ sogar als Ringe isomorph
sind; dies liefert insbesondere einen Isomorphismus zwischen den abelschen Gruppen. Man beachte aber, dass der
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Chinesische Restsatz nur für teilerfremde m, n ∈ N gültig ist! Beispielsweise ist Z/2Z × Z/2Z nicht isomorph zu
Z/4Z. Denn Z/4Z enthält mit 1̄ ein Element der Ordnung 4, während die Gleichung 2 · (ā, b̄) = (0̄, 0̄) für alle
(ā, b̄) ∈Z/2Z×Z/2Z zeigt, dass es in dieser Gruppe nur Elemente der Ordnung 1 und 2 gibt.

Satz 5.9 Sei e ∈ N0, p eine Primzahl und G eine endliche abelsche Gruppe mit G[pe] = G.
Dann gibt es ein r ∈ N0 und n1, ..., nr ∈N, so dass

G ∼= Z/pn1Z×Z/pn2Z× ...×Z/pnrZ gilt.

Beweis: Wir beweisen die Aussage durch vollständige Induktion über e. Ist e = 0, dann gilt G[1] = G, also g = 1· g =
0G für alle g ∈ G. Es folgt G = {0G}, und die Behauptung ist offenbar mit r = 0 erfüllt. Sei nun e ≥ 1, und setzen wir
die Aussage für Werte kleiner als e voraus. Für die Gruppe H = pG gilt H[pe−1] = H. Nach Induktionsvoraussetzung
gibt es r ∈N0, n1, ..., nr und einen Isomorphismus φ :Z/pn1Z× ...×Z/pnrZ→ H. Seien h1, h2, ..., hr ∈ H die Bilder
der Elemente

(1̄, 0̄, 0̄, ..., 0̄) , (0̄, 1̄, 0̄, ..., 0̄) , ... , (0̄, 0̄, 0̄, ..., 1̄).

Wegen hi ∈ pG gibt es jeweils ein gi ∈ G mit pgi = hi , für 1 ≤ i ≤ r. Wir zeigen nun zunächst, dass die Gruppe
U = 〈g1, ..., gr〉 isomorph zu Z/pn1+1Z× ...×Z/pnr+1Z ist. Dazu betrachten wir die Abbildung

ψ :Z/pn1+1Z× ...×Z/pnr+1Z→ U , (ā1, ...ār) 7→ a1 g1 + ...+ ar gr .

Nach Lemma 5.6 (i) ist dies ein surjektiver Gruppenhomomorphismus. Außerdem ist die Abbildung injektiv. Gilt
nämlich ψ(ā1, ..., ār) = 0G und ist ai ∈ Z jeweils ein Urbild von āi , dann ist a1 g1 + ...+ ar gr = 0G nach Definition
von ψ. Es folgt φ(a1 + pn1Z, ..., ar + pnrZ) = a1h1 + ...+ arhr = p(a1 g1 + ...+ ar gr) = p0G = 0G . Weil φ injektiv ist,
erhalten wir ai+ pniZ= 0+ pniZ und pni | ai , für 1≤ i ≤ r. Insbesondere gibt es jeweils ein bi ∈Zmit pbi = ai . Nun
folgt weiter φ(b1 + pn1Z, ..., br + pnrZ) = b1h1 + ...+ brhr = pb1 g1 + ...+ pbr gr = a1 g1 + ...+ ar gr = 0G . Wiederum
auf Grund der Injektivität von φ erhalten wir bi + pniZ = 0+ pniZ, also pni | bi und pni+1 | ai für 1 ≤ i ≤ r. Dies
wiederum bedeutet (ā1, ..., ār) = (0̄, ..., 0̄). Insgesamt ist ψ also tatsächlich ein Isomorphismus.

Nach Lemma 5.6 (ii) besitzen G[p] ∩ U und G[p] jeweils die Struktur eines Fp-Vektorraums. Dabei ist G[p] ∩ U
als Untergruppe offenbar auch ein Untervektorraum von G[p]. Wir wählen nun eine Basis {v1, ..., vs} von G[p] ∩ U
und ergänzen diese durch vs+1, ..., vt (mit s, t ∈ N0 und s ≤ t) zu einer Basis von G[p]. Anschließend definieren
wir V = 〈vs+1, ..., vt〉. Als (t − s)-dimensionaler Fp-Vektorraum ist V isomorph zu Ft−s

p . Als abelsche Gruppe ist V
damit isomorph zu Ft−s

p = (Z/pZ)t−s. Wenn wir zeigen können, dass G = U ⊕ V gilt, dann folgt G ∼= U × V ∼=
Z/pn1+1Z × ... ×Z/pnr+1Z × (Z/pZ)t−s nach Proposition 4.24. Damit hat G dann bis auf Isomorphie die im Satz
angegebene Form.

Als Untergruppen der abelschen Gruppe G sind U und V auch Normalteiler. Zum Beweis der Gleichung U∩V = {0G}
sei g ∈ U ∩ V vorgegeben. Wegen V ⊆ G[p] liegt g dann in (G[p] ∩ U) ∩ V . Wäre g ungleich Null, dann könnte
man g als nichttriviale Fp-Linearkombination der Basis {v1, ..., vs} von G[p]∩ U darstellen, und −g als nichttriviale
Fp-Linearkombination der Basis {vs+1, ..., vt} von V . Insgesamt würde man eine nichttriviale Linearkombination von
g+(−g) = 0G durch {v1, ..., vt} erhalten. Aber dies steht im Widerspruch zur linearen Unabhängigkeit dieser Menge.
Also ist nur g = 0G möglich. Nun zeigen wir noch G = U + V . Sei dazu g ∈ G beliebig vorgegeben. Dann liegt pg in
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pG, und folglich gibt es k1, ..., kr ∈Zmit pg = k1h1+...+krhr . Setzen wir g ′ = k1 g1+...+kr gr und g ′′ = g− g ′, dann
gilt g ′ ∈ U und pg ′′ = pg− pg ′ = pg− pk1 g1− ...− pkr gr = k1h1+ ...+ krhr − k1h1− ...− krhr = 0G , also g ′′ ∈ G[p].
Weil {v1, ..., vt} eine Basis von G[p] als Fp-Vektorraum ist, kann g ′′ in der Form ℓ1v1+ ...+ ℓt vt geschrieben werden,
mit ℓ1, ...,ℓt ∈Z. Es ist dann g ′′ = g1 + g2 mit g1 = ℓ1v1 + ...+ ℓs vs ∈ U und g2 = ℓs+1vs+1 + ...+ ℓt vt ∈ V . Insgesamt
hat g also die Form g = g ′ + g ′′ = (g ′ + g1) + g2 mit g ′ + g1 ∈ U und g2 ∈ V . □

Wir können nun das Hauptergebnis dieses Kapitels formulieren.

Satz 5.10 (Hauptsatz über endlich erzeugte abelsche Gruppe)
Sei G eine endlich erzeugte abelsche Gruppe. Dann gibt es r, s ∈N0 und d1, ..., ds ∈N mit

G ∼= Zr ×Z/d1Z× ...×Z/dsZ.

Dabei können die Zahlen di so gewählt werden, dass sie entweder (i) alle Primzahlpotenzen
sind oder (ii) di | di+1 für 1 ≤ i < s erfüllt ist. Im Fall (ii) gezeichnet man die Zahlen di als
Elementarteiler der abelschen Gruppe.

Beweis: Nach Satz 5.5 gilt G ∼=Zr ×Tor(G), und die Gruppe Tor(G) ist endlich. Setzen wir H = Tor(G) und n= |H|,
dann gilt H[n] = n. Ist n = prod t

i=1pei
i , dann gilt H ∼= H[pe1

1 ]× ...× H[per
r ] nach Satz 5.7 (ii), und wegen Satz 5.9

ist H[pei
i ] jeweils isomorph zu einem äußeres direktes Produkt zyklischer Gruppen von pi-Potenzordnung. Also ist G

insgesamt isomorph zu einem äußeren direkten Produkt der Form (i).

Im Ringtheorie-Teil der Vorlesung wird der Begriff des Exponenten exp(G) einer Gruppe G eingeführt und gezeigt,
dass der Exponent einer Gruppe, die zu Z/m1Z × ... ×Z/muZ mit m1, ..., mu ∈ N isomorph ist, mit dem kgV von
m1, ..., mu übereinstimmt. Wir beweisen durch vollständige Induktion über |H|, dass G auch eine Zerlegung der unter
(ii) beschriebenen Form besitzt, und setzen d = exp(H). Sei H ∼=Z/m1Z× ...×Z/muZ die Darstellung nach (i) von
H als äußeres direktes Produkt zyklischer Gruppe von Primzahlpotenzordnung mi .

Im Fall |H|= 1 ist nichts zu zeigen. Setzen wir nun voraus, dass H nicht trival ist, und sei p f1
1 ·...·p

fv
v die Primfaktorzer-

legung von d. Wegen kgV(m1, ..., mu) = d müssen die Faktoren p f1
1 , ..., p fv

v unter m1, ..., mu vorkommen, andererseits
darf es aber keine höheren Potenzen von p1, ..., pv unter diesen Zahlen geben. Setzen wir H1 =Z/p f1

1 Z×...×Z/p fv
v Z,

dann gilt H ∼= H1 × H2 bis auf Reihenfolge der Faktoren, wobei in H2 die Faktoren der Form Z/miZ zusammenge-
fasst sind, die in H, aber nicht in H1 vorkommen. Es gilt dann |H2|< |H|, und nach Induktionsvoraussetzung gibt es
Zahlen d1, ..., ds mit H2

∼=Z/d1Z× ...×Z/dsZ und der oben beschriebenen Eigenschaft. Außerdem gilt H1
∼=Z/dZ

nach dem Chinesischen Restsatz, Satz 5.8, denn die Zahlen p
f j

j sind paarweise teilerfremd. Weil der Exponent von
H2 ein Teiler von d ist, gilt di | d für 1≤ i ≤ s. Setzen wir ds+1 = d, dann ist d1, ..., ds+1 eine Folge natürlicher Zahlen
mit den gewünschten Eigenschaften. □

Sowohl die Bedingung (i) als auch die Bedingung (ii) in Satz 5.10 kann dazu genutzt werden, um zum Beispiel
alle abelschen Gruppen der Ordnung 100 = 2252 bis auf Isomorphie anzugeben. Durch (i) erhält man die vier
Isomorphietypen

Z/4Z×Z/25Z , Z/2Z×Z/2Z×Z/25Z , Z/4Z×Z/5Z×Z/5Z , Z/2Z×Z/2Z×Z/5Z×Z/5Z.
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Andererseits finden wir zur Zahl 100 die Elementarteilerketten 100, 2|50, 5|20 und 10|10, was die Isomorphietypen

Z/100Z , Z/2Z×Z/50Z , Z/5Z×Z/20Z , Z/10Z×Z/10Z

liefert. Mit dem Chinesischen Restsatz überprüft man leicht, dass diese vier Gruppen mit den vier zuvor gefundenen
bis auf Isomorphie übereinstimmen.

Zu bemerken ist noch, dass im Fall (ii) der Wert r + s die minimale Anzahl der Elemente eines Erzeugendensystems
von G angibt. Insbesondere gilt r + s = 1 genau dann, wenn G eine zyklische Gruppe ist. Ist nämlich p ein beliebiger
Primteiler von d1, dann existiert ein Epimorphismus

φ :Zr ×Z/d1Z× ...×Z/dsZ→ (Z/pZ)r+s , (a1, ..., ar , b1 + d1Z, ..., bs + dsZ) 7→ (a1 + pZ, ..., bs + pZ).

Sei g1, ..., gt ein t-elementiges Erzeugendensystem von G. Dann liefern die Bilder der Elemente in der Gruppe H =
(Z/pZ)r+s ein Erzeugendensystem von H. Dieses Erzeugendensystem ist dann zugleich eine Basis von H als Fp-Vek-
torraum. Da in einem (r + s)-dimensionalen Vektorraum jedes Erzeugendensystem aus mindestens r + s Elementen
besteht, muss t ≥ r+s gelten. Andererseits besitzt die GruppeZr×Z/d1Z×...×Z/dsZ offenbar ein (r+s)-elementiges
Erzeugendensystem (gegeben durch die Einheitsvektoren), somit auch die Gruppe G.
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§ 6. Semidirekte Produkte und Auflösbarkeit

Zusammenfassung. In § 4 hatten wir neben den inneren direkten auch die inneren semidirekten Produkte
definiert. Der Isomorphismus G ∼= N × U , den wir dort für die inneren direkten Produkte hergeleitet haben,
ist für die semidirekten in dieser Form nicht gültig. An die Stelle des äußeren direkten Produkts tritt hier
eine neue Gruppe N ⋊φ U , die als Menge mit N × U übereinstimmt, deren Gruppenverknüpfung aber nicht
komponentenweise definiert ist, sondern von einem Homomorphismusφ : U → Aut(N) abhängt. Dieses Objekt
wird dann als äußeres semidirektes Produkt bezeichnet. Das Ziel dieses Abschnitts besteht darin, die Gruppe
N ⋊φ U zu definieren und den Zusammenhang mit dem inneren semidirekten Produkt herzustellen.

Aus dem Korrespondenzsatz aus § 4 hatte sich ergeben, dass die Struktur von G/N auch zumindest teilweisen
Aufschluss über die Struktur von G selbst gibt, falls N einen Normalteiler von G bezeichnet. Am einfachsten
lässt sich die Struktur von G/N untersuchen, wenn es sich um eine abelsche Gruppe handelt, was sich an der
Ergebnissen von § 5 deutlich gezeigt hatte. Im Allgemeinen lässt sich in einer Gruppe G kein Normalteiler
N finden mit der Eigenschaft, dass die Gruppen N und G/N beide abelsch sind. Zumindest aber kann man
hoffen, dass dieser Prozess, mit dem man G gewissermaßen in die Gruppen N und G/N „zerlegt“ hat, durch
Anwendung auf N und G/N iteriert werden kann, und man auf diese G in endlich vielen Schritte in lauter
abelsche „Komponenten“ zerlegen kann. Gruppen, bei denen dies gelingt, werden als auflösbar bezeichnet.
Der Grund für diese Namensgebung ist ein Zusammenhang zwischen der Auflösbarkeit von Gruppen und der
expliziten Lösbarkeit von Polynomgleichungen, den wir später im Rahmen der Galoistheorie erkunden werden.

Wichtige Grundbegriffe

– äußeres semidirektes Produkt zweier Gruppen,
gegeben durch einen Homomorphismus

– höhere Kommutatorgruppen G(n) einer Gruppe G

– Auflösbarkeit einer Gruppe

Zentrale Sätze

– Isomorphie zwischen innerem und äußerem
semidirekten Produkt

– Charakterisierung auflösbarer Gruppen durch
Subnormalreihen

– Kriterium zur Untersuchung der Auflösbarkeit mit
Normalteilern

Sei G eine Gruppe, die ein inneres semidirektes Produkt einer Untergruppe U und eines Normalteiler N ist. Solange
U nicht auch Normalteiler von G ist, reichen U und N allein leider nicht aus, um die Gruppe G vollständig zu
rekonstruieren; man benötigt noch einen Homomorphismus, der diese beiden Gruppen miteinander verbindet. Um
was für einen Homomorphismus es dabei geht, sehen wir in der folgenden Proposition.

Proposition 6.1 Sei G eine Gruppe, N ein Normalteiler und U eine Untergruppe von G. Dann
ist jedem u ∈ U durch τu(n) = unu−1 ein Automorphismus von N zugeordnet. Die Abbildung
φ : U → Aut(N), u 7→ τu ist ein Homomorphismus von Gruppen.

Beweis: Wegen N ⊴ G gilt τu(n) = unu−1 ∈ N für jedes n ∈ N und u ∈ U , also definiert τu eine Abbildung N → N .
Außerdem ist τu ein Endomorphismus, denn für alle n1, n2 ∈ N gilt jeweils

τu(n1n2) = u(n1n2)u
−1 = (un1u−1)(un2u−1) = τu(n1)τu(n2).
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Da durch n 7→ u−1nu eine Umkehrabbildung von τu gegeben ist, handelt es sich bei τu sogar um einen Automor-
phismus von N . Schließlich ist die angegebene Abbildung φ ein Homorphismus, denn für u1, u2 ∈ U und n ∈ N
gilt

τu1u2
(n) = (u1u2)n(u1u2)

−1 = u1u2nu−1
2 u−1

1 = τu1
(u2nu−1

2 )

= τu1
(τu2
(n)) = (τu1

◦τu2
)(n)

und somit φ(u1u2) = τu1u2
= τu1

◦τu2
= φ(u1) ◦φ(u2). □

Proposition 6.2 Sei G eine Gruppe und inneres semidirektes Produkt von N ⊴ G und U ≤ G.
Unter diesen Voraussetzungen ist G genau dann ein inneres direktes Produkt von N und U , wenn
φ(u) = idN für alle u ∈ U gilt, wobei φ den Homomorphismus aus Proposition 6.1 bezeichnet.

Beweis: „⇐“ Gilt φ(u) = idN für alle u ∈ U , dann folgt unu−1 = φ(u)(n) = idN (n) = n für alle u ∈ U und n ∈ N .
Es folgt un = nu und somit auch unu−1 = n für alle u ∈ U nun n ∈ N . Seien nun g1 ∈ G und u ∈ U vorgegeben.
Wegen G = NU gibt es n1 ∈ N und u1 ∈ U mit g1 = n1u1. Wie soeben gezeigt, ist jedes Element aus N mit jedem
Element aus U vertauschbar, so auch die Elemente n1 ∈ N und u1uu−1

1 ∈ U . Es folgt g1ug−1
1 = n1(u1uu−1

1 )n
−1
1 =

n1n−1
1 (u1uu−1

1 ) = u1uu−1
1 ∈ U; damit ist U ⊴ G nachgewiesen.

„⇒“ Ist G ein inneres direktes Produkt von N und U , dann gilt außer N ⊴ G auch U ⊴ G. Seien nun n ∈ N und
u ∈ U beliebig vorgegeben. Wegen N ⊴ G gilt un−1u−1 ∈ N und somit auch nun−1u−1 = n(un−1u−1) ∈ N . Wegen
U ⊴ N gilt andererseits auch nun−1u−1 = (nun−1)u−1 ∈ U , insgesamt also nun−1u−1 ∈ N ∩ U = {eG}. Für alle
n ∈ N und u ∈ U gilt somit nun−1u−1 = eG , was zu nu = un und unu−1 = n umgeformt werden kann. Es folgt
φ(u)(n) = unu−1 = n= idN (n) für alle u ∈ U und n ∈ N . Damit ist φ(u) = idN für alle u ∈ U nachgewiesen. □

Satz 6.3 Seien U und N Gruppen und φ : U → Aut(N) ein Homomorphismus. Wir definieren
auf N × U eine Verknüpfung ∗ durch

(n1, u1) ∗ (n2, u2) = (n1φ(u1)(n2), u1u2) für (n1, u1), (n2, u2) ∈ N × U .

Dann ist (N ×U ,∗) eine Gruppe. Man nennt sie das äußere semidirekte Produkt von N und U
und bezeichnet sie mit N ⋊φ U .

Beweis: Wir überprüfen für (N × U ,∗) die Gruppenaxiome. Zur Verifikation des Assoziativgesetzes seien (n1, u1),
(n2, u2), (n3, u3) ∈ N × U vorgegeben. Dann gilt ((n1, u1) ∗ (n2, u2)) ∗ (n3, u3) = (n1φ(u1)(n2), u1u2) ∗ (n3, u3) =
(n1φ(u1)(n2)φ(u1u2)(n3), u1u2u3) und ebenso

(n1, u1) ∗ ((n2, u2) ∗ (n3, u3)) = (n1, u1) ∗ (n2φ(u2)(n3), u2u3) = (n1φ(u1) (n2φ(u2)(n3)) , u1u2u3)

= (n1φ1(u1)(n2)(φ(u1) ◦φ(u2))(n3), u1u2u3) = (n1φ(u1)(n2)φ(u1u2)(n3), u1u2u3).

Nun überprüfen wir, dass (eN , eU) ein bezüglich ∗ neutrales Element ist. Für jedes (n, u) ∈ N×U gilt (eN , eU)∗(n, u) =
(eNφ(eU)(n), eUu) = (eN n, eUu) = (n, u) und (n, u)∗ (eN , eU) = (nφ(u)(eN ), ueU) = (neN , ueU) = (n, u). Damit (n1, u1)
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ein Inverses von (n, u) ist, muss (nφ(u)(n1), uu1) = (n, u) ∗ (n1, u1) = (eN , eU) gelten, also u1 = u−1 und φ(u)(n1) =
n−1⇔ n1 = φ(u)−1(n−1) = φ(u−1)(n−1). Dieses Element (n1, u1) erfüllt außer (n, u) ∗ (n1, u1) = (eN , eU) auch die
Gleichung

(n1, u1) ∗ (n, u) = (n1φ(u1)(n), uu1) = (φ(u−1)(n−1)φ(u−1)(n), uu−1) =

(φ(u−1)(n−1n), eU) = (φ(u−1)(eN ), eU) = (eN , eU) ,

also handelt es sich tatsächlich um das zu (n, u) inverse Element. □

Ist der Homomorphismus φ in Satz 6.3 trivial, gilt also φ(u) = idN für alle u ∈ U , dann gilt für die Verknüpfung
(n, u) ∗ (n1, u1) = (nφ(u)(n1), uu1) = (nidN (n1), uu1) = (nn1, uu1), für alle (n, u), (n1, u1) ∈ N × U . In diesem Fall
stimmt das äußere semidirekte Produkt also mit dem äußeren direkten Produkt aus § 1 überein.

Wir illustrieren das Rechnen in semidirekten Produkten an einem Beispiel. Sei n ∈ N und N = Z/nZ mit dem
Automorphismus ι : Z/nZ → Z/nZ, ā 7→ −ā. Sei außerdem U = Z/2Z. Dann ist durch 0̄ 7→ idN und 1̄ 7→ ι ein
Homomorphismus φ : U → Aut(N) definiert. Sei nun G = N ⋊φ U , und seien nun g, h ∈ gegeben durch g = (1̄, 0̄)
und h= (0̄, 1̄). Wir zeigen, dass G = 〈g, h〉 gilt sowie die Gleichungen

ord(g) = n , ord(h) = 2 und g ∗ h ∗ g ∗ h= eG = (0̄, 0̄).

Zunächst gilt für alle ā, b̄ ∈Z/nZ jeweils

(ā, 0̄) ∗ (b̄, 0̄) = (ā+φ(0̄)(b̄), 0̄+ 0̄) = (ā+ idN (b̄), 0̄) = (ā+ b̄, 0̄).

Durch vollständige Induktion folgt (1̄, 0̄)m = (m̄, 0̄) für alle m ∈ N. Somit ist n die kleinste natürliche Zahl mit
gn = (1̄, 0̄)n = (0̄, 0̄) = 0G , und es folgt ord(g) = n. Ebenso gilt für alle c̄, d̄ ∈Z/2Z die Gleichung

(0̄, c̄) ∗ (0̄, d̄) = (0̄+φ(c̄)(0̄), c̄ + d̄) = (0̄+ 0̄, c̄ + d̄) = (0̄, c̄ + d̄).

Also gilt auch hm = (0̄, 1̄)m = (0̄, m̄) für alle m ∈N, und wir erhalten ord(h) = 2. Für alle a, c ∈N gilt

ga ∗ hc = (ā, 0̄) ∗ (0̄, c̄) = (ā+φ(0̄)(0̄), 0̄+ c̄) = (ā+ 0̄, c̄) = (ā, c̄).

Jedes Element in G kann also als Produkt der Form ga∗hc dargestellt werden, mit a, c ∈N. Dies beweist die Gleichung
G = 〈g, h〉. Schließlich gilt noch

g ∗ h ∗ g ∗ h = (1̄, 1̄) ∗ (1̄, 1̄) = (1̄+φ(1̄)(1̄), 1̄+ 1̄) = (1̄+ ι(1̄), 0̄)

= (1̄+ (−1̄), 0̄) = (0̄, 0̄).

Der folgende Satz stellt einen Zusammenhang zwischen dem inneren und äußeren semidirekten Produkten her.

Satz 6.4 Sei G eine Gruppe, U eine Untergruppe und N ein Normalteiler von G. Wir setzen
voraus, dass G das innere semidirekte Produkt N und U ist. Definieren wir φ : U → Aut(N) wie
in Proposition 6.1, dann ist durch (n, u) 7→ nu ein Isomorphismus N ⋊φ U ∼= G definiert.
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Beweis: Die Abbildung ψ : N ⋊φ U → G, (n, u) 7→ nu ist surjektiv, denn wegen G = NU hat jedes g ∈ G eine
Darstellung g = nu mit n ∈ N und u ∈ U . Ist (n, u) ∈ N × U ein Paar mit ψ(n, u) = eG , dann folgt nu = eG und
n = u−1 ∈ N ∩ U = {eG}, also (n, u) = (eG , eG). Ist ψ ein Homomorphismus, dann ist ψ somit auch injektiv. Es muss
also nur noch die Homomorphismus-Eigenschaft nachgewiesen werden.

Seien dazu (n1, u1), (n2, u2) ∈ N ×U vorgegeben. Zu zeigen istψ((n1, u1)∗ (n2, u2)) =ψ(n1, u1)ψ(n2, u2). Definieren
wir wie in Proposition 6.1 den Automorphismus τu1

∈ Aut(N) durch τu1
(n) = u1nu−1

1 für n ∈ N , dann ist die rechte
Seite der Gleichung gegeben durch

ψ(n1, u1)ψ(n2, u2) = n1u1n2u2 = n1u1n2u−1
1 u1u2 = n1τu1

(n2)u1u2 = n1φ(u1)(n2)u1u2

und auch für die linke Seite erhalten wir ψ((n1, u1) ∗ (n2, u2)) =ψ(n1φ(u1)(n2), u1u2) = n1φ(u1)(n2)u1u2. □

Die aus § 1 bekannten Diedergruppen liefern ein wichtiges konkretes Beispiel für innere semidirekte Produkte.

Proposition 6.5 Für jedes n≥ 3 ist die Diedergruppe Dn ein inneres semidirektes Produkt des
Normalteilers N = 〈ρn〉 und der Untergruppe U = 〈τ〉. Somit ist Dn isomorph zu einem äußeren
semidirekten Produkt von zyklischen Gruppen der Ordnung n bzw. 2.

Beweis: In § 4 haben wir gezeigt, dass Dn mit dem Komplexprodukt NU übereinstimmt. Dass τ nicht in N enthalten
und der Schnitt von N und U = {idR2 ,τ} somit nur aus dem Neutralelement besteht, ist ebenfalls bekannt. Ebenfalls
wurde an der entsprechenden Stelle von § 4 gezeigt, dass N im Gegensatz zu U nicht nur eine Untergruppe, sondern
auch ein Normalteiler von Dn = 〈ρn,τ〉 ist. Insgesamt liegt also tatsächlich ein inneres semidirektes Produkt vor.
Die zweite Teilaussage der Proposition ergibt sich nun direkt aus Satz 6.4 und der Tatsache, dass ord(ρn) = n und
ord(τ) = 2 gilt. □

Man kann zeigen, dass Dn für jedes n ≥ 3 darüber hinaus zum weiter oben konstruierten äußeren semidirekten
Produkt von Z/nZ und Z/2Z isomorph ist. Kommen wir nun zum zweiten Thema dieses Kapitels, den auflösbaren
Gruppen.

Definition 6.6 Sei G eine Gruppe. Für beliebige g, h ∈ G bezeichnet man das Element [g, h] =
ghg−1h−1 als den Kommutator von g und h. Bezeichnet S = {[g, h] | g, h ∈ G} die Menge aller
Kommutoren in G, so wird die Untergruppe G′ = 〈S〉 die Kommutatorgruppe von G genannt.

Entscheidend für die Nützlichkeit der Kommutatoren ist die Beziehung gh= [g, h]hg. Tatsächlich gilt

[g, h]hg = (ghg−1h−1)hg = ghg−1(h−1h)g = gh(g−1 g) = gh

für alle g, h ∈ G ab. Ist G eine abelsche Gruppe, dann gilt stets [g, h] = ghg−1h−1 = (g g−1)(hh−1) = e. Daraus folgt,
dass die Kommutatorgruppe in diesem Fall trivial ist, also G′ = {e} gilt. Im allgemeinen Fall erhält man das folgende
wichtige Resultat.
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Satz 6.7 Sei G eine Gruppe.

(i) Die Kommutatorgruppe G′ ist ein Normalteiler von G.

(ii) Für einen beliebigen Normalteiler N von G gilt N ⊇ G′ genau dann, wenn die Faktorgrup-
pe G/N abelsch ist.

Also ist G/G′ die größte abelsche Faktorgruppe von G.

Beweis: zu (i) Sei g1 ∈ G vorgegeben und S die Menge der Kommutatoren. Es genügt, die Inklusion S ⊆ g−1
1 G′g1

nachzuweisen. Denn weil g−1
1 G′g1 eine Untergruppe von G ist, folgt daraus G′ = 〈S〉 ⊆ g−1

1 G′g1. Für jedes n ∈ G′

gibt es damit ein n′ ∈ G′ mit n= g−1
1 n′g1. Es folgt g1ng−1

1 = n′ ∈ G′, also ist g1G′g−1
1 ⊆ G′ und damit G′ ⊴ G erfüllt.

Beweisen wir nun die Inklusion S ⊆ g−1
1 G′g1. Jedes Element in S hat die Form [g, h] = ghg−1h−1 mit g, h ∈ G. Es

folgt

ghg−1h−1 = g−1
1 (g1 ghg−1h−1 g−1

1 )g1 = g−1
1 (g1 g g−1

1 )(g1hg−1
1 )(g1 g−1 g−1

1 )(g1h−1 g−1
1 )g1

= g−1
1 (g1 g g−1

1 )(g1hg−1
1 )(g1 g g−1

1 )
−1(g1hg−1

1 )
−1 g1 = g−1

1 [g1 g g−1
1 , g1hg−1

1 ]g1 ∈ g−1
1 G′g1.

zu (ii) „⇒“ Sei N ein Normalteiler von G mit N ⊇ G′. Wie oben bemerkt, gilt [g, h]hg = gh für alle g, h ∈ G.
Wegen [g, h] ∈ N folgt daraus N(hg) = N(gh), also (gN)(hN) = (gh)N = N(gh) = N(hg) = (hg)N = (hN)(gN).
Dies zeigt, dass G/N abelsch ist. „⇐“ Ist G/N abelsch, dann gilt (gN)(hN) = (hN)(gN) für alle g, h ∈ G. Wie
wir gerade gesehen haben, ist dies gleichbedeutend mit N(hg) = N(gh), also (gh)(hg)−1 = ghg−1h−1 = [g, h] ∈ N .
Somit enthält N alle Kommutatoren, und es folgt G′ ⊆ N . □

Die Bildung von Kommutatorgruppen lässt sich iterieren. Man bezeichnet mit G′′ die Kommutatorgruppe von G′,
also G′′ = (G′)′. Allgemeiner definiert man rekursiv G(0) = G und G(n+1) = (G(n))′ für alle n ∈N0. Die Untergruppen
G(n) mit n ≥ 2 werden die höheren Kommutatorgruppen von G genannt. Nach Satz 6.7 gilt G(n+1) ⊴ G(n) für alle
n ∈N0, und die Faktorgruppen G(n)/G(n+1) sind abelsch.

Definition 6.8 Eine Gruppe G wird auflösbar genannt, wenn G(n) = {e} für ein n ∈N0 gilt.

Offenbar sind abelsche Gruppen auflösbar, denn für jede abelsche Gruppe G gilt G(1) = {e}, wie wir im Anschluss an
Definition 6.6 gesehen haben.

Definition 6.9 Eine Subnormalreihe für eine Gruppe G ist eine Folge von Untergruppen der
Form G = N0 ⊇ N1 ⊇ ... ⊇ Nr = {e} mit r ∈ N0, wobei für 0 ≤ k < r jeweils Nk+1 ⊴ Nk gilt. Die
Faktorgruppen Nk/Nk+1 bezeichnet man als Faktoren der Subnormalreihe. Sind alle Faktoren
abelsch, dann spricht man von einer abelschen Subnormalreihe.
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Proposition 6.10 Jede endliche abelsche Gruppe besitzt eine Subnormalreihe mit zyklischen
Faktoren von Primzahlordnung.

Beweis: Sei G eine endliche abelsche Gruppe. Wir beweisen die Aussage durch vollständige Induktion über die
Gruppenordnung |G|. Für |G|= 1 ist nichts zu zeigen, denn in diesem Fall können wir einfach G0 = G setzen. Sei nun
n = |G| > 1, und setzen wir die Aussage für endliche, abelsche Gruppen von Ordnung < n voraus. Nach Satz 5.10
ist G isomorph zu einem äußeren direkten Produkt C1 × ...× Cr zyklischer Faktoren Ci von Primzahlpotenzordnung;
wir können o.B.d.A. voraussetzen, dass G mit einem solchen Produkt übereinstimmt. Sei m = |Cr |, p ein Primteiler
von m und g ∈ Cr ein Element der Ordnung m. Dann ist 〈g p〉 eine Untergruppe der Ordnung m

p von Cr . Setzen wir
G1 = C1 × ...× Cr−1 × 〈g p〉, dann ist G/G1 zyklisch von Ordnung p. Nach Induktionsvoraussetzung besitzt G1 eine
Subnormalreihe mit zyklischen Faktoren, so dass wir insgesamt eine solche Reihe für G erhalten. □

Satz 6.11 Für eine endliche Gruppe G sind die folgenden Eigenschaften äquivalent.

(i) Die Gruppe G ist auflösbar.

(ii) Sie besitzt eine abelsche Subnormalreihe.

(iii) Sie hat eine Subnormalreihe mit zyklischen Faktoren von Primzahlordnung.

Dabei ist die Äquivalenz „(i)⇔ (ii)“ auch für unendliche Gruppen gültig.

Beweis: Sei G zunächst ein beliebige, möglicherweise unendliche Gruppe. „(i) ⇒ (ii)“ Nach Voraussetzung gilt
G(r) = {e} für ein r ∈ N0. Setzen wir also Gk = G(k) für 0 ≤ k ≤ r, dann gilt G0 = G, Gr = {e} und außerdem
Gk ⊇ Gk+1 für 0 ≤ k ≤ r nach Definition der höheren Kommutorgruppen. Wie wir bereits im Anschluss an Satz 6.7
festgestellt haben, ist auch Gk+1 für 0≤ k < r jeweils ein Normalteiler von Gk, und die Faktorgruppen Gk/Gk+1 sind
abelsch. Also bilden die Untergruppen G0, ..., Gr eine Subnormalreihe mit abelschen Faktoren.

„(ii) ⇒ (i)“ Sei G0, ..., Gr eine Subnormalreihe von G mit abelschen Faktoren. Wir beweisen durch vollständige
Induktion über k, dass G(k) ⊆ Gk für 0≤ k ≤ r gilt. Für k = 0 ist dies erfüllt, denn nach Definition gilt G0 = G = G(0).
Sei nun k ∈ {1, ..., r}, und setzen wir G(ℓ) ⊆ Gℓ für 0≤ ℓ < k voraus. Nach Voraussetzung ist Gk−1/Gk abelsch, somit
gilt Gk ⊇ (Gk−1)′ nach Satz 6.7 (ii), angewendet auf den Normalteiler N = Gk. Mit der Induktionsvoraussetzung folgt
nun G(k) = (G(k−1))′ ⊆ (Gk−1)′ ⊆ Gk. Aus G(r) ⊆ Gr und Gr = {e} erhalten wir schließlich G(r) = {e}. Somit ist G
auflösbar.

Sei nun G eine endliche Gruppe. Die Implikation „(iii)⇒ (ii)“ ist offenbar gültig, da zyklische Gruppen stets abelsch
sind (siehe § 2). Beweisen wir nun „(ii) ⇒ (iii)“ und setzen dazu voraus, dass G0, ..., Gr eine Subnormalreihe von
G mit abelschen Faktoren ist. Für jedes k ∈ {0, ..., r − 1} ist Ḡ = Gk/Gk+1 also eine endliche, abelsche Gruppe,
und nach Proposition 6.10 besitzt diese eine Subnormalreihe Ū0, ..., Ūs mit zyklischen Faktoren Ūℓ/Ūℓ+1. Sei nun
Uℓ = π−1

Gk+1
(Ūℓ) ⊆ Gk für 0 ≤ ℓ ≤ s. Dann gilt insbesondere U0 = Gk und Us = Gk+1. Nach Satz 4.31 (angewendet auf

G = Uℓ, U = Uℓ+1 und N = Gk+1) folgt aus Ūℓ+1 ⊴ Ūℓ, dass Uℓ+1 ein Normalteiler von Uℓ ist, für 0 ≤ ℓ < s. Wegen
Satz 4.32 gilt außerdem

Uℓ/Uℓ+1
∼= Ūℓ/Ūℓ+1 ,

also sind die Faktorgruppen Uℓ/Uℓ+1 zyklisch von Primzahlordnung. Fügen wir zwischen Gk und Gk+1 also die Grup-
pen U1, ..., Us−1 ein und führen diesen Schritt für jedes k ∈ {0, ..., r − 1} aus, so erhalten wir insgesamt eine Subnor-
malreihe für G mit zyklischen Faktoren von Primzahlordnung. □
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Die symmetrischen Gruppen Sn und die alternierenden Gruppen An sind auflösbar für n ≤ 4, aber nicht auflösbar
für alle n ≥ 5. Diese Beobachtung wird später in der Galoistheorie eine wichtige Rolle spielen. Im nächsten Kapitel
werden wir zeigen, dass endliche Gruppen von Primzahlpotenzordnung stets auflösbar sind. Zum Abschluss schauen
wir uns an, wie man von der Auflösbarkeit einer Gruppe auf andere Gruppen schließen kann.

Satz 6.12

(i) Jede Untergruppe einer auflösbaren Gruppe ist auflösbar.

(ii) Sei G eine Gruppe und N ⊴ G. Unter diesen Voraussetzungen ist G auflösbar genau dann,
wenn N und G/N beide auflösbar sind.

Beweis: zu (i) Sei G eine auflösbare Gruppe und U eine Untergruppe. Jeder Kommutator von U ist auch ein
Kommutator von G. Daraus folgt U ′ ⊆ G′, und durch vollständige Induktion erhält man U (n) ⊆ G(n) für alle n ∈N0.
Gilt nun G(n) = {eG} für ein n ∈N, dann folgt daraus U (n) = {eG}. Also ist auch U auflösbar.

zu (ii) „⇒“ Ist G auflösbar, dann folgt daraus, wie wir unter (i) gesehen haben, die Auflösbarkeit von N . Für die
Auflösbarkeit von G/N beweisen wir zunächst die Gleichung (G/N)′ = πN (G′). Sei S die Menge der Kommutatoren
von G und S̄ die Menge der Kommutatoren von G/N . Für alle g, h ∈ G gilt

[gN , hN] = (gN)(hN)(gN)−1(hN)−1 = (ghg−1h−1)N = [g, h]N = πN ([g, h]).

Jedes Element aus S wird also von πN nach S̄ abgebildet, und die Abbildung ist surjektiv, weil jedes Element aus S̄
die Form [gN , hN] mit g, h ∈ G hat. Es gilt also πN (S) = S̄. Aus S̄ ⊆ πN (S) ⊆ πN (G′) und der Untergruppeneigen-
schaft von πN (G′) folgt (G/N)′ = 〈S̄〉 ⊆ πN (G′). Aus πN (S) ⊆ S̄ folgt umgekehrt S ⊆ π−1

N (S̄) ⊆ π
−1
N ((G/N)

′). Weil
π−1

N ((G/N)
′) Untergruppe von G ist, erhalten wir G′ = 〈S〉 ⊆ π−1

N ((G/N)
′) und somit πN (G′) ⊆ (G/N)′. Insgesamt

ist damit πN (G′) = (G/N)′ bewiesen. Vollständige Induktion liefert (G/N)(n) = πN (G(n)) für alle n ∈ N0. Gilt also
G(n) = {eG} für ein n ∈N0, dann folgt daraus (G/N)(n) = {eG/N}.

„⇐“ Nach Voraussetzung gibt es ein n ∈N0 mit N (n) = {eG} und (G/N)(n) = {eG/N}. Wegen πN (G(n)) = (G/N)(n) =
{eG/N} gilt G(n) ⊆ N . Daraus folgt G(2n) ⊆ (G(n))(n) ⊆ N (n) = {eG} und somit die Auflösbarkeit von G. □

Aus Satz 6.12 folgt unmittelbar: Ist G ein inneres semidirektes Produkt einer Untergruppe U und eines Normalteilers
N , so ist G genau dann auflösbar, wenn N und G/N = (UN)/N ∼= U beide auflösbar sind. Wie in den Übungen gezeigt
wird, kann auch jedes äußere (semi-)direkte Produkt der Form N ⋊φ U (bzw. G = N × U) als inneres semidirektes
von Gruppen aufgefasst werden, die zu N und U isomorph sind. Also ist auch N ⋊φ U genau dann auflösbar, wenn
N und U auflösbar sind.

Zum Abschluss des Kapitels untersuchen wir die Auflösbarkeit der symmetrischen und alternierenden Gruppen.

Satz 6.13 Die Gruppen Sn und An sind auflösbar für n≤ 4, nicht auflösbar für n≥ 5.

Beweis: Die Gruppe A2 ist trivial, also auflösbar, und A3 ist als Gruppe von Primzahlordnung zyklisch, also abelsch
und somit ebenfalls auflösbar. Für n= 4 betrachten wir die Untergruppenkette {id} ⊆ V4 ⊆ A4, wobei

V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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die Kleinsche Vierergruppe bezeichnet. Offenbar gilt id ⊴ V4, und als Gruppe der Ordnung 4 ist die Faktorgruppe
V4/{id} ∼= V4 abelsch. Darüber hinaus ist die Gruppe V4 nicht nur ein Normalteiler von A4, sondern sogar von S4. Für
den Nachweis seien σ ∈ S4 und τ ∈ V4 vorgegeben. Im Fall τ = id gilt offenbar στσ−1 = id ∈ V4. Ansonsten ist τ
eine Doppeltransposition der Form τ= (i j)(k ℓ), und die Gleichung

στσ−1 = (σ(i) σ( j))(σ(k) σ(ℓ))

zeigt, dass στσ−1 ebenfalls eine Doppeltransposition und somit in V4 enthalten ist. Als Gruppe der Primzahlordnung
3 ist A4/V4 ebenfalls zyklisch und damit abelsch. Insgesamt ist damit nachgewiesen, dass auch A4 eine auflösbare
Gruppe ist.

Die Gruppe S1 ist trivial und somit auflösbar. Für n ≥ 2 ist Sn/An zyklisch von Ordnung 2, also abelsch und damit
auflösbar. Dies zeigt, dass Sn genau dann auflösbar ist, wenn An auflösbar ist. Insbesondere ist Sn für 2 ≤ n ≤ 4
auflösbar. Um den Beweis abzuschließen, genügt es nun zu zeigen, dass An für n ≥ 5 nicht auflösbar ist. Dafür
wiederum reicht es zu zeigen, dass der Kommutator A′n von An mit An selbst übereinstimmt. Denn daraus folgt
A(m)n = An für alle höheren Kommutatoren, während eine auflösbare Gruppe G(m) = {eG} für hinreichend großes m
erfüllen muss.

Aus Satz 2.11 ist bekannt, dass An von der Menge der 3-Zykel in Sn erzeugt wird. Für die Gleichung A′n = An genügt
es also nachzuweisen, dass A′n für n ≥ 5 alle 3-Zykel aus Sn enthält. Seien k,ℓ, m, n, p ∈ Mn paarweise verschieden,
außerdem σ = (k ℓ m) und τ= (k n p). Dann gilt

[σ,τ] = στσ−1τ−1 = (k ℓ m)(k n p)(k m ℓ)(k p n) = (k ℓ n).

Da die drei Elemente k,ℓ, n in Mn beliebig gewählt werden können, zeigt die Rechnung, dass jeder 3-Zykel tat-
sächlichn in A′n enthalten ist. □
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§ 7. Gruppenoperationen und Klassengleichung

Zusammenfassung. Der Begriff der Gruppenoperation ermöglicht es, die Elemente einer Gruppe auf eine sehr
allgemeine Weise als „Symmetrieoperationen“ zu interpretieren, wobei sich die Symmetrie auf die Strukturen
der Geometrie (zum Beispiel Polytope, siehe § 1), auf Strukturen der Analysis (Funktionenräume) oder der
Algebra beziehen kann. Dabei liefert der Aufbau der Gruppen Informationen über die jeweilige Struktur, und
umgekehrt lässt der Aufbau der Struktur, auf der eine Gruppe operiert, häufig Rückschlüsse auf die Gruppe
zu.

Nach der Einführung der wichtigsten Grundbegriffe und der Herleitung einiger elementarer Gesetzmäßig-
keiten konzentrieren uns auf zwei spezielle Operationen einer Gruppe auf der Menge ihrer Elemente: der
Operation durch Linkstranslation und der Operationen durch Konjugation. Mit Hilfe des ersten Typs beweisen
wir den Satz von Cayley, der besagt, dass jede endliche Gruppe zu einer Untergruppe einer symmetrischen
Gruppe isomorph ist. Der zweite Typ führt uns auf die sog. Klassengleichung, mit deren Hilfe wir zeigen, dass
Gruppen von Primzahlquadratordnung abelsch und Gruppen von Primzahlpotenzordnung auflösbar sind. Au-
ßerdem studieren wir die Klassengleichung der symmetrischen und alternierenden Gruppen und beweisen die
Einfachheit von An für n≥ 5.

Wichtige Grundbegriffe

– Operation einer Gruppe G auf einer Menge X

– Stabilisator Gx eines Elements x ∈ X

– Bahn G(x) eines Elements x ∈ X , Fixpunkt

– Repräsentantensysteme der Bahnen

– Operation durch Linkstranslation

– Operation durch Konjugation

– Konjugationsklasse von Gruppenelementen

– Zentralisator eines Gruppenelements

Zentrale Sätze

– Untergruppeneigenschaft des Stabilisators Gx

– Zerlegung von X durch die Bahnen einer Operation

– Beziehung zwischen Bahnlänge und Stabilisator

– Korrespondenz zwischen Operationen von G auf X
und Homomorphismen G→ Per(X )

– Satz von Cayley

– Bahngleichung und Klassengleichung

– Auflösbarkeit von p-Gruppen

– Gruppen der Ordnung p2 sind abelsch

– Einfachheit der An für n≥ 5

Definition 7.1 Sei G eine Gruppe und X eine Menge. Eine Gruppenoperation von G auf X ist
eine Abbildung α : G × X −→ X mit den Eigenschaften

α(eG , x) = x und α(g,α(h, x)) = α(gh, x)

für alle g, h ∈ G und x ∈ X , wobei eG das Neutralelement der Gruppe bezeichnet.

An Stelle von α(g, x) verwendet man häufig auch die Infix-Schreibweise g · x , wobei · das Symbol für die Gruppen-
operation ist. Die definierenden Gleichungen der Gruppenoperation lassen sich dann sparsamer in der Form eG ·x = x
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und g ·(h · x) = (gh) · x schreiben. Man darf allerdings das Symbol · nicht mit der Verknüpfungsabbildung der Gruppe
verwechseln.

Wir betrachten einige Beispiele für Gruppenoperationen.

(i) Die symmetrische Gruppe Sn operiert auf der Menge Mn = {1, ..., n} durch σ · x = σ(x) für alle σ ∈ Sn und
x ∈ Mn. Ist n= 7, dann gilt beispielsweise (1 2 7) · 2= 7 und (1 2 7) · 3= 3.

(ii) Sei K ein Körper und V ein K-Vektorraum. Dann operiert die Gruppe G = GL(V ) der bijektiven linearen
Abbildungen V → V auf V durch φ · v = φ(v) für alle φ ∈ G und v ∈ V .

Anhand der folgenden Merkmale kann eine Gruppenoperation genauer analysiert werden.

Definition 7.2 Sei G eine Gruppe, X eine Menge und G×X → X , (g, x) 7→ g · x eine Gruppen-
operation.

(i) Für jedes x ∈ X nennt man G(x) = {g · x | g ∈ G} die Bahn von x .

(ii) Gibt es ein x ∈ X mit G(x) = X , dann ist die Gruppenoperation transitiv.

(iii) Die Elemente x ∈ X mit G(x) = {x} heißen Fixpunkte der Gruppenoperation.

(iv) Eine Teilmenge Y ⊆ X wird als G-invariant bezeichnet, wenn für alle g ∈ G und y ∈ Y
auch g · y ∈ Y gilt.

Die folgende Beobachtung ist für nachfolgende Theorie von zentraler Bedeutung, ähnlich wie beim Satz von Lagrange
die Zerlegung einer Gruppe in Nebenklassen bezüglich einer Untergruppe.

Proposition 7.3 Sei G eine Gruppe, X eine Menge und G × X → X , (g, x) 7→ g · x eine Grup-
penoperation. Dann gilt

(i) Die Menge B = {G(x) | x ∈ X } der Bahnen ist eine Zerlegung von X .

(ii) Eine Teilmenge Y ⊆ X ist genau dann G-invariant, wenn Y eine Vereinigung von Bahnen
der Operation ist.

Beweis: zu (i) Wir überprüfen die in § 3 angegebenen Bedingungen für eine Zerlegung. Jedes x ∈ X ist wegen
eG · x = x in G(x) enthalten. Also ist jede Bahn nichtleer, und jedes x ∈ X ist in mindestens einer Bahn enthalten.
Wir zeigen nun, dass jedes Element in genau einer Bahn enthalten ist und beweisen dafür: Ist x ∈ X und y ∈ G(x),
dann folgt G(x) = G(y). Wegen y ∈ G(x) gibt es ein Gruppenelement g0 ∈ G mit g0 · x = y und

g−1
0 · y = g−1

0 · (g0 · x) = (g−1
0 g0) · x = eG · x = x .

Wir überprüfen nun die Inklusionen G(x) ⊆ G(y) und G(x) ⊇ G(y). „⊆“ Sei z ∈ G(x). Dann gibt es ein g ∈ G mit
g · x = z. Es folgt (g g−1

0 ) · y = g · (g−1
0 · y) = g · x = z und damit z ∈ G(y). „⊇“ Sei z ∈ G(y). Dann existiert nach

Definition der Bahn G(y) ein g ∈ G mit g · y = z. Wir erhalten damit (g g0) · x = g · (g0 · x) = g · y = z, also z ∈ G(x).
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zu (ii) „⇐“ Setzen wir voraus, dass Y eine Vereinigung von Bahnen der Operation ist. Seien g ∈ G und y ∈ Y
vorgegeben. Auf Grund der Voraussetzung ist mit y die gesamte Bahn G(y) in Y enthalten; es gilt also g · y ∈ Y .
„⇒“ Sei y ∈ Y . Da Y eine G-invariante Teilmenge ist, folgt g · y ∈ Y für alle g ∈ G, und damit G(y) ⊆ Y . Dies zeigt,
dass Y eine Vereinigung von Bahnen der Gruppenoperation ist. □

Ist die Gruppenoperation transitiv, so gibt es nur eine Bahn in X . Diese Bedingung ist gleichbedeutend damit, dass je
zwei Elemente x , y ∈ X in derselben Bahn liegen, also jeweils ein g ∈ G mit g · x = y existiert. Dies bedeutet auch,
dass G(x) = X für alle x ∈ X erfüllt ist.

(i) Die Gruppe Sn operiert transitiv auf Mn. Sind nämlich a, b ∈ Mn mit a ̸= b vorgegeben, dann gilt τ · a = b für
τ= (a b). Also liegen je zwei Elemente in derselben Bahn.

(ii) Sei nun G = S7 und U = 〈σ〉 die vom Element σ = (1 2 5)(3 4)(6 7) erzeugte, zyklische Untergruppe der
Ordnung 6. Für jedes n ∈ Z gilt σn(1) ∈ {1,2, 5}, wie man mit vollständiger Induktion leicht überprüft. Die
Bahn von 1 ist also durch U(1) = {1, 2,5} gegeben. Zugleich ist dies auch die Bahn der Elemente 2 und 5.
Ebenso sieht man U(3) = U(4) = {3,4} und U(6) = U(7) = {6,7}.

Ist allgemein σ ∈ Sn ein Produkt disjunkter Zykel, dann bilden die Träger der Zykel genau die Bahnen der Operation
von 〈σ〉 auf Mn mit mehr als einem Element. Damit kann gezeigt werden, dass jedes Element σ ∈ Sn eine bis auf
Reihenfolge eindeutige Darstellung als Produkt disjunkter Zyklen besitzt.

Satz 7.4 Sei G eine Gruppe, die auf einer Menge X operiert, und x ∈ X . Dann ist die Teilmenge
Gx = {g ∈ G | g · x = x} eine Untergruppe von G. Man nennt sie den Stabilisator von x .

Beweis: Wegen eG · x = x gilt eG ∈ Gx . Seien nun g, h ∈ Gx vorgegeben. Dann gilt g · x = x und h · x = x . Es folgt
(gh) · x = g · (h · x) = g · x = x . Dies zeigt gh ∈ Gx . Ferner gilt g−1 · x = g−1 · (g · x) = (g−1 g) · x = eG · x = x und
somit also auch g−1 ∈ Gx . □

Wieder betrachten wir eine Reihe von Beispielen.

(i) Wir betrachten die Operation von G = S4 auf X = M4. Der Stabilisator G4 des Elements 4 ∈ X besteht nach
Definition aus allen σ ∈ G mit σ · 4= σ(4) = 4, also allen Permutationen mit 4 /∈ tr(σ). Es gilt also

G4 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

(ii) In der Untergruppe U von S7 aus Beispiel (ii) von oben ist der Stabilisator von 3 durch die dreielementige
Untergruppe 〈σ2〉 gegeben. Denn für jedes m ∈ Z gilt σm(3) = 3 genau dann, wenn m eine gerade Zahl ist.
Der Stabilisator von 1 ist die Untergruppe 〈σ3〉 der Ordnung 2.

(iii) Sei V =R2, G = GL(V ) und X = V . Ist v = e1, dann besteht Gv genau aus den Matrizen der Form
�

1 a
0 b

�

mit a, b ∈R , b ̸= 0 ,

denn an der ersten Spalte der Matrix kann abgelesen werden, dass e1 = (1, 0) auf sich abgebildet wird. Für
den Nullvektor gilt G(0,0) = G.
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Proposition 7.5 Sei n ∈N mit n≥ 2. Wie wir bereits festgestellt haben, existiert eine natürli-
che Gruppenoperation der symmetrischen Gruppe Sn auf der Menge Mn. Der Stabilisator (Sn)n
ist eine zu Sn−1 isomorphe Untergruppe von Sn.

Beweis: Man überprüft leicht, dass durch die Zuordnungσ 7→ σ|Mn−1
eine Bijektion zwischen (Sn)n und Sn−1 definiert

ist. Denn jedes σ ∈ (Sn)n bildet n auf n und Mn−1 bijektiv auf Mn−1 ab, somit ist σ|Mn−1
tatsächlich ein Element in

Sn−1. Umgekehrt kann offenbar jedes τ ∈ Sn−1 durch τ̂(k) = τ(k) für 1≤ k ≤ n− 1 und τ̂(n) = n zu einem Element
τ̂ ∈ (Sn)n fortgesetzt werden. Die Zuordnungen (Sn)n→ Sn−1, σ 7→ σ|Mn−1

und Sn−1→ (Sn)n, τ 7→ τ̂ sind zueinander
invers, also handelt es sich um Bijektionen. Außerdem ist die erste Zuordnung ein Gruppenhomomorphismus, denn
für alleσ,ρ ∈ (Sn)n ist wegen ρ(Mn−1) ⊆ Mn−1 die Kompositionσ|Mn−1

◦ρ|Mn−1
definiert (der Wertebereich von ρ|Mn−1

ist im Definitionsbereich von σ|Mn−1
enthalten), und es gilt (σ ◦ ρ)|Mn−1

= σ|Mn−1
◦ ρ|Mn−1

. Insgesamt liegt also ein
Isomorphismus (Sn)n ∼= Sn−1 vor. □

Ebenso kann man zeigen, dass der Stabilisator (Sn)k für 1≤ k ≤ n−1 isomorph zu Sn−1 ist. Insgesamt sind in Sn also
n zu Sn−1 isomorphe Untergruppen enthalten.

Satz 7.6 Sei G eine Gruppe, die auf einer Menge X operiert, und sei x ∈ X . Dann gibt es eine
Bijektion φx : G/Gx → G(x) mit φx(gGx) = g · x für alle g ∈ G. Ist insbesondere X endlich,
dann ist auch der Index (G : Gx) endlich, und es gilt (G : Gx) = |G(x)|.

Beweis: Für die Existenz der Abbildung φx genügt es nach Satz 4.25 zu überprüfen, dass für alle g, h ∈ G aus der
Bedingung g ≡ℓ h (gegeben durch h ∈ gGx) jeweils g · x = h· x folgt. Dies ist tatsächlich der Fall. Ist nämlich h ∈ gGx ,
also h= g g1 für ein g1 ∈ Gx , dann folgt h · x = (g g1) · x = g · (g1 · x) = g · x .

Die Abbildungφx ist surjektiv: Ist nämlich y ∈ G(x) vorgegeben, dann existiert nach Definition der Bahn ein Element
g ∈ G mit g · x = y , und wir erhalten φ̄x(gGx) = y . Nun beweisen wir noch die Injektivität. Seien ḡ, h̄ ∈ G/Gx mit
φx( ḡ) = φx(h̄) vorgegeben. Außerdem seien g, h ∈ G so gewählt, dass ḡ = gGx und h̄ = hGx gilt. Nach Definition
der Abbildung φx gilt g · x = φx(gGx) = φx(hGx) = h · x , also

(g−1h) · x = g−1 · (h · x) = g−1 · (g · x) = x .

Es folgt g−1h ∈ Gx , also ḡ = gGx = g(g−1h)Gx = hGx = h̄. □

In vielen Fällen ist es sinnvoll, eine Gruppe auf der Menge ihrer Elemente oder der Menge ihrer Untergruppen
operieren zu lassen. Wir betrachten hierzu eine Reihe von Beispielen. Aus jeder dieser Operationen werden sich
später wichtige Anwendungen ergeben.
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Definition 7.7 Sei G eine Gruppe und U die Menge ihrer Untergruppen.

(i) Die Operation von G auf der Menge ihrer Elemente gegeben durch g · h= gh bezeichnet
man als Operation durch Linkstranslation. Bezüglich dieser Operation ist jeder Stabili-
sator trivial, d.h. es gilt Gh = {e} für alle h ∈ G, und die Operation ist transitiv.

(ii) Die Operation von G auf der Menge ihrer Elemente gegeben durch g · h = ghg−1 wird
Operation durch Konjugation genannt. Die Bahnen dieser Operation nennt man auch
Konjugationsklassen, und den Stabilisator eines Elements h ∈ G nennt man auch den
Zentralisator CG(h) von h in G.

(iii) Die Operation von G auf U gegeben durch g · U = gU g−1 wird ebenfalls als Operation
durch Konjugation bezeichnet. Der Stabilisator eines Elements U ∈ U ist der Normali-
sator NG(U) von U in G (siehe § 4).

Wir überprüfen kurz die Angaben in der Definition. Bezeichnet · : G × G→ G die Operation durch Linkstranslation,
dann gilt für alle g, g ′ ∈ G und h ∈ G sowohl e ·h= eh= h als auch g ·(g ′ ·h) = g ·(g ′h) = g(g ′h) = (g g ′)h= (g g ′) ·h,
also liegt tatsächlich eine Gruppenoperation vor. Ist g ∈ Gh ein Element des Stabilisators von h bezüglich dieser
Operation, dann folgt gh = g · h = h, und Multiplikation mit h−1 von rechts liefert ghh−1 = hh−1, also ge = e und
g = e. Damit ist Gh = {e} nachgewiesen. Die Bahn G(e) des Neutralelements umfasst alle Elemente der Gruppe G,
denn für alle g ∈ G gilt g = ge = g · e ∈ G(e). Damit ist die gezeigt, dass es sich um eine transitive Gruppenoperation
handelt.

Ebenso ist die Operation durch Konjugation von G auf der Menge G tatsächlich eine Gruppenoperation, denn für alle
g, g ′ ∈ G und h ∈ G gilt sowohl e · h= ehe−1 = ehe = h als auch

g · (g ′ · h) = g · (g ′h(g ′)−1) = g(g ′h(g ′)−1)g−1 = (g g ′)h(g g ′)−1 = (g g ′) · h.

Auch die Operation von G auf der Menge U ihrer Untergruppen ist eine Gruppenoperation, denn für alle g, g ′ ∈ U
und U ∈ U gilt e · U = eUe−1 = eUe = U und

g · (g ′ · U) = g · (g ′U(g ′)−1) = g(g ′U(g ′)−1)g−1 = (g g ′)U(g g ′)−1 = (g g ′) · U .

Wir kommen nun zu einer erste wichtigen Anwendung der Gruppenoperationen. Der Satz von Cayley besagt, dass
jede endliche Gruppe isomorph zu einer Untergruppe einer symmetrischen Gruppe Sn ist, unter der Voraussetzung,
dass n groß genug gewählt wird. Dieses Ergebnis beruht auf dem folgenden allgemeinen Zusammenhang zwischen
Gruppenoperationen und Homomorphismen.
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Satz 7.8 Sei G eine Gruppe und X eine Menge.

(i) Ist α : G×X → X eine Gruppenoperation, dann kann jedem g ∈ G durch τg(x) = α(g, x)
ein Element aus Per(X ) zugeordnet werden. Die Abbildung G → Per(X ), g 7→ τg ist ein
Gruppenhomomorphismus.

(ii) Sei umgekehrtφ : G→ Per(X ) ein Gruppenhomomorphismus. Dann ist durch α : G×X →
X mit α(g, x) = φ(g)(x) eine Gruppenoperation gegeben.

Beweis: zu (i) Zunächst überprüfen wir, dass τg für jedes g ∈ G eine bijektive Abbildung ist. Seien x , y ∈ X . Aus
τg(x) = τg(y) folgt α(g, x) = α(g, y), und es gilt

x = α(eG , x) = α(g−1 g, x) = α(g−1,α(g, x)) = α(g−1,α(g, y))

= α(g−1 g, y) = α(eG , y) = y.

Also ist die Abbildung τg injektiv. Ist y ∈ X vorgegeben, dann setzen wir x = α(g−1, x). Es gilt dann τg(x) =
α(g, x) = α(g,α(g−1, y)) = α(g g−1, y) = α(eG , y) = y . Dies beweist die Surjektivität von τg . Somit ist τg für jedes
g ∈ G ein Element von Per(X ). Nun zeigen wir, dass durch g 7→ τg ein Gruppenhomomorphismus gegeben ist. Seien
dazu g, h ∈ G vorgegeben. Für jedes x ∈ X gilt

(τg ◦τh)(x) = τg(τh(x)) = τg(α(h, x)) = α(g,α(h, x)) = α(gh, x) = τgh(x).

Also ist die Abbildung g 7→ τg verträglich mit den Verknüpfungen auf G und Per(X ).

zu (ii) Seien g, h ∈ G und x ∈ X gegeben. Wir müssen die definierenden Gleichungen einer Gruppenoperation
nachrechnen. Weil φ ein Gruppenhomomorphismus ist, wird eG auf das Neutralelement idX von Per(X ) abgebildet.
Es folgtα(eG , x) = φ(eG)(x) = idX (x) = x . Die Homomorphismus-Eigenschaft liefert außerdemφ(gh) = φ(g)◦φ(h).
Also gilt

α(gh, x) = φ(gh)(x) = (φ(g) ◦φ(h))(x) = φ(g)(φ(h)(x)) =

α(g,φ(h)(x)) = α(g,α(h, x)). □

Die Gruppenoperation im Beispiel (i) von oben kommt durch den identischen Homomorphismus auf G = Sn, die
Operation im Beispiel (ii) durch die Inklusionsabbildung GL(V ) → Per(V ) zu Stande. Jedes Element aus GL(V ) ist
inbesondere eine bijektive Abbildung auf V .

Satz 7.9 (Satz von Cayley)

Sei G eine Gruppe der Ordnung n. Dann gibt es einen Monomorphismus G → Sn. Mit anderen
Worten, G ist isomorph zu einer Untergruppe von Sn.
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Beweis: Wie wir in Definition 7.7 festgestellt haben, operiert G durch Linkstranslation auf sich selbst. Nach Satz 7.8
existiert ein Gruppenhomomorphismus Ψ : G→ Per(G), g 7→ τg , wobei τg ∈ Per(G) jeweils durch τg(h) = g ·h= gh
definiert ist. Dieser Homomorphismus ist injektiv. Sei nämlich g ∈ ker(Ψ) vorgegeben, also Ψ(g) = τg = idG . Dann
gilt insbesondere g = geG = τg(eG) = idG(eG) = eG . Damit ist die Injektivität von Ψ nachgewiesen.

Darüber hinaus gibt es wegen |G| = n eine Bijektion φ : Mn → G, wobei Mn = {1, ..., n} ist. Nach Satz 4.5 liefert
diese Bijektion einen Isomorphismus φ̂ zwischen Sn = Per(Mn) und Per(G). Ingesamt ist φ̂−1 ◦Ψ : G → Sn also ein
Monomorphismus, der einen Isomorphismus zwischen G und der Untergruppe (φ̂−1 ◦Ψ)(G) von Sn definiert. □

Dem Beweis des Satzes von Cayley können wir folgende einfache Konsequenz aus Satz 7.8 entnehmen: Ist G ei-
ne Gruppe, die auf einer n-elementigen Menge operiert (n ∈ N), so liefert diese Operation auf natürliche Weise
einen Homomorphismus G → Sn. Dies kann verwendet werden, um den Isomorphietyp der Symmetriegruppen der
platonischen Körper, die wir in § 1 betrachtet haben, zu bestimmen.

(i) Tetraedergruppe: Es gilt T+ ∼= A4 und T→ S4.

Beweis: Die Operation vonT auf der 4-elementigen Menge der Ecken des Tetraeders definiert einen Homomor-
phismusφ : T→ S4. Ein Element der Tetraedergruppe, das alle Ecken festhält, muss mit idR3 übereinstimmen.
Somit ist der Homomorphismus injektiv.

Nun enthält die Gruppe T+ enthält genau 12 Elemente. Neben idR3 sind dies 8 Drehungen (um 120◦ und 240◦)
um Achsen durch eine Ecke und eine gegenüberliegende Seite sowie 3 Drehungen (um 180◦) um Achsen durch
die Mitten gegenüberliegender Kanten. Der Homomorphiesatz, angewendet auf die Determinantenabbildung,
liefert einen Isomorphismus T/T+ ∼= {±1}. Es gilt also (T : T+) = 2 und |T|= 2 · |T+|= 2 · 12= 24. Also ist T
isomorph zu einer 24-elementigen Untergruppe von S4, und wegen |S4|= 24 folgt daraus T∼= S4. Identifiziert
man die Ecken des Tetraeders mit M4 = {1,2, 3,4}, dann entsprechen die Elemente von T+ neben id den
3-Zykeln und den Doppeltranspositionen in S4. Damit erhält man T+ ∼= A4.

(ii) Würfelgruppe: Es giltW+ ∼= S4 undW∼= S4 ×Z/2Z.

Beweis: Die orientierungserhaltende Symmetriegruppe W+ des Würfels operiert auf der vierelementigen
Menge der Diagonalen, die je zwei gegenüberliegende Ecken des Würfels verbinden. Dadurch erhält man
einen Homomorphismus ψ :W+ → S4. Eine Drehung, die alle Diagonalen festhält, stimmt mit idR3 überein;
deshalb ist ψ injektiv.

Die Gruppe W+ besteht aus 24 Elementen. Neben idR3 sind dies 8 Drehungen um diese Diagonalen, 6 Dre-
hungen um Achsen durch die Mitten gegenüberliegender Kanten, und 9 Drehungen um Achsen gegenüber-
liegender Seiten. Daraus kann wie beim Tetraeder geschlossen werden, dassW+ isomorph zu S4 ist. Die volle
Symmetriegruppe W ist ein inneres direktes Produkt von W+ und der zweielementigen Gruppe erzeugt von
der Punktspiegelung am Koordinatenursprung, gegeben durch das Negative −E3 der Einheitsmatrix. Daraus
ergibt sich ein IsomorphismusW∼= S4 ×Z/2Z.

(iii) Ikosaedergruppe: Es gilt I+ ∼= A5 und I∼= A5 ×Z/2Z.

Beweis: Der Ikosaeder enthält fünf verschiedene zueinander kongruente regelmäßige Oktaeder, deren Ecken
mit Ecken des Ikosaders übereinstimmen. Die Gruppe des Ikosaeders operiert auf diesen Oktaedern. Dies liefert
einen Homomorphismus der orientierungserhaltenden Ikosaedergruppe I+ nach S5. Die Gruppe I+ besteht
aus 60 Elementen, und anhand der Klassengleichung (siehe unten) kann man zeigen, dass I+ eine einfache
Gruppe ist. Daraus kann gefolgert werden, dass ϕ injektiv ist und das Bild mit der alternierenden Gruppe
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A5 übereinstimmt. Es gilt also I+ ∼= A5. Wie beim Würfel zeigt man, dass für die volle Symmetriegruppe
I∼= A5 ×Z/2Z gilt.

Wenden wir uns nun als nächstem Thema der Formulierung der Bahngleichung zu.

Definition 7.10 Sei G eine Gruppe, die auf einer Menge X operiert, B die Menge der Bahnen
dieser Operation und S ⊆ B eine Teilmenge. Eine Teilmenge R ⊆ X wird Repräsentantensystem
von S genannt, wenn G(x) ∈ S für alle x ∈ R gilt und die Abbildung R→ S, x 7→ G(x) bijektiv
ist.

Damit erhalten wir im Fall einer endlichen Menge X

Satz 7.11 (Bahngleichung)
Sei G eine Gruppe, die auf einer endlichen Menge X operiert. Sei F ⊆ X die Fixpunktmenge der
Operation und R ⊆ X ein Repräsentantensystem der Menge aller Bahnen G(x) mit mindestens
zwei Elementen. Dann gilt

|X | = |F |+
∑

x∈R

(G : Gx)

und (G : Gx)> 1 für alle x ∈ R.

Beweis: Sei B die Menge aller Bahnen, S ⊆ B die Teilmenge aller Bahnen der Länge > 1 und R ⊆ X ein Re-
präsentantensystem von S. Weil die einelementigen Bahnen genau die Mengen {x} mit x ∈ F sind, ist F ∪ R ein
Repräsentantensystem von B, und die Mengen R und F sind disjunkt. Weil X die disjunkte Vereinigung der Mengen
aus B ist und nach Definition des Repräsentantensystems für jedes B ∈ B genau ein x ∈ F ∪R mit B = G(x) existiert,
gilt

|X | =
∑

B∈B
|B| =

∑

x∈F∪R

|G(x)| =
∑

x∈F

|G(x)|+
∑

x∈R

|G(x)|

=
∑

x∈F

|{x}|+
∑

x∈R

|G(x)| = |F |+
∑

x∈R

|G(x)|.

Durch Anwendung von Satz 7.6 erhalten wir |X | = |F | +
∑

x∈R(G : Gx). Aus der Voraussetzung |G(x)| > 1 folgt
außerdem jeweils (G : Gx)> 1, für alle x ∈ R. □

Mit Hilfe der Zerlegung einer Menge X , auf der eine Gruppe G operiert, in die Bahnen dieser Operation, aus der
wir soeben die Bahngleichung hergeleitet haben, lässt auch die Darstellung von Permutationen in disjunkte Zykel
begründen.

Satz 7.12 Sei n ∈N. Dann besitzt jedes σ ∈ Sn eine Darstellung σ = τ1 ◦ ... ◦ τr als Produkt
paarweise disjunkter Zykel τ j , und diese Darstellung ist bis auf die Reihenfolge der Faktoren
eindeutig bestimmt.
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Beweis: Wir betrachten die Operation der zyklischen Untergruppe G = 〈σ〉 auf Mn. Es seien B1, ..., Br die Bahnen
dieser Operation mit mehr als einem Element (wobei genau dann r = 0 gilt, wenn σ = id ist). Für 1 ≤ j ≤ r setzen
wir k j = |B j | und definieren τ j : Mn→ Mn durch τ j |B j

= σ|B j
und τ j(k) = k für k ∈ Mn \ B j . Weil B j eine Bahn unter

der Operation von G ist, gilt σ(B j) ⊆ B j , und σ|B j
ist eine Bijektion B j → B j . Dies zeigt, dass auch τ j jeweils bijektiv

und somit in Sn enthalten ist. Wie man leicht überprüft, stimmen σ und das Produkt τ1 ◦ ... ◦ τr sowohl auf jeder
Bahn B j als auch auf der Menge F = Mn \ (B1∪ ...∪Br) überein. Bei Letzerem handelt es sich um die Fixpunktmenge
der Operation von G auf Mn.

Um die Form der Permutationen τ j näher zu bestimmen, bemerken wir zunächst, dass für jedes a ∈ B j das kleinste
ℓ ∈ N mit σℓ(a) = a jeweils durch ℓ = k j gegeben ist; denn andernfalls würde die Bahn B j = G(a) aus weniger
als k j Elementen bestehen. Wählen wir nun für 1 ≤ j ≤ r jeweils ein Element a j ∈ B j beliebig und setzen dann
a jℓ = σℓ(a j) für 0≤ ℓ < k j , dann muss also B j = {a j0, a j1, ..., a j,k j−1} gelten. Außerdem gilt τ j(a jℓ) = σ(a jℓ) = a j,ℓ+1

für 0≤ ℓ < k j −1 und τ j(a j,k j−1) = σ(a j,k j−1) = a j0, sowie τ j(k) = k für k /∈ B j . Dies zeigt, dass τ j mit dem k j-Zykel
(a j0 a j1 ... a j,k j−1) übereinstimmt. Damit ist gezeigt, dass σ tatsächlich als Produkt von paarweise disjunkten Zyklen
dargestellt werden kann.

Zum Nachweis der Eindeutigkeit nehmen wir nun an, dass σ = σ1 ◦ ... ◦ σs eine beliebige solche Darstellung ist.
Dann sind die Bahnen der Operation von G = 〈σ〉 mit mehr als einem Element offenbar gegeben durch 〈σi〉(bi)
für 1 ≤ i ≤ s, wobei bi jeweils ein beliebiges Element im Träger von σi bezeichnet. Die Menge dieser Bahnen muss
mit {B1, ..., Br} übereinstimmen. Es muss also r = s gelten, und nach Umnummerierung der Zykel σi können wir
B j = 〈σ j〉(b j) annehmen. Wegen σ j |B j

= σ|B j
= τ j |B j

und σ j(k) = k = τ j(k) für k /∈ B j stimmen die k j-Zykel σ j und
τ j überein. Damit ist die Eindeutigkeit bis auf Reihenfolge der Faktoren nachgewiesen. □

Proposition 7.13 Der Stabilisator eines Elements h ∈ G unter der Operation durch Konjugation
ist gegeben durch CG(h) = {g ∈ G | gh = hg}. Die Fixpunkte der Operation sind die Elemente
der Menge Z(G) = {g ∈ G | gh = hg ∀ h ∈ G}, dem sogenannten Zentrum. Auch Z(G) ist eine
Untergruppe, darüber hinaus sogar ein Normalteiler von G.

Beweis: Wir haben bereits oben die Bezeichnung CG(h) für den Stabilisator von h ∈ G eingeführt. Für alle g ∈ G gilt
die Äquivalenz

g ∈ CG(h) ⇔ g · h= h ⇔ ghg−1 = h ⇔ gh= hg.

Ein Element h ∈ G ist genau dann ein Fixpunkt der Operation, wenn g · h = h⇔ gh = hg für alle g ∈ G erfüllt ist.
Dies ist gleichbedeutend damit, dass h in Z(G) liegt.

Wir überprüfen nun die Untergruppen-Eigenschaft von Z(G). Wegen eG g = geG für alle g ∈ G ist eG im Zentrum
enthalten. Sind g, h ∈ Z(G), dann gilt für jedes g ′ ∈ G die Gleichung g ′(gh) = g g ′h = (gh)g ′. Also ist auch das
Produkt gh in Z(G) enthalten. Außerdem ist g ′g−1 = (g g ′−1)−1 = (g ′−1 g)−1 = g−1 g ′, also g−1 ∈ Z(G). Ist g ∈ Z(G)
und h ∈ G beliebig, dann gilt hgh−1 = ghh−1 = g ∈ Z(G). Damit ist auch die Normalteiler-Eigenschaft von Z(G)
nachgewiesen. □
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Ist G eine Gruppe und N ein Normalteiler, dann gilt gng−1 ∈ N für alle g ∈ G und n ∈ N . Durch G × N → N ,
g · n= gng−1 ist also auch eine Operation von G auf N definiert.

Satz 7.14 (Klassengleichung)

Sei G eine endliche Gruppe, die durch Konjugation auf sich selbst operiert. Sei R ein Repräsen-
tantensystem der Konjugationsklassen mit mehr als einem Element. Dann gilt

|G| = |Z(G)|+
∑

g∈R

(G : CG(g)).

Beweis: Dies ist ein Spezialfall der Bahngleichung, wenn man die Beschreibung der Fixpunktmenge und der Stabi-
lisatoren aus Proposition 7.13 berücksichtigt. □

Besonders gut lässt sich die Klassengleichung anhand der symmetrischen Gruppen Sn illustrieren, denn hier sind die
einzelnen Konjugationsklassen durch die Zerlegungstypen der Elemente gegeben, die wir in § 1 definiert haben.

Proposition 7.15 Sei n ∈ N, und seien σ,σ′ ∈ Sn zwei nicht-triviale Elemente. Genau dann
sind σ,σ′ zueinander konjugiert, wenn sie denselben Zerlegungstyp besitzen.

Beweis: „⇒“ Seien σ,σ′ zueinander konjugiert. Dann gilt es ein τ ∈ Sn mit σ′ = τστ−1. Sei σ = σ1 ◦ ... ◦σr eine
disjunkte Zerlegung von σ, wobei die Zykellängen ki durch k1 ≥ ...≥ kr geordnet sind. Definieren wir σ′i = τσiτ

−1

für 1 ≤ i ≤ r, dann gilt σ′ = σ′1 ◦ ... ◦ σ′r . Wir zeigen, dass σ′i jeweils ein ki-Zykel ist, für 1 ≤ i ≤ r. Sei dazu
supp(σi) = {x1, ..., xki

}, wobei σi(xℓ) = xℓ+1 für 1 ≤ ℓ < ki und σi(xki
) = x1 gilt. Setzen wir x ′

ℓ
= τ(xℓ), dann gilt

σ′i(x
′
ℓ
) = τσiτ

−1(τ(xℓ)) = τσ(xℓ) = τ(xℓ+1) = x ′
ℓ+1 für 1≤ i < ki und ebenso

σ′i(x
′
ki
) = τσiτ

−1(τ(xki
)) = τσi(xki

) = τ(x1) = x ′1.

Für y /∈ {x ′1, ..., x ′ki
} gilt τ−1(y) /∈ {x1, ..., xki

} und somit σ′i(y) = τσiτ
−1(y) = τσi(τ−1(y)) = ττ−1(y) = y . Also ist

σ′i tatsächlich ein ki-Zykel. Ebenso ist klar, dass die Träger der Zykel σ′1, ...,σ′r disjunkt sind.

„⇐“ Nach Voraussetzung existieren disjunkte Zykelzerlegungen σ = σ1 ◦ ... ◦σr und σ′ = σ′1 ◦ ... ◦σ′r , wobei σi

und σ′i jeweils dieselbe Zykellänge ki haben, mit k1 ≥ ... ≥ kr . Sei Bi = supp(σi) und B′i = supp(σ′i) für 1 ≤ i ≤ r,
außerdem

B0 = Mn \ (B1 ∪ ...∪ Br) und B′0 = Mn \ (B′1 ∪ ...∪ B′r).

Wir ordnen die Elemente von Bi jeweils so an, dass Bi = {x1, ..., xki
}mit σi(xℓ) = xℓ+1 für 1≤ ℓ < ki und σ(xki

) = x1

gilt. Ebenso seien die Elemente in B′i = {x
′
1, ..., x ′ki

} so angeordnet, dass σ′i(x
′
ℓ
) = x ′

ℓ+1 für 1≤ ℓ < ki und σi(x ′ki
) = x ′1

gilt. Wir definieren nun τi : Bi → B′i durch τi(xℓ) = x ′
ℓ

und wählen eine beliebige Bijektion τ0 : B0→ B′0. Definieren
wir die Abbildung τ : Mn → Mn durch τ(x) = τi(x) für x ∈ Bi und i ∈ {0, ..., r}, dann ist τ bijektiv, weil die
Einschränkungen τ|Bi

: Bi → B′i für 0≤ i ≤ r bijektiv sind. Außerdem gilt σ′ = τ ◦σ ◦τ−1. Ist nämlich x ∈ B′i für ein
i ∈ {1, ..., r}, x = x ′

ℓ
in der Notation von oben mit 1≤ ℓ < ki , dann folgt τ−1(x) ∈ Bi und

τστ−1(x ′ℓ) = τσ(τ−1(x ′ℓ)) = τσi(τ
−1(x ′ℓ)) = τσi(xℓ) = τ(xℓ+1)

= x ′ℓ+1 = σ′i(x
′
ℓ) = σ′(x ′ℓ).

— 82 —



Ebenso behandelt man den Fall, dass x = x ′ki
ist. Im Fall x ∈ B′0 gilt σ′(x) = x , und wegen τ−1(x) ∈ B0 gilt auch

τστ−1(x) = τσ(τ−1(x)) = τ(τ−1(x)) = x . Insgesamt gilt also τστ−1 = σ′. □

Der Beweis der Proposition zeigt, wie sich die Konjugation mit einem Element τ ∈ Sn konkret auf ein Element σ mit
gegebener Zykelzerlegung auswirkt. Ist beispielsweise σ = (1 2 3)(4 5) und τ ∈ S5 beliebig vorgegeben, dann gilt

τστ−1 = ( τ(1) τ(2) τ(3) )( τ(4) τ(5) ) (7.1)

Die Gleichung lässt sich auch direkt nachrechnen, indem man sich ansieht, auf welche Elemente τ(1), τ(2), ... durch
die Permutation τστ−1 abgebildet werden.

Die Konjugationsklassen in Sn sind also durch die verschiedenen Zerlegungstypen der Elemente in Sn gegeben. Als
nächstes schauen wir uns an, wie man die Anzahl der Elemente in den einzelnen Konjugationsklassen bestimmt.

Lemma 7.16 Sei n ∈N und 2≤ k ≤ n. Ist A⊆ Mn eine k-elementige Teilmenge, so beträgt die
Anzahl der k-Zykel σ mit supp(σ) = A genau (k− 1)!.

Beweis: Sei A= {x1, ..., xk}. Dann kann jeder k-Zykelσmit Träger A in der Form (x1 xτ(2)...xτ(k)) geschrieben werden,
wobei τ die Permutationen der Menge {2, ..., k} durchläuft. Umgekehrt lässt sich aus einem gegebenen k-Zykel σ die
Permutation τ zurückgewinnen: Für jedes i ∈ {2, ..., k} ist τ(i) bestimmt durch die Gleichung σi−1(x1) = xτ(i). Da
es (k− 1)! Permutationen von {2, ..., k} gibt, folgt aus der bijektiven Korrespondenz zwischen k-Zykeln mit Träger A
und Permutationen von {2, ..., k} die Behauptung. □

Folgerung 7.17 Für n ∈N und k ∈ {2, ..., n} gibt es jeweils genau (k− 1)!
�n

k

�

k-Zykel.

Beweis: Für die Auswahl einer k-elementigen Teilmenge A⊆ Mn gibt es
�n

k

�

Möglichkeiten, und für jede solche Menge
A gibt es auf Grund des Lemmas dann (k− 1)! verschiedene k-Zykel mit Träger A. □

Es ist nicht schwierig, daraus eine Formel abzuleiten, die die Anzahl der Elemente eines beliebigen Zerlegungstyps
liefert.

(i) Sei (k1, ..., kr) ein Zerlegungstyp von Elementen der Sn, wobei wir zunächst annehmen, dass die Zykellängen
k1 > k2 > ... > kr ≥ 2 erfüllen, also keine Zykellänge mehrfach vorkommt. Für 1 ≤ i ≤ r sei si =

∑i−1
j=1 k j .

Dann ist die Anzahl der Elemente dieses Zerlegungstyps gegeben durch

r
∏

i=1

(ki − 1)!
�

n− si

ki

�

.

Dies kommt durch eine einfache kombinatorische Überlegung zu Stande: Um ein Element des angegebenen
Typs zu bilden, hat man zunächst

� n
k1

�

Möglichkeiten, den Träger des k1-Zykels zu wählen. Für die Wahl des

k2-Zykels bleiben dann noch
�n−k1

k2

�

Möglichkeiten, für die des k3-Zykels
�n−k1−k2

k3

�

Möglichkeiten usw.
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(ii) Sei nun (k1, ..., kr) ein beliebiger Zerlegungstyp von Elementen der Sn, und für 1 ≤ ℓ ≤ n sei aℓ jeweils die
Anzahl der k j mit k j = ℓ. Dann ist die Anzahl der Elemente des Zerlegungstyps gegeben durch

n
∏

ℓ=1

(aℓ!)
−1 ·

r
∏

i=1

(ki − 1)!
�

n− si

ki

�

.

Diese Formel erhält man durch die folgende Überlegung: Wie im vorherigen Abschnitt sieht man, dass die
Formel ohne den Vorfaktor

∏n
ℓ=1(aℓ!)

−1 die Anzahl der Möglichkeiten liefert, zunächst den k1-Zykel, dann
den k2-Zykel usw. zu wählen. Sei nun ℓ eine Zykellänge, die im Tupel (k1, ..., kr) insgesamt al -mal auftritt.
Dann wird durch diese Vorgehensweise dasselbe Produkt von aℓ Zykeln der Länge ℓmehrmals, nämlich genau
aℓ! mal gewählt, wobei zu berücksichtigen ist, dass die paarweise disjunkten ℓ-Zykel vertauschbar sind und
somit die Reihenfolge der Faktoren keine Rolle spielt. Dieser Tatsache wird dadurch Rechnung getragen, dass
wir das Produkt mit dem „Korrekturfaktor“ (aℓ!)−1 multiplizieren.

Wir haben bereits festgestellt, dass die Zerlegungstypen in G = S4 neben der Identität durch Zykel der Länge 2, 3, 4
und Doppeltranspositionen der Form (a b)(c d) gegeben sind. Für die 2-, 3- und 4-Zykel erhält man durch Einsetzen
in die Formel 7.17 die Anzahlen 6, 8 und 6, und es ist leicht zu sehen, dass es genau drei Doppeltranspositionen
gibt. Die Operation durch Konjugation liefert also eine Zerlegung der Gruppe in fünf Bahnen der Längen 1, 6, 8,
6, 3; insbesondere gibt es nur einen einzigen Fixpunkt. Das heißt also, dass S4 ein triviales Zentrum besitzt. Ein
Repräsentantensystem der Bahnen der Länge > 1 ist zum Beispiel durch

R = {(1 2), (1 2 3), (1 2 3 4), (1 2)(3 4)}

gegeben, und die Klassengleichung für G = S4 hat die Form

24 = 1+ 6+ 8+ 6+ 3.

Nach demselben Schema kann die Klassengleichung von Sn für beliebiges n ∈N aufgestellt werden. Wegen S1 = {id}
gibt es nur eine Konjugationsklasse in S1. Wir geben nun die Konjugationsklassen von Sn sowie ihre Größen für
2≤ n≤ 7 an.

n= 2 n= 3

Zerlegungstyp (2)
Repräsentant id (1 2)

Anzahl 1 1

Zerlegungstyp (2) (3)
Repräsentant id (1 2) (1 2 3)

Anzahl 1 3 2

n= 4

Zerlegungstyp (2) (3) (4) (2, 2)
Repräsentant id (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)

Anzahl 1 6 8 6 3

n= 5

Zerlegungstyp (2) (3) (4) (5) (2,2) (3,2)
Repräsentant id (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2 3)(4 5)

Anzahl 1 10 20 30 24 15 20
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n= 6

Zerlegungstyp (2) (3) (4) (5) (6)
Repräsentant id (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2 3 ... 6)

Anzahl 1 15 40 90 144 120

Zerlegungstyp (6) (2, 2) (3,2) (3,3) (2, 2,2) (4,2)
Repräsentant (1 2 3 ... 6) (1 2)(3 4) (1 2 3)(4 5) (1 2 3)(4 5 6) (1 2)(3 4)(5 6) (1 2 3 4)(5 6)

Anzahl 120 45 120 40 15 90

n= 7

Zerlegungstyp (2) (3) (4) (5)
Repräsentant id (1 2) (1 2 3) (1 2 3 4) (1 2 3 ... 5)

Anzahl 1 21 70 210 504

Zerlegungstyp (6) (7) (2,2) (3, 2) (3,3)
Repräsentant (1 2 3 ... 6) (1 2 3 ... 7) (1 2)(3 4) (1 2 3)(4 5) (1 2 3 4 5 6)

Anzahl 840 720 105 420 280

Zerlegungstyp (2, 2,2) (3,2, 2) (4,2) (4, 3) (5,2)
Repräsentant (1 2)(3 4)(5 6) (1 2 3)(4 5)(6 7) (1 2 3 4)(5 6) (1 2 3 4)(5 6 7) (1 2 3 4 5)(6 7)

Anzahl 105 210 630 420 504

Nun beschäftigen wir uns noch mit der Klassengleichung der alternierenden Gruppen An. Zunächst einmal ist auf
Grund der Rechenregeln für das Signum klar, dass das Signum jedes Elements in Sn nur von seiner Konjugationsklas-
se abhängt. Außerdem ist offenbar jede An-Konjugationsklasse An(σ) in der entsprechenden Sn-Konjugationsklasse
Sn(σ) enthalten. Es stellt sich aber die Frage, ob An(σ) eine echte Teilmenge von Sn(σ) ist, oder ob die Konjuga-
tionsklassen übereinstimmen. Das folgende Lemma zeigt wegen (Sn : An) = 2, dass jede Konjugationsklasse Sn(σ)
entweder auch eine An-Konjugationsklasse ist oder in genau zwei An-Konjugationsklassen zerfällt.

Lemma 7.18 Sei G eine endliche Gruppe, die auf einer endlichen Menge X operiert, und sei U
eine Untergruppe vom Index n = (G : U). Sei R ein Repräsentantensystem von U\G. Dann gilt
für jedes x ∈ X jeweils G(x) =

⋃

a∈R U(a · x), und alle Mengen U(a · x) auf der rechten Seite der
Gleichung sind gleichmächtig.

Beweis: Die Inklusion „⊇“ ist nach Definition erfüllt. Für den Nachweis von „⊆“ sei y ∈ G(x) vorgegeben. Dann gilt
y = g · x für ein x ∈ X . Weil R ein Repräsentantensystem von U\G ist, existiert ein a ∈ R mit g ∈ Ua. Schreiben wir
g = ua mit einem geeigneten u ∈ U , dann folgt y = g · x = (ua) · x = u · (a · x) ∈ U(a · x).

Nun zeigen wir für vorgegebenes a ∈ R, dass die Mengen U(x) und U(a · x) gleichmächtig sind. Dazu beweisen wir
die Gleichung Ua·x = aUx a−1. Ist h ∈ Ua·x , dann gilt h · (a · x) = a · x . Daraus folgt

(a−1ha) · x = a−1 · (h · (a · x)) = a−1 · (a · x) = (a−1a) · x = e · x = x .

Also liegt u = a−1ha in Ux , und es folgt h = aua−1 ∈ aUx a−1. Sei nun umgekehrt h ∈ aUx a−1 vorgegeben , also
h= aua−1 mit einem Element u ∈ Ux . Dann folgt

h · (a · x) = (aua−1) · (a · x) = (au) · (a−1 · (a · x)) = (au) · ((a−1a) · x) =

(au) · (e · x) = (au) · x = a · (u · x) = a · x
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und somit h ∈ Ua·x . Damit ist die Gleichung bewiesen. Da durch u 7→ aua−1 eine Bijektion zwischen Ux und aUx a−1

gegeben ist (mit u 7→ a−1ua als Umkehrabbildung), folgt daraus |Ux | = |aUx a−1| = |Ua·x |. Der Zusammenhang
zwischen Bahnlänge und Index des Stabilisators, Satz 7.6, liefert nun

|U(x)| = (G : Ux) =
|G|
|Ux |

=
|G|
|Ua·x |

= (G : Ua·x) = |U(a · x)|. □

Die folgende Proposition gibt Auskunft darüber, welcher der beiden Fälle für jede Konjugationsklasse Sn(σ) mit
σ ∈ An jeweils vorliegt.

Proposition 7.19 Sei n ∈ N mit n ≥ 2, und sei σ ∈ An ein Element ungleich dem Neutral-
element mit Zerlegungstyp (k1, ..., kr). Sind alle ki ungerade und voneinander verschieden, also
k1 > k2 > ...> kr , und hatσ höchstens einen Fixpunkt, dann zerfällt Sn(σ) in zwei verschiedene
An-Konjugationsklassen. Andernfalls gilt Sn(σ) = An(σ).

Beweis: Setzen wir zunächst voraus, dass k1 > ...> kr ≥ 3 gilt und alle Werte ki ungerade sind. Seiσ1 = (i1 i2 ... ik1
)

der Zykel der Länge k1 in der disjunkten Zykelzerlegung von σ, und sei τ = (i1 i2). Wir zeigen, dass σ und σ′ =
τστ−1 in An nicht zueinander konjugiert, die Konjugationsklassen An(σ) und An(σ′) also verschieden sind. Da σ
und σ′ in Sn zueinander konjugiert sind, hat auch σ′ den Zerlegungstyp (k1, ..., kr). Nehmen wir nun an, dass ein
ρ ∈ An mit σ′ = ρσρ−1 existiert, und seien σ1,σ2, ...,σr die Elemente in der disjunkten Zykelzerlegung von σ.
Wegen ρσρ−1 = σ′ = τστ−1 und der Eindeutigkeit der disjunkte Zykelzerlegung muss dann ρσ jρ

−1 = σ j für
2 ≤ j ≤ r und ρσ1ρ

−1 = τσ1τ
−1. Außerdem muss der einzige Fixpunkt von σ, sofern er existiert, von ρ auf sich

selbst abgebildet werden.

Die Gleichung ρσ jρ
−1 = σ j für 2≤ j ≤ r zeigt, dass ρ j = ρ|supp(σ j) entweder die Identität ist oder die Elemente von

supp(σ j) in der Reihenfolge, in der sie in σ j auftreten, zyklisch vertauscht. Ist nämlich σ j = (m1 m2 ... mk j
), so gilt

ρσ jρ
−1 = σ j genau dann, wenn ρ j mit der Identität oder einem der folgenden Elemente übereinstimmt.

�

m1 m2 m3 · · · mk j

m2 m3 m4 · · · m1

�

,

�

m1 m2 m3 · · · mk j

m3 m4 m5 · · · m2

�

, ...,

�

m1 m2 m3 · · · mk j

mk j
m1 m2 · · · mk j−1

�

.

Dies zeigt, dass ρ j eine Potenz eines k j-Zykels (nämlich eine Potenz des zuerst angezeigten Elements) ist. Da k j

ungerade ist, ist das Signum von ρ j positiv. Aus demselben Grund folgt aus ρσ1ρ
−1 = τσ1τ

−1, dass ρ1 = ρ|supp(σ1) =
ρ|{i1,...,ik1

} ein Produkt von τ und einer Potenz des Zykels (i1 i2 ... ik1
) ist und somit negatives Signum besitzt. Wegen

ρ = ρ1 ◦ ... ◦ ρr gilt insgesamt sgn(ρ) = −1, im Widerspruch zur Annahme ρ ∈ An. Dies zeigt, dass tatsächlich
An(σ) ̸= An(σ′) gilt.

Betrachten wir nun den Fall, dass in der disjunkten Zykelzerlegung von σ zwei Zykel (i1 ... ir) und ( j1 ... jr) derselben
ungeraden Länge vorkommen, wobei wir auch den Fall r = 1 zulassen. Wir definieren das Element τ ∈ Sn durch
τ= (i1 j1)◦ ...◦(ir jr). Konjugiert man nun σ mit dem Element τ, dann werden in der disjunkten Zykelzerlegung die
beiden angegebenen r-Zykel vertauscht, während die übrigen Zykel unverändert bleiben. Es gilt also τστ−1 = σ.
Weil r ungerade ist, gilt sgn(τ) = −1. Daraus folgt nun Sn(σ) = An(σ), die Sn-Konjugationsklasse von σ zerfällt also
nicht in zwei An-Konjugationsklassen. Sei nämlich ρ ∈ Sn(σ) vorgegeben. Dann gibt es ein τ1 ∈ Sn mit ρ = τ1στ

−1
1 .

Gilt τ1 ∈ An, dann folgt unmittelbar daraus ρ ∈ An(σ). Andernfalls gilt sgn(τ1τ) = (−1)(−1) = 1 und somit ebenfalls
ρ = τ1στ

−1
1 = τ1τστ

−1τ−1
1 = (τ1τ)σ(τ1τ)−1 ∈ An(σ).
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Nehmen wir nun an, dass in der disjunkten Zykelzerlegung vonσ ein Zykelσ1 = (i1 ... ir) gerader Länge r vorkommt.
Konjugieren wir diesen Zykel mit sich selbst, dann ergibt sich wegenσ1σ1σ

−1
1 = σ1 keine Änderung. Konjugation der

übrigen Zykel in der disjunkten Zykelzerlegung mit σ führt ebenfalls zu keiner Änderung, da der Träger {i1, ..., ir}
von σ1 zum Träger jedes anderen Zykels disjunkt ist. Insgesamt gilt also σ1σσ

−1
1 = σ. Weil r gerade ist, ist das

Signum von σ1 negativ. Wie im vorherigen Absatz kann daraus nun geschlossen werden, dass Sn(σ) = An(σ) gilt. □

Wir gehen nun mit Hilfe von Proposition 7.19 die Fälle n ≤ 2 ≤ 7 durch, um die Klassengleichung von An für diese
Fälle explizit anzugeben.

• Im Fall n= 2 ist An trivial, die Klassengleichung also die triviale Gleichung 1= 1.

• Im Fall n= 3 liegt neben {id} nur eine Konjugationsklasse von S3 auch in A3, nämlich die Klasse der 3-Zykel.
Auf Grund der Proposition zerfällt diese 2-elementige S3-Klasse in zwei A3-Klassen mit jeweils einem Element.
Die Klassengleichung lautet also 3= 1+ 1+ 1.

• Im Fall n = 4 sind neben {id} die S4-Konjugationsklasse der 3-Zykel und die S4-Konjugationsklasse der Dop-
peltranspositionen in A4 enthalten. Lediglich die 8-elementige Konjugationsklasse der 3-Zykel zerfällt in zwei
A4-Konjugationsklassen. Die Klassengleichung lautet also 12= 1+ 4+ 4+ 3.

• Im Fall n = 5 liegen neben {id} die 3-Zykel, die 5-Zykel und die Doppeltranspositionen in A5. Nur die 24-
elementige Klasse der 5-Zykel zerfällt. Wir erhalten die Klassengleichung 60= 1+ 20+ 12+ 12+ 15.

• Im Fall n= 6 liegen neben {id} die 3-Zykel, die 5-Zykel, die Doppeltranspositionen und die Elemente der Zerle-
gungstypen (3,3) und (4, 2) in A6. Nur die Klasse der 5-Zykel zerfällt. Daraus ergibt sich die Klassengleichung
360= 1+ 40+ 72+ 72+ 45+ 40+ 90.

• Im Fall n = 7 liegen neben {id} die 3-, 5- und 7-Zykel, die Doppeltranspositionen und die Elemente der
Zerlegungstypen (3, 3), (3, 2,2) und (4, 2) in A7. Hier zerfällt nur die Klasse der 7-Zykel. Wir erhalten die
Klassengleichung 2520= 1+ 70+ 504+ 360+ 360+ 105+ 280+ 210+ 630.

Im folgenden Abschnitt dieses Kapitels verwenden wir die Klassengleichung zur Untersuchung endlicher Gruppen
mit Primzahlpotenzordnung.

Definition 7.20 Sei p eine Primzahl. Eine endliche Gruppe G wird als p-Gruppe bezeichnet,
wenn sie von p-Potenzordnung ist, also |G|= pe für ein e ∈N0 erfüllt ist.

Wir werden nun mit Hilfe der Klassengleichung einige wichtige Eigenschaften der p-Gruppen herleiten.

Satz 7.21 Sei G eine nichttriviale p-Gruppe. Dann ist das Zentrum Z(G) von G ebenfalls nicht-
trivial, besteht also aus mindestens p Elementen.
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Beweis: Sei r ∈Nmit |G|= pr . Wir stellen für die Gruppe G die Klassengleichung auf. Sei R ein Repräsentantensystem
der Konjugationsklassen von G, die aus mehr als einem Element bestehen. Nach Satz 7.14 gilt dann

|G| = |Z(G)|+
∑

g∈R

(G : CG(g)).

Die Zahl |G| ist nach Voraussetzung durch p teilbar. Die Indizes (G : CG(g)) sind Teiler > 1 von pr und wegen
(G : CG(g)) > 1 somit ebenfalls Vielfache von p. Damit muss auch |Z(G)| durch p teilbar sein. Wegen eG ∈ Z(G) ist
|Z(G)|> 0, und das kleinste positive Vielfache von p ist die Zahl p selbst. □

Lemma 7.22 Ist G eine Gruppe mit der Eigenschaft, dass die Faktorgruppe G/Z(G) zyklisch
ist, dann ist G selbst abelsch.

Beweis: Sei N = Z(G) und g ∈ G so gewählt, dass ḡ = gN die Faktorgruppe G/N erzeugt. Seien außerdem g1, g2 ∈ G
beliebig vorgegeben. Zu zeigen ist die Gleichung g1 g2 = g2 g1. Wegen G/N = 〈 ḡ〉 gibt es m, n ∈ Z mit g1N = ḡm,
g2N = ḡn. Insbesondere gilt g1 ∈ gmN , g2 ∈ gnN , also gibt es Elemente a, b ∈ N mit g1 = gma und g2 = gn b. Weil
a und b als Elemente des Zentrums mit jedem Gruppenelement vertauschbar sind, erhalten wir

g1 g2 = gmagn b = gm gnab = gm+nab = gn gmab = gn bgma = g2 g1. □

Satz 7.23 Sei p eine Primzahl. Dann ist jede Gruppe der Ordnung p2 abelsch. Bis auf Isomorphie
sind also Z/p2Z und Z/pZ×Z/pZ die einzigen Gruppen der Ordnung p2.

Beweis: Sei G eine Gruppe mit |G|= p2. Als p-Gruppe besitzt G nach Satz 7.21 ein nichttriviales Zentrum Z(G). Da
|Z(G)| ein Teiler von p2 ist, kann somit nur |Z(G)| = p oder |Z(G)| = p2 gelten. Im Fall |Z(G)| = p2 gilt Z(G) = G.
Jedes Element aus G ist dann mit jedem anderen vertauschbar, also ist G abelsch. Im Fall |Z(G)| = p ist |G/Z(G)| =
p2

p = p von Primzahlordnung, die Faktorgruppe G/Z(G) also zyklisch und G nach Lemma 7.22 abelsch. □

Satz 7.24 Jede p-Gruppe ist auflösbar.

Beweis: Sei G eine p-Gruppe, |G|= pn für ein n ∈N0. Wir beweisen die Aussage durch vollständige Induktion über
n. Für n ≤ 2 ist G nach Satz 7.8 abelsch und somit auflösbar. Sei nun n ≥ 3, und setzen wir die Aussage für Werte
kleiner als n voraus. Nach Satz 7.21 ist Z(G) eine nichttrivale Untergruppe von G, wegen Proposition 7.13 darüber
hinaus ein Normalteiler von G. Ist G = Z(G), dann ist G wiederum abelsch und damit auflösbar. Ansonsten sind
durch Z(G) und G/Z(G) zwei p-Gruppen kleinerer Ordnung als G gegeben, so dass wir die Induktionsvoraussetzung
anwenden können. Also sind Z(G) und G/Z(G) auflösbar. Nach Satz 6.12 (ii) folgt daraus auch die Auflösbarkeit
von G. □
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Als weitere Anwendung der Klassengleichung leiten wir die Einfachheit der alternierenden Gruppen ab.

Satz 7.25 Die Gruppe An ist nicht einfach für n= 4, für alle übrigen n≥ 2 einfach.

Beweis: Die Gruppe A4 ist nicht einfach, denn wie wir bereits im Beweis von Satz 6.13 gesehen haben, ist die
Kleinsche Vierergruppe V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ein nichttrivialer Normalteiler von A4. Die Gruppe
A2 besteht nur aus dem Element id und ist somit einfach. Die Gruppe A3 hat die Primzahlordnung 3. Aus dem Satz
von Lagrange folgt, dass A3 nur Untergruppen der Ordnung 1 und 3 in A3 gibt. Also sind {id} und A3 die einzigen
Untergruppen von A3, somit erst recht die einzigen Normalteiler, und folglich ist A3 einfach.

Der eigentlich interessante Teil des Beweises ist der Nachweis der Einfachheit von An für n ≥ 5. Betrachten wir
zunächst den Fall n= 5. Wir haben in Abschnitt (4) gesehen, dass die Klassengleichung von A5 durch

60 = 1+ 20+ 12+ 12+ 15

gegeben ist. Nehmen wir nun an, dass N ein nichttrivialer Normalteiler von G ist. Ist C eine Konjugationsklasse,
dann gilt entweder C ∩N =∅ oder C ⊆ N . Ist nämlich n ∈ C ∩N , dann gilt gng−1 ∈ N . Dies zeigt, dass die gesamte
Konjugationsklasse [n] = {gng−1 | g ∈ G} von n in N enthalten ist. Dies bedeutet, dass N als disjunkte Vereinigung
von A5-Konjugationsklassen dargestellt werden kann, wobei {id} wegen id ∈ N eine dieser Klassen sein muss. Da
jede Konjugationsklasse außer {id} mindestens 12 Elemente enthält, muss |N | ≥ 13 gelten. Andererseits muss die
Ordnung |N | ein Teiler von 60 ungleich 1, 60 sein. Dies lässt als einzige Möglichkeiten |N | ∈ {15, 20,30} zu.

Auf Grund der Zerlegung von N in A5-Konjugationsklassen müsste es nun möglich sein, |N | als Summe der Form
1+ d1 + ...+ dr darzustellen, wobei r ∈N und d1, ..., dr ∈ {12,15, 20} gilt, wobei 12 in der Summe zweimal, 15 und
20 höchstens einmal vorkommen. Wegen di ≥ 12 genügt es, Summen mit r ≥ 2 zu betrachten, denn im Fall r ≥ 3
wäre bereits 1+ d1 + ...+ dr ≥ 1+ 12+ 12+ 15 = 40 > 30. Wie man sich leicht überzeugt, stimmt aber keine der
Zahlen

1+ 12 , 1+ 15 , 1+ 20 , 1+ 12+ 12 , 1+ 12+ 15 , 1+ 12+ 20 , 1+ 15+ 20

mit 15, 20 oder 30 überein. Also kann es in A5 keinen Normalteiler N ̸= {id}, A5 geben, und die Gruppe A5 ist einfach.

Nun beweisen wir die Einfachheit von An für alle n ≥ 5 durch vollständige Induktion, wobei der Induktionsanfang
bereits erledigt ist. Wir setzen die Aussage nun für ein solche n voraus und beweisen sie für n+ 1. Nehmen wir an,
dass N ein nichttrivialer Normalteiler von An+1 ist. Für 1 ≤ i ≤ n+ 1 sei Gi = {σ ∈ Sn+1 | σ(i) = i}, der Stabilisator
von i in Sn. Wie wir am Anfang des Kapitels (bei der Definition der Stabilisatorgruppen) bemerkt haben, gilt Gi

∼= Sn

für jedes i, und dieser Isomorphismus ändert das Signum der Permutationen nicht, da lediglich ein Fixpunkt aus dem
Definitionsbereich entfernt wird und somit der Zerlegungstyp gleich bleibt. Durch Einschränkung des Isomorphismus
auf Hi = Gi ∩ An erhält man somit einen Isomorphismus φi : Hi → An.

Wegen N ⊴ An gilt N∩Hi ⊴ Hi für 1≤ i ≤ n+1. Sind nämlich n ∈ N∩Hi und h ∈ Hi vorgegeben, dann gilt hnh−1 ∈ N
auf Grund der Normalteiler-Eigenschaft und hnh−1 ∈ Hi auf Grund der Untergruppen-Eigenschaft von Hi , insgesamt
also hnh−1 ∈ N ∩ Hi . Wegen Hi

∼= An ist auch Hi einfach, es sind also {id} und Hi die einzigen Normalteiler. Somit
gilt für 1≤ i ≤ n+ 1 jeweils N ∩Hi = {id} oder N ∩Hi = Hi .
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Nehmen wir zunächst an, es gilt N ∩ H j = H j für ein j. Wie man sich leicht überzeugt, ist H j in An+1 zu jeder der
Gruppen H1, ..., Hn+1 konjugiert; bezeichnet σi ∈ An+1 ein beliebiges Element mit σi( j) = i, dann gilt Hi = σiH jσ

−1
i .

Auf Grund der Normalteilereigenschaft gilt

N ∩Hi = N ∩σiH jσ
−1
i = σiNσ

−1
i ∩σiH jσ

−1
i = σi(N ∩H j)σ

−1
i = σiH jσ

−1
i = Hi .

Aus N ∩ Hi = Hi folgt N ⊇ Hi , für 1 ≤ i ≤ n+ 1. Jeder 3-Zykel aus An+1 ist in einer der Untergruppen Hi enthalten.
Also enthält N alle 3-Zykel. Weil Mit Satz 2.11 (ii) folgt daraus N = An+1, im Widerspruch zur Annahme von oben.
Also muss N ∩Hi = {id} für 1≤ i ≤ n+1 gelten. Es gibt in N also kein nichttriviales Element ohne Fixpunkt. Daraus
folgt auch, dass es in N keine zwei verschiedenen Elemente gibt, die auf einem i ∈ Mn+1 denselben Wert haben. Denn
wäre σ(i) = τ(i) für σ,τ ∈ N , dann würde daraus (τ−1σ)(i) = i folgen.

Sei nun σ ∈ N ein nichttriviales Element, und sei (k1, ..., kr) der Zerlegungstyp von σ. Nehmen wir an, dass in der
disjunkten Zykelzerlegung von σ ein r-Zykel σ1 mit r ≥ 3 vorkommt, also k1 ≥ 3 gilt. Sei σ1 = (i1 i2 · · · ir). Sei
τ = (i3 j k) mit j, k ̸= {i1, i2, i3}; ein solches Element existiert wegen n+ 1 ≥ 6. Setzen wir σ′ = τστ−1, dann ist σ′

wegen τ ∈ An+1 und N ⊴ An+1 ebenfalls in N enthalten. Die disjunkte Zykelzerlegung vonσ′ enthält dann den k-Zykel
σ′1 = (i1 i2 j · · · ir). Wegen σ(i2) = i3 und σ′(i2) = j ̸= i3 gilt dann σ ̸= σ′, andererseits aber σ(i1) = i2 = σ′(i1).
Aber das zwei verschiedene Elemente aus N an einer Stelle das gleiche Bild haben, wurde oben ausgeschlossen.

Als einzige Möglichkeit bleibt somit, dass jedes nichttriviale Element aus N ein Produkt von disjunkten Transpositio-
nen ist. Sei σ ∈ N \{id} und σ = σ1...σr eine solche Zerlegung. Sei σ1 = (i j) und σ2 = (k ℓ), außerdem τ= (ℓ p q),
wobei p, q ∈ Mn+1 so gewählt sind, dass p ̸= q und p, q /∈ {i, j, k,ℓ}. Solche Elemente existieren wiederum wegen
n+ 1 ≥ 6. Setzen wir σ′ = τστ−1, dann sind die Transpositionen (i j) und (k p) in der disjunkten Zykelzerlegung
von σ′ enthalten. Wegen σ(k) = ℓ und σ′(k) = p ̸= ℓ sind σ und σ′ zwei verschiedene Elemente aus N . Andererseits
gilt σ(i) = j = σ′(i), was erneut unserer Feststellung von oben widerspricht. Also existieren in N kein nichttrivialen
Elemente. Aber den Fall N = {id} haben wir ebenfalls oben ausgeschlossen. Insgesamt hat also die Annahme, dass
An+1 einen nichttrivialen Normalteiler N besitzt, zu einem Widerspruch geführt. □

Folgerung 7.26 Für n≥ 5 ist An der einzige nichttriviale Normalteiler von Sn.

Beweis: Dass An als Kern der Signums-Abbildung ein Normalteiler von Sn ist, wissen wir bereits, und wegen |An|=
1
2 n!

muss dies für n ≥ 5 (sogar für n ≥ 3) ein nichttrivialer Normalteiler sein. Sei nun umgekehrt N ein nichtrivialer
Normalteiler von Sn. Gilt N ⊆ An, dann gilt auch N ⊴ An. Weil An einfach ist, bleibt in diesem Fall N = An als einzige
Möglichkeit.

Betrachten wir nun den Fall, dass N ̸⊆ An gilt, und definieren wir N1 = N ∩ An. Durch Einschränkung der Signums-
funktion auf N erhalten wir einen Gruppenhomomorphismusφ : N → {±1}, dessen Kern genau N1 ist. Wegen N ̸⊆ An

gibt es in N Elemente σ mit φ(σ) = −1, der Homomorphismus ist also surjektiv. Wir können den Homomorphiesatz
anwenden und erhalten einen Isomorphismus N/N1

∼= {±1}. Es folgt |N ||N1|
= |N/N1|= |{±1}|= 2 und |N |= 2|N1|.

Nun ist N1 als Durchschnitt zweier Normalteiler von Sn ebenfalls ein Normalteiler von Sn, und wegen N1 ⊆ An somit
auch ein Normalteiler von An. Außerdem gilt N1 ⊊ An. Denn andernfalls wäre N ∩An = N1 = An, also N ⊇ An. Wegen
N ̸⊆ An würde daraus N ⊋ An folgen, und dies wiederum würde dann (Sn : N) < (Sn : An) = 2 bedeuten, also
(Sn : N) = 1 und N = Sn. Dies aber steht im Widerspruch zur Annahme, dass N ein nichttrivialer Normalteiler von Sn

— 90 —



ist. Aus N1 ⊴ An und N1 ⊊ An sowie der Einfachheit von An folgt N1 = {id}. Dies wiederum bedeutet |N | = 2|N1| =
2 · 1 = 2. Sei σ das einzige nichttriviale Element in N . Wegen ord(σ) = |N | = 2 handelt es sich um ein Produkt r
disjunkter Transpositionen, wobei r ≥ 1 ist.

Weil N ein Normalteiler von Sn ist, liegt jedes zu σ in Sn konjugierte Element, also jedes Element vom selben Zer-
legungstyp, ebenfalls in N . Dies führt zu einem Widerspruch, sobald wir gezeigt haben, dass es in Sn mehr als zwei
Elemente vom selben Zerlegungstyp wie σ gibt. Für Transpositionen ist dies unmittelbar klar, wie man z.B. anhand
der Elemente (1 2) und (1 3) sieht. Für r ≥ 2 seien τ,τ′ ∈ Sn Produkte von r disjunkten Transpositionen, wobei
in der Zykelzerlegung von τ die Transpositionen (1 2) und (3 4), in der von τ′ die Transpositionen (1 3) und (2 4)
vorkommen. Offenbar sind τ und τ′ verschieden, denn es gilt τ(1) = 2 und τ′(1) = 3. Ingesamt ist damit bewiesen,
dass in Sn kein nichttrivialer Normalteiler N mit N ⊊ An existiert. □

Aus der Klassengleichung ergibt sich auch eine interessante Anwendung für die Gruppe A4.

Satz 7.27 Die Gruppe A4 hat keine Untergruppe der Ordnung 6.

Beweis: Auch diese Aussage lässt sich mit Hilfe der Klassengleichung beweisen. Für A4 lautet sie 12= 1+4+4+3,
wie wir oben nachgerechnet haben. Nehmen wir nun an, N ist eine Untergruppe der Ordnung 6 von A4. Wegen
(A4 : N) = |A4|

|N | =
12
6 = 2 ist N auch ein Normalteiler. Wie im Beweis von Satz 7.25 begründet man, dass N eine

disjunkte Vereinigung von A4-Konjugiertenklassen sein muss, wobei eine dieser Klassen gleich {id} ist. Betrachtet
man die Mächtigkeit dieser Klassen, so folgt daraus, dass |N | = 6 als Summe der Zahlen 1, 3 und 4 darstellbar
sein muss, wobei die Zahl 1 genau einmal, die Zahl 3 höchstens einmal und die Zahl 4 höchstens zweimal in der
Darstellung vorkommen muss (letzteres, weil es zwei A4-Konjugiertenklassen mit vier Elementen gibt). Wie man sich
leicht überzeugt, existiert eine solche Darstellung nicht, denn es ist 1+ 3 = 4, 1+ 4 = 5, und alle andere anderen
Summen dieser Form sind ≥ 8. Also existiert in A4 keine Untergruppe der Ordnung 6. □

Wir geben noch einen weiteren Beweis an, der mit der Hilfe der Sylowsätze funktioniert, die wir im folgenden
Kapitel behandeln. Nehmen wir an, dass V eine Untergruppe von G = A4 der Ordnung 6 ist. Auf Grund des 0-ten
Sylowsatzes enthält V eine Untergruppe U der Ordnung 3. Wegen (V : U) = 2 ist U ein Normalteiler von V . Es folgt
daraus V ⊆ NG(U), und daraus wiederum ergibt sich

(G : NG(U)) ≤ (G : V ) =
|G|
|V |

=
12
6

= 2.

Nun sind die Sylowgruppen von G wegen |G| = 22 · 3 genau die Untergruppen der Ordnung 3. Da G nach dem
Zweiten Sylowsatz auf der Menge U dieser Untergruppen transitiv operiert und NG(U) der Stabilisator von U ∈ U
ist, gilt |U | = |G(U)| = (G : NG(U)); dies ist ein Spezialfall der Formel (G : Gx) = |G(x)| aus Satz 7.6. Auf Grund der
Ungleichung (G : NG(U))≤ 2 von oben würde dies bedeuten, dass G nur zwei Untergruppen der Ordnung 3 besitzt.
Tatsächlich aber gibt es in G genau acht Elemente der Ordnung drei (die 3-Zykel). Jede Untergruppe der Ordnung 3
enthält genau zwei dieser Elemente. Es gibt also genau vier Untergruppen der Ordnung 3 in G. Der Widerspruch zu
|U |= 2 zeigt, dass die Annahme bezüglich der Existenz von V falsch war.
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§ 8. Die Sylowsätze

Zusammenfassung. In diesem Abschnitt leiten wir als besondere Anwendung aus der Theorie der
Gruppenoperationen die bekannten Sylowsätze her. Diese ermöglichen weitreichende Aussagen über die
sog. p-Sylowgruppen einer endlichen Gruppe; dabei handelt es sich um die Untergruppen maximaler p-
Potenzordnung. In einigen Fällen lassen sich auf diese Weise sogar alle Gruppen einer festen Ordnung bis auf
Isomorphie klassifizieren, was wir am Ende des Kapitels anhand zweier konkreter Beispiele demonstrieren.

Die wesentliche Idee beim Beweis der Sylowsätze besteht darin, die endliche Gruppe auf der Menge ihrer
p-Sylowgruppen operieren zu lassen, wobei nicht nur die Operation der gesamten Gruppen, sondern auch
die Operation der p-Untergruppen dieser Menge berücksichtigt wird. Die im letzten Abschnitt entwickelten
Grundlagen zum Thema Gruppenoperationen, inbesondere die Bahngleichung, spielen beim Beweis die ent-
scheidende Rolle. Die gewünschten Ergebnisse erhalten wir durch die detaillierte Untersuchung der Stabilisa-
toren dieser Gruppenoperation.

Wichtige Grundbegriffe

– Operation einer Gruppe auf der Menge ihrer
Untergruppen (Normalisatoren als Stabilisatoren
dieser Operation)

– p-Untergruppen und Sylowgruppen einer endli-
chen Gruppe

Zentrale Sätze

– Satz über die Existenz von p-Untergruppen
(„Nullter Sylowsatz“)

– Erster, Zweiter und Dritter Sylowsatz

– Anwendungen der Sylowsätze:
Klassifikation der Gruppen der Ordnung 15 und der
Gruppen der Ordnung 2p für eine beliebige Primzah-
len p

Wir beginnen diesen Abschnitt mit einer weiteren Anwendung der Bahngleichung.

Satz 8.1 („Nullter Sylowsatz“)

Sei G eine endliche Gruppe, p eine Primzahl und k ∈N0 derart, dass pk ein Teiler der Gruppen-
ordnung |G| ist. Dann gibt es in G eine Untergruppe der Ordnung pk.

Beweis: Wir beweisen die Aussage durch vollständige Induktion über n = |G|. Für n = 1 ist 1 die einzige Prim-
zahlpotenz, die n teilt, und daher braucht nichts gezeigt werden. Sei nun n> 1, und setzen wir die Aussage für alle
kleineren Gruppenordnungen als gültig voraus. Sei G eine Gruppe der Ordnung n und pk eine Primzahlpotenz, die
n teilt, wobei wir k > 0 annehmen können. Wir unterscheiden nun zwei Fälle.

1. Fall: Es gibt eine Untergruppe H ⊊ G mit p ∤ (G : H).
Dann ist pk wegen |G| = (G : H)|H| auch ein Teiler von |H|. Nach Induktionsvoraussetzung gibt es in H eine Unter-
gruppe U der Ordnung pk, und natürlich ist U auch eine Untergruppe von G.
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2. Fall: Für jede Untergruppe H ⊊ G ist p ein Teiler von (G : H).
In diesem Fall stellen wir die Klassengleichung für G auf. Bezeichnet R ein Repräsentantensystem der Konjugations-
klassen mit mehr als einem Element, dann gilt

|G| = |Z(G)|+
∑

g∈R

(G : CG(g)) ,

Auf Grund unserer Voraussetzung sind die Zahlen (G : CG(g)) ebenso wie |G| alle durch p teilbar, somit ist auch
|Z(G)| ein Vielfaches von p. Daraus folgt, dass Z(G) ein Element der Ordnung p enthält. Denn nach Satz 5.10 ist
isomorph zu einem äußeren direkten Produkt zyklischer Gruppen C1, ..., Cr ; darunter muss zumindest eine mit p | |Ci |
sein. Ist h ∈ Ci ein Erzeuger, dann ist g = h|Ci |/p nach Satz 3.9 ein Element der Ordnung p. Damit ist N = 〈g〉 eine
Untergruppe der Ordnung p.

Wegen N ⊆ Z(G) ist N ein Normalteiler von G. Sind nämlich n ∈ N und g ∈ G beliebig vorgegeben, dann gilt gng−1 =
g g−1n= n ∈ N . Wir bilden nun die Faktorgruppe Ḡ = G/N . Wegen |Ḡ|< |G| können wir die Induktionsvoraussetzung
anwenden und erhalten eine Untergruppe Ū von Ḡ der Ordnung pk−1. Sei U = π−1(Ū) das Urbild von Ū unter dem
kanonischen Epimorphismus π : G→ G/N . Wegen Ū = U/N und nach dem Satz von Lagrange gilt |U | = |Ū | · |N | =
pk−1p = pk. □

In endlichen abelschen Gruppen kann man sogar für jeden Teiler d der Gruppenordnung eine Untergruppe der Ord-
nung d finden. Dies kann aus Satz 5.10 abgeleitet werden, wenn man noch berücksichtigt, dass nach Satz 3.11 eine
endliche zyklische Gruppe zu jedem Teiler ihrer Gruppenordnung eine (eindeutig bestimmte) Untergruppe dieser
Ordnung besitzt. Für nicht-abelsche Gruppen ist die Aussage für beliebige Teiler aber falsch. Beispielsweise haben
wir in den Übungen gezeigt, dass die alternierende Gruppe A4 keine Untergruppe der Ordnung 6 besitzt, obwohl 6
ein Teiler von |A4|= 12 ist.

Folgerung 8.2 (Satz von Cauchy)
Ist G eine endliche Gruppe und p ein Primteiler von |G|, dann existiert in G ein Element der
Ordnung p.

Beweis: Nach Satz 8.1 gibt es in G eine Untergruppe U der Ordnung p. Als Gruppe von Primzahlordnung ist U
nach Folgerung 2.22 (ii) zyklisch, es gibt also ein g ∈ U mit U = 〈g〉. Nach Definition der Elementordnung gilt
ord(g) = |〈g〉|= |U |= p. □

Nun kommen wir zur letzten wichtigen Anwendung der Bahngleichung in diesem Kapitel, den Sylowsätzen.

Definition 8.3 Sei p eine Primzahl und G eine endliche Gruppe der Ordnung n= pr m, wobei
m und p teilerfremd sind. Eine p-Untergruppe von G ist eine Untergruppe der Ordnung ps mit
0≤ s ≤ r. Ist r = s, dann sprechen wir von einer p-Sylowgruppe.

Um die Sylowsätze zu beweisen, betrachten wir die bereits in Definition 7.7 eingeführte Operation einer Gruppe G
auf der Menge ihrer Untergruppen. Den Stabilisator eines Elements dieser Menge unter der Operation hatten wir
dort als Normalisator der Untergruppe bezeichnet. Diese Bezeichnung ist durch folgende Eigenschaft gerechtfertigt.
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Proposition 8.4 Sei G eine Gruppe und U eine Untergruppe. Dann ist NG(U) die größte Un-
tergruppe H von G mit der Eigenschaft, dass U Normalteiler von H ist.

Beweis: Als Stabilisator bezüglich einer Gruppenoperation ist NG(U) jedenfalls eine Untergruppe von G. Aus Pro-
position 6.1 folgt insbesondere, dass für jede Gruppe durch die Konjugation mit einem Gruppenelement jeweils ein
Automorphismus der Gruppe definiert ist. (Man bezeichnet diese Automorphismen als innere Automorphismen der
Gruppe.) Daraus folgt, dass uUu−1 = U für alle u ∈ U gilt, und U somit in NG(U) enthalten ist. Also ist U auch eine
Untergruppe von NG(U). Für jedes g ∈ NG(U) gilt gU g−1 = U nach Definition von NG(U). Dies zeigt, dass U sogar
ein Normalteiler von NG(U) ist. Sei nun H eine beliebige Untergruppe von G mit der Eigenschaft U ⊴ H. Für jedes
h ∈ H gilt dann hUh−1 = U und somit h ∈ NG(U). Also ist H tatsächlich in NG(U) enthalten. □

Lemma 8.5 Sei G eine Gruppe mit Untergruppen S, H, und es gelte hSh−1 = S für alle h ∈ H.
Dann ist das Komplexprodukt HS eine Untergruppe von G, und es gilt S ⊴ HS.

Beweis: Wir zeigen zunächst, dass aus der Voraussetzung hSh−1 = S für alle h ∈ H die Gleichung HS = SH folgt.
Sei a ∈ HS vorgegeben. Dann gibt es Elemente h ∈ H und s ∈ S mit hs = a. Auf Grund der Voraussetzung liegt hsh−1

in S und somit hs = (hsh−1)h in SH. Dies beweist die Inklusion HS ⊆ SH. Sei nun umgekehrt b ∈ SH vorgegeben,
b = sh mit s ∈ S und h ∈ H. Dann liegt h−1sh in h−1Sh= S, und es folgt sh= h(h−1sh) ∈ HS.

Wir können nun Lemma 4.20 über Komplexprodukte anwenden. Demzufolge ist HS eine Untergruppe von G. Zum
Beweis von S ⊴ HS bestimmen wir den Normalisator von S in HS. Wegen hSh−1 = S für alle h ∈ H gilt H ⊆ NHS(S),
und wegen sSs−1 ⊆ S für alle s ∈ S ist auch S in NHS(S) enthalten. Jede Untergruppe von HS, die S und H enthält,
stimmt offenbar mit HS überein. Es gilt also NHS(S) = HS, und aus der Eigenschaft S ⊴ NHS(S) des Normalisators,
siehe Proposition 8.4, folgt S ⊴ HS. □

Wir können nun unser Hauptresultat formulieren und beweisen.

Satz 8.6 Sei G eine Gruppe der Ordnung n, p eine Primzahl und n= mpr mit p ∤ m.

(i) Erster Sylowsatz: Jede p-Untergruppe von G ist in einer p-Sylowgruppe enthalten.

(ii) Zweiter Sylowsatz: Je zwei p-Sylowgruppen sind zueinander konjugiert.

(iii) Dritter Sylowsatz: Für die Anzahl νp der p-Sylowgruppen gilt νp ≡ 1 mod p und νp | m.

Beweis: Zunächst definieren wir uns eine geeignete Gruppenoperation und betrachten dazu die Operation durch
Konjugation von G auf der Menge V der Untergruppen von G. Nach Satz 8.1 gibt es mindestens eine p-Sylowgruppe
P ∈ V. Die Bahn U = G(P) eine G-invariante Teilmenge. Für jedes Q ∈ G(P) gilt Q = g · P = gP g−1 für ein g ∈ G.
Weil nach Proposition 6.1 die Konjugation mit g ein Automorphismus von G ist, sind die Gruppen P und Q isomorph,
und somit besteht U ausschließlich aus p-Sylowgruppen.

Wir zeigen nun, dass p teilerfremd zu |U | ist. Auf Grund des allgemeinen Zusammenhangs aus Satz 7.6 zwischen
Bahnlänge und Index des Stabilisators gilt zunächst |U | = |G(P)| = (G : NG(P)). Wegen P ⊆ NG(P) und auf Grund
der Gleichung aus dem Satz 2.20 von Lagrange gegeben durch |NG(P)|= |P| · (NG(P) : P) erhalten wir

(G : P) =
|G|
|P|

=
|G|
|NG(P)|

·
|NG(P)|
|P|

= (G : NG(P))(NG(P) : P).
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Somit ist |U |= (G : NG(P)) ein Teiler von m= (G : P). Da m teilerfremd zu p ist, gilt dies auch für |U |.

zu (i) Sei H eine beliebige p-Untergruppe. Wir betrachten die Operation von H auf U durch Konjugation und
zeigen, dass mindestens ein Fixpunkt existiert. Darüber hinaus zeigen wir, dass jede Untergruppe S, die als Fixpunkt
der Operation auftritt, die Untergruppe H enthält.

Die Menge U zerfällt unter der Operation von H disjunkt in eine gewisse Anzahl von Bahnen. Ist B eine solche Bahn,
dann ist |B| ein Teiler von |H| und somit eine p-Potenz. Sei F die Menge der Fixpunkte und R ein Repräsentantensy-
stem der Bahnen mit Länge > 1. Weil |U | teilerfremd zu p ist, muss es auf Grund der Bahngleichung

|U | = |F |+
∑

U∈R
(H : HU)

aus Satz 7.11 mindestens einen Fixpunkt S ∈ B unter dieser der Operation geben.

Wir beweisen nun die Inklusion H ⊆ S. Die Fixpunkt-Eigenschaft bedeutet gerade hSh−1 = S für alle h ∈ H. Nach
Lemma 8.5 ist das Komplexprodukt HS jedenfalls eine Untergruppe von G und S ein Normalteiler von HS. Nach dem
Isomorphiesatz, Satz 4.32, gilt H/(H ∩ S)∼= HS/S und somit

|H|
|H ∩ S|

=
|HS|
|S|

⇔ |HS|=
|H||S|
|H ∩ S|

.

Mit |S| und |H| ist also auch |HS| eine p-Potenz. Aus HS ⊇ S und der p-Sylowgruppen-Eigenschaft von S folgt, dass
HS = S und somit H ⊆ S gilt.

zu (ii) Sei P ′ eine beliebige p-Sylowgruppe in G. Wie wir in (i) gezeigt haben, gibt es ein Element P ′′ ∈ U mit
P ′ ⊆ P ′′. Weil P ′ und P ′′ dieselbe Ordung haben, gilt P ′ = P ′′. Weil P ′′ in derselben Bahn wie P liegt, gibt es ein g ∈ G
mit P ′ = P ′′ = gP g−1.

zu (iii) Aus (ii) folgt, dass U = G(P) bereits die Menge aller p-Sylowgruppen von G ist und somit νp = |U | = (G :
NG(P)) gilt. Bereits am Anfang des Beweises wurde gezeigt, dass dies ein Teiler von m= (G : P) ist. Zum Beweis der
Kongruenz betrachten wir die Operation von P auf U . Nach Teil (i) ist P in jeder p-Sylowgruppe enthalten, die unter
dieser Operation fest bleibt. Da P auf Grund seiner Ordnung in keiner anderen p-Sylowgruppe als P selbst liegen
kann, ist P der einzige Fixpunkt dieser Operation, und der Rest von U zerfällt in Bahnen von p-Potenzlänge > 1.
Bezeichnen wir mit R ein Repräsentantensystem dieser Bahnen, dann gilt auf Grund der Bahngleichung

νp = |U | = |{P}|+
∑

U∈R

(P : PU).

Wegen |{P}| = 1, und weil es sich bei den Bahnlängen (P : PU) = |P(U)| um p-Potenzen > 1 handelt, ist die rechte
Seite der Gleichung kongruent zu 1 modulo p. □

Folgerung 8.7 Sei G eine Gruppe und p eine Primzahl. Eine p-Sylowgruppe P ist genau dann
ein Normalteiler von G, wenn die Anzahl νp der p-Sylowgruppen von G gleich 1 ist.

Beweis: „⇒“ Ist P ′ eine weitere p-Sylowgruppe, dann ist P ′ nach Teil (ii) der Sylowsätze zu P konjugiert. Es gibt
also ein g ∈ G mit P ′ = gP g−1. Weil P ein Normalteiler von G ist, folgt P ′ = gP g−1 = P und somit νp = 1. „⇐“ Sei
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g ∈ G. Nach Proposition 6.1 ist die Untergruppe gP g−1 isomorph zu P. Insbesondere hat gP g−1 dieselbe Ordnung
wie P und ist somit eine p-Sylowgruppe. Wegen νp = 1 muss gP g−1 = P gelten. Weil g beliebig gewählt war, folgt
daraus die Normalteiler-Eigenschaft von P. □

Als erstes Anwendungsbeispiel für die Sylowsätze beweisen wir

Lemma 8.8 Jede Gruppe der Ordnung 15 besitzt einen Normalteiler der Ordnung 3 und einen
Normalteiler der Ordnung 5.

Beweis: Sei G eine Gruppe mit |G|= 15, und für jede Primzahl p sei νp die Anzahl der p-Sylowgruppen von G. Wegen
Teil (iii) der Sylowsätze ist ν3 ein Teiler von 5, also ν3 ∈ {1, 5}, und es gilt ν3 ≡ 1 mod 3. Da 5 ̸≡ 1 mod 3 ist, bleibt
als einzige Möglichkeit ν3 = 1. Die einzige 3-Sylowgruppe ist nach Folgerung 8.7 ein Normalteiler von G. Wenden
wir Teil (iii) der Sylowsätze auf die Anzahl der 5-Sylowgruppen an, dann erhalten wir ν5|3, also ν5 ∈ {1,3}, und
µ5 ≡ 1 mod 5. Wegen 3 ̸≡ 1 mod 5 muss ν5 = 1 sein, und die einzige 5-Sylowgruppe ist wiederum ein Normalteiler
von G. □

Folgerung 8.9 Jede Gruppe der Ordnung 15 ist zyklisch.

Beweis: Sei G eine Gruppe mit |G|= 15. Nach Lemma 8.8 besitzt G Normalteiler N und U der Ordnungen 3 bzw. 5.
Weil |N | und |U | teilerfremd sind, gilt N ∩U = {e}. Die Untergruppe NU enthält U und N , also ist |NU | ein Vielfaches
von 3 und zugleich ein Vielfaches von 5. Also ist |NU | insgesamt ein Vielfaches von 15. Wegen NU ⊆ G und |G|= 15
folgt G = NU . Insgesamt haben wir damit gezeigt, dass G ein direktes Produkt von N und U ist. Nach Proposition
4.24 folgt daraus G ∼= N × U . Als Gruppen von Primzahlordnung sind N und U nach Folgerung 2.22 zyklisch, es gilt
also N ∼=Z/3Z und U ∼=Z/5Z. Mit dem Chinesischen Restsatz, Satz 5.8, erhalten wir

G ∼= N × U ∼= Z/3Z×Z/5Z ∼= Z/15Z.

Insbesondere ist G zyklisch. □

Proposition 8.10 Sei n ∈N mit n≥ 3, G eine Gruppe und {g, h} ein Erzeugendensystem von
G, wobei ord(g) = n, ord(h) = 2 und ghgh= eG gilt. Dann ist G isomorph zur Diedergruppe Dn.

Beweis: Aus früheren Kapitel ist bekannt, dass die Diedergruppe Dn ein zweielementiges Erzeugendensystem {ρn,τ}
besitzt mit den Eigenschaften ord(ρn) = n, ord(τ) = 2 und ρnτρnτ = idR2 . Aus den Gleichungen hatten wir gefol-
gert, dass Dn eine Gruppe der Ordnung Dn ist, dessen Elemente durch

Dn = NU = {ρa
nτ

b | 0≤ a < n, b ∈ {0, 1}}

gegeben sind. Genauso kann man aus den hier angegebenen Voraussetzungen ableiten, dass |G| = 2n gilt, und dass
die Elemente von G durch

G = 〈g〉〈h〉 = {gahb | 0≤ a < n, b ∈ {0,1}}

gegeben sind. Offenbar ist die Abbildung ψ : Dn→ G definiert durch ψ(ρa
nτ

b) = gahb eine Bijektion. Die Gleichung
ist nicht nur für 0 ≤ a < n und b ∈ {0,1}, sondern für beliebige a, b ∈ Z gültig. Sind nämlich a, b beliebige ganze
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Zahlen und a1, b1 die Reste nach Division durch n bzw. 2, dann erhält man wegen ord(ρn) = ord(g) = n und
ord(τ) = ord(h) = 2 die Gleichung

ψ(ρa
nτ

b) = ψ(ρa1
n τ

b1) = ga1hb1 = gahb.

Darüber hinaus handelt es sich bei der Abbildung ψ einen Isomorphismus. Seien nämlich a, c ∈ {0, ..., n − 1} und
b, d ∈ {0,1}. Im Fall b = 0 gilt

ψ(ρa
nτ

b ◦ρc
nτ

d) = ψ(ρa
n ◦ρ

c
nτ

d) = ψ(ρa+c
n τd) = ga+chd = ga · g chd

= gahb · g chd = ψ(ρa
nτ

b) ·ψ(ρc
nτ

d).

Im Fall b = 1 verwenden wir die Tatsache, dass aus der Gleichung τρn = ρ−1
n τ durch vollständige Induktion die

Gleichung τρc
n = ρ

−c
n τ folgt, und dass man ebenso aus hg = g−1h die Gleichung hg c = g−ch erhält. Daraus ergibt

sich auch in diesem Fall

ψ(ρa
nτ

b ◦ρc
nτ

d) = ψ(ρa
n ◦τ ◦ρ

c
n ◦τ

d) = ψ(ρa
n ◦ρ

−c
n ◦τ ◦τ

d) = ψ(ρa−c
n ◦τ

d+1)

= ga−c · hd+1 = ga · g−c · h · hd = ga · h · g c · hd = gahb · g chd = ψ(ρa
nτ

b) ·ψ(ρc
nτ

d).

Damit ist die Homomorphismus-Eigenschaft der Abbildung ψ nachgewiesen. □

Satz 8.11 Sei p eine ungerade Primzahl und G eine nicht-abelsche Gruppe der Ordnung 2p.
Dann ist G isomorph zur Diedergruppe Dp.

Beweis: In Proposition 8.10 wurde eine Charakterisierung der Diedergruppen bis auf Isomorphie gegeben. Demnach
gilt G ∼= Dp, wenn Elemente g, h ∈ G existieren, so dass die Bedingungen G = 〈g, h〉, ord(g) = p, ord(h) = 2
und ghgh = eG erfüllt sind. Wir werden dies nun mit Hilfe der Sylowsätze beweisen. Sei νp die Anzahl der p-
Sylowgruppen von G. Nach Teil (iii) der Sylowsätze ist νp ein Teiler von 2, es ist also nur νp ∈ {1,2} möglich.
Darüber hinaus gilt νp ≡ 1 mod p. Daraus folgt νp = 1. Sei N die einzige p-Sylowgruppe von G, und sei g ∈ N
ein erzeugendes Element dieser Untergruppe. Außerdem sei H eine beliebige 2-Sylowgruppe von G und h ∈ H ein
erzeugendes Element von H. Dann gilt ord(g) = p und ord(h) = 2. Darüber hinaus ist auch G = 〈g, h〉 erfüllt.
Denn U = 〈g, h〉 ist eine Untergruppe von G, deren Ordnung von ord(g) = p und ord(h) = 2 geteilt wird. Wegen
ggT(2, p) = 1 ist insgesamt 2p ein Teiler von |U |, was wegen |G|= 2p nur den Schluss U = G zulässt.

Wegen N ⊴ G gilt hNh = N . Das Element hgh liegt also in N , und folglich existiert ein b ∈ Z mit hgh = g b.
Aus g b2

= (g b)b = (hgh)b = hg bh = h2 gh2 = eG geG = g und ord(g) = p folgt b2 ≡ 1 mod p. Wie wir in der
Zahlentheorie-Vorlesung zeigen werden, hat die Gleichung x2 = 1̄ im Ring Z/pZ nur zwei Lösungen, nämlich ±1̄.
Daraus folgt b ≡ ±1 mod p.

Betrachten wir zunächst den Fall b ≡ 1 mod p. Wir zeigen, dass in diesem Fall nicht nur N , sondern auch H ein
Normalteiler von G ist. Es gilt hgh = g, was zu hg = gh−1 = gh und ghg−1 = h umgeformt werden kann. Der
Normalisator NG(H) von H = 〈h〉 in G enthält damit außer h also auch das Element g. Daraus ergibt sich G = 〈g, h〉 ⊆
NG(H). Folglich ist in dieser Situation neben N auch die Untergruppe H nach Proposition 8.4 ein Normalteiler von G.
Auf Grund der Teilerfremdheit von |H| = 2 und |N | = p gilt H ∩ N = {eG}. Auf Grund der Normalteiler-Eigenschaft
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von H (oder N) ist NH eine Untergruppe von G. Diese enthält g und h, also auch G = 〈g, h〉, woraus G = NH folgt.
Insgesamt ist damit nachgewiesen, dass G ein inneres direktes Produkt von N und H ist. Nach Proposition 4.24 gilt
also G ∼= N ×H. Als äußeres direktes Produkt zweier abelscher Gruppen ist N ×H abelsch. Weil aber G nicht-abelsch
ist, haben wir damit gezeigt, dass der Fall b ≡ 1 mod p ausgeschlossen ist.

Somit bleibt b ≡ −1 mod p als einzige Möglichkeit. Es folgt hgh = g b = g−1, was zu ghgh = eG umgeformt werden
kann. Damit sind die charakteristischen Eigenschaften der Diedergruppe nachgewiesen, und wir erhalten G ∼= Dp

wie gewünscht. □
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§ 9. Grundlagen der Ringtheorie

Zusammenfassung. Wie bereits aus der Linearen Algebra bekannt, ist ein Ring eine algebraische Struktur,
in der die arithmetischen Operationen Addition, Subtraktion und Multiplikation zur Verfügung stehen, im
Allgemeinen aber keine Division. Die Definition basiert auf den Begriffen der Gruppe und des Monoids, die wir
im ersten Kapitel studiert haben. Das Standardbeispiel ist der Ring Z der ganzen Zahlen.

Wichtige spezielle Elementen in Ringen sind Einheiten und Nullteiler. Ein Ring R mit R× = R \ {0R} bezeichnet
man als Körper. Darunter fallen die bekannten Zahlbereiche Q, R und C, aber wir wissen bereits aus der
Linearen Algebra, dass es außerdem für jede Primzahl p einen KörperFp mit p Elementen gibt. In vielen Ringen
(beispielsweise in Z und den Körpern) ist das Nullelement der einzige Nullteiler; solche Ringe bezeichnet man
als Integritätsbereiche. Die Charakteristik eines Rings R ist die Ordnung des Elements 1R in der Gruppe (R, +),
sofern diese endlich ist; ansonsten ordnet man ihr den Wert null zu.

Das Analogon der Untergruppe in der Ringtheorie ist der Begriff des Teilrings. Im Gegensatz zur Gruppentheorie
steht aber hier der Aspekt der Erweiterung im Vordergrund. Beispielsweise leisten die Ringe der Form Z[

p
d],

die dadurch entstehen, dass man den RingZ um eine reelle oder imaginäre Quadratwurzel erweitert, wichtige
Beiträge zur Lösung von Problemen der Elementaren Zahlentheorie.

Wichtige Grundbegriffe

– Ringe und Ringhomomorphismen

– Einheiten und Nullteiler

– Nullringe, Integritätsbereiche, Körper

– Charakteristik eines Rings

– Teilring eines Rings R, Erweiterungsring

Zentrale Sätze

– Existenz und Eindeutigkeit von Ringhomomor-
phismen Z→ R (wobei R beliebiger Ring)

– Existenz und Eindeutigkeit des erzeugten Erweite-
rungsrings R[A]

– Primzahlcharakteristik von Integritätsbereichen

– Injektivität von Körperhomomorphismen

– Gestalt der quadratischen Zahlringe

Definition 9.1 Ein Ring ist ein Tripel (R,+, ·) bestehend aus einer Menge R und zwei Verk-
nüpfungen + : R× R→ R und · : R× R→ R, genannt Addition und Multiplikation, so dass die
folgenden Bedingungen erfüllt sind:

(i) Das Paar (R,+) ist eine abelsche Gruppe.

(ii) Das Paar (R, ·) ist ein kommutatives Monoid.

(iii) Es gilt das Distributivgesetz a(b+ c) = ab+ ac für alle a, b, c ∈ R.

Das Neutralelement der Gruppe (R,+) bezeichnet man mit 0R und nennt es das Nullelement des Rings. Ist a ∈ R, dann
schreibt man −a für das Inverse von a in der Gruppe (R,+) und nennt es das Negative von a. Das Neutralelement
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von (R, ·) wird Einselement von R genannt und mit 1R bezeichnet. An Stelle von a+(−b) schreiben wir auch kürzer
a− b. Die Rechenregeln für Inverse aus der Algebra-Vorlesung sind natürlich auch in der Gruppe (R,+) gültig, es gilt
also −(a+ b) = (−a) + (−b) und −(−a) = a für alle a, b ∈ R. Darüber hinaus gilt auch

0R · a = 0R , (−a)b = a(−b) = −(ab) und (−a)(−b) = ab für alle a, b ∈ R.

Ähnliche Rechenregeln wurden in der Linearen Algebra für die Elemente eines Vektorraums bewiesen. Die erste
Gleichung erhält man, indem man in der Gleichung 0R ·a = (0R+0R) ·a = 0R ·a+0R ·a auf beiden Seiten das Element
−(0R · a) addiert. Die Gleichung (−a)b + ab = ((−a) + a)b = 0R · b = 0R zeigt, dass (−a)b das additive Inverse von
ab ist, also (−a)b = −(ab) gilt, und genauso zeigt man a(−b) = −(ab). Die letzte Gleichung kann schließlich durch
(−a)(−b) = −(a(−b)) = −(−ab) = ab auf die bereits bekannten Regeln zurückgeführt werden.

Die Zahlbereiche Z, Q, R und C bilden mit ihrer herkömmlichen Addition und Multiplikation jeweils Ringe. Au-
ßerdem kennen wir bereits die Restklassenringe R[x] und die Polynomringe Z/nZ. Dagegen ist der Zahlbereich N0

mit der gewöhnlichen Addition und Multiplikation kein Ring, weil (N0,+) keine Gruppe ist. Beispielsweise besitzt
das Element 1 in (N0,+) kein Inverses. Ein solches Inverses a ∈ N0 von 1 müsste nämlich die Gleichung a + 1 = 0
erfüllen, aber durch Addition von −1 auf beiden Seiten erhält man a = −1, im Widerspruch zu a ∈N0.

Man beachte, dass Null- und Einselement eines Rings R auch zusammenfallen können, also 0R = 1R gelten kann.
Allerdings kann dies nur passieren, wenn der gesamte Ring nur aus einem einzigen Element besteht, also R= {0R}=
{1R} gilt. Ist nämlich R ein Ring mit 0R = 1R und a ∈ R beliebig, dann erhält man a = a · 1R = a · 0R = 0R. Ringe mit
nur einem Element bezeichnet man als Nullringe.

Wie in der Kategorie der Gruppen lassen sich aus gegebenen Ringen neue Ringe konstruieren. Sind (R,+R, ·R) und
(S,+S , ·S) zwei vorgegebene Ringe, und definiert man auf dem kartesischen Produkt R × S eine Addition und eine
Multiplikation durch

(r1, s1) + (r2, s2) = (r1 +R r2, s1 +S s2) und (r1, s1) · (r2, s2) = (r1 ·R r2, s1 ·S s2) ,

so ist (R × S,+, ·) ein Ring. Denn wie in der Algebra-Vorlesung gezeigt wurde, ist (R × S,+) als äußeres direktes
Produkt der abelschen Gruppen (R,+) und (S,+) selbst eine abelsche Gruppe, und wie dort zeigt man, dass (R×S, ·)
ein abelsches Monoid ist. Auch das Distributivgesetz kann auf die Distributivgesetze in (R,+R, ·R) und (S,+S , ·S)
zurückgeführt werden, denn für beliebig vorgegebene Elemente (r1, s1), (r2, s2), (r3, s3) ∈ R× S gilt

(r1, s1) · ((r2, s2) + (r3, s3)) = (r1, s1) · (r2 +R r3, s2 +S s3) = (r1 ·R (r2 +R r3), s1 ·S (s2 +S s3))

= (r1 ·R r2 +R r1 ·R r3, s1 ·S s2 +S s1 ·S s3) = (r1 ·R r2, s1 ·S s2) + (r1 ·R r3, s1 ·S s3)

= (r1, s1) · (r2, s2) + (r1, s1) · (r3, s3).

Man bezeichnet R× S als direktes Produkt der Ringe R und S.

Definition 9.2 Seien (R,+R, ·R) und (S,+S , ·S) Ringe. Eine Abbildung φ : R → S heißt Ring-
homomorphismus von (R,+R, ·R) nach (S,+S , ·S), wenn die Gleichung φ(1R) = 1S gilt und
außerdem

φ(a+R b) = φ(a) +S φ(b) und φ(a ·R b) = φ(a) ·S φ(b)

für alle a, b ∈ R erfüllt ist.
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Sind beispielsweise R und S Ringe, und betrachten wir den oben konstruierten Ring R×S, dann sind die Abbildungen
π1 : R × S → R, (r, s) 7→ r und π2 : R × S → S, (r, s) 7→ s beides Ringhomomorphismen. Dies rechnet man durch
Einsetzen unmittelbar nach.

Man beachte, dass die Bedingung φ(1R) = 1S für Ringhomomorphismen im Allgemeinen nicht redundant ist, sie
ergibt sich also nicht automatisch aus den beiden anderen Eigenschaften der Abbildung φ. Beispielsweise erfüllt der
Homomorphismus

φ :Z→Z×Z , a 7→ (a, 0)

die beiden Bedingungen φ(a + b) = φ(a) + φ(b) und φ(ab) = φ(a)φ(b) für alle a, b ∈ Z. Es gilt aber nicht
φ(1) = 1Z×Z, denn das Einselement von Z×Z ist (1,1) und nicht (1,0).

Aus der Definition folgt unmittelbar, dass ein Ringhomomorphismus φ : R → S ein Gruppenhomomorphismus
(R,+R) → (S,+S) ist. Also gelten alle Rechenregeln, die wir in der Algebra für diese Homomorphismen bewiesen
haben, insbesondere φ(0R) = 0S und φ(−a) = −φ(a) für alle a ∈ R.

Die Begriffe Mono-, Epi-, Iso-, Endo- und Automorphismus von Ringen sind wie in der Kategorie der Gruppen defi-
niert. (Ein Monomorphismus von Ringen ist also ein injektiver Ringhomomorphismus usw.) Wie dort zeigt man auch
hier, dass die Komposition zweier Ringhomomorphismen ein Ringhomomorphismus und die Umkehrabbildung eines
Isomorphismus von Ringen wiederum ein Isomorphismus ist.

In der Gruppentheorie wurde für jedes n ∈ N0 die n-te Potenz eines Monoidelements g definiert. Diese wurde in
additiver Schreibweise mit n · g und in multiplikativer Schreibweise gn bezeichnet. Bei invertierbaren Elementen
wurde die Definition sogar auf alle n ∈ Z ausgedehnt. Wir behalten diese Notation für die Gruppe (R,+) und das
Monoid (R, ·) bei, falls (R,+, ·) einen Ring bezeichnet. Für jedes n ∈N und jedes a ∈ R gilt also

n · a = a+ ...+ a
︸ ︷︷ ︸

n-mal

und an = a · ... · a
︸ ︷︷ ︸

n-mal

.

Außerdem gilt 0 · a = 0R, a0 = 1R sowie (−n) · a = −n · a und a−n = (an)−1 für alle n ∈N.

Der folgende Satz zeigt, dass der Ring Z der ganzen Zahlen in der Ringtheorie eine besondere Rolle spielt.

Satz 9.3 Für jeden Ring R existiert ein eindeutig bestimmter Ringhomomorphismus Z→ R.

Beweis: Zum Nachweis der Existenz bemerken wir zunächst, dass nach Proposition 4.12 ein eindeutig bestimmter
Homomorphismus φ von der zyklischen Gruppe (Z, +) in die Gruppe (R, +) mit φ(1) = 1R existiert. Auf Grund der
Homomorphismus-Eigenschaft erfüllt dieser die Gleichung φ(n) = φ(n · 1) = n ·φ(1) = n · 1R für alle n ∈ Z . Um
zu sehen, dass φ auch ein Ringhomomorphismus ist, muss noch φ(mn) = φ(m)φ(n) für alle m, n ∈ Z überprüft
werden. Wir beweisen die Gleichung zunächst für m ∈Z und n ∈N0, durch vollständige Induktion über n. Für n= 0
ist die Gleichung wegen

φ(m · 0) = φ(0) = 0R = 0 · 1R = (m · 1R) · (0 · 1R) = φ(m)φ(0)

erfüllt. Setzen wir die Gleichnung nun für n voraus, dann erhalten wir

φ(m(n+ 1)) = φ(mn+m) = φ(mn) +φ(m) = φ(m)φ(n) +φ(m) · 1R =

φ(m)φ(n) +φ(m)φ(1) = φ(m) (φ(n) +φ(1)) = φ(m)φ(n+ 1).
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Schließlich gilt noch φ(m(−n)) = φ(−mn) = −φ(mn) = −φ(m)φ(n) = φ(m)(−φ(n)) = φ(m)φ(−n) für alle m ∈Z
und n ∈ N, so dass die Gleichung φ(mn) = φ(m)φ(n) damit für alle m, n ∈ Z bewiesen ist. Die Eindeutigkeit von
φ folgt direkt aus der Eindeutigkeitsaussage in Proposition 4.12 und der Tatsache, dass jeder Ringhomomorphismus
Z→ R die Zahl 1 ∈Z auf das Einselement 1R abbildet. □

Definition 9.4 Sei R ein Ring.

(i) Ein Element a ∈ R heißt Einheit, wenn ein b ∈ R mit ab = 1R existiert. Die Menge der
Einheiten von R bezeichnen wir mit R×.

(ii) Man nennt es Nullteiler, wenn ein Element b ∈ R, b ̸= 0R mit ab = 0R existiert.

Die Einheiten sind genau die invertierbaren Elemente im Monoid (R, ·). Das multiplikative Inverse eines Elements a ∈
R× wird auch der Kehrwert von a genannt und mit a−1 bezeichnet. Auch hier gelten die bekannten Rechenregeln für
Inverse, also (ab)−1 = b−1a−1 = a−1 b−1 und (a−1)−1 = a für alle a, b ∈ R×. Nach Satz 1.15 bilden die invertierbaren
Elemente in einem Monoid eine Gruppe. Damit ist auch R× eine Gruppe, die sogenannte Einheitengruppe.

Definition 9.5 Ein Ring R mit 0R als einzigem Nullteiler heißt Integritätsbereich. Gilt R× =
R \ {0R}, dann ist R ein Körper.

Die Zahlbereiche Q, R und C sind Körper, denn jedes Element ungleich Null in diesen Bereichen besitzt ein multipli-
katives Inverses. Im Ring Z sind die Elemente ±1 die einzigen beiden Einheiten. Es gibt also außer der Null weitere
Nicht-Einheiten, und damit ist Z kein Körper. Man überprüft aber leicht, dass Z ein Integritätsbereich ist. Denn das
Element 0 ist ein Nullteiler, denn es gilt 1 ̸= 0 und 0 · 1 = 0. Andererseits ist 0 der einzige Nullteiler. Sind nämlich
a, b ̸= 0, dann ist auch das Produkt ab ungleich Null. Wäre ab = 0, dann würden wir durch b = a−1ab = a−10 = 0
einen Widerspruch zur Voraussetzung erhalten. Mit demselben Argument kann gezeigt werden, dass jeder Teilring
(s.u.) eines Körpers ein Integritätsbereich ist.

Im Ring Z×Z gibt es vier Einheiten, die Elemente (±1,±1). Es ist aber kein Integritätsbereich, denn das Element
(1, 0) ist wegen (1,0)(0,1) = (0, 0) und (0, 1) ̸= (0,0) ein Nullteiler des Rings. Nullringe der Form R = {0R} sind
generell keine Integritätsbereiche, weil das Nullelement 0R nach Definition kein Nullteiler ist.

Lemma 9.6

(i) Ein Element a in einem Ring R kann nicht zugleich Nullteiler und Einheit sein.

(ii) Jeder Körper ist ein Integritätsbereich.

(iii) In jedem Integritätsbereich R gilt die Kürzungsregel: Sind a, b, c ∈ R mit
c ̸= 0R, dann folgt aus ac = bc die Gleichung a = b.

Beweis: zu (i) Angenommen, a ist zugleich Nullteiler und Einheit. Dann gibt es ein Element b ̸= 0R mit ab = 0R

und ein c ∈ R mit ca = 1R. Wir erhalten den Widerspruch b = 1R · b = (ca)b = c(ab) = c0R = 0R.
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zu (ii) Nehmen wir an, dass R ein Körper, aber kein Integritätsbereich ist. Dann ist 0R kein Nullteiler in R, oder es
gibt einen Nullteiler a ̸= 0R. Die erste Möglichkeit ist ausgeschlossen, denn 1R ist in jedem Ring stets eine Einheit,
und aus R× = R \ {0R} folgt 1R ̸= 0R. Die Gleichung 1R · 0R = 0R zeigt also, dass 0R ein Nullteiler ist. Aber auch die
zweite Möglichkeit kann nicht eintreten, denn wegen R× = R \ {0R} wäre a zugleich Nullteiler und Einheit, was zu
(i) im Widerspruch steht.

zu (iii) Aus ac = bc folgt (a− b)c = ac − bc = 0R. Wäre a− b ̸= 0R, dann wäre das Element ein Nullteiler ungleich
0R. Weil R aber ein Integritätsbereich ist, muss a− b = 0R gelten. □

Einen Ringhomomorphismus zwischen Körpern bezeichnet man als Körperhomomorphismus. Wir bemerken

Proposition 9.7 Ein Körperhomomorphismus φ : K → L ist stets injektiv.

Beweis: Sei a ∈ K ein Element im Kern, also ein Element mit φ(a) = 0L , und nehmen wir an, dass a ̸= 0K ist. Dann
folgt 1L = φ(1K) = φ(aa−1) = φ(a)φ(a−1) = 0Lφ(a−1) = 0L . Aber dies ist unmöglich, da L kein Nullring ist. □

Definition 9.8 Sei R ein Ring. Die Charakteristik eines Rings R ist definiert durch

char(R) =

(

n falls n ∈N minimal mit n · 1R = 0R ist,

0 falls n · 1R ̸= 0R für alle n ∈N gilt.

Bei positiver Charakteristik ist char(R) also die Ordnung des Elements 1R in der Gruppe (R,+). Die Charakteristik
kann auch den Wert 1 annehmen. Dies ist genau dann der Fall, wenn Null- und Einselement von R zusammenfallen,
also 0R = 1R gilt. Wir untersuchen nun die Charakteristik von Integritätsbereichen. Wie allgemein üblich, bezeichnen
wir eine natürliche Zahl n als Primzahl, wenn n > 1 ist und keine Zahlen r, s ∈ N mit 1 < r, s < n und n = rs
existieren.

Proposition 9.9 Sei R ein Integritätsbereich. Dann ist die Charakteristik char(R) entweder
gleich Null oder eine Primzahl.

Beweis: Wäre char(R) = 1, dann wäre der Ring R (wie oben gezeigt) ein Nullring und damit kein Integritätsbereich.
Nehmen wir nun an, dass n= char(R)> 1, aber keine Primzahl ist. Dann gibt es natürliche Zahlen r, s mit 1< r, s < n
und n= rs. Nach Definition der Charakteristik gilt r · 1R, s · 1R ̸= 0R, aber n · 1R = 0R. Die Gleichung (r · 1R)(s · 1R) =
(rs) · 1R = n · 1R = 0R zeigt dann, dass die Elemente rR und sR des Rings R Nullteiler ungleich Null sind. Aber dies
widerspricht der Voraussetzung, dass es sich bei R um einen Integritätsbereich handelt. □

Nach Proposition 9.9 ist also insbesondere char(K) für einen Körper gleich Null oder eine Primzahl. Es gibt beispiels-
weise keinen Körper der Charakteristik 4; inbesondere ist der Restklassenring Z/4Z kein Körper, noch nicht einmal
ein Integritätsbereich.
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In der Gruppentheorie haben wir die Untergruppen einer Gruppe G als Teilmengen von G definiert, auf denen in
natürlicher Weise wiederum eine Gruppenstruktur existiert. Nun führen wir einen entsprechenden Begriff für die
Kategorie der Ringe ein.

Definition 9.10 Sei R ein Ring. Eine Teilmenge S ⊆ R wird Teilring von R genannt, wenn
1R ∈ S gilt und mit a, b ∈ S jeweils auch die Elemente a− b und ab in S liegen.

Umgekehrt bezeichnet man einen Ring R als Erweiterungsring eines anderen Rings S, wenn S ein Teilring von R ist.
Das Paar (S, R) bezeichnet man in diesem Fall als Ringerweiterung. Allgemein wird die Schreibweise R|S verwendet,
um ausdrücken, dass durch (S, R) eine Ringerweiterung gegeben ist.

Satz 9.11 Sei (R,+, ·) ein Ring und S ⊆ R ein Teilring. Dann ist die Menge S unter den Ver-
knüpfungen + und · abgeschlossen. Bezeichnen wir mit +S und ·S die auf S eingeschränkten
Verknüpfungen, dann ist (S,+S , ·S) ein Ring.

Beweis: Als erstes beweisen wir die Abgeschlossenheit. Aus 1R ∈ S folgt zunächst 0R = 1R − 1R ∈ S, denn auf Grund
der Teilring-Eigenschaft liegt Differenz zweier Elemente aus S wieder in S. Wegen −a = 0R − a ist mit jedem a ∈ S
auch das Negative−a in S enthalten. Seien nun a, b ∈ S vorgegeben. Dann gilt−b ∈ S und somit a+b = a−(−b) ∈ S.
Aus der Teilring-Eigenschaft folgt auch ab ∈ S. Also ist S tatsächlich unter + und · abgeschlossen.

Nun überprüfen wir die Ringeigenschaften von (S,+S , ·S). Wie bereits gezeigt wurde, gilt 0R ∈ S, und mit a, b ∈ S
liegen auch die Elemente a+ b und −a in S. Also ist S eine Untergruppe von (R,+), und wie in der Algebra-Vorlesung
gezeigt wurde, ist (S,+S) damit eine Gruppe. Wegen

a+S b = a+ b = b+ a = b+S a für alle a, b ∈ S

ist diese auch kommutativ. Ebenso kann das Assoziativ- und Kommutativitätsgesetz von ·S auf die Assoziativität und
Kommutativität von · zurückgeführt werden. Wegen a·S1R = a·1R = a und 1R·S a = 1R·a = a ist 1R das Neutralelement
von (S, ·S). Schließlich leitet man auch das Distributivgesetz für +S und ·S aus dem entsprechenden Gesetz für +R

und ·R ab. □

Beispielsweise ist Z ein Teilring von Q, Q ein Teilring von R und R ein Teilring von C. Die Menge Z× {0} ist mit
den Verknüpfungen (a, 0)+(b, 0) = (a+ b, 0) und (a, 0) · (b, 0) = (ab, 0) zwar ein Ring, aber kein Teilring von Z×Z,
denn das Einselement 1Z×Z = (1,1) ist nicht in Z× {0} enthalten.

Der soeben durchgeführte Beweis zeigt, dass für die Teilring-Eigenschaft a − b ∈ S für a, b ∈ S gefordert werden
muss, um die Existenz von Negativen in S sicherzustellen. Würde man statt dessen a+ b ∈ S fordern, dann wäre die
Unterstruktur S im allgemeinen kein Ring. Die Teilmenge N ⊆Z genügt beispielsweise den Bedingungen 1 ∈N und
a, b ∈N⇒ a+ b, ab ∈N, ohne dass (N,+, ·) selbst ein Ring ist.
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Lemma 9.12 Sei (R,+, ·) ein Ring, und sei (Si)i∈I eine Familie von Teilringen. Dann ist auch
S =

⋂

i∈I Si ein Teilring von R.

Beweis: Weil Si für jedes i ∈ I ein Teilring von R ist, gilt 1R ∈ Si für alle i ∈ I und damit 1R ∈ S. Seien nun a, b ∈ S
vorgegeben. Dann folgt a, b ∈ Si für alle i ∈ I . Weil jedes Si ein Teilring von R ist, gilt damit auch a − b ∈ Si iund
ab ∈ Si für alle i ∈ I . Dies wiederum bedeutet a− b ∈ S und ab ∈ S. Damit ist der Nachweis der Teilring-Eigenschaft
von S abgeschlossen. □

Das Analogon zum Teilring in der Kategorie der Körper ist durch folgende Definition gegeben.

Definition 9.13 Sei K ein Körper. Eine Teilmenge F ⊆ K wird Teilkörper von K genannt, wenn
1K ∈ F gilt, für alle a, b ∈ F auch die Elemente a − b und ab in F liegen und für jedes a ∈ F ,
a ̸= 0K auch a−1 ∈ F gilt.

Wir haben in Lemma 9.11 gesehen, dass man durch Einschränkung von Addition und Multiplikation von K auf die
Teilmenge F einen Ring erhält. Durch Bedingung, dass für jedes a ∈ F \ {0K} auch a−1 in F liegt, wird F darüber
hinaus zu einem Körper. Die Begriffe „Erweiterungskörper“ und „Körpererweiterung“ sind in genauer Analogie zu
den Ringen definiert.

Lemma 9.14 Sei K ein Körper und (Fi)i∈I eine beliebige Familie von Teilkörpern. Dann ist auch
F =

⋂

i∈I Fi ein Teilkörper von K .

Beweis: Nach Lemma 9.12 ist F jedenfalls ein Teilring von K . Ist außerdem a ∈ F×, dann liegt a auch in F×i für jedes
i ∈ I , und somit liegt auch a−1 jeweils in Fi . Daraus wiederum folgt a−1 ∈ F . Damit ist die Teilkörper-Eigenschaft von
F nachgewiesen. □

Folgerung 9.15 Ist K ein Körper und ist (Fi)i∈I die Familie aller Teilkörper von K , dann nennt
man P =

⋂

i∈I Fi den Primkörper von K . Es handelt sich um den bezüglich Inklusion kleinsten
Teilkörper von K .

Beispielsweise ist Q der gemeinsame Primkörper von Q, R und C, und für jede Primzahl ist Fp sein eigener Prim-
körper. Im Körpertheorie-Teil der Vorlesung werden wir sehen, dass der Primkörper jedes Körpers isomorph zu Q
oder zu Fp für eine Primzahl p ist.

Satz 9.16 Sei R̃|R eine Ringerweiterung und A ⊆ R̃ eine beliebige Teilmenge. Dann gibt es
einen eindeutig bestimmten Teilring R[A] von R̃ mit den folgenden beiden Eigenschaften.

(i) Es gilt R[A] ⊇ R∪ A.

(ii) Ist R′ ein weiterer Teilring von R̃ mit R′ ⊇ R∪ A, dann folgt R′ ⊇ R[A].

Damit ist R[A] also der kleinste Teilring von R̃, der R∪A enthält. Man nennt ihn den von A über
R erzeugten Teilring.
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Beweis: Existenz: Sei (Si)i∈I die Menge aller Teilringe von R̃ mit Si ⊇ R ∪ A. Nach Lemma 9.12 ist R[A] =
⋂

i∈I Si

ein Teilring von R̃. Wegen R ∪ A ⊆ Si für alle i ∈ I gilt auch R ∪ A ⊆ R[A]. Ist nun R′ ein beliebiger Teilring von
R̃ mit R′ ⊇ R ∪ A, dann gilt R′ = Si für ein i ∈ I nach Definition der Familie (Si)i∈I . Weil R[A] nach Definition der
Durchschnitt aller Ringe in der Familie (Si)i∈I ist, gilt R[A] ⊆ Ri = R′.

Eindeutigkeit: Sei S ein weiterer Teilring mit den Eigenschaften (i) und (ii). Dann ist S jedenfalls ein Teilring von R̃
mit S ⊇ R∪A, und R[A] ist der kleinste Teilring mit dieser Eigenschaft. Daraus folgt R[A] ⊆ S. Umgekehrt ist auch R[A]
ein Teilring von R̃ mit R[A] ⊇ R∪ A, und S ist der kleinste Teilring mit dieser Eigenschaft. Somit gilt auch S ⊆ R[A],
insgesamt R[A] = S. □

Ist S = {s} einelementig, dann schreibt man an Stelle von R[{s}] auch einfach R[s] für den erzeugten Teilring. Auch bei
mehreren Elementen werden die Mengenklammern oft weggelassen, man schreibt also statt R[{s1, s2}] den Ausdruck
R[s1, s2] usw.

Als wichtiges Beispiel für erzeugte Teilringe sehen wir uns die quadratischen Zahlringe an. Dazu verabreden wir
für die Bezeichnung von Quadratwurzeln reeller Zahlen die folgende Konvention. Ist d ∈ R positiv, dann sei

p
d

ein eindeutig bestimmte positive Quadratwurzel von d. Im Fall d < 0 sei d ∈ C die eindeutig bestimmte komple-
xe Quadratwurzel mit positivem Imaginärteil, also

p
d = i

p

|d|. Zu beachten ist, dass bei dieser Schreibweise die
Gleichung

p

ab =
p

a ·
p

b

im allgemeinen nicht erfüllt ist, nämlich dann nicht, wenn a und b beide negativ sind. Zum Beispiel ist
p

(−3)(−5) ̸=p
−3
p
−5, denn es gilt

p
−3
p
−5= (i

p
3)(i
p

5) = i2
p

15= −
p

15 ̸=
p

15=
p

(−3)(−5).

Außerdem verwenden wir im Folgenden die Kongruenzschreibweise. Sind a, b ∈ Z und n ∈ N, so bedeutet der
Ausdruck a ≡ b mod n, dass n ein Teiler von b − a ist. Man sagt „Die Zahlen a und b sind kongruent modulo n.“
Ausführlicher werden wir uns mit den Kongruenzen in § 5 beschäftigen. Als konkrete Anwendung von Satz 9.16
zeigen wir nun

Satz 9.17 Sei d ∈Z und
p

d ∈ C wie oben definiert.

(i) Es gilt Z[
p

d] = {a+ b
p

d | a, b ∈Z}.

(ii) Ist d ≡ 1 mod 4, dann gilt Z[ 1
2 (1+

p
d)] = { 1

2 a+ 1
2 b
p

d | a, b ∈Z, a ≡ b mod 2}.

Die Ringe dieser Form bezeichnen wir als quadratische Zahlringe.

Beweis: zu (i) Sei M die Teilmenge auf der rechten Seite der Gleichung. Wir überprüfen, dass M ein Teilring von
C ist. Wegen 1 = 1+ 0

p
d gilt 1 ∈ M . Seien nun α,β ∈ M vorgegeben. Dann gibt es r, s, t, u ∈ Z mit α = r + s

p
d

und β = t + u
p

d. Es folgt α− β = (r − t) + (s− u)
p

d ∈ M und

αβ =
�

r + s
p

d
��

t + u
p

d
�

= (r t + sud) + (ru+ st)
p

d ∈ M .

Außerdem gilt M ⊇Z∪ {
p

d}, denn für jedes a ∈Z gilt a = a+ 0 ·
p

d ∈ M und
p

d = 0+ 1 ·
p

d ∈ M .
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Sei nun R′ ein beliebiger Teilring vonCmit R′ ⊇Z∪{
p

d}. Zu zeigen ist R′ ⊇ M . Sei dazu α ∈ M vorgeben, α= r+s
p

d
mit r, s ∈Z. Aus r, s ∈Z folgt r, s ∈ R′. Ebenso ist

p
d nach Voraussetzung in R′ enthalten. Da es sich bei R′ um einen

Teilring von C handelt, der als solcher unter Addition und Multiplikation abgeschlossen ist, folgt daraus zunächst
s
p

d ∈ R′ und dann r + s
p

d ∈ R′.

zu (ii) Zunächst überprüfen wir wieder, dass die Menge M auf der rechten Seite ein Teilring von C ist. Es gilt
1 = 1

2 · 2+
1
2 · 0 ·
p

d in M , denn es gilt 2 ≡ 0 mod 2. Seien nun α,β ∈ M vorgegeben. Dann gibt es r, s, t, u ∈ Z mit
α= 1

2 r + 1
2 s
p

d, β = 1
2 t + 1

2 u
p

d, wobei r ≡ s mod 2 und t ≡ u mod 2 gilt. Das Element

α− β =
�

1
2 r + 1

2 s
p

d
�

−
�

1
2 t + 1

2 u
p

d
�

= 1
2 (r − t) + 1

2 (s− u)
p

d

liegt ebenfalls in M , denn aus r ≡ s mod 2 und t ≡ u mod 2 folgt r − t ≡ s − u mod 2. Um zu sehen, dass auch das
Element

αβ =
�

1
2 r + 1

2 s
p

d
��

1
2 t + 1

2 u
p

d
�

= 1
4 (r t + dsu) + 1

4 (st + ru)
p

d = 1
2 v + 1

2 w
p

d

mit v = 1
2 (r t + dsu) und w = 1

2 (st + ru)
p

d in M enthalten ist, müssen wir überprüfen, dass 2v + 2w = r t +
dsu+ st + ru durch 4 teilbar ist. Denn daraus folgt, dass v + w gerade ist, was wiederum äquivalent dazu ist dass v
und w beide gerade oder ungerade sind, also v ≡ w mod 2 erfüllen. Auf Grund der Voraussetzung d ≡ 1 mod 4 gilt
r t+dsu+st+ ru≡ r t+su+st+ ru≡ (r+s)(t+u) mod 4, und die Zahl (r+s)(t+u) ist durch 4 teilbar, weil r+s und
t+u gerade sind. Insgesamt ist M also tatsächlich ein Teilring vonC. Außerdem gilt M ⊇Z∪{ 1

2 (1+
p

d)}. Denn jedes
a ∈Z ist wegen a = 1

2 (2a)+ 1
2 ·0
p

d und 2a ≡ 0 mod 2 in M enthalten, und ebenso gilt 1
2 (1+
p

d) = 1
2 ·1+

1
2 ·1·
p

d ∈ M
wegen 1≡ 1 mod 2.

Sei nun R′ ein weiterer Teilring von C mit R′ ⊇ Z∪ { 1
2 (1+

p
d)}. Zu zeigen ist R′ ⊇ M . Sei dazu α ∈ M vorgegeben,

α= 1
2 r + 1

2 s
p

d mit r, s ∈Z, r ≡ s mod 2. Dann gilt α− s · 12 (1+
p

d) = 1
2 (r − s). Wegen 1

2 (r − s) ∈Z und Z ⊆ R′ folgt
1
2 (r − s) ∈ R′. Aus 1

2 (1+
p

d) ∈ R′ folgt ebenso s · 1
2 (1+

p
d) ∈ R′. Da R′ unter Addition abgeschlossen ist, liegt damit

auch α in R′. □

Zwei Zahlringe spielen in der Zahlentheorie eine besonders wichtige Rolle: der Ring Z[i] der Gauß’schen Zahlen
und der Ring Z[ 1

2 (1+
p
−3)] der Eisenstein-Zahlen.

Wir betrachten nun allgemeine Ringerweiterungen, die von nur einem Element erzeugt werden. Bereits in der Linea-
ren Algebra haben wir den Polynomring R[x] über einem Ring R eingeführt. Im nächsten Kapitel werden wir sehen,
wie man diese Ringe konstruiert. Mit Hilfe der Polynome können wir Ringerweiterungen, die von einem einzigen
Element erzeugt werden, explizit beschreiben.

Proposition 9.18 Sei R̃ | R eine Ringerweiterung und c ∈ R̃. Dann gilt R[c] =
�

f (c)
�

� f ∈ R[x]
	

.

Beweis: Sei S die Teilmenge auf der rechten Seite der Gleichung. Wir zeigen, dass S ein Teilring von R̃ ist. Das
Einselement 1R̃ = 1R von R̃ ist in R[c] enthalten, denn betrachten wir 1R als konstantes Polynom, also als Element
von R[x], dann gilt 1R = 1R(c) ∈ S. Seien nun α,β ∈ S vorgegeben. Dann gibt es Polynome f , g ∈ R[x] mit α= f (c)
und β = g(c). Es folgt α− β = f (c)− g(c) = ( f − g)(c) ∈ S und αβ = f (c)g(c) = ( f g)(c) ∈ S. Dies zeigt, dass S
tatsächlich ein Teilring von R̃ ist.
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Um zu zeigen, dass S mit R[c] übereinstimmt, müssen wir noch überprüfen, dass S in jedem Teilring R′ von R̃ mit
R′ ⊇ R∪ {c} enthalten ist. Sei also R′ ein solcher Teilring und α ∈ S. Zu zeigen ist α ∈ R′. Nach Definition von S gibt
es ein f ∈ R[x] mit α = f (c). Schreiben wir f =

∑n
k=0 ak x k mit n ∈N0 und a0, ..., an ∈ R, dann gilt α =

∑n
k=0 akck.

Weil die Elemente a0, ..., an, c nach Voraussetzung in R′ liegen, gilt auch akck ∈ R′ für 0 ≤ k ≤ n, auf Grund der
Abgeschlossenheit von R′ unter der Multiplikation von R̃. Aus der Abgeschlossenheit von R′ unter Addition (und
vollständiger Induktion über n) folgt dann auch, dass α=

∑n
k=0 akck in R′ liegt. □
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§ 10. Ideale

Zusammenfassung. Ideale sind Teilmengen von Ringen, mit denen in gewissen Grenzen auf ähnliche Weise
gerechnet werden kann wie mit Ringelementen. Ursprünglich eingeführt wurden sie in Mathematik, um einen
Ersatz für die eindeutige Primfaktorzerlegung zu erhalten, die in vielen Ringen, wie sie z.B. in der Zahlen-
theorie und der Algebraischen Geometrie vorkommen, nicht mehr gültig ist. Auch in anderen Bereichen der
Mathematik haben sich die Ideale als nützliches Konzept erwiesen, beispielsweise in Funktionanalysis.

Nach der Definition der Ideale eines Rings, und der Definition der Hauptideale als wichtigen Spezialfall, be-
schäftigen wir uns zunächst mit der Beziehung der Ideale zur Teilerrelation. Wie wir es bereits bei den Unter-
gruppen und den Ringerweiterungen gesehen haben, lassen sich auch Ideale durch die Angabe von Erzeugen-
densystemen definieren. Mit der Summe und dem Produkt von lernen wir die zwei zentrale Rechenoperationen
der Idealtheorie kennen. Als besonders wichtige Idealtypen werden die Primideale und die maximalen Ideale
eingeführt. Im nächsten Kapitel werden wir sehen, dass die Ideale das natürliche Analogon der Normalteiler in
der Gruppentheorie sind, weil auch sie zur Definition von Faktorstrukturen genutzt werden können. In diesem
Kontext werden die beiden genannten Idealtypen eine wichtige Rolle spielen.

Wichtige Grundbegriffe

– Ideale, Hauptideal, erzeugtes Ideal

– Teilbarkeitsrelation, ggT und kgV

– Rechenoperationen für Ideale (Summen, Produkte)

– Primideale und maximale Ideale

Zentrale Sätze

– Interpretation der Teilbarkeitsrelation durch Ideale

– Existenz und Eindeutigkeit des von einer Teilmenge
erzeugten Ideals

– Rechenregeln für Ideale und Erzeugendensysteme

– Charakterisierung der Primideale

– Verhalten der Ideale unter Ringhomomorphismen

Definition 10.1 Sei R ein Ring. Ein Ideal in R ist eine Teilmenge I ⊆ R mit den Eigenschaften

(i) 0R ∈ I

(ii) Für alle a, b ∈ I und r ∈ R gilt a+ b ∈ I und ra ∈ I .

Eine wichtige Rolle spielen die Ideale der folgenden Form.

Proposition 10.2 Ist R ein Ring und b ∈ R, dann ist die Menge der Vielfachen {ab | a ∈ R}
von b ein Ideal in R. Man nennt ein solches Ideal ein Hauptideal und bezeichnet es mit (b).
Ein Hauptidealring ist ein Integritätsbereich, in dem jedes Ideal ein Hauptideal ist. In jedem
Ring R ist das Nullideal (0R) = {0R} das kleinste und das Einheitsideal (1R) = R das bezüglich
Inklusion größte Ideal.
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Beweis: Sei b ∈ R. Wir überprüfen, dass die Teilmenge (b) von R die in Definition 10.1 genannten Eigenschaften
hat. Wegen 0R = 0R · b ist 0R in (b) enthalten. Seien nun c, d ∈ (b) und r ∈ R vorgegeben. Wegen c, d ∈ (b) gibt es
a1, a2 ∈ R mit c = a1 b und d = a2 b. Es folgt c + d = (a1 + a2)b ∈ (b). Ebenso gilt rc = r(a1 b) = (ra1)b ∈ (b). Also
ist (b) tatsächlich ein Ideal.

Für alle a ∈ R gilt a · 0R = 0R. Dies zeigt, dass das Nullideal (0R) tatsächlich als einziges Element 0R enthält und
damit das bezüglich Inklusion kleinste Ideal ist. Wegen a · 1R = a für alle a ∈ R enthält das Einheitsideal (1R) alle
Ringelemente und ist damit das bezüglich Inklusion größte Ideal. □

Ähnlich wie für Untergruppen, Normalteiler und Teilringe gilt auch für die Ideale

Proposition 10.3 Sei R ein Ring und (I j) j∈A eine Familie von Idealen in R. Dann ist I =
⋂

j∈A I j

ein Ideal in R.

Beweis: Weil jedes I j ein Ideal ist, gilt 0R ∈ I j für alle j ∈ A und somit 0R ∈ I . Seien nun a, b ∈ I und r ∈ R vorgegeben.
Dann gilt a, b ∈ I j für alle j ∈ A. Aus der Idealeigenschaft folgt a + b ∈ I j und ra ∈ I j für alle j ∈ A. Dies wiederum
bedeutet a+ b ∈ I und ra ∈ I . □

Das Konzept der Erzeugendensysteme ist uns bereits aus der Linearen Algebra und der Gruppentheorie bekannt.
Auch Teilringe, die von einer Menge erzeugt werden, haben wir bereits definiert, siehe dazu Satz 9.16.

Definition 10.4 Sei R ein Ring und S ⊆ R eine Teilmenge. Man sagt, ein Ideal I in R wird von
S erzeugt und schreibt I = (S), wenn folgende Bedingungen erfüllt sind.

(i) I ⊇ S

(ii) Ist J ein Ideal in R mit J ⊇ S, dann folgt J ⊇ I .

Insgesamt ist I also das kleinste Ideal mit der Eigenschaft I ⊇ S.

Existenz und Eindeutigkeit des Ideals (S) beweist man wie bei den Teilringen. Für die Existenz bildet man die Familie
(I j) j∈A aller Ideale in R, die S enthalten und überprüft dann, dass

I =
⋂

j∈A

I j

die Bedingungen (i) und (ii) aus Definition 10.4 erfüllt. Nehmen wir nun an, dass J ein weiteres Ideal ist, dass diese
Bedingungen erfüllt. Dann liefert die Anwendung von (ii) sowohl J ⊇ I als auch I ⊇ J , insgesamt also I = J . Ist S
endlich, S = {a1, ..., an}, dann verwendet man an Stelle von (S) auch die Schreibweise (a1, ..., an) für das erzeugte
Ideal. Der folgende Satz gibt an, wie die Elemente eines solchen Ideals konkret aussehen.

Proposition 10.5 Sei R ein Ring, und seien a1, ..., an ∈ R. Dann gilt

(a1, ..., an) =

¨

n
∑

i=1

riai

�

�

�

�

r1, ..., rn ∈ R

«

.
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Beweis: Sei I die Menge auf der rechten Seite der Gleichung. Wir überprüfen, dass I die definierenden Eigenschaften
des von {a1, ..., an} erzeugten Ideals besitzt. Zunächst zeigen wir, dass I ein Ideal ist. Das Element 0R ist in I enthalten,
denn es gilt 0R = 0Ra1 + ...+ 0Ran. Seien nun a, b ∈ I und r ∈ R vorgegeben. Dann existieren nach Definition von I
Elemente r1, ..., rn, r ′1, ..., r ′n ∈ R, so dass

a =
n
∑

i=1

riai und b =
n
∑

i=1

r ′i ai

gilt. Wir erhalten

a+ b =
n
∑

i=1

(ri + r ′i )ai ∈ I und ra =
n
∑

i=1

(r ri)ai ∈ I .

Damit ist die Idealeigenschaft von I bewiesen. Außerdem enthält I die Menge S. Ist nämlich j ∈ {1, ..., n}, dann gilt
a j =

∑n
i=1 δi jai ∈ I , wobei δi j ∈ {0R, 1R} jeweils das Kronecker-Delta bezeichnet. Sei nun J ein weiteres Ideal mit

J ⊇ I . Sind r1, ..., rn ∈ R beliebig gewählt, dann enthält J auf Grund der Idealeigenschaft die Elemente r1a1, ..., rnan,
und durch einen einfachen Induktionsbeweis zeigt man, dass auch die Summe

∑n
i=1 riai in J enthalten ist. Damit ist

die Inklusion J ⊇ I nachgewiesen. □

Die folgende Regel wird häufig beim Rechnen mit Idealen verwendet, die durch Erzeugendensysteme definiert sind.

Lemma 10.6 Sei R ein Ring, und seien S, T ⊆ R beliebige Teilmengen. Gilt für die erzeugten
Ideale S ⊆ (T ) und T ⊆ (S), dann folgt (S) = (T ).

Beweis: Nach Definition ist (S) das kleinste Ideal, das S als Teilmenge enthält, und wegen S ⊆ (T ) ist (T ) jedenfalls
ein Ideal mit dieser Eigenschaft. Daraus folgt (S) ⊆ (T ), und ebenso erhält man (T ) ⊆ (S). □

Die Ideale stehen in einer engen Beziehung zur Teilerrelation auf den Elementen eines Rings.

Definition 10.7 Seien R ein Ring und a, b ∈ R. Wir sagen, dass a ein Teiler von b ist und
schreiben a|b, wenn ein c ∈ R mit b = ac existiert. Gilt sowohl a|b als auch b|a, dann sagt man,
die Elemente a und b sind assoziiert zueinander.

Es ist leicht zu sehen, dass es sich bei der Relation „assoziiert“ um eine Äquivalenzrelation handelt. In Integritätsbe-
reichen lässt sich die Relation auch folgendermaßen beschreiben.

Lemma 10.8 Ist R ein Integritätsbereich, so sind a, b ∈ R genau dann zueinander assoziiert,
wenn ein ϵ ∈ R× mit b = ϵa existiert.

Beweis: „⇐“ Aus b = ϵa folgt a|b, und wegen a = ϵ−1 b gilt auch b|a.

„⇒“ Nach Voraussetzung gilt a|b und b|a, es gibt also Elemente c, d ∈ R mit b = ac und a = bd. Es folgt a = acd.
Ist a = 0, dann gibt dasselbe für b, und die Gleichung b = ϵa ist mit der Einheit ϵ = 1 erfüllt. Ansonsten können wir
auf a · 1= acd die Kürzungsregel anwenden und erhalten cd = 1. Dies zeigt, dass ϵ = c ein Einheit ist, also ist auch
hier b = ϵa für ein geeignetes Element ϵ ∈ R× erfüllt. □
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Definition 10.9 Sei R ein Ring mit a1, ..., an ∈ R. Wir sagen, ein Element d ∈ R ist ein größter
gemeinsamer Teiler (kurz ggT) von a1, ..., an, wenn gilt

(i) d|ai für 1≤ i ≤ n

(ii) Ist b ∈ R mit b|ai für 1≤ i ≤ n, dann folgt b|d.

Wir nennen die Elemente a1, ..., an teilerfremd, wenn 1R ein ggT der Elemente ist.

Definition 10.10 Sei R ein Ring mit a1, ..., an ∈ R. Ein Element e ∈ R heißt kleinstes gemein-
sames Vielfaches (kurz kgV) von a1, ..., an, wenn gilt

(i) ai |e für 1≤ i ≤ n

(ii) Ist b ∈ R mit ai |b für 1≤ i ≤ n, dann folgt e|b.

Häufig schreibt man der Einfachheit halber d = ggT(a1, ..., an), um auszudrücken, dass d ein ggT von a1, ..., an ist.
Dabei handelt es sich aber um keine Gleichung im herkömmlichen Sinn, weil der ggT im Allgemeinen nicht eindeutig
bestimmt ist. Statt dessen gilt

Lemma 10.11 Sei R ein Ring und d ∈ R ein größter gemeinsamer Teiler der Ringelemente
a1, ..., an. Ein weiteres Element d ′ ∈ R ist genau dann ein ggT von a1, ..., an, wenn d und d ′

zueinander assoziiert sind. Dieselbe Aussage gilt auch für das kleinste gemeinsame Vielfache.

Beweis: Sei d ′ ein weiterer ggT von a1, ..., an. Nach Voraussetzung gilt d ′|ai für 1≤ i ≤ n. Weil nach Voraussetzung
d = ggT(a1, ..., an) ist, folgt daraus d ′|d. Genauso zeigt man d|d ′, also sind d und d ′ assoziiert.

Sind umgekehrt d, d ′ zueinander assoziierte Elemente und ist d = ggT(a1, ..., an), dann folgt aus d ′|d und d|ai jeweils
d ′|ai für 1 ≤ i ≤ n. Ist b ∈ R ein Element mit b|ai für alle i, dann gilt b|d auf Grund der ggT-Eigenschaft von d.
Aus b|d und d|d ′ folgt b|d ′. Damit ist insgesamt bewiesen, dass es sich bei d ′ um einen ggT der Elemente a1, ..., an

handelt. Für das kleinste gemeinsame Vielfache verläuft der Beweis völlig analog. □

Wir haben oben die Hauptideale der Form (b) für ein Element b eines Rings R definiert. Es ist leicht zu überprüfen,
dass für beliebige b, c ∈ R auch Teilmengen der Form (b, c) = {ub + vc | u, v ∈ R} jeweils ein Ideal in R bilden. Es
handelt sich dabei um ein endlich erzeugtes Ideal. Diese werden weiter unten in Proposition 10.5 in allgemeiner Form
betrachtet.

Satz 10.12 Sei R ein Ring, und seien a, b ∈ R.

(i) Es gilt (a) ⊆ (b) genau dann, wenn b ein Teiler von a ist.

(ii) Ist d ∈ R mit (d) = (a, b), dann ist d ein ggT von a und b.

(iii) Ist e ∈ R mit (e) = (a)∩ (b), dann ist e ein kgV von a und b.

Ist R ein Hauptidealring, dann gilt auch von (ii) und (iii) die Umkehrung.
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Beweis: zu (i) „⇒“ Aus (a) ⊆ (b) folgt insbesondere a ∈ (b). Da das Hauptideal (b) aus den Vielfachen von b
besteht, bedeutet dies, dass ein r ∈ R mit a = r b existiert. Daraus folgt b | a. „⇐“ Nach Voraussetzung gibt es ein
r ∈ R mit a = r b, also gilt a ∈ (b). Also ist (b) ein Ideal, dass a enthält, und nach Definition des von a erzeugten
Ideals folgt (a) ⊆ (b).

zu (ii) Aus (d) = (a, b) folgt insbesondere a ∈ (d) und b ∈ (d). Es gibt also r, s ∈ R mit a = rd und b = sd. Dies
zeigt, dass d ein gemeinsamer Teiler von a und b ist. Sei nun d ′ ein weiteres Ringelement mit d ′ | a und d ′ | b. Dann
gibt es r ′, s′ ∈ R mit a = r ′d ′ und b = s′d ′. Also enthält das Hauptideal (d ′) die zweielementige Menge {a, b}. Nach
Definition des erzeugten Ideals folgt (a, b) ⊆ (d ′) und somit (d) ⊆ (d ′). Nach Teil (i) ist d ′ damit ein Teiler von d.
Insgesamt haben wir damit die ggT-Eigenschaft von d nachgerechnet.

zu (iii) Aus (e) = (a) ∩ (b) folgt e ∈ (a) und e ∈ (b). Es gibt also Ringelemente r, s ∈ R mit e = ra und e = sb.
Damit ist e ein gemeinsames Vielfaches von a und b. Sei nun e′ ∈ R ein weiteres gemeinsames Vielfaches von a und
b. Dann gibt es r ′, s′ ∈ R mit e′ = r ′a und e′ = s′b, und wir erhalten e′ ∈ (a)∩ (b). Es folgt (e′) ⊆ (a)∩ (b) = (e) und
somit e′ ∈ (e). Dies zeigt, dass e′ ein Vielfaches von e ist. Insgesamt ist e also ein kgV von a und b.

Setzen wir nun voraus, dass R ein Hauptidealring ist, und beweisen wir die Umkehrung von (ii). Sei d ein ggT der
Elemente a und b. Das Ideal (a, b) ist ein Hauptideal, es gibt also ein d ′ ∈ R mit (a, b) = (d ′). Auf Grund von Teil
(ii) ist d ′ ebenfalls ein ggT von a und b, also sind d und d ′ assoziiert. Aus d | d ′ und d ′ | d folgt nach Teil (i), dass
(d) = (d ′) = (a, b) gilt.

Zum Schluss beweisen wir die Umkehrung von (iii) unter der Voraussetzung, dass R ein Hauptidealring ist. Sei e
ein kgV der Elemente a und b. Weil (a) ∩ (b) ein Hauptideal ist, gilt (a) ∩ (b) = (e′) für ein e′ ∈ R. Nach Teil (iii)
ist e′ damit ebenfalls ein kgV von a und b, also sind e und e′ assoziiert. Wie im vorherigen Absatz folgt daraus
(e) = (e′) = (a)∩ (b). □

Im Folgenden werden wir nun zwei wichtige Rechenoperationen auf Idealen definieren. Wie die Ringelemente
können auch Ideale addiert und multipliziert werden.

Proposition 10.13 Sei ein Ring, und seien I , J Ideale in R. Dann ist auch die Teilmenge I+J =
{ a+ b | a ∈ I , b ∈ J } von R ein Ideal in R.

Beweis: Aus 0R ∈ I und 0R ∈ J folgt 0R = 0R + 0R ∈ I + J . Seien nun a, b ∈ I + J und r ∈ R vorgegeben. Dann gibt
es Elemente a′, b′ ∈ I und a′′, b′′ ∈ J mit a = a′ + a′′ und b = b′ + b′′. Weil I und J Ideale sind, gilt a′ + b′ ∈ I und
a′′ + b′′ ∈ J . Es folgt a+ b = (a′ + b′) + (a′′ + b′′) ∈ I + J . Die Idealeigenschaft von I und J liefert auch ra′ ∈ I und
ra′′ ∈ J . Es folgt ra = ra′ + ra′′ ∈ I + J . □

Leider ist die Definition des Produkts zweier Ideale I und J nicht ganz so einfach. Man ist versucht, dass Produkt durch
I J = { ab | a ∈ I , b ∈ J } zu definieren, aber leider ist eine solche Menge im Allgemeinen kein Ideal mehr. (Weiter
unten werden wir dies durch ein Gegenbeispiel belegen.) Statt dessen müssen wir das von dieser Produktmenge
erzeugte Ideal betrachten.

Definition 10.14 Sei R ein Ring, und seien I , J Ideale in R. Dann ist das Produktideal I J das
von der Menge {ab | a ∈ I , b ∈ J} erzeugte Ideal in R.
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Die folgende Proposition ist für die Berechnung von Produktidealen hilfreich.

Proposition 10.15 Sei R ein Ring, und seien I , J von endlichen vielen Ringelementen erzeugte
Ideale, I = (a1, ..., am) und J = (b1, ..., bn) mit m, n ∈ N, ai , b j ∈ R für 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Dann wird I J von der Menge

S =
�

ai b j | 1≤ i ≤ m, 1≤ j ≤ n
	

erzeugt, es gilt also I J = (S).

Beweis: Nach Definition des Produktideals gilt I J = (T ) mit T = { ab | a ∈ I , b ∈ J }. Nach Lemma 10.6 genügt es
also, S ⊆ (T ) und T ⊆ (S) nachzuweisen. Die Inklusion S ⊆ (T ) ist offenbar erfüllt, weil für alle i, j mit 1 ≤ i ≤ m
und 1 ≤ j ≤ n jeweils ai ∈ I , b j ∈ J und damit ai b j ∈ T gilt. Zum Beweis von T ⊆ (S) sei c ∈ T vorgegeben. Dann
gibt es a ∈ I und b = J mit c = ab. Wegen I = (a1, ..., am) gibt es Ringelemente r1, ..., rm ∈ R, so dass a in der Form
∑m

i=1 riai geschrieben werden kann. Ebenso finden wir s1, ..., sn ∈ R mit b =
∑n

j=1 s j b j . Es gilt also

c = ab =

�

m
∑

i=1

riai

�

 

n
∑

j=1

s j b j

!

=
m
∑

i=1

n
∑

j=1

ris j(ai b j).

Die Gleichung zeigt, dass c in (S) enthalten ist. □

Wir zeigen nun anhand eines Gegenbeispiels, dass das elementweise Produkt zweier Ideale im allgemeinen kein Ideal
ist. Sei R = Z[x], und seien die Ideale I und J definiert durch I = (2, x) und J = (3, x). Nach Proposition 10.5 sind
die Elemente aus I = (2, x) die Polynome der Form 2u+ x v mit u, v ∈ Z[x]. Wie man sich leicht überlegt, sind es
genau die Polynome f ∈Z[x] mit durch 2 teilbarem konstanten Term f (0), die auf diese Weise zu Stande kommen,
zum Beispiel x2 + 5x − 10 = 2(−5) + x(x + 5) mit dem konstanten Term −10. Ebenso besteht J genau aus den
Polynomen g ∈Z[x] mit der Eigenschaft, dass g(0) durch 3 teilbar ist.

Wegen −2, x ∈ I und 3, x ∈ J sind 3x und (−2)x in M enthalten. Nehmen wir nun an, dass die Menge gegeben
durch M = { f g | f ∈ I , g ∈ J} ein Ideal in Z[x] ist, dann wäre auch x = 3x + (−2)x ∈ M . Aber andererseits
kann x nicht in der Form x = f g mit f ∈ I und g ∈ J geschrieben werden. Wäre dies so, dann würde wegen
grad( f ) + grad(g) = grad( f g) = grad(x) = 1 jeweils grad( f ), grad(g) ≤ 1 folgen. Es gäbe also a, b, c, d ∈ Z mit
f = ax + b und g = cx + d. Wir würden dann

x = f g = (ax + b)(cx + d) = acx2 + (bc + ad)x + bd

erhalten, also insbesondere ac = 0. Ist nun a = 0, dann folgt x = bcx + bd und somit bc = 1. Wie oben bemerkt, ist
b = f (0) aber durch 2 teilbar,was zu bc = 1 im Widerspruch steht. Ebenso führt c = 0 auf die Gleichung x = ad x+bd,
und wir erhalten ad = 1 im Widerspruch zu 3 | g(0)⇔ 3 | d.

Die Annahme, dass M ein Ideal in Z[x] ist, war also falsch. Nach Proposition 10.15 ist das Produktideal I J gegeben
durch I J = (6, 2x , 3x , x2). Mit Lemma 10.6 lässt sich dies zu I J = (6, x) vereinfachen, denn einerseits sind die
Elemente 6, 2x , 3x , x2 offenbar alle in (6, x) enthalten, andererseits liegen 6 und x wegen x = (−1)(2x) + 3x auch
in (6, 2x , 3x , x2).
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Im Hinblick auf spätere Anwendungen zeigen wir noch

Lemma 10.16 Für Ideale I , J , K in einem Ring R gilt das Distributivgesetz I(J +K) = I J + IK ,
außerdem gilt I J ⊆ I und I J ⊆ J .

Beweis: „⊆“ Die Elemente der Form ab mit a ∈ I und b ∈ J + K bilden ein Erzeugendensystem von I(J + K). Es
genügt also zu zeigen, dass alle Elemente dieser Bauart in I J + IK enthalten sind. Das Element b kann in der Form
b = c + d mit c ∈ J und d ∈ K geschrieben werden. Es gilt ab = a(c + d) = ac + ad, mit ac ∈ I J und ad ∈ IK . Also
ist ab in I J + IK enthalten.

„⊇“ Hier genügt es zu zeigen, dass I J ⊆ I(J + K) und IK ⊆ I(J + K) gilt. Das Ideal I J wird erzeugt von den
Elementen der Form ab mit a ∈ I und b ∈ J , und es reicht zu zeigen, dass diese Produkte in I(J +K) enthalten sind.
Aus b ∈ J folgt b ∈ J + K , also ist ab ∈ I(J + K) erfüllt. Die Inklusion IK ⊆ I(J + K) beweist man genauso. Auch für
die Inklusion I J ⊆ I brauchen wir nur zu zeigen, dass {ab | a ∈ I , b ∈ J} eine Teilmenge von I ist. Dies ist auf Grund
der Idealeigenschaft offensichtlich. Die Inklusion I J ⊆ J ist damit auch klar. □

Definition 10.17 Ein Ideal p in einem Ring R wird Primideal genannt, wenn p ̸= (1) gilt und
für alle a, b ∈ R die Implikation

ab ∈ p ⇒ a ∈ p oder b ∈ p erfüllt ist.

Man nennt p ein maximales Ideal, wenn p ̸= (1) ist und kein Ideal I mit der Eigenschaft p ⊊ I ⊊
(1) existiert, das Ideal also abgesehen vom Einheitsideal bezüglich Inklusion maximal ist.

Gelegentlich wird die Primideal-Bedingung nicht mit Elementen, sondern mit Idealen formuliert.

Proposition 10.18 Ein Ideal p in einem Ring R ist genau dann ein Primideal in R, wenn p ̸= (1)
ist und für beliebige Ideale I , J mit I J ⊆ p eine der Bedingungen I ⊆ p oder J ⊆ p erfüllt ist.

Beweis: „⇐“ Nehmen wir an, dass die Idealbedingung für R erfüllt ist, und seien a, b ∈ R mit ab ∈ p vorgegeben.
Dann betrachten wir die Ideale I = (a) und J = (b). Das Produktideal I J wird auf Grund der Bemerkung von oben
durch das Element ab erzeugt, und mit ab ist auch das Ideal I J in p enthalten. Auf Grund unserer Voraussetzung
folgt (a) = I ⊆ p oder (b) = J ⊆ p, insbesondere a ∈ I oder b ∈ J . Da außerdem p ̸= (1) gilt, handelt es sich bei p
tatsächlich um ein Primideal.

„⇒“ Sei p ein Primideal. Dann ist p ̸= (1). Seien nun I und J Ideale in R, und nehmen wir an, dass zwar I J ⊆ p,
aber weder I ⊆ p noch J ⊆ p erfüllt ist. Dann gibt es Elemente a ∈ I \ p und b ∈ J \ p. Weiter gilt ab ∈ I J ∈ p. Wir
haben also Elemente a, b ∈ R mit ab ∈ p und a, b /∈ p gefunden, im Widerspruch zur Primidealeigenschaft. □

An dieser Stelle kommen wir auf die zu Anfang erwähnte Beziehung zwischen Idealen und Teilbarkeitslehre zurück.
Für viele wichtige zahlentheoretische Problem (etwa Fermats letzten Satz oder Verallgemeinerungen des quadrati-
schen Reziprozitätsgesetzes, das wir später noch kennenlernen werden) hat es sich als nützlich herausgestellt, Fragen
der Teilbarkeit in allgemeinen Ringen wie z.B. dem Ring Z[

p
−5] zu studieren. Insbesondere lassen sich in solchen
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Ringen Elemente definieren, die ähnlich wie die bekannten Primzahlen nicht weiter zerlegt werden können. Wir wer-
den für solche Elemente später die Bezeichnung irreduzibel einführen. Im RingZ[

p
−5] ist zum Beispiel 1−2

p
−5 ein

irreduzibles Element, ebenso die Primzahl 3. Es kann aber auch vorkommen, dass eine Primzahl p im Ring Z[
p
−5]

zerlegbar wird, zum Beispiel 41= (6+
p
−5)(6−

p
−5).

Der Mathematiker Eduard Kummer beschäftigte sich im 19. Jahrhundert mit dem Problem, dass die Zerlegung von
Zahlen in irreduzible Elemente in Ringen wie Z[

p
−5] im Allgemeinen nicht mehr eindeutig ist. Zum Beispiel gilt

21 = 3 · 7 = (1+ 2
p
−5)(1− 2

p
−5). (*)

Kummer gelang es, die Eindeutigkeit der Zerlegung wieder herzustellen, indem er an Stelle der Zerlegung der Zahl
21 die Zerlegung des Hauptideals (21) in Primideale betrachtete. So kann man zum Beispiel zeigen, dass die Ideale
in Z[
p
−5] gegeben durch

p1 = (3, 1+ 2
p
−5) , p2 = (3, 1− 2

p
−5) , p3 = (7,1+ 2

p
−5) und p4 = (7,1− 2

p
−5)

Primideale sind. Obwohl die Faktoren in der Produktdarstellung (*) irreduzibel sind, lassen sich die entsprechenden
Hauptideale weiter zerlegen Mit Hilfe von Lemma 10.6 und Proposition 10.15 berechnet man zum Beispiel

p1p3 = (3, 1+ 2
p
−5)(7,1+ 2

p
−5) = (3 · 7, (1+ 2

p
−5) · 7,3 · (1+ 2

p
−5), (1+ 2

p
−5)(1+ 2

p
−5))

= (21,7+ 14
p
−5,3+ 6

p
−5,−19+ 4

p
−5) = (21, 1+ 2

p
−5,3+ 6

p
−5,−19+ 4

p
−5) =

(21,1+ 2
p
−5,3+ 6

p
−5, 2+ 4

p
−5) = (21, 1+ 2

p
−5) = (1+ 2

p
−5).

Dabei gilt die Gleichung im vierten Schritt wegen 10.6 und 7+14
p
−5= (1+2

p
−5)+2(3+6

p
−5), im fünften wegen

−19+ 4
p
−5+ 21= 2+ 4

p
−5. Im vorletzten Schritt wurde verwendet, dass die Elemente 3+ 6

p
−5 und 2+ 4

p
−5

beides Vielfache von 1+ 2
p
−5 sind und im letzten die Gleichung 21= (1+ 2

p
−5)(1− 2

p
−5). Die Rechnung zeigt

also, dass das Hauptideal (1+ 2
p
−5) in die Faktoren p1 und p3 zerfällt.

Durch ähnliche Rechnungen erhält man die Gleichungen p1p2 = (3), p2p4 = (1− 2
p
−5) und p3p4 = (7). Insgesamt

gilt also

(21) = (3) · (7) = (p1p2)(p3p4) , ebenso (21) = (1+ 2
p
−5)(1− 2

p
−5) = (p1p3)(p2p4).

Bis auf die Reihenfolge der „Primfaktoren“ pi stimmen die Zerlegungen also überein.

Definition 10.19 Sei φ : R→ S Ringhomomorphismus. Dann nennt man ker(φ) = φ−1({0S})
den Kern und im(φ) = φ(R) das Bild von φ.

Teil (i) der folgenden Proposition zeigt, dass Kerne von Ringhomomorphismen stets Ideale sind, in Analogie zur Aus-
sage aus der Gruppentheorie, dass es sich bei Kernen von Gruppenhomomorphismen stets um Normalteiler handelt.

Proposition 10.20 Seien R, S Ringe und φ : R→ S ein Ringhomomorphismus.

(i) Ist J ein Ideal in S, dann ist φ−1(J) ein Ideal in R.

(ii) Ist I ein Ideal in R und φ surjektiv, dann ist φ(I) ein Ideal in S.
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Beweis: zu (i) Wegen φ(0R) = 0S und 0S ∈ J ist 0R ∈ φ−1(J) enthalten. Seien nun a, b ∈ φ−1(J) und r ∈ R
vorgegeben. Dann giltφ(a),φ(b) ∈ J , somit auchφ(a+b) ∈ J und a+b ∈ φ−1(J). Ebenso istφ(ra) = φ(r)φ(a) ∈ J
und folglich ra ∈ φ−1(J).

zu (ii) Wegen 0R ∈ I gilt 0S = φ(0R) ∈ φ(I). Seien nun a, b ∈ φ(I) und s ∈ S vorgegeben. Wegen a, b ∈ φ(I) gibt es
a′, b′ ∈ I mit a = φ(a′) und b = φ(b′). Es folgt a′+ b′ ∈ I und a+ b = φ(a′)+φ(b′) = φ(a′+ b′) ∈ φ(I). Wegen der
Surjektivität gibt es ein r ∈ R mit φ(r) = s, und mit a′ ist auch ra′ in I enthalten. Es folgt sa = φ(r)φ(a′) ∈ φ(I). □

Ohne die Voraussetzung der Surjektivität ist Teil (ii) der Proposition im allgemeinen falsch. Betrachtet man z.B. die
Inklusionsabbildung ι : Z→ Q, a 7→ a, dann ist (2) = {2a | a ∈ Z} ein Ideal in Z, aber die Menge M = {2a | a ∈ Z}
ist kein Ideal in Q: Es gilt 1

2 ∈Q, 2 ∈ M , aber 1
2 · 2 /∈ M .

Man überprüft leicht, dass das Bild im(φ) eines Ringhomomorphismus φ : R→ S zwar im allgemeinen kein Ideal,
aber immer ein Teilring von S ist. Wie bei den Gruppen oder den linearen Abbildungen zeigt man, dass ein Homo-
morphismus φ : R→ S genau dann injektiv ist, wenn ker(φ) = {0R} gilt.
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§ 11. Faktorringe und die Konstruktion von Ringerweiterungen

Zusammenfassung. In § 4 haben wir aus einer Gruppe G und einem Normalteiler N ⊴ G eine neue Gruppe
G/N konstruiert, die sog. Faktorgruppe von G modulo N . Mit dem gleichen Ansatz werden wir in diesem
Abschnitt einem Ring R und einem Ideal I den Faktorring R/I zuordnen. Auf diesem Weg erhält man zum
Beispiel für jedes n ∈ N den bereits aus der Linearen Algebra bekannten Restklassenring Z/nZ. Dort haben
wir auch schon festgestellt, dass Z/pZ für jede Primzahl p ein Körper ist. Diese Beobachtung wird hier auf
geeignete Weise verallgemeinert. Außerdem werden wir den aus § 4 bekannten Korrespondenzsatz auf die
Ringe übertragen.

Ein weiteres Thema dieses Kapitels ist die Konstruktion von Ringerweiterungen. Von zentraler Bedeutung ist
hier die Beobachtung, dass man für jeden Monomorphismus φ : R → S von Ringen einen zu S isomorphen
Erweiterungsring erhält. Unter Hinzunahme des Konzepts der Faktorringe werden wir auf diese Weise sehen,
wie der Körper R der reellen zum Körper C der komplexen Zahlen erweitert werden kann. Dieses Prinzip
werden wir im Körpertheorie-Teil der Vorlesung weiter vertiefen. Außerdem verwenden wir diesen Ansatz,
um jedem Integritätsbereich R einen Quotientenkörper (den „Körper der Brüche von R“) und jedem Ring R
den Polynomring R[x] zuzuordnen (dessen Existenz wir in der Linearen Algebra nur postuliert, aber nicht
bewiesen hatten).

Wichtige Grundbegriffe

– Nebenklasse eines Ideals, Faktorring

– kanonischer Epimorphismus (für Ringe)

– Kongruenz modulo eines Ideals

– Quotientenkörper eines Integritätsbereichs

Zentrale Sätze

– Homomorphiesatz für Ringe

– Korrespondenzsatz für Ringe

– Faktorringe von Primidealen sind Integritätsbereiche
Faktorringe von maximalen Idealen sind Körper

– Konstruktion von Ringerweiterungen durch
Monomorphismen

– universelle Eigenschaft des Quotientenkörpers und
des Polynomrings

In der Gruppentheorie haben wir gesehen, wie die Normalteiler einer Gruppe zur Definition von neuen Gruppen
genutzt werden können. Eine ähnliche Rolle spielen die Ideale in der Ringtheorie.

Definition 11.1 Sei R ein Ring, I ein Ideal und a ∈ R. Dann nennen wir die Menge

a+ I = {a+ i | i ∈ I}

die Nebenklasse von a modulo I . Die Menge {a+ I | a ∈ R} aller Nebenklassen von Elementen
aus R bezeichnen wir mit R/I .
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Proposition 11.2 Sei R ein Ring und I ein Ideal. Dann ist die Relation auf R gegeben durch

a ≡ b mod I ⇔ b− a ∈ I

eine Äquivalenzrelation, und die Elemente von R/I sind genau die Äquivalenzklassen dieser
Relation. Man spricht in diesem Zusammenhang von einer Kongruenzrelation und bezeichnet
zwei Elemente a, b in derselben Äquivalenzklasse als kongruent modulo I .

Beweis: Für alle a ∈ R gilt a− a = 0R ∈ I und somit a ≡ a mod I . Also ist die Relation reflexiv. Für alle a, b ∈ R gilt
die Implikation

a ≡ b mod I ⇒ b− a ∈ I ⇒ (−1)(b− a) ∈ I ⇒ a− b ∈ I ⇒ b ≡ a mod I ,

also ist die Relation symmetrisch. Zum Nachweis der Transitivität seien a, b, c ∈ R mit a ≡ b mod I und b ≡ c mod I
vorgegeben. Dann gilt b− a ∈ I und c − b ∈ I . Es folgt c − a = (c − b) + (b− a) ∈ I und damit a ≡ c mod I .

Nun zeigen wir noch, dass für ein beliebig vorgegebenes a ∈ R die Nebenklasse a + I mit der Äquivalenzklasse von
a übereinstimmt. Nach Definition liegt b ∈ I genau dann in der Äquivalenzklasse von a, wenn a ≡ b mod I gilt, was
nach Definition b− a ∈ I bedeutet. Dies wiederum ist gleichbedeutend mit b = a+ (b− a) ∈ a+ I . □

Nach Definition sind zwei Elemente a, b ∈ R also genau dann kongruent modulo I , wenn ihre Kongruenzklassen
übereinstimmen. Da je zwei Äquivalenzklassen entweder disjunkt oder gleich sind, erhalten wir die Äquivalenz

a ≡ b mod I ⇔ b− a ∈ I ⇔ a+ I = b+ I ⇔ b ∈ a+ I . (11.1)

Ein wichtiger Speziallfall ist der Ring R = Z mit den Idealen der Form I = (n) = nZ, wobei n ∈N ist. Hier wird die
Nebenklasse a+nZ einer Zahl a ∈Z häufig nur mit ā bezeichnet. Ein Problem bei dieser Notation besteht darin, dass
sie die natürliche Zahl n nicht beinhaltet; so kann 1̄ für 1+2Z, 1+3Z oder für 1+nZmit irgendeinem anderen n ste-
hen. Bei Verwendung der Notation muss also darauf geachtet werden, dass sich das n aus dem Kontext heraus ergibt.
Die Notation a ≡ b mod n bedeutet, dass zwei Elemente a, b ∈Z modulo dem Hauptideal (n) übereinstimmen.

Proposition 11.3 Die Menge Z/nZ der Kongruenzklassen ist n-elementig, es gilt

Z/nZ = {ā | a ∈Z , 0≤ a < n}.

Beweis: Nach Definition gilt Z/nZ= {b̄ | b ∈Z}. Ist nun b ∈Z beliebig vorgegeben, dann erhält man nach Division
mit Rest Elemente q, a ∈Zmit b = qn+a und 0≤ a < n. Es gilt also b−a = nq ∈ (n), und auf Grund der Äquivalenz
(11.1) folgt ā = b̄. Dies zeigt, dass Z/nZ aus den angegebenen Klassen besteht.

Um zu sehen, dass die Klassen ā mit 0 ≤ a < n verschieden sind, seien a1, a2 ∈ Z mit 0 ≤ a1, a2 < n und ā1 = ā2

vorgegeben. Nach (11.1) gilt dann a1 − a2 ∈ (n), es existiert also ein q ∈Z mit a1 − a2 = qn. Wegen |a1 − a2|< n ist
dies nur für q = 0 möglich. Es gilt somit a1 = a2. □
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In der Algebra hatten wir den Begriff des Repräsentantensystems für eine Menge von Äquivalenzklassen eingeführt.
Dieser Begriff lässt sich auch hier verwenden. Dem Beweis von Proposition 11.3 lässt sich entnehmen, dass für jedes
n ∈ N die Menge {a ∈ Z | 0 ≤ a < n} ein Repräsentantensystem von Z/nZ ist. Das entscheidende Argument dabei
war, dass für jedes n ∈N auf dem RingZ eine Division mit Rest durch n definiert ist. Ein solches Konzept existiert auch
für Polynomringe über Körpern, und zwar auf der Basis der aus der Schulmathematik bekannten Polynomdivision.
Wir werden später auf die Division mit Rest noch in einem allgemeineren Kontext eingehen.

Proposition 11.4 Sei K ein Körper, R= K[x] und f ∈ K[x] ein Polynom vom Grad n≥ 1. Dann
ist die Teilmenge S = {g ∈ K[x] | g ̸= 0, grad(g)< n}∪{0} von K[x] ein Repräsentantensystem
von R/( f ).

Beweis: Sei φ : S→ K[x]/( f ) gegeben durch g 7→ g+( f ). Ein Repräsentantensystem liegt vor, wenn die Abbildung
φ bijektiv ist. Zunächst beweisen wir die Surjektivität von φ. Sei ḡ ∈ K[x]/( f ) vorgegeben und g ∈ K[x] mit
ḡ = g + ( f ). Durch Division mit Rest erhalten wir Polynome q, r ∈ K[x] mit g = q f + r mit r = 0 oder grad( f ) < n.
Nach Definition ist r in S enthalten. Außerdem gilt g − r ∈ ( f ) und somit φ(r) = r + ( f ) = g + ( f ) = ḡ.

Seien nun g1, g2 ∈ S mit φ(g1) = φ(g2) vorgegeben. Dann folgt g1 + ( f ) = g2 + ( f ), also g1 − g2 ∈ ( f ). Es gibt also
ein q ∈ K[x] mit g1 − g2 = q f . Im Fall q ̸= 0 wäre g1 − g2 = q f vom Grad ≥ n. Wegen gi = 0 oder grad(gi) < n für
i = 1, 2 ist das jedoch ausgeschlossen. Also muss g1 = g2 gelten. □

Proposition 11.5 Sei R ein Ring und I ein Ideal. Dann gibt es (eindeutig bestimmte) Verk-
nüpfungen + und · auf R/I mit der Eigenschaft

(a+ I) + (b+ I) = (a+ b) + I und (a+ I) · (b+ I) = ab+ I für alle a, b ∈ R.

Beweis: Nach Satz 4.25 (ii) genügt es zu zeigen, dass für alle a0, a, b0, b ∈ I aus a0 ≡ a mod I und b0 ≡ b mod I
jeweils (a0 + b0) + I = (a+ b) + I und a0 b0 + I = ab+ I folgt. Auf Grund der Voraussetzung gilt i = a − a0 ∈ I und
j = b − b0 ∈ I . Es folgt (a + b)− (a0 + b0) = (a − a0) + (b − b0) = i + j ∈ I , also (a + b) ∈ (a0 + b0) + I und somit
(a+ b) + I = (a0 + b0) + I . Auf Grund der Rechnung

ab− a0 b0 = ab− ab0 + ab0 − a0 b0 = a(b− b0) + (a− a0)b0 = a j + b0i

gilt ebenso ab− a0 b0 ∈ I , also ab ∈ a0 b0 + I und somit ab+ I = a0 b0 + I . □

Satz 11.6 Sei R ein Ring und I ⊆ R ein Ideal. Dann ist R/I mit den beiden soeben definierten
Verknüpfungen ein Ring, den man als Faktorring bezeichnet. Die Abbildung πI : R→ R/I gege-
ben a 7→ a+ I ist ein Epimorphismus von Ringen, der sog. kanonische Epimorphismus.

Beweis: Wir verwenden die für alle a, b ∈ R geltenden Gleichungen (a+ I)+(b+ I) = (a+ b)+ I und (a+ I) ·(b+ I) =
(ab) + I , um die Gültigkeit der Ringaxiome in R/I auf die Ringeigenschaften von R zurückzuführen. Beginnen wir
mit den Axiomen der Addition. Sind a, b, c ∈ R vorgegeben, dann gilt

((a+ I) + (b+ I)) + (c + I) = ((a+ b) + I) + (c + I) = ((a+ b) + c) + I =

(a+ (b+ c)) + I = (a+ I) + ((b+ c) + I) = (a+ I) + ((b+ I) + (c + I)).
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Also ist das Assoziativgesetz in R/I erfüllt. Ferner gilt (a+I)+(0+I) = ((a+0)+I) = a+I und ebenso (0+I)+(a+I) =
(0 + a) + I = a + I , somit besitzt 0 + I in R/I die Eigenschaften des Nullelements. Aus (a + I) + ((−a) + I) =
(a+(−a))+ I = 0+ I und ((−a)+ I)+ (a+ I) = ((−a)+ a)+ I = 0+ I folgt, dass die Nebenklasse (−a)+ I bezüglich
der Addition ein zu a + I inverses Element ist. Also hat jedes Element in R/I ein Negatives. Schließlich gilt wegen
(a+ I)+(b+ I) = (a+b)+ I = (b+a)+ I = (b+ I)+(a+ I) auch das Kommutativgesetz. Die Axiome der Multiplikation
und das Distributivgesetz verifiziert man nach dem gleichen Schema. Die Nebenklasse 1+ I übernimmt in R/I die
Rolle des Einselements.

Zum Schluss überprüfen wir die Homomorphismus-Eigenschaft der AbbildungπI . Sind a, b ∈ R, dann giltπI (a+b) =
(a+b)+ I = (a+ I)+(b+ I) = πI (a)+πI (b), ebensoπI (ab) = (ab)+ I = (a+ I)(b+ I) = πI (a)πI (b) undπI (1) = 1+ I .
Offenbar ist πI surjektiv, denn jedes Element in R/I hat die Form a+ I für ein a ∈ R, es liegt also wegen πI (a) = a+ I
im Bild von πI . □

Als Beispiel betrachten wir den Ring Z/4Z. Es sei noch einmal daran erinnert, dass 0̄, 1̄, 2̄, 3̄ Kurzschreibweisen für
die Elemente 0+ 4Z, 1+ 4Z, 2+ 4Z, 3+ 4Z sind. Die Addition und Multiplikation des Rings Z/4Z sind durch die
folgenden Verknüpfungstafeln gegeben.

+ 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 1̄ 2̄ 3̄

1̄ 1̄ 2̄ 3̄ 0̄

2̄ 2̄ 3̄ 0̄ 1̄

3̄ 3̄ 1̄ 1̄ 2̄

· 0̄ 1̄ 2̄ 3̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄

2̄ 0̄ 2̄ 0̄ 2̄

3̄ 0̄ 3̄ 2̄ 1̄

Beispielsweise gilt 2̄+ 3̄= 5̄= 1̄, wobei die Gleichung 5+4Z= 1+4Z durch 5−1= 4 ∈ 4Z zu Stande kommt. Auf
dieselbe Weise überprüft man 2̄ · 3̄ = 6̄ = 2̄, denn es ist 6+ 4Z = 2+ 4Z wegen 6− 2 = 4 ∈ 4Z. Man beachte, dass
Z/4Z kein Integritätsbereich ist: Es gilt 2̄ · 2̄= 4̄= 0̄, obwohl 2̄ ̸= 0̄ ist.

Neben {0, 1,2, 3} ist auch {1, 2,3, 4} ein Repräsentantensystem von Z/4Z. Es gilt also auch Z/4Z= {1̄, 2̄, 3̄, 4̄}. Mit
dieser Darstellung der Elemente sehen die Verknüpfungstabellen folgendermaßen aus.

+ 1̄ 2̄ 3̄ 4̄

1̄ 2̄ 3̄ 4̄ 1̄

2̄ 3̄ 4̄ 1̄ 2̄

3̄ 4̄ 1̄ 2̄ 3̄

4̄ 1̄ 2̄ 3̄ 4̄

· 1̄ 2̄ 3̄ 4̄

1̄ 1̄ 2̄ 3̄ 4̄

2̄ 2̄ 4̄ 2̄ 4̄

3̄ 3̄ 2̄ 1̄ 4̄

4̄ 4̄ 4̄ 4̄ 4̄

Auch hier überprüfen in jeder Tabelle exemplarisch je einen Eintrag. Es gilt 4̄+ 3̄= 7̄= 3̄, denn wegen 7−3= 4 ∈ 4Z
ist 7+ 4Z = 3+ 4Z. Ebenso findet man 3̄ · 4̄ = 12 = 4̄, denn wegen 12− 4 = 8 ∈ 4Z ist 12+ 4Z = 4+ 4Z. Man
beachten, dass 4̄ das Null- und 1̄ das Einselement von Z/4Z= {1̄, 2̄, 3̄, 4̄} ist.

Satz 11.7 Sei n ∈N. Genau dann ist Z/nZ ein Körper, wenn n eine Primzahl ist.

Beweis: „⇒“ Im Fall n= 1 istZ/nZ ein Nullring und damit kein Körper. Ist n> 1 keine Primzahl, dann gibt es r, s ∈N
mit 1 < r, s < n und n = rs. Es folgt dann r̄, s̄ ̸= 0 und r̄ s̄ = n̄ = 0̄. Dies zeigt, dass Z/nZ kein Integritätsbereich ist.
Nach Lemma 9.6 ist Z/nZ damit auch kein Körper.
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„⇐“ Sei p = n eine Primzahl. Dann enthält Z/pZ jedenfalls mehr als ein Element und ist damit kein Nullring. Sei
nun ā ∈ Z/pZ ein Element ungleich Null und a ∈ Z mit ā = a+ pZ. Wegen a+ pZ ̸= 0̄ ist a kein Vielfaches von p,
und weil p eine Primzahl ist, muss der größte gemeinsame Teiler von a und p gleich 1 sein. Nach dem Lemma von
Bézout gibt es x , y ∈Z mit xa+ yp = 1. Es folgt x̄ ā = xa+ pZ= (xa+ pZ)+ (0+ pZ) = (xa+ pZ)+ (yp+ pZ) =
(xa+ yp) + pZ= 1+ pZ= 1̄. Also ist ā in Z/pZ invertierbar. Somit haben wir gezeigt, dass jedes Element ā ̸= 0̄ in
Z/pZ ein Inverses besitzt, und folglich ist Z/pZ ein Körper. □

Ist p eine Primzahl, dann verwendet man für den Körper Z/pZ auch die Bezeichung Fp.(Dabei steht der Buchstabe
F für „field“, engl. „Körper“.)

Der euklidische Algorithmus kann verwendet werden, um die multiplikativen Inversen von Elementen der Körper Fp

zu bestimmen. Sei beispielsweise p = 43 und ā = 37 ∈ F43. Der euklidische Algorithmus liefert für die Gleichung
37x + 43y = 1 die Lösung x = 7, y = −6. In F43 gilt also 37 · 7̄= 1̄ und 37

−1
= 7̄.

Als weiteres Beispiel betrachten wir den Körper F13. Mit dem soeben beschriebenen Verfahren findet man hier für
die Elemente ̸= 0̄ die folgenden multiplikativen Inversen.

ā 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 8̄ 9̄ 10 11 12

ā−1 1̄ 7̄ 9̄ 10 8̄ 11 2̄ 5̄ 3̄ 4̄ 6̄ 12

Auch mit Polynomringen lassen sich Restklassenringe bilden. Sei zum Beispiel R=R[x] und I = ( f ) mit f = x2+1.
Definieren wir i= x + I , dann gilt im Ring C= R/I die Gleichung

i2 = i · i = (x + I) · (x + I) = x2 + I = (x2 + (−1) f ) + I = (−1) + I = −1C

wobei im vierten Schritt verwendet wurde, dass (−1) f im Hauptideal I = ( f ) liegt. Es handelt sich bei C also um
einen Ring mit einem Element i, dessen Quadrat gleich −1C ist. Wir werden weiter unten sehen, wie man mit Hilfe
dieses Rings die komplexen Zahlen C konstruieren kann.

Wie in der Gruppen- gibt es auch in der Ringtheorie induzierte Homomorphismen und einen Homomorphiesatz.

Proposition 11.8 Seiφ : R→ R′ ein Ringhomomorphismus und I ⊆ R ein Ideal mit I ⊆ ker(φ).
Dann gibt es einen eindeutig bestimmten Homomorphismus

φ̄ : R/I −→ R′ mit φ̄(a+ I) = φ(a) für alle a ∈ R.

Man bezeichnet ihn als den von φ induzierten Homomorphismus.

Beweis: Für die Existenz der Abbildung φ̄ genügt es nach Satz 4.25 (i) zu zeigen, dass für alle a0, a ∈ I aus
a0 ≡ a mod I jeweils φ(a) = φ(a0) folgt. Auf Grund der Voraussetung gilt a−a0 ∈ I und damit auch a−a0 ∈ ker(φ).
Es folgt φ(a) = φ(a− a0 + a0) = φ(a− a0) +φ(a0) = 0R′ +φ(a0) = φ(a0).

Dass φ̄ ein Homomorphismus von Ringen ist, folgt unmittelbar aus der bewiesenen Gleichung und der Homomor-
phismus-Eigenschaft von φ. Zunächst gilt φ̄(1 + I) = φ(1) = 1R′ . Seien ā, b̄ ∈ R/I vorgegeben und a, b ∈ R mit
ā = a + I , b̄ = b + I . Dann gilt φ̄(ā + b̄) = φ̄((a + I) + (b + I)) = φ̄((a + b) + I) = φ(a + b) = φ(a) + φ(b) =
φ̄(a+ I) + φ̄(b+ I) = φ̄(ā) + φ̄(b̄). Der Beweis der Gleichung φ̄(ā b̄) = φ̄(ā)φ̄(b̄) läuft analog. □
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Satz 11.9 (Homomorphiesatz für Ringe)

Sei φ : R → R′ ein Homomorphismus von Ringen und I = ker(φ). Dann induziert φ einen
Isomorphismus φ̄ : R/I

∼
→ im(φ) von Ringen.

Beweis: Auf Grund der Proposition existiert ein Homomorphismus φ̄ : R/I → R′ mit φ̄(a+ I) = φ(a) für alle a ∈ R.
Insbesondere gilt im(φ) = im(φ̄), so dass durch φ̄ ein surjektiver Homomorphismus auf im(φ) gegeben ist. Zum
Nachweis der Injektivität sei ā ∈ ker(φ̄) vorgegeben. Ist a ∈ R mit a+ I = ā, dann gilt φ(a) = φ̄(ā) = 0R′ und somit
a ∈ I . Es folgt ā = a+ I = 0+ I . Der Kern von φ̄ ist somit gleich {0+ I}, und folglich ist φ̄ injektiv. □

Satz 11.10 (Korrespondenzsatz für Ideale)

Sei R ein Ring, I ein Ideal und π : R→ R/I der kanonische Epimorphismus. Sei Ī die Menge der
Ideale von R/I und II die Menge der Ideale J von R mit J ⊇ I .

(i) Die Zuordnungen φ : II → Ī, J 7→ π(J) und ψ : Ī → II , J̄ 7→ π−1(J) sind bijektiv und
zueinander invers.

(ii) Für alle Ideale J , K ∈ II gilt J ⊆ K⇔ π(J) ⊆ π(K).

Beweis: Weil jedes Ideal von R insbesondere eine Untergruppe der Gruppe (R, +) ist, und jedes Ideal von R/I eine
Untergruppe von (R/I , +), folgen die Aussagen (i) und (ii) unmittelbar aus Satz 4.31, dem Korrespondenzsatz für
Gruppen. □

Wir werden den Korrespondenzsatz unten zur Charakterisierung der maximalen Ideale eines Rings anhand ihrer
Restklassenringe verwenden.

Lemma 11.11 Ein Ring ist genau dann ein Körper, wenn (0) und (1) die einzigen Ideale des
Rings sind und (0) ̸= (1) gilt.

Beweis: „⇒“ Sei R ein Körper und I ⊆ R ein Ideal. Im Fall I ̸= (0) sei a ∈ I ein Element ungleich Null. Dann liegt
auch 1= a−1a in I , und es folgt I = (1). Auf Grund der Körpereigenschaft gilt auch 0 ̸= 1 und somit (0) ̸= (1).

„⇐“ Sei R ein Ring mit der Eigenschaft, dass (0) ̸= (1) die einzigen Ideale in R sind. Ist a ∈ R ein beliebiges Element,
dann gilt entweder (a) = (0) oder (a) = (1). Im ersten Fall ist a = 0, im zweiten liegt 1 in (a), und es gibt somit ein
r ∈ R mit ra = 1. Also ist a in diesem Fall eine Einheit. Wir haben somit gezeigt, dass jedes Element ungleich Null in
R invertierbar ist. Dies zeigt, dass R entweder ein Nullring oder ein Körper ist. Aber wegen (0) ̸= (1) gilt 0 ̸= 1, und
folglich ist R kein Nullring. □
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Satz 11.12 Sei R ein Ring, p ⊆ R ein Ideal und R̄= R/p.

(i) Genau dann ist p ein Primideal, wenn R̄ ein Integritätsbereich ist.

(ii) Genau dann ist p ein maximales Ideal, wenn R̄ ein Körper ist.

Beweis: „⇒“ Wegen p ̸= (1) besteht R̄ aus mehr als einem Element, ist also kein Nullring. Seien nun ā, b̄ ∈ R̄ mit
ā b̄ = 0+ p vorgegeben. Sind a, b ∈ R mit ā = a + p und b̄ = b + p, dann gilt (ab) + p = (a + p)(b + p) = ā b̄ = 0+ p

und folglich ab ∈ p. Aus der Primideal-Eigenschaft erhalten wir a ∈ p oder b ∈ p und somit ā = 0+ p oder b̄ = 0+ p.

„⇐“ Ist R̄ ein Integritätsbereich, dann ist R̄ insbesondere kein Nullring. Deshalb muss p ̸= (1) gelten. Seien nun
a, b ∈ R mit ab ∈ p vorgegeben. Dann gilt (a + p)(b + p) = (ab) + p = 0+ p. Weil R̄ ein Integritätsbereich ist, folgt
daraus a+ p= 0+ p oder b+ p= 0+ p, also a ∈ p oder b ∈ p.

zu (ii) Auf Grund des Korrespondenzsatzes gibt es eine Bijektion zwischen den Idealen J von R mit p ⊆ J ⊆ (1) und
den Idealen von R̄. Ist p ein maximales Ideal, dann ist p ⊊ (1), und für jedes Ideal J mit p ⊆ J ⊆ (1) gilt p = J oder
J = (1). Dies bedeutet, dass der Faktorring R/p genau zwei Ideale besitzt, nämlich (0) oder (1). Also ist R/p ein
Körper. Setzen wir dies umgekehrt voraus, dann sind (0) ̸= (1) die einzigen beiden Ideale im Faktorring. Es gilt dann
p ⊊ (1) in R, denn ansonsten gäbe es im Faktorring nur ein einziges Ideal. Zugleich ist p maximal, denn jedes Ideal
J mit p ⊊ J ⊊ (1) würde ein Ideal J̄ mit (0) ⊊ J̄ ⊊ (1) im Faktorring liefern. □

Folgerung 11.13 Jedes maximale Ideal ist ein Primideal.

Beweis: Dies folgt direkt aus Satz 11.12, da jeder Körper ein Integritätsbereich ist. □

Aus den Sätzen 11.12 und 11.7 folgt zum Beispiel, dass im Ring Z die Hauptideale (p) von Primzahlen p alles
maximale Ideale sind. Nach Folgerung 11.13 sind dies auch alles Primideale. Dass umgekehrt nicht jedes Primideal
ein maximales Ideal ist, sieht man am Nullideal (0) von Z. Wie man an Hand der Definition unmittelbar überprüft,
ist (0) ein Primideal. Andererseits ist es z.B. wegen (0) ⊊ (2) ⊊ (1) kein maximales Ideal.

Ein wesentliches Hilfmittel bei der Konstruktion von Ringen ist die Übertragung von Verknüpfungen auf andere
Mengen mittels Bijektionen.

Lemma 11.14 Seien X und Y Mengen, φ : Y → X eine Bijektion und · eine Verknüpfung auf
X . Wir definieren auf Y eine Vernüpfung ⊙, indem wir a⊙ b = φ−1(φ(a) ·φ(b)) für alle a, b ∈ Y
definieren. Die neue Verknüpfung ⊙ hängt dann mit · auf folgende Weise zusammen.

(i) Ist die Verknüpfung · auf X assoziativ bzw. kommutativ, dann gilt dasselbe jeweils für die
Verknüpfung ⊙ auf Y .

(ii) Ist eX ∈ X ein Neutralelement in X bezüglich · , dann ist eY = φ−1(eX ) ein Neutralelement
in Y bezüglich ⊙.

(iii) Seien eX und eY wie in (ii) und a, b ∈ X . Ist b ein Inverses von a bezüglich · , dann ist
φ−1(b) ein Inverses von φ−1(a) bezüglich ⊙.

Man sagt, dass die Verknüpfung · durch die Bijektion φ von X auf Y übertragen wird.
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Beweis: zu (i) Seien a, b, c ∈ Y vorgegeben. Zunächst bemerken wir, dass auf Grund der Definition von φ jeweils
φ(a⊙ b) = φ(a) ·φ(b) gilt. Setzen wir nun voraus, dass die Verknüpfung · assoziativ ist. Dann gilt

φ((a⊙ b)⊙ c) = φ(a⊙ b) ·φ(c) = (φ(a) ·φ(b)) ·φ(c) = φ(a) · (φ(b) ·φ(c))

= φ(a) ·φ(b⊙ c) = φ(a⊙ (b⊙ c)).

Auf Grund der Bijektivität von φ folgt daraus (a ⊙ b)⊙ c = a ⊙ (b ⊙ c). Nehmen wir nun an, dass · kommuativ ist.
Dann gilt φ(a⊙ b) = φ(a) ·φ(b) = φ(b) ·φ(a) = φ(b⊙ a), und es folgt a⊙ b = b⊙ a.

zu (ii) Sei a ∈ Y vorgegeben. Dann gilt φ(eY ⊙ a) = φ(eY ) ·φ(a) = eX ·φ(a) = φ(a), weil eX ein Neutralelement
bezüglich · ist. Auf Grund der Bijektivität von φ folgt eY ⊙ a = a. Ebenso beweist man die Gleichung a⊙ eY = a.

zu (iii) Sei a ∈ X und b ∈ X bezüglich der Verknüpfung · ein Inverses von a. Sei c = φ−1(a) und d = φ−1(b); zu
zeigen ist c ⊙ d = d ⊙ c = eY . Nun gilt φ(c ⊙ d) = φ(c) ·φ(d) = a · b = eX = φ(eY ), und durch Anwendung von φ−1

auf beide Seiten der Gleichung erhalten wir c ⊙ d = eY . Genauso zeigt man d ⊙ c = eY . □

Aus dem Lemma ergibt sich unmittelbar, dass φ auch zur Übertragung einer kompletten algebraischen Struktur von
X auf die Menge Y genutzt werden kann. In dieser Vorlesung sind wir vor allem an Ringstrukturen interessiert.

Satz 11.15 Sei (R,+, ·) ein Ring, S eine Menge und φ : S→ R eine bijektive Abbildung. Seien
die Verknüpfungen ⊕ und ⊙ auf S definiert durch

a⊕ b = φ−1(φ(a) +φ(b)) und a⊙ b = φ−1(φ(a) ·φ(b)).

Dann ist (S,⊕,⊙) ein Ring, und φ ist ein Isomorphismus von Ringen.

Beweis: Es genügt, mit Hilfe von Lemma 11.14 die einzelnen Ringaxiome für (S,⊕,⊙) durchzugehen. Zunächst ist
zu überprüfen, dass (S,⊕) eine abelsche Gruppe ist. Weil die Verknüpfung + auf R assoziativ und kommutativ ist, gilt
nach Lemma 11.14 dasselbe für die Verknüpfung ⊕ auf S. Weil 0R in der Halbgruppe (R,+) ein Neutralelement ist,
handelt es sich bei 0S = φ−1(0R) nach Lemma 11.14 (ii) um ein Neutralelement in (S,⊕). Schließlich besitzt jedes
Element a ∈ S bezüglich ⊕ ein Inverses, nämlich nach Lemma 11.14 (iii) das Element φ−1(−φ(a)). Insgesamt ist
(S,⊕) also tatsächlich eine abelsche Gruppe.

Nach dem gleichen Muster zeigt man, dass (S,⊙) ein abelsches Monoid ist. Das Distributivgesetz kann direkt nach-
gerechnet werden. Seien dazu a, b, c ∈ S vorgegeben. Nach Definition der Verknüpfungen ⊕ und ⊙ auf S gilt
φ(r ⊕ s) = φ(r) +φ(s) und φ(r ⊙ s) = φ(r) ·φ(s) für alle r, s ∈ S. Damit erhalten wir

a⊙ (b⊕ c) = φ−1(φ(a) ·φ(b⊕ c)) = φ−1(φ(a) · (φ(b) +φ(c))) = φ−1(φ(a) ·φ(b) +φ(a) ·φ(c))

= φ−1(φ(a⊙ b) +φ(a⊙ c)) = φ−1(φ(a⊙ b⊕ a⊙ c)) = (a⊙ b)⊕ (a⊙ c). □

Das Prinzip der Übertragung von Verknüpfungen kann nun auch für die Konstruktion von Ringerweiterungen
genutzt werden.

Satz 11.16 Sei φ : R→ S ein Monomorphismus von Ringen. Dann gibt es einen Erweiterungs-
ring R̂ ⊇ R und einen Isomorphismus φ̂ : R̂→ S mit φ̂|R = φ.
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Beweis: Allgemein gilt: Sind A, B, C , D Mengen mit A∩ B = C ∩ D = ∅, und φ1 : A → C , φ2 : B → D bijektive
Abbildungen, dann gibt es eine eindeutig bestimmte Abbildung φ : A∪ B → C ∪ D mit φ|A = φ1 und φ|B = φ2,
und diese Abbildung ist bijektiv (Beweis als Übung). Setzen wir R̂ = R ∪ (S \ φ(R)), und wenden wir die soeben
formulierte Aussage auf A = R, C = φ(R) und B = D = S \ φ(R) an, so existiert dementsprechend eine eindeutig
bestimmte bijektive Abbildung φ̂ : R̂→ S mit φ̂|R = φ und φ̂|S\φ(R) = idS\φ(R).

Wir nutzen diese bijektive Abbildung zur Definition von Verknüpfungen⊕ und⊙ auf R̂, indem wir a⊕b = φ̂−1(φ(a)+
φ(b)) und a ⊙ b = φ̂−1(φ(a)φ(b)) für alle a, b ∈ R̂ setzen. Nach Satz 11.15 ist (R̂,⊕,⊙) dann ein Ring, und φ̂ ist
ein Isomorphismus von Ringen. Nach Definition gilt φ̂|R = φ, es bleibt also nur zu zeigen, dass R ein Teilring von R̂
ist. Nach Lemma 11.14 ist wegen φ(1R) = 1S das Element 1R = φ−1(1S) das Einselement von R̂, und dieses ist in R
enthalten. Für alle a, b ∈ R gilt nach Definition a⊕ b = φ̂−1(φ(a)+φ(b)) = φ̂−1(φ(a+ b)) = φ̂−1(φ̂(a+ b)) = a+ b,
also insbesondere a⊕b ∈ R für alle a, b ∈ R. Genauso sieht man, dass R auch unter der Multiplikation⊙ abgeschlossen
ist. □

Als erste Anwendung dieses Satzes zeigen wir, wie man die komplexe Zahlen als Erweiterungskörper der reellen
Zahlen konstruieren kann. Wir haben oben basierend auf dem Polynom f = x2+1 ∈R[x] den Ring C=R[x]/I mit
I = ( f ) definiert. Die Abbildung φ : R→ C, a 7→ a+ I ist ein offenbar ein Homomorphismus von Ringen. Dieser ist
injektiv, denn jedes a ∈ ker(φ) mit a + I = φ(a) = 0 in I = ( f ) enthalten, also ein Vielfaches von f = x2 + 1, was
wegen a ∈R nur für a = 0 möglich ist.

Wir können nun Satz 11.16 auf diesen Monomorphismus anwenden und erhalten einen Erweiterungsring C ⊇ R
zusammen mit einem Ringisomorphismus φ̂ : C→ C, der die Bedingung φ̂|R = φ erfüllt. Setzen wir i = φ̂−1(i) =
φ̂−1(x + I), dann gilt φ̂(i2) = φ̂(i)2 = i2 = −1C = −φ(1) = −φ̂(1), woraus auf Grund der Bijektivität i2 = −1 folgt.
Jedes Element z ∈ C hat darüber hinaus eine eindeutige Darstellung der Form z = a+ i b mit a, b ∈R. Denn wegen
Proposition 11.4 besitzt die Nebenklasse φ̂(z) ∈ R[x]/( f ) einen eindeutig bestimmten Repräsentanten vom Grad
≤ 1. Es gibt also eindeutig bestimmte a, b ∈R mit φ̂(z) = a+ bx +( f ) = (a+ I)+ (b+ I) · i, und durch Anwendung
von φ̂−1 erhalten wir z = a+ i b.

Wir kommen nun zu einer weiteren wichtige Konstruktion, der Bildung der Quotientenkörper.

Definition 11.17 Sei R ein Integritätsbereich. Ein Erweiterungsring K ⊇ R wird Quotienten-
körper von R genannt, wenn K ein Körper ist und K = {ab−1 | a, b ∈ R , b ̸= 0R} gilt.

Beispielsweise ist der Körper Q der rationalen Zahlen ein Quotientenkörper von Z. Wir werden nun mit Hilfe von
Satz 11.16 beweisen, dass jeder Integritätsbereich R einen Quotientenkörper besitzt. Dazu definieren wir auf der
Menge XR = R× (R\ {0R}) eine Relation ∼ durch die Festlegung (a, b)∼ (c, d)⇔ ad = bc für alle (a, b), (c, d) ∈ XR.

Lemma 11.18 Die Relation ∼ ist eine Äquivalenzrelation auf R× (R \ {0R}).

Beweis: Für jedes Paar (a, b) ∈ XR gilt ab = ab und somit (a, b) ∼ (a, b). Deshalb ist die Relation reflexiv. Die
Äquivalenz

(a, b)∼ (c, d) ⇔ ad = bc ⇔ cb = da ⇔ (c, d)∼ (a, b)
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für beliebige Paare (a, b), (c, d) ∈ XR zeigt, dass die Relation auch symmetrisch ist. Zum Nachweis der Transitivität
seien (a, b), (c, d) und (e, f ) aus XR mit (a, b)∼ (c, d) und (c, d)∼ (e, f ) vorgegeben. Dann gilt ad = bc und c f = de.
Es folgt ad f = bc f = bde, und mit der Kürzungsregel für Integritätsbereiche folgt a f = be, also (a, b)∼ (e, f ). Dies
zeigt, dass die Relation auch transitiv ist. □

Für jedes Paar (a, b) ∈ XR bezeichnen wir mit [a, b] die zugehörige Äquivalenzklasse, und die Menge der Äquiva-
lenzklassen mit XR/∼. Bei der Konstruktion des Quotientenkörpers orientieren wir uns nun an den herkömmlichen
Regeln

a
b
+

c
d
=

ad + bc
bd

und
a
b
·

c
d
=

ac
bd

für das Bruchrechnen.

Proposition 11.19 Auf der Menge R̂= XR/∼ der Äquivalenzklassen der Relation ∼ auf XR gibt
es eindeutig bestimmte Verknüpfungen ⊕ und ⊙ mit

[a, b]⊕ [c, d] = [ad + bc, bd] und [a, b]⊙ [c, d] = [ac, bd]

für alle (a, b), (c, d) ∈ XR, und R̂ bildet mit diesen Verknüpfungen einen Körper.

Beweis: Die Existenz und Eindeutigkeit der Verknüpfungen wird durch Anwendung von Teil (ii) des Satzes 4.25
nachgewiesen. Demnach genügt es zu überprüfen, dass für alls (a, b), (a′, b′), (c, d) und (c′, d ′) aus (a, b) ∼ (a′, b′)
und (c, d)∼ (c′, d ′) jeweils [ad+ bc, bd] = [a′d ′+ b′c′, b′d ′] und [ac, bd] = [a′c′, b′d ′] folgt. Beides ist erfüllt, denn
wegen (a, b)∼ (a′, b′) und (c, d)∼ (c′, d ′) gilt ab′ = a′b und cd ′ = c′d, und somit auch

(ad + bc)(b′d ′) = ab′dd ′ + bb′cd ′ = a′bdd ′ + bb′c′d = (a′d ′ + b′c′)(bd)

und (ac)(b′d ′) = ab′cd ′ = a′bc′d = (a′c′)(bd), was zu [ad + bc, bd] = [a′d ′ + b′c′, b′d ′] und [ac, bd] = [a′c′, b′d ′]
äquivalent ist. Im nächsten Schritt zeigen wir, dass (R̂,⊕,⊙) ein Ring ist, mit 0R̂ = [0R, 1R] als Null- und 1R̂ = [1R, 1R]
als Einselement. Wir beginnen mit dem Nachweis, dass (R̂,⊕) eine abelsche Gruppe ist. Seien dazu [a, b], [c, d] und
[e, f ] in R̂ vorgegeben. Wegen [a, b]⊕ [c, d] = [ad + bc, bd] = [cb + da, d b] = [c, d]⊕ [a, b] ist die Verknüpfung
kommutativ, und wegen

[a, b]⊕ ([c, d]⊕ [e, f ]) = [a, b]⊕ [c f + de, d f ] = [ad f + bc f + bde, bd f ] =

[ad + bc, bd]⊕ [e, f ] = ([a, b]⊕ [c, d])⊕ [e, f ].

ist sie auch assoziativ. Die Rechnung [a, b] ⊕ 0R̂ = [a, b] ⊕ [0R, 1R] = [a · 1R + b · 0R, b · 1R] = [a, b] zeigt, dass
0R̂ = [0R, 1R] tatsächlich ein Neutralelement von (R̂,⊕) ist. Schließlich gilt noch [a, b]⊕[−a, b] = [ab+ b(−a), b2] =
[0R, b] = [0R, 1R] = 0R̂, wobei im vorletzten Schritt verwendet wurde, dass (0R, b) ∼ (0,1R) gilt. Also ist [−a, b] in
(R̂,⊕) jeweils das Inverse von [a, b].

Nun zeigen wir, dass (R̂,⊙) ein Monoid ist. Wegen [a, b] ⊙ [c, d] = [ac, bd] = [ca, d b] = [c, d] ⊙ [a, b] ist die
Verknüpfung ⊙ kommutativ, und die Assoziativität ergibt sich aus der Rechnung [a, b]⊙ ([c, d]⊙ [e, f ]) = [a, b]⊙
[ce, d f ] = [a(ce), b(d f )] = [(ac)e, (bd) f ] = [ac, bd]⊙ [e, f ] = ([a, b]⊙ [c, d])⊙ [e, f ]. Dass 1R̂ = [1R, 1R] in (R̂,⊙)
ein Neutralelement ist, ergibt sich aus der Rechnung [a, b] · [1R, 1R] = [a · 1R, b · 1R] = [a, b]. Es fehlt noch der
Nachweis des Distributivgesetzes. Dieses erhält man durch

[a, b]⊙ ([c, d]⊕ [e, f ]) = [a, b]⊙ [c f + de, d f ] = [ac f + ade, bd f ] =

[acb f + bdae, b2d f ] = [ac, bd]⊕ [ae, b f ] = [a, b]⊙ [c, d]⊕ [a, b]⊙ [e, f ].
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Damit ist der Beweis der Ringeigenschaften abgeschlossen. Darüber hinaus ist (R̂,⊕,⊙) sogar ein Körper. Ist nämlich
α = [a, b] ein Element von R̂ mit [a, b] ̸= [0R, 1R], dann ist [b, a] wegen bR ̸= 0R ein Kehrwert von α, denn wegen
(ab, ab)∼ (1R, 1R) gilt [a, b]⊙[b, a] = [ab, ba] = [1R, 1R]. Also sind sämtliche Elemente der Menge R̂\{0R̂} Einheiten.
Außerdem ist R̂ kein Nullring. Denn andernfalls würde [0R, 1R] = 0R̂ = 1R̂ = [1R, 1R] gelten, woraus (0R, 1R)∼ (1R, 1R)
und 0R · 1R = 1R · 1R, also 0R = 1R folgen würde, im Widerspruch dazu, dass der Ring R als Integritätsbereich kein
Nullring ist. □

Nach diesen Vorbereitungen können wir nun zeigen

Satz 11.20 Zu jedem Integritätsbereich existiert ein Quotientenkörper.

Beweis: Sei (R̂,⊕,⊙) der in Proposition 11.19 definierte Körper. Durch die Abbildung φR : R→ R̂, a 7→ [a, 1R] ist ein
Monomorphismus von Ringen definiert. Denn es gilt φR(1R) = [1R, 1R] = 1R̂, und für alle a, b ∈ R ist φR(a + b) =
[a+ b, 1R] = [a, 1R]⊕ [b, 1R] = φR(a)⊕φR(b) und φR(ab) = [ab, 1R] = [a, 1R]⊙ [b, 1R] = φR(a)⊙φR(b). Außerdem
ist φ injektiv. Ist nämlich a ∈ R mit φR(a) = 0R̂, dann folgt [a, 1R] = φR(a) = [0R, 1R] und somit a · 1R = 0R · 1R, also
a = 0R. Nach Satz 11.16 existiert nun ein Erweiterungsring K von R und ein Isomorphismus φ̂R : K → R̂ von Ringen
mit φ̂R|R = φR. Um zu zeigen, dass K nun ein Quotientenkörper von R ist, müssen wir für ein beliebig vorgegebenes
Element α ∈ K zeigen, dass ein Paar (a, b) ∈ XR mit α= ab−1 existiert. Wegen φ̂R(α) ∈ R̂ gibt es ein Paar (a, b) in XR

mit φ̂R(α) = [a, b]. Auf Grund der Eigenschaft φ̂R|R = φR von φ̂R erhalten wir

φ̂R(α) = [a, b] = [a, 1R]⊙ [b, 1R]
−1 = φR(a)φR(b)

−1 = φ̂R(a)φ̂R(b)
−1 = φ̂R(ab−1)

wobei das Element ab−1 im letzten Schritt im Körper K gebildet wird. Auf Grund der Injektivität von φ̂R folgt α =
ab−1, wie gewünscht. □

Durch den folgenden Satz wird präzisiert, in welchem Sinn der Quotientenkörper eines Integritätsbereichs eindeutig
bestimmt ist.

Satz 11.21 Sei R ein Integritätsbereich, und seien K und L beides Quotientenkörper von R.
Dann existiert ein Isomorphismus ψ : K → L von Körper mit ψ|R = idR.

Beweis: Sei R̂ = XR/∼ der in Proposition 11.19 konstruierte Körper. Wir zeigen zunächst, dass ein Körperisomor-
phismus ψ1 : R̂ → K existiert, der jeweils die Äquivalenzklasse [a, b] ∈ R̂ auf ab−1 abbildet. Dazu betrachten wir
die Abbildung ψ̂ : XR → K gegeben durch ψ̂(a, b) = ab−1. Sind zwei Paare (a, b), (c, d) ∈ XR mit (a, b) ∼ (c, d)
vorgegeben, dann gilt ad = bc nach Definition der Relation ∼, was wegen b, d ̸= 0 zu ab−1 = cd−1 umgeformt
werden kann. Es folgt ψ̂(a, b) = ab−1 = cd−1 = ψ̂(c, d).

Teil (i) von Satz 4.25 liefert nun eine Abbildung ψ1 : R̂ → K gegeben durch ψ1([a, b]) = ψ̂(a, b) = ab−1 für
alle (a, b) ∈ XR. Wir überprüfen, dass es sich bei ψ1 um einen Körperisomorphismus handelt. Wie wir im Beweis
von Proposition 11.19 festgestellt haben, ist [1R, 1R] das Einselement von R̂, und es ist ψ1([1R, 1R]) = 1R · 1−1

R =
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1R = 1K . Die Abbildung ψ1 ist verträglich mit der Addition und der Multiplikation, denn für beliebig vorgegebene
[a, b], [c, d] ∈ R̂ gilt sowohl

ψ1([a, b] + [c, d]) = ψ1([ad + bc, bd]) = (ad + bc)(bd)−1

= ab−1 + cd−1 = ψ1([a, b]) +ψ1([c, d])

als auch ψ1([a, b] · [c, d]) = ψ1([ac, bd]) = (ac)(bd)−1 = (ab−1)(cd−1) = ψ1([a, b]) ·ψ1([c, d]). Dies zeigt, dass
ψ1 jedenfalls ein Körperhomomorphismus ist, und als solcher nach Proposition 9.7 auch injektiv. Darüber hinaus
ist ψ1 auch surjektiv. Ist nämlich α ∈ K vorgegeben, dann existieren a, b ∈ R mit b ̸= 0R und α = ab−1, da K ein
Quotientenkörper von R ist. Es folgt dann [a, b] ∈ R̂ und ψ1([a, b]) = ab−1 = α.

Genauso sieht man nun, dass auch ein Körperisomorphismus ψ2 : R̂→ L existiert. Folglich ist durch ψ = ψ2 ◦ψ−1
1

ein Isomorphismus K → L definiert. Dieser erfüllt auch die Bedingung ψ|R = idR, denn für alle a ∈ R ist ψ(a) =
(ψ2 ◦ψ−1

1 )(a) = (ψ2 ◦ψ−1
1 )(a · 1

−1
R ) =ψ2([a, 1R]) = a · 1−1

R = a = idR. □

Kommen wir nun zum zweiten Thema dieses Kapitels, den Polynomringen. Die folgende Definition ist bereits aus der
Linearen Algebra bekannt.

Definition 11.22 Sei R ein Ring. Ein Erweiterungsring S von R wird Polynomring über R
genannt, wenn es ein ausgezeichnetes Element x ∈ S gibt mit der Eigenschaft, dass für jedes
Element f ∈ R[x]\{0R} ein eindeutig bestimmtes n ∈N0 und eindeutig bestimmte a0, ..., an ∈ R
existieren, so dass an ̸= 0 ist und f in der Form

f = an xn + an−1 xn−1 + ...+ a1 x + a0 dargestellt werden kann.

Das ausgezeichnete Elemente x nennt man die Variable (oder Unbestimmte) des Polynomrings. Für einen Polynom-
ring S über einem Ring R mit der Variablen x wird in der Regel die Bezeichnung R[x] verwendet. Die Elemente
von R[x] heißen Polynome übe dem Ring R. Man bezeichnet die Zahl n in der Definition als den Grad grad( f ) des
Polynoms f . Das Polynom an xn ist der Leitterm, das Element an ∈ R der Leitkoeffizient von f .

Es sei ausdrücklich darauf hingewiesen, dass das Element x im Polynomring R[x] kein Element von R ist, sofern
es sich bei R nicht um einen Nullring handelt. Wäre x = 0R, dann würde 1R = x + 1R gelten, was im Widerspruch
dazu steht, dass jedes Element von R[x] ungleich Null genau eine Darstellung als Polynomausdruck besitzt. Im Fall
x ∈ R \ {0R} erhalten wir ebenfalls einen Widerspruch zu dieser Eindeutigkeit, denn dann könnte x sowohl als
Polynom vom Grad 0 (mit a0 = x) als auch als Polynom vom Grad 1 aufgefasst werden (in der Form 1R · x +0R, also
mit a0 = 0R und a1 = 1R).

Für die folgenden Ausführungen ist es wichtig, sich noch einmal ins Gedächtnis zu rufen, wie Polynome addiert und
multipliziert werden. Seien f , g ∈ R[x]mit f =

∑m
k=0 ak x k und g =

∑n
ℓ=0 bℓx

ℓ. Bei der Addition bietet es sich an, die
Koeffizienten ak und bℓ auch für k > m und ℓ > n zu definieren, indem man ak = 0 und bℓ = 0 setzt. Die Polynome
können dann in der Form

f =
∑

k∈N0

ak x k und g =
∑

ℓ∈N0

bℓx
ℓ
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dargestellt werden, und die Summe hat dann die Form

f + g =
∑

r∈N0

(ar + br)x
r .

Das Produkt von f und g erhält man durch die Rechnung

f g =

�

m
∑

k=0

ak x k

��

n
∑

ℓ=0

bℓx
ℓ

�

=
m
∑

k=0

n
∑

ℓ=0

ak bℓx
k+ℓ =

m+n
∑

r=0











∑

k,ℓ≥ 0
k+ ℓ= r

ak bℓ











x r =
m+n
∑

r=0

�

r
∑

ℓ=0

ar−ℓbℓ

�

x r .

Wie bei den Quotientenkörpern beschäftigen wir uns zunächst mit der Frage der Eindeutigkeit.

Satz 11.23 (universelle Eigenschaft des Polynomrings)

Für jeden Ringhomomorphismus φ : R→ S und jedes a ∈ S gibt es einen eindeutig bestimmten
Ringhomomorphismus φ̂ : R[x]→ S mit φ̂|R = φ und φ̂(x) = a.

Beweis: Zunächst beweisen wir die Existenz des Homomorphismus φ̂. Jedes Element 0R ̸= f ∈ R[x] besitzt eine
Darstellung der Form

f =
n
∑

k=0

ak x k mit n ∈N0, a0, ..., an ∈ R und an ̸= 0R ,

und diese ist eindeutig bestimmt. Wir definieren eine Abbildung φ̂ : R[x]→ S, indem wir φ̂(0R) = 0S und φ̂( f ) =
∑n

k=0φ(ak)ak setzen. Zu zeigen ist, dass wir auf diese Weise einen Ringhomomorphismus definiert haben. Da das
Element 1R als Polynom in R[x] vom Grad Null aufgefasst werden kann, gilt zunächst φ̂(1R) = φ(1R) = 1S nach
Definition von φ̂. Seien nun f , g ∈ R[x] vorgegeben. Ist eines dieser Elemente gleich Null, dann sind die Gleichungen
φ̂( f + g) = φ̂( f )+ φ̂(g) und φ̂( f g) = φ̂( f )φ̂(g) wegen φ̂(0R) = 0S offensichtlich erfüllt. Wir können also f , g ̸= 0R

annehmen und damit voraussetzen, dass f und g Darstellungen der Form

f =
m
∑

k=0

ak x k und g =
n
∑

ℓ=0

bℓx
ℓ

besitzen, mit m, n ∈N0, ak, bℓ ∈ R und am, bn ̸= 0R. Wie oben setzen wir ak = 0R für k > m und bℓ = 0 für ℓ > n. Auf
Grund der Rechenregeln für die Addition und Multiplikation von Polynomen gilt dann

φ̂( f + g) = φ̂

 

∑

r∈N0

(ar + br)x
r

!

=
∑

r∈N0

φ(ar + br)a
r =

∑

r∈N0

(φ(ar) +φ(br)) a
r

=
∑

k∈N0

φ(ak)a
k +

∑

ℓ∈N0

φ(bℓ)a
ℓ = φ̂

 

∑

k∈N0

ak x k

!

+ φ̂

 

∑

ℓ∈N0

bℓx
ℓ

!

= φ̂( f ) + φ̂(g)
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sowie

φ̂( f g) = φ̂

�

m+n
∑

r=0

�

r
∑

ℓ=0

ar−ℓbℓ

�

x r

�

=
m+n
∑

r=0

�

r
∑

ℓ=0

φ(ar−ℓ)φ(bℓ)

�

ar =

�

m
∑

k=0

φ(ak)a
k

��

n
∑

ℓ=0

φ(bℓ)a
ℓ

�

= φ̂( f )φ̂(g).

Für den Beweis der Eindeutigkeit nehmen wir an, dass neben φ̂ durchψ ein weiterer Ringhomomorphismus R[x]→ S
mit ψ(x) = a und ψ|R = φ gegeben ist. Auf Grund der Homomorphismus-Eigenschaft gilt φ̂(0R) = 0S = ψ(0R). Sei
nun f ∈ R[x] ein Element mit f ̸= 0R[x], also f =

∑n
k=0 ak x k mit a0, ..., an ∈ R und an ̸= 0R. Es gilt dann

φ̂( f ) = φ̂

�

m
∑

k=0

ak x k

�

=
m
∑

k=0

φ̂(ak x k) =
m
∑

k=0

φ(ak)a
k =

m
∑

k=0

ψ(ak x k) = ψ

�

m
∑

k=0

ak x k

�

= ψ( f ).

Damit ist die Eindeutigkeit von φ̂ bewiesen. □

Ist S = R oder ein Erweiterungsring von R, dann bezeichnet man den eindeutig bestimmten Homorphismus φ̂ aus
Satz 11.23 als den Auswertungshomomorphismus an der Stelle a.

Folgerung 11.24 Je zwei Polynomringe über einem Ring R sind isomorph.

Beweis: Nehmen wir an, dass R[x] ⊇ R und R̃[y] ⊇ R beides Polynomringe über R sind. Nach Satz 11.23 gibt es
eindeutig bestimmte Homomorphismen φ : R[x]→ R̃[y] und ψ : R̃[y]→ R[x] mit φ|R =ψ|R = idR sowie φ(x) = y
undψ(y) = x . Damit istψ◦φ ein Ringhomomorphismus R[x]→ R[x]mit (ψ◦φ)|R = idR und (ψ◦φ)(x) = x . Aber
auch der Homomorphismus idR[x] besitzt diese Eigenschaft. Auf Grund der Eindeutigkeit muss also ψ ◦φ = idR[x]

gelten. Genauso beweist man die Gleichung φ ◦ψ= idR̃[y]. Also ist φ ein Isomorphismus von Ringen. □

Kommen wir nun zum Beweis der Existenz eines Polynomrings über jedem Ring R. Ein Polynom der Form a0+ a1 x +
...+an xn ist bestimmt durch die Folge a0, a1, ..., an seiner Koeffizienten, also durch die Abbildung k 7→ ak (wobei k für
k > n auf 0R abgebildet wird). Diese Beobachtung führt uns auf die Idee, Polynome durch Abbildungen darzustellen.

Es sei PR die Menge aller Abbildungen f : N0 → R mit der Eigenschaft, dass f (k) = 0R für alle bis auf endlich viele
k ∈ N0 gilt. Zur Definition geeigneter Verknüpfungen orientieren wir uns an den Rechenregeln zur Addition und
Multiplikation von Polynomen. Dementsprechend definieren wir auf PR zwei Verknüpfungen ⊕ und ⊙ durch

( f ⊕ g)(n) = f (n) + g(n) und ( f ⊙ g)(n) =
n
∑

k=0

f (n− k)g(k) =
∑

k+ℓ=n

f (ℓ)g(k).

Für jedes a ∈ R sei ã ∈ PR das Element gegeben durch ã(0) = a und ã(n) = 0R für alle n ≥ 1. Diese Elemente sollen
den konstanten Polynomen a ∈ R entsprechen. Außerdem definieren wir ein Element x̃ ∈ PR durch x̃(1) = 1R und
x̃(n) = 0R für n ̸= 1. Dieses Element übernimmt die Rolle der Variablen x im Polynomring R[x].

Lemma 11.25 Das Tripel (PR,⊕,⊙) ist ein Ring, mit 0̃ als Null- und 1̃ als Einselement.

Beweis: Zunächst überprüfen wir, dass (PR,⊕) eine abelsche Gruppe ist. Seien f , g, h ∈ PR vorgegeben. Es gilt

(( f ⊕ g)⊕ h)(n) = ( f ⊕ g)(n) + h(n) = ( f (n) + g(n)) + h(n) = f (n) + (g(n) + h(n)) =

f (n) + (g ⊕ h)(n) = ( f ⊕ (g ⊕ h))(n)
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für jedes n ∈ N0 und somit ( f ⊕ g)⊕ h = f ⊕ (g ⊕ h) für alle f , g, h ∈ PR. Ebenso gilt ( f ⊕ g)(n) = f (n) + g(n) =
g(n) + f (n) = (g ⊕ f )(n) für alle n ∈N0 und somit f ⊕ g = g ⊕ f .

Für jedes n ∈N0 gilt ( f ⊕0̃)(n) = f (n)+0̃(n) = f (n)+0R = f (n), also f ⊕0̃= f . Sei nun die Abbildung (− f ) :N0→ R
definiert durch (− f )(n) = − f (n) für alle n ∈ N0. Dann gilt − f ∈ PR, und für alle n ∈ N0 ist ( f ⊕ (− f ))(n) =
f (n) + (− f )(n) = fn + (− f (n)) = 0R = 0̃(n). Wir erhalten f ⊕ (− f ) = 0̃. Insgesamt ist (PR,⊕) also tatsächlich eine
abelsche Gruppe.

Als nächstes beweisen wir für die Verknüpfung ⊙ das Assoziativgesetz. Seien dazu f , g, h ∈ PR vorgegeben. Für alle
n ∈N0 gilt

(( f ⊙ g)⊙ h)(n) =
∑

k+ℓ=n

( f ⊙ g)(k)h(ℓ) =
∑

k+ℓ=n

 

∑

i+ j=k

f (i)g( j)

!

h(ℓ) =

∑

k+ℓ=n

∑

i+ j=k

f (i)g( j)h(ℓ) =
∑

i+ j+ℓ=n

f (i)g( j)h(ℓ).

Ebenso erhalten wir

( f ⊙ (g ⊙ h))(n) =
∑

i+k=n

f (i)(g ⊙ h)(k) =
∑

i+k=n

f (i)

 

∑

j+ℓ=k

g( j)h(ℓ)

!

=

∑

i+k=n

∑

j+ℓ=k

f (i)g( j)h(ℓ) =
∑

i+ j+k=n

f (i)g( j)h(ℓ).

Insgesamt gilt also ( f ⊙ g)⊙ h = f ⊙ (g ⊙ h). Nun überprüfen wir, dass 1̃ in (PR,⊙) das Neutralelement ist. Wegen
1̃(k) = 0R für k > 0 gilt für alle n ∈N0 jeweils

( f ⊙ 1̃)(n) =
n
∑

k=0

f (n− k)1̃(k) = f (n− 0) · 1 = f (n)

und somit f ⊙ 1̃ = f . Zum Schluss müssen wir noch das Distributivgesetz überprüfen. Wieder seien f , g, h ∈ PR

vorgegeben. Für jedes n ∈N0 gilt

( f ⊙ (g ⊕ h))(n) =
n
∑

k=0

f (n− k)(g ⊕ h)(k) =
n
∑

k=0

f (n− k) (g(k) + h(k)) =

n
∑

k=0

f (n− k)g(k) +
n
∑

k=0

f (n− k)h(k) = ( f ⊙ g)(n) + ( f ⊙ h)(n) = (( f ⊙ g)⊕ ( f ⊙ h))(n)

also tatsächlich f ⊙ (g ⊕ h) = ( f ⊙ g)⊕ ( f ⊙ h). □

Lemma 11.26 Sei a ∈ R und m ∈ N0. Dann gilt (ã ⊙ x̃m)(m) = a, und (ã ⊙ x̃m)(n) = 0R für
alle n ∈N0 \ {m}.

Beweis: Wir beweisen durch vollständige Induktion über m ∈N0, dass xm(m) = 1R und für alle n ̸=N0 \{m} jeweils
x̃m(n) = 0R gilt. Für m= 0 ist x̃0 = 1̃, und es gilt 1̃(0) = 1R und 1̃(n) = 0R für alle n> 0. Sei nun m ∈N0 vorgegeben,
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und setzen wir die Aussage für dieses m voraus. Zunächst gilt

x̃m+1(m+ 1) = ( x̃m ⊙ x̃)(m+ 1) =
m+1
∑

k=0

( x̃m)(m+ 1− k) x̃(k) = x̃m(m+ 1− 1) x̃(1)

= x̃m(m) x̃(1) = 1R · 1R = 1R ,

wobei wir im dritten und fünften Schritt die definierende Eigenschaft von x̃ und im fünften Schritt außerdem die
Induktionsvoraussetzung angewendet haben. Für jedes n ∈N0 \ {m+ 1} gilt dagegen n− 1 ̸= m und somit

x̃m+1(n) = ( x̃m ⊙ x̃)(n) =
m+1
∑

k=0

( x̃m)(n− k) x̃(k) = x̃m(n− 1) x̃(1) = 0R · 1R = 0R.

Damit ist der Induktionsbeweis abgeschlossen. Für jedes m ∈N gilt nun außerdem

(ã⊙ xm)(n) =
n
∑

k=0

ã(n− k)xm(k) = ã(0)xm(n) = a · xm(n) ,

also (ã⊙ xm)(n) = a · 1R = a im Fall n= m und (ã⊙ xm)(n) = a · 0R = 0R im Fall n ̸= m. □

Lemma 11.27 Für jedes f ∈ PR \ {0̃} gibt es ein eindeutig bestimmtes n ∈ N0 und eindeutig
bestimmte a0, a1, ..., an ∈ R, so dass an ̸= 0R und

f = (ãn ⊙ x̃n)⊕ ... ⊕ (̃a1 ⊙ x̃)⊕ ã0 gilt.

Beweis: Zum Nachweis der Existenz sei f ∈ PR \{0̃} vorgegeben und n ∈N0 maximal mit der Eigenschaft f (n) ̸= 0R.
Sei ak = f (k) für 0≤ k ≤ n und g = (ãn ⊙ x̃n)⊕ ...⊕ (ã1 ⊙ x̃)⊕ ã0. Dann gilt für 0≤ k ≤ n jeweils

g(k) =
n
∑

ℓ=0

(ãℓ ⊙ x̃ℓ)(k) = ak = f (k) ,

wobei im zweiten Schritt Lemma 11.26 angewendet wurde. Für k > n gilt g(k) = 0R = f (k), insgesamt also f = g.
Für den Nachweis der Eindeutigkeit seien m ∈N0 und b0, ..., bm ∈ R, so dass bm ̸= 0R und

f = (b̃m ⊙ x̃m)⊕ ... ⊕ (b̃1 ⊙ x̃)⊕ b̃0 erfüllt ist.

Wie im letzten Absatz überprüft man, dass f (k) = bk für 0 ≤ k ≤ m und f (k) = 0R für k > m gilt. Somit ist m die
maximale Zahl mit der Eigenschaft f (m) ̸= 0R, und es folgt m= n. Außerdem gilt bk = f (k) = ak für 0≤ k ≤ n. □

Satz 11.28 Zu jedem Ring R existiert ein Polynomring über R.

Beweis: Seiφ : R→ PR definiert durchφ(a) = ã für alle a ∈ R. Diese Abbildung ist ein Homomorphismus von Ringen.
Denn φ bildet 1R auf das Einselement 1̃ von PR ab. Für beliebige a, b ∈ R gilt außerdem φ(a+ b) = φ(a)⊕φ(b) und
φ(ab) = φ(a)⊙φ(b). Denn es gilt φ(a + b)(0) = a + b = φ(a)(0) +φ(b)(0) = (φ(a)⊕φ(b))(0) und φ(ab)(0) =
ab = φ(a)(0)φ(b)(0) = (φ(a) ⊙ φ(b))(0), und für jedes n ∈ N gilt φ(a + b)(n) = 0R = (φ(a) ⊕ φ(b))(n) sowie
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φ(ab)(n) = φ(a)(n) ·φ(b)(n) = (φ(a)⊙φ(b))(n). Außerdem ist φ injektiv. Ist nämlich φ(a) = 0̃ für ein a ∈ R, dann
folgt a = ã(0) = φ(a)(0) = 0̃(0) = 0R.

Wir können nun Satz 11.16 auf den Monomorphismus φ anwenden. Wir erhalten einen Erweiterungsring von R, den
wir mit R[x] bezeichnen, und einen Isomorphismus φ̂ : R[x]→ PR mit φ̂|R = φ. Außerdem setzen wir x = φ̂−1( x̃).
Wegen φ̂|R = φ gilt φ̂(a) = φ(a) = ã für alle a ∈ R. Sei nun f ∈ R[x] \ {0} beliebig vorgeben und f̃ = φ̂( f ). Nach
Lemma 11.27 gibt es ein eindeutig bestimmtes n ∈N0 und eindeutig bestimmte a0, ..., an ∈ R mit an ̸= 0R, so dass

f̃ = (ãn ⊙ x̃n)⊕ ... ⊕ (ã1 ⊙ x̃)⊕ ã0 gilt.

Durch Anwendung von φ̂−1 auf beide Seiten der Gleichung erhalten wir auf Grund der Homomorphismus-Eigen-
schaft die Gleichung f = an xn+ ...+a1 x+a0. Aus der Eindeutigkeit von n und a0, ..., an für das Element f̃ folgt auch
die Eindeutigkeit für das Element f . Nehmen wir nämlich an, dass auch f = bm xm + ... + b1 x + b0 erfüllt ist, mit
m ∈N0 und b0, b1, ..., bm. Dann folgt

(ãn ⊙ x̃n)⊕ ... ⊕ (ã1 ⊙ x̃)⊕ ã0 = f̂ = φ̂( f ) = (b̃m ⊙ x̃m)⊕ ... ⊕ (b̃1 ⊙ x̃)⊕ b̃0 ,

und die Eindeutigkeitsaussage in Lemma 11.27, angewendet auf das Element f̂ ∈ PR \ {0̃}, liefert die Gleichungen
m= n und ak = bk für 0≤ k ≤ n. □

Zum Abschluss des Kapitels befassen wir uns noch mit den algebraischen Eigenschaften der Polynomringe.

Proposition 11.29 Sei R ein Ring und R[x] ein Polynomring über R.

(i) Sind 0R ̸= f , g ∈ R[x] und gilt auch f + g ̸= 0R und f g ̸= 0R, dann folgt

grad( f + g)≤max{grad( f ), grad(g)} und grad( f g)≤ grad( f ) + grad(g).

(ii) Ist R ein Integritätsbereich, dann gilt dasselbe auch für den Ring R[x]. In diesem Fall gilt
sogar grad( f g) = grad( f ) + grad(g) für alle f , g ∈ R[x] mit f , g ̸= 0R.

Beweis: zu (i) Sei m = grad( f ) und n = grad(g). Dann können wir f und g in der Form f =
∑m

k=0 ak xm und
g =

∑n
ℓ=0 bℓx

ℓ darstellen, mit geeigneten ak, bℓ ∈ R. Wie zuvor definieren wir die Koeffizienten von ak und bℓ auch
für k > m und ℓ > n, indem wir sie auf Null setzen. Wie wir oben festgestellt haben, gilt f + g =

∑

r∈N0
(ar + br)x r .

Dabei ist ar + br ̸= 0R nur möglich, wenn ar ̸= 0R oder br ̸= 0R gilt, also wenn r ≤ m oder r ≤ n ist, was mit
r ≤ max{m, n} gleichbedeutend ist. Daraus folgt grad( f + g) ≤ max{m, n} = max{grad( f ), grad(g)}. Ebenso zeigt
die Gleichung f g =

∑m+n
r=0 (

∑r
ℓ=0 ar−ℓbℓ)x r , dass grad( f g)≤ m+ n= grad( f ) + grad(g) gilt.

zu (ii) Der Koeffizient von xm+n des Polynoms f g ist gegeben durch
∑m+n
ℓ=0 am+n−ℓbℓ = am bn, denn für ℓ > n ist

bℓ = 0R, und für ℓ < n ist m+ n− ℓ > m und somit am+n−ℓ = 0R. Ist R ein Integritätsbereich, dann folgt aus am ̸= 0R

und bn ̸= 0R auch am bn ̸= 0R. Inbesondere ist das Produkt zweier Polynome ungleich Null wiederum ungleich Null;
außerdem ist mit R auch der Polynomring R[x] kein Nullring. Dies zeigt, dass auch R[x] ein Integritätsbereich ist. □

Folgerung 11.30 Sei R ein Integritätsbereich. Dann gilt R[x]× = R×, d.h. die Einheitengruppe
des Polynomrings R[x] stimmt mit der Einheitengruppe des Grundrings R überein.
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Beweis: Sei a ∈ R×. Dann gibt es ein b ∈ R mit ab = 1R = 1R[x]. Dies zeigt, dass jede Einheit in R auch eine Einheit
in R[x] ist. Sei nun umgekehrt f eine Einheit in R[x]. Dann gibt es ein Element g ∈ R[x] mit f g = 1R[x] = 1R. Mit
Proposition 11.29 (ii) erhalten wir grad( f ) + grad(g) = grad( f g) = grad(1R) = 0, und wegen grad( f ), grad(g) ≥ 0
folgt daraus grad( f ) = grad(g) = 0. Also sind f und g beides Elemente des Grundrings R. Aus der Gleichung f g = 1
folgt nun, dass f in R× enthalten ist. □

Man beachte, dass die Folgerung für Nicht-Integritätsbereiche im Allgemeinen falsch ist. Hier kann es in R[x]× auch
Elemente mit Polynomgrad ≥ 1 geben. Im Restklassenring Z/4Z gilt beispielsweise 2̄ · 2̄ = 0̄, das Element 2̄ ist also
ein Nullteiler. Daraus folgt, dass das Polynom f = 2̄x + 1̄ im Polynomring Z/4Z[x] eine Einheit ist, denn es gilt
f · f = (2̄x + 1̄)(2̄x + 1̄) = (2̄ · 2̄)x2 + (2̄+ 2̄)x + 1̄= 0̄ · x2 + 0̄ · x + 1̄= 1̄.
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§ 12. Euklidische Ringe, Hauptidealringe und faktorielle Ringe

Zusammenfassung. Beim euklidischen Algorithmus handelt es sich um ein Verfahren, das in endlich vielen
Schritten den ggT zweier Ringelemente ermittelt. Die Ringe, für die ein solches Verfahren existiert, bezeichnet
man als euklidische Ringe. Wir werden zeigen, dass jeder euklidische Ring auch ein Hauptidealring ist.

Für den Begriff der Primzahl gibt es in beliebigen Integritätsbereichen zwei naheliegende Verallgemeinerun-
gen, nämlich den Begriff des Primelements und den des irreduziblen Elements. In den faktoriellen Ringen, zu
denen die Hauptidealringe zählen, fallen beide Begriffe zusammen. Darüber hinaus sind diese Ringe dadurch
ausgezeichnet, dass für deren Elemente eine „im Wesentlichen eindeutige“ Primfaktorzerlegung existiert.

Wichtige Grundbegriffe

– Normfunktion auf C

– euklidischer Ring, Höhenfunktion

– irreduzibles Element, Primelement

– Repräsentantensystem der Primelemente

– faktorieller Ring

Zentrale Sätze

– Euklidische Ringe sind Hauptidealringe.

– Hauptidealringe sind faktorielle Ringe.

– Korrektheit des Euklidischen Algorithmus

– Nachweis von irreduziblen Elementen mit der Normfuktion

– Beschreibung der Primideale und der maximalen Ideale in
Hauptidealringen

– Charakterisierung der faktoriellen Ringe

In Satz 9.17 haben wir für jedes d ∈ Z den quadratischen Zahlring Z[
p

d] und im Fall d ≡ 1 mod 4 auch den Ring
Z[ 1

2 (1+
p

d)] eingeführt. Um die Teilerrelation und auch die Idealstruktur dieser Ringe zu untersuchen, wird sich
die folgende Funktion als wichtiges Hilfsmittel erweisen.

Definition 12.1 Die Normfunktion N : C→R+ ist definiert durch

N(z) = zz̄ = |z|2 für alle z ∈ C.

Wie der komplexe Absolutbetrag ist auch die Normfunktion N multiplikativ. Das bedeutet, dass für alle z, w ∈ C die
Gleichung N(zw) = N(z)N(w) erfüllt ist.

Lemma 12.2 Sei d ∈N.

(i) Ist α ∈Z[
p
−d], α= a+ b

p
−d mit a, b ∈Z, dann ist N(α) = a2 + d b2 ∈N0.

(ii) Gilt (−d) ≡ 1 mod 4, R = Z[ 1
2 (1 +

p
−d)] und ist α = 1

2 a + 1
2 b
p
−d mit a, b ∈ Z, a ≡

b mod 2, dann ist N(α) = 1
4 a2 + 1

4 d b2 ∈N0.

Sind α,β im Fall (i) oder (ii) jeweils Elemente des Rings R und gilt α | β , dann ist N(α) ein Teiler
von N(β) im Ring Z.
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Beweis: Ist z = u+ iv ∈ C mit u, v ∈ R, dann gilt jeweils N(z) = zz̄ = (u+ iv)(u− iv) = u2 + v2. Wendet man dies
unter (i) auf u = a und v = b

p
−d an, dann erhält man N(α) = a2 + d b2. Aus a, b ∈ Z folgt offenbar N(α) ∈ N0.

Ebenso erhält man mit u = 1
2 a und v = 1

2 b
p
−d die Gleichung in Teil (ii). Man überprüft unmittelbar, dass im Fall

a ≡ b ≡ 0 mod 2 die Zahlen a2 und b2 durch 4 teilbar sind. Deshalb ist auch a2 + d b2 ein Vielfaches von 4, und es
folgt N(α) ∈N0. Im Fall a ≡ b ≡ 1 mod 2 gilt a2 ≡ b2 ≡ 1 mod 4. Wegen d ≡ 3 mod 4 ist dann a2 + d b2 ≡ 0 mod 4
und somit N(α) ∈N0 in dieser Situation ebenfalls erfüllt.

Sei nun entweder R = Z[
p
−d] oder R = Z[ 1

2 (1+
p
−d)], letzteres nur unter der Voraussetzung im −d ≡ 1 mod 4.

Seien α,β ∈ R mit α | β . Dann existiert ein γ ∈ R mit β = γα. Auf Grund der Multiplikativität von N folgt N(β) =
N(γ)N(α). Also ist N(α) ein Teiler von N(β) im Ring Z. □

Wir führen einen neuen Ringtyp ein, der dadurch gekennzeichnet ist, dass in ihm eine „Division mit Rest“ ausgeführt
werden kann (und sinnvoll definiert ist). Wie wir sehen werden, hat dies unter anderem zur Folge, dass je zwei
Ringelemente a, b einen ggT besitzen, sofern sie nicht beide Null sind.

Definition 12.3 Eine Höhenfunktion auf einem Integritätsbereich R ist eine Abbildung h :
R \ {0R} → N mit der folgenden Eigenschaft: Sind a, b ∈ R, b ̸= 0R, dann gibt es Elemente
q, r ∈ R, so dass die Gleichung a = qb + r erfüllt ist und außerdem entweder r = 0R oder
h(r) < h(b) gilt. Ein euklidischer Ring ist ein Integritätsbereich, auf dem eine Höhenfunktion
existiert.

Gelegentlich bietet es sich an, für die Höhenfunktion eine Abbildung R \ {0R} →N0, also mit Wertebereich N0 statt
N zu verwenden. Der Begriff des euklidischen Rings ändert sich dadurch nicht. Ist nämlich h eine Höhenfunktion
mit Wertebereich N0, dann ist durch h̃(a) = h(a) + 1 eine Höhenfunktion mit Wertebereich N definiert.

Wir werden nun drei konkrete Beispiele für euklidische Ringe angeben. Im Hinblick auf das erste Beispiel erinnern
wir an die Definition der untern Gaußklammer: Nach Definition ist ⌊x⌋ für x ∈R jeweils die größte ganze Zahl a mit
a ≤ x . Es ist also beispielsweise ⌊ 65 ⌋= 1 und ⌊− 3

2 ⌋= −2.

Proposition 12.4

(i) Der Ring Z der ganzen Zahlen ist ein euklidischer Ring, denn die Abbildung h :Z\{0} →
N gegeben durch h(a) = |a| ist eine Höhenfunktion auf diesem Ring.

(ii) Sei K ein Körper. Dann ist der Polynomring K[x] ein euklidischer Ring mit der Höhen-
funktion gegeben durch die Gradabbildung, also h( f ) = grad( f ) für alle f ∈ K[x]\{0K}.

(iii) Der RingZ[i] ist ein euklidischer Ring, wobei eine Höhenfunktion durch die aufZ[i]\{0}
eingeschränkte Normfunktion gegeben ist.

Beweis: zu (i) Als Teilring des KörpersQ ist Z auf jeden Fall ein Integritätsbereich. Um zu zeigen, dass h tatsächlich
eine Höhenfunktion ist, seien a, b ∈ Z mit b ̸= 0 vorgegeben. Wir betrachten zunächst den Fall b > 0. Setzen wir
q = ⌊ ab ⌋ und r = a − qb, dann ist die Gleichung a = qb + r nach Definition erfüllt. Auf Grund der Definition der
unteren Gaußklammer gilt q ≤ a

b < q+ 1. Multiplikation mit b liefert qb ≤ a < (q+ 1)b, und durch Subtraktion von
qb erhalten wir schließlich 0≤ r < b. Also gilt entweder r = 0 oder h(r)< h(b).
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Betrachten wir nun den Fall b < 0. Dann ist b1 = −b > 0, und wie wir bereits gezeigt haben, gibt es q1, r1 ∈ R mit
a = q1 b1 + r1 und r1 = 0 oder h(r1) < h(b1). Setzen wir q = −q1 und r = r1, dann gilt a = qb + r und entweder
r = 0 oder h(r) = h(r1)< h(b1) = h(b).

zu (ii) Nach Proposition 11.29 ist mit K auch der Ring K[x] ein Integritätsbereich. Sei nun 0 ̸= g ∈ K[x] vorgegeben,
mit m= grad(g) und

g =
m
∑

i=0

bi x
i , b0, ..., bm ∈ R , bm ̸= 0.

Durch vollständige Induktion über n ∈ N0 zeigen wir: Ist f ∈ K[x] mit n = grad( f ), dann gibt es ein q ∈ K[x], so
dass für r = f − qg entweder r = 0 oder grad(r) < m gilt. Im Fall n < m können wir einfach q = 0, r = f setzen,
und es ist nichts zu zeigen. Sei nun n ∈N0, n ≥ m, und setzen wir die Aussage für die Polynomgrade < n als gültig
voraus. Sei f ein Polynom vom Grad n, also

f =
n
∑

i=0

ai x
i mit a0, ..., an ∈ K , an ̸= 0.

Setzen wir q0 =
an
bm

xn−m, dann ist f0 = f − q0 g ein Polynom vom Grad < n, und wir können die Induktionsvoraus-
setzung auf f0 anwenden. Wir erhalten ein q1 ∈ K[x], so dass r = f0 − q1 g entweder gleich Null oder grad(r) < m
erfüllt ist. Wegen r = f − (q0+q1)g erhalten wir durch q = q0+q1 ein Element mit den gewünschten Eigenschaften.
Insgesamt haben wir damit gezeigt: Sind f , g ∈ K[x] mit g ̸= 0, dann gibt es q, r ∈ K[x] mit f = qg + r und r = 0
oder grad(r)< grad(g).

zu (iii) Als Teilring des Körper C ist Z[i] jedenfalls ein Integritätsbereich. Für den Nachweis, dass h eine Höhen-
funktion ist, seien α,β ∈ Z[i] vorgegeben, wobei wir β ̸= 0 voraussetzen. Wir müssen zeigen, dass ein q ∈ Z[i]
mit α− qβ = 0 oder h(α− qβ) < h(β) existiert. Sei α = a + i b und β = c + id mit a, b, c, d ∈ Z. Wegen β ̸= 0 ist
(c, d) ̸= (0, 0). Es gilt

α

β
=

a+ i b
c + id

=
(a+ i b)(c − id)
(c + id)(c − id)

=
ac + bd
c2 + d2

+ i
bc − ad
c2 + d2

= r + is ,

wenn wir die Zahlen r, s ∈Q durch

r =
ac + bd
c2 + d2

und s =
bc − ad
c2 + d2

definieren. Seien nun r0, s0 ∈ Z so gewählt, dass |r − r0| ≤
1
2 und |s− s0| ≤

1
2 gilt, und setzen wir q = r0 + is0. Dann

folgt
h( αβ − q) = (r − r0)

2 + (s− s0)
2 ≤ 1

4 +
1
4 = 1

2 < 1.

Es gilt dann α− qβ = 0 oder zumindest h(α− qβ) = h( αβ − q)h(β)≤ 1
2 h(β)< h(β). □

Schon an dieser Stelle sei darauf hingewiesen, dass Z[
p

d] keineswegs für jedes d ∈ Z ein euklidischer Ring ist,
ebensowenig der Ring Z[ 1

2 (1+
p

d)] im Fall d ≡ 1 mod 4. Weiter unten werden wir sehen, dass beispielsweise die
Ringe Z[

p
−3] und Z[

p
−5] keine euklidischen Ringe sind.
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Die folgenden Regeln für die Nullstellen von Polynomen über Körpern sind im Prinzip bereits aus der Schulmathe-
matik bekannt. Ihre Gültigkeit beruht aber letztlich darauf, dass es sich bei den Polynomringen über Körpern um
euklidische Ringe handelt.

Folgerung 12.5 Sei K ein Körper und 0 ̸= f ∈ K[x].

(i) Ist a ∈ K eine Nullstelle von f , dann gilt f = (x − a)g für ein Polynom g ∈ K[x].

(ii) Ist grad( f ) = n mit n ∈N0, dann hat f höchstens n Nullstellen in K .

Beweis: zu (i) Da K[x] ein euklidischer Ring ist, gibt es Polynome g, r ∈ K[x] mit f = (x − a)g + r mit r = 0 oder
grad(r) < grad(x − a) = 1. Es gilt also r ∈ K . Daraus folgt r = r(a) = f (a)− (a − a)g(a) = 0− 0 = 0 und somit
f = (x − a)g.

zu (ii) Diese Aussage beweisen wir durch vollständige Induktion über n. Ist n = 0, dann handelt es sich bei f um
eine Konstante in K×, und f besitzt dann offensichtlich keine Nullstellen. Setzen wir nun die Aussage für n voraus,
und sei f ein Polynom vom Grad n + 1. Seien a1, ..., ar die verschiedenen Nullstellen von f , wobei r ∈ N0 ist. Im
Fall r = 0 ist die Aussage r ≤ grad( f ) offenbar erfüllt. Andernfalls gibt es nach (i) ein Polynom g ∈ K[x] mit
f = (x − a1)g, und für 2 ≤ i ≤ r ist ai wegen (ai − a1)g(ai) = f (ai) = 0 und ai − a1 ̸= 0 eine Nullstelle von g. Die
Gleichung f = (x − ai)g zeigt, dass grad(g) = n ist. Wir können also die Induktionsvoraussetzung auf g anwenden
und erhalten die Abschätzung r − 1≤ n. Daraus folgt r ≤ n+ 1 wie gewünscht. □

In einem euklidischen Ring R kann durch wiederholte Division mit Rest ein größter gemeinsamer Teiler d zweier
Ringelemente a, b ∈R in endlich vielen Schritten ermittelt werden. Dieses Verfahren, das wir nun präzise ausformu-
lieren werden, und dessen Korrektheit im Folgenden nachgewiesen werden soll, bezeichnet man als euklidischen
Algorithmus. Neben dem größten gemeinsamen Teiler dieses Verfahren Elemente x , y ∈ R mit der Eigenschaft

d = xa+ y b.

Aus der Existenz des Algorithmus wird sich also ergeben, dass das Lemma von Bézout aus § 7 nicht nur inZ, sondern
in beliebigen euklidischen Ringen gültig ist.

Lemma 12.6 Sei R ein Ring, und seien a, b, q ∈ R mit b ̸= 0. Dann gilt die Gleichung
ggT(a, b) = ggT(a − qb, b). Genauer ausformuliert bedeutet das: Ein Ringelement d ist genau
dann ein größter gemeinsamer Teiler von a und b, wenn d ein größter gemeinsamer Teiler von
a− qb und b ist.

Beweis: „⇒“ Sei d ein größter gemeinsamer Teiler von a und b. Dann gibt es c1, c2 ∈ R mit a = c1d und b = c2d.
Es folgt a− qb = c1d − qc2d, also ist d ein gemeinsamer Teiler von a− qb und b. Ist e ∈ R ein weiterer gemeinsamer
Teiler dieser beiden Zahlen, dann gibt es c3, c4 ∈ R mit a − qb = c3e und b = c4e. Man erhält a = (a − qb) + qb =
c3e + c4e = (c3 + c4)e. Also ist e ein gemeinsamer Teiler von a und b, und aus d = ggT(a, b) folgt e|d. Damit ist
gezeigt, dass d ein größter gemeinsamer Teiler von a− qb und b ist. Die Beweisrichtung „⇐“ läuft analog. □
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EUKLIDISCHER ALGORITHMUS

Eingabe: ein euklidischer Ring R mit Höhenfunktion h
Elemente a, b ∈ R mit b ̸= 0

Ausgabe: Elemente d, x , y ∈ R mit d = ggT(a, b) und d = xa+ y b

Ablauf: (1) definiere (a1, x1, y1) = (a, 1, 0) und (a2, x2, y2) = (b, 0, 1)
(2) Sei das Tupel (an, xn, yn) bereits definiert.

Wenn an = 0 ist,
dann setze d = an−1, x = xn−1, y = yn−1 und gib d, x , y
als Ergebnis aus. (STOP)

Ansonsten
bestimme q, r ∈ R mit
an−1 = qan + r und r = 0 oder h(r)< h(an).
Definere (an+1, xn+1, yn+1) = (r, xn−1 − qxn, yn−1 − q yn).
Wiederhole Schritt 2.

Satz 12.7 Sei R ein euklidischer Ring mit Höhenfunktion h. Der euklidische Algorithmus hält
für jedes Paar (a, b) mit a, b ∈ R und b ̸= 0 nach einer endlichen Zahl von Wiederholungen. Er
liefert als Ausgabe tatsächlich d = ggT(a, b) und Ringelemente x , y ∈ R mit d = xa+ y b.

Beweis: Gehen wir zunächst davon aus, dass der zweite Schritt unendlich oft wiederholt wird. Dann ist das Tupel
(an, xn, yn) für alle n ∈N definiert. Nach Definition gilt für jedes n ∈N aber jeweils r = an+1 und h(an+1) = h(r) <
h(an), wobei q, r ∈ Z die in Schritt 2 definierten Elemente in der Gleichung an−1 = qan + r sind. Wir erhalten also
eine unendliche absteigende Folge

h(a2)> h(a3)> h(a4)> h(a5)> ... von Zahlen in N0.

Aber eine solche Folge existiert nicht: Eine absteigende Folge inN0, die bei einer Zahl b ∈N0 beginnt, kann höchstens
b+1 Schritte lang sein. Damit ist gezeigt, dass der euklidische Algorithmus nach einer endlichen Anzahl von Schritten
abbricht.

Sei nun (an, xn, yn) = (0, xn, yn) das letzte Tupel, das vom euklidischen Algorithmus berechnet wird. Wir beweisen
durch vollständige Induktion über k, dass für 2≤ k ≤ n die Gleichung

ggT(ak−1, ak) = ggT(a, b)

erfüllt ist. Für k = 2 haben wir nach Definition a1 = a und a2 = b, also ist die Gleichung ggT(a1, a2) = ggT(a, b)
offensichtlich erfüllt. Nehmen wir nun an, dass die Gleichung für k bereits bewiesen ist. Nach Definition gibt es ein
q ∈Z mit ak−1 = qak + ak+1, und es folgt

ggT(ak, ak+1) = ggT(ak, ak−1 − qak) = ggT(ak, ak−1) = ggT(ak−1, ak) = ggT(a, b),
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wobei wir im zweiten Schritt 12.6 und im letzten Schritt die Induktionsvoraussetzung angwendet haben. Nun be-
weisen wir noch durch vollständige Induktion die Gleichung

xka+ yk b = ak für 1≤ k ≤ n.

Es gilt x1a+ y1 b = 1 ·a+0 · b = a = a1 und x2a+ y2 b = 0 ·a+1 · b = b = a2. Nehmen wir nun an, dass die Gleichung
für k bereits bewiesen ist. Nach Definition existiert ein q, für das die Gleichungen ak+1 = ak−1−qak, xk+1 = xk−1−qxk

und yk+1 = yk−1 − q yk erfüllt sind. Es folgt

xk+1a+ yk+1 b = (xk−1 − qxk)a+ (yk−1 − q yk)b = (xk−1a+ yk−1 b)− q(xka+ yk b)

= ak−1 − qak = ak+1.

Der Algorithmus liefert d = an−1, x = xn−1 und y = yn−1 als Ergebnis. Nun gilt allgemein ggT(c, 0) = c für jedes
Ringelement c ungleich Null. Aus dem bereits Bewiesenen folgt ggT(a, b) = ggT(an−1, an) = ggT(an−1, 0) = an−1 = d
und xa+ y b = xn−1a+ yn−1 b = d. □

Als Anwendungbeispiel berechnen wir den ggT der Zahlen a = 16170 und b = 1326.

q an xn yn

− 16170 1 0

− 1326 0 1

12 258 1 −12

5 36 −5 61

7 6 36 −439

6 0 (−221) (2695)

Wir erhalten ggT(a, b) = 6= 36a+(−439)b. (Die Zahlen in Klammern werden für das Ergebnis nicht mehr benötigt.)

Wie wir gesehen haben, sind auch Polynomringe über Körpern Beispiele für euklidische Ringe. Folglich kann der
euklidische Algorithmus auch auf diese Ring angewendet werden. Als Beispiel berechnen wir den ggT der beiden
Polynome f = x4 − 3x3 − x2 + 5x − 6 und g = x3 − 3x2 + x − 3 in Q[x].

q an xn yn

− x4 − 3x3 − x2 + 5x − 6 1 0

− x3 − 3x2 + x − 3 0 1

x −2x2 + 8x − 6 1 −x

− 1
2 x − 1

2 2x − 6 1
2 x + 1

2 − 1
2 x2 − 1

2 x + 1

−x + 1 0 ( 1
2 x2 + 1

2 ) (−
1
2 x3 + 1

2 x − 1)

Als Ergebnis erhalten wir

ggT( f , g) = 2x − 6 = ( 1
2 x − 1

2 ) f + (−
1
2 x2 − 1

2 x + 1)g.
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Als weiteres Beispiel berechnen wir den ggT der Elemente α= 12+14i und β = 32−6i im RingZ[i] der Gauß’schen
Zahlen. Um den Teiler q in jedem Schritt zu bestimmen, gehen wir folgendermaßen vor. Zunächst berechnen wir den
Quotienten an−1

an
in der Form r + si mit r, s ∈ Q. Anschließend wählen wir r0, s0 ∈ Z mit |r − r0| ≤

1
2 und |s − s0| ≤

1
2

und sezten q = r0 + s0i.
an−1/an q an xn yn

− − 12+ 14i 1 0

− − 32− 6i 0 1
15
53 +

26
53 i 0 12+ 14i 1 0

15
17 −

26
17 i 1− 2i −8+ 4i −1+ 2i 1

− 1
2 − 2i −1− 2i −4+ 2i −4 1+ 2i

2 2 0 (7+ 2i) (−1− 4i)

Also ist ggT(α,β) = −4+ 2i = (−4)α+ (1+ 2i)β .

Satz 12.8 Jeder euklidische Ring R ist ein Hauptidealring.

Beweis: Sei I ein Ideal in R. Zu zeigen ist, dass es sich bei I um ein Hauptideal handelt, wozu wir I ̸= (0) voraussetzen
können. Sei nun h eine Höhenfunktion auf R und a ∈ I \ {0} ein Element mit h(a) ≤ h(b) für alle b ∈ I . Wir zeigen,
dass dann I = (a) gilt.

Ist b ∈ I beliebig vorgegeben, dann liefert Division mit Rest Elemente q, r ∈ R mit b = qa + r, wobei r = 0 oder
h(r) < h(a) gilt. Im ersten Fall ist b in (a) enthalten. Ansonsten ist mit a, b ∈ I auch r = b − qa ein Element aus
I . Aber die Ungleichung h(r) < h(a) widerspricht der Bedingung, die wir an das Element a gestellt haben. Es folgt
I ⊆ (a), und zusammen mit a ∈ I erhalten wir I = (a). □

Aus dem Satz folgt, dass der Ring Z der ganzen Zahlen ein Hauptidealring ist. Dasselbe gilt für die Polynomringe
K[x] über beliebigen Körpern K und für den RingZ[i] der Gaußschen Zahlen. Das folgende Beispiel zeigt, dass nicht
jeder quadratische Zahlring ein Hauptidealring ist, und damit auch kein euklidischer Ring sein kann.

Proposition 12.9 Der Ring R = Z[
p
−5] kein Hauptidealring, denn beispielsweise ist das

Ideal p= (3,1+ 2
p
−5) kein Hauptideal.

Beweis: Um zu sehen, dass p kein Hauptideal ist, verwenden wir die oben eingeführte Normfunktion N . Nehmen wir
an, dass p ein Hauptideal ist. Dann gibt es ein α ∈ R mit p = (α). Da die Elemente 3 und 1+ 2

p
−5 in p liegen, gibt

es β ,γ ∈ R mit 3 = αβ und 1+ 2
p
−5 = αγ. Die Multiplikativität der Normfunktion liefert 9 = N(3) = N(α)N(β)

und 21= N(1+2
p
−5) = N(α)N(γ). Also ist N(α) ein gemeinsamer Teiler von 9 und 21, damit auch ein Teiler vom

ggT(9,21) = 3. Es folgt N(α) ∈ {1,3}.

Betrachten wir zunächst den Fall N(α) = 3. Schreiben wir α= a+ b
p
−5 mit a, b ∈Z, dann gilt a2+5b2 = N(α) = 3.

Aber die Gleichung a2 + 5b2 = 3 besitzt keine Lösung mit a, b ∈Z, also ist dieser Fall ausgeschlossen.
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Also gilt N(α) = 1. Aus a2 + 5b2 = 1 folgt b = 0 und a ∈ {±1}, damit α ∈ {±1}. Es folgt p = (α) = (1). Wir zeigen
nun, dass auch dies unmöglich ist. Ein beliebiges Element ρ in p = (3,1+ 2

p
−5) hat die Form 3β + (1+ 2

p
−5)γ

mit β ,γ ∈ R. Schreiben wir β = a+ b
p
−5 und γ= c + d

p
−5 mit a, b, c, d ∈Z, dann folgt

ρ = 3(a+ b
p
−5) + (1+ 2

p
−5)(c + d

p
−5) = 3a+ 3b

p
−5+ (c − 10d) + (2c + d)

p
−5

= (3a+ c − 10d) + (3b+ 2c + d)
p
−5.

Addiert man die beiden Koeffizienten, dann erhält man den Wert 3a+3b+3c−9d, ein Vielfaches von 3. Ist also ρ ∈ p,
ρ = m+ n

p
−5, dann ist m+ n stets durch 3 teilbar. Dies zeigt, dass beispielsweise das Element 1= 1+ 0

p
−5 nicht

in p liegt, weshalb p ̸= (1) gilt. Die Annahme, dass p ein Hauptideal ist, hat also insgesamt zu einem Widerspruch
geführt. □

Definition 12.10 Sei R ein Ring. Ein Element p ∈ R wird irreduzibel genannt, wenn p weder
eine Einheit noch Null ist und die Implikation

p = ab ⇒ a ∈ R× oder b ∈ R×

für alle a, b ∈ R erfüllt ist. Nichteinheiten ungleich Null, die nicht irreduzibel sind, bezeichnen
wir als reduzible Ringelemente.

Definition 12.11 Sei R ein Ring. Ein Element p ∈ R heißt Primelement, wenn p weder eine
Einheit noch Null ist und außerdem die Implikation

p | (ab) ⇒ p | a oder p | b für alle a, b ∈ R erfüllt ist.

Der folgende Satz stellt einen Zusammenhang zwischen den beiden neuen Begriffen her.

Satz 12.12 In einem Integritätsbereich ist jedes Primelement irreduzibel.

Beweis: Sei p ein Primelement. Dann ist p jedenfalls ungleich Null und keine Einheit. Seien nun a, b ∈ R mit p = ab
vorgegeben. Dann gilt insbesondere p | (ab), und auf Grund der Primelement-Eigenschaft gilt p | a oder p | b. Setzen
wir o.B.d.A. voraus, dass p | a der Fall ist. Dann gibt es ein c ∈ R mit a = cp, und wir erhalten p = ab = cpb. Die
Kürzungsregel liefert cb = 1, also ist b eine Einheit. Damit ist die Irreduzibilität von p nachgewiesen. □

In § 10 haben wir die Assoziiertheits-Relation auf den Elementen eines Rings R eingeführt: Zwei Elemente a, b ∈ R
sind assoziiert zueinander, wenn a | b und b | a gilt. Man überprüft leicht, dass es sich dabei um eine Äquiva-
lenzrelation handelt, für die wir im weiteren Verlauf das Symbol ∼ verwenden. Wir erinnern daran, dass in einem
Integritätsbereich R für zwei Elemente a, b nach Lemma 10.8 die Feststellung a ∼ b gleichbedeutend damit ist, dass
b = ϵa für ein ϵ ∈ R× erfüllt ist.
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Proposition 12.13 Sei R ein Integritätsbereich, und seien p, q ∈ R mit p ∼ q.

(i) Ist p irreduzibel, dann gilt dasselbe für q.

(ii) Ist p ein Primelement, dann ist auch q ein Primelement.

Beweis: Nach Voraussetzung gibt es ein ϵ ∈ R× mit q = ϵp.

zu (i) Sei p irreduzibel. Wäre q eine Einheit, dann würde p = ϵ−1q als Produkt zweier Einheiten ebenfalls in R×

liegen. Wäre q = 0, dann würde auch p = ϵ−10 = 0 folgen. Seien nun a, b ∈ R Ringelemente mit q = ab. Dann folgt
p = ϵ−1q = (ϵ−1a)b. Weil p irreduzibel ist, erhalten wir ϵ−1a ∈ R× oder b ∈ R×. Es folgt a = ϵ(ϵ−1a) ∈ R× oder
b ∈ R×.

zu (ii) Sei p ein Primelement. Wie unter (i) folgt daraus zunächst, dass q dann weder eine Einheit noch Null ist.
Seien nun a, b ∈ R mit q | (ab) vorgegeben. Dann gibt es ein c ∈ R mit ab = cq. Es folgt ab = cϵp, also p | (ab). Weil
p ein Primelement ist, gilt p | a oder p | b. Ohne Beschränkung der Allgemeinheit können wir p | a annehmen. Dies
bedeutet, dass ein c′ ∈ R mit a = c′p = c′ϵ−1q existiert. Daraus wiederum folgt q | a. Die Implikation q | (ab)⇒ q | a
oder q | b ist damit bewiesen. □

Proposition 12.14 Im Ring Z der ganzen Zahlen sind die irreduziblen Elemente genau die
Zahlen der Form ±p, wobei p die Primzahlen durchläuft.

Beweis: „⇒“ Sei p eine Primzahl. Dann gilt nach Definition p ̸= 0. Außerdem ist p keine Einheit, denn die beiden
Einheiten±1 im RingZ sind keine Primzahlen. Wäre p nicht irreduzibel, dann gäbe es nach Definition Zahlen r, s ∈Z
mit p = rs, wobei r und s beides keine Einheiten, also ungleich ±1 sind. Indem wir gegebenenfalls r durch −r und s
durch −s ersetzen, können wir r, s ∈N annehmen. Aus r, s > 1 folgt dann 1 < r, s < p. Aber dies zusammen mit der
Gleichung p = rs widerspricht der definierenden Eigenschaft der Primzahlen. Da sich die Eigenschaft eines Elements,
irreduzibel zu sein, durch Multiplikation mit Einheiten nicht ändert, ist auch −p für jede Primzahl p ein irreduzibles
Element in Z.

„⇐“ Sei umgekehrt n ∈ Z ein irreduzibles Element, und nehmen wir an, dass ±n beides keine Primzahlen sind.
Da Multiplikation mit Einheiten an der Irreduzibilitäts-Eigenschaft nichts ändert, können wir n> 0 annehmen. Da n
keine Primzahl ist, gilt entweder n = 1, oder es gibt r, s ∈ N mit n = rs und 1 < r, s < n. Im ersten Fall wäre n eine
Einheit, was aber der Voraussetzung an n, ein irreduzibles Element zu sein, widerspricht. Im zweiten Fall haben wir
n als Produkt von Nicht-Einheiten dargestellt, was ebenfalls einen Widerspruch zur Voraussetzung bedeutet. □

Wir werden im nächsten Abschnitt zeigen, dass in einer allgemeinen Klasse von Ringen, welche die Hauptideal-
ringe umfasst, die irreduziblen Elemente genau mit den Primelementen zusammenfallen. Also sind in Z auch die
Primelemente genau die Zahlen ±p, wobei p die Primzahlen durchläuft.

In beliebigen Integritätsbereichen sind irreduzible Elemente dagegen im allgemeinen nicht prim. Um dies zu sehen,
formulieren wir ein Kriterium, mit dem sich leicht feststellen lässt, ob Elemente in Ringen der Form Z[

p
−d] (mit

d ∈ N) irreduzibel sind. Wieder verwenden wir dazu die multiplikative Funktion N : C → R+, die auf Z[
p
−d]

wegen N(a+ b
p
−d) = a2 + d b2 für a, b ∈Z nur die natürlichen Zahlen und Null als Werte annimmt.
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Proposition 12.15 Sei d ∈N, R=Z[
p
−d] und α ∈ R beliebig.

(i) Das Element α ist genau dann eine Einheit in R, wenn N(α) = 1 ist.

(ii) Ist N(α) eine Primzahl, dann ist α in R irreduzibel.

(iii) Gilt N(α) = p2 mit einer Primzahl p, und besitzt die Gleichung a2+d b2 = p keine Lösung
mit a, b ∈Z, dann ist α ebenfalls ein irreduzibles Element.

Beweis: zu (i) „⇒“ Ist α eine Einheit, dann gibt es ein β ∈ R mit αβ = 1. Auf Grund der Multiplikativität von N
gilt N(α)N(β) = N(αβ) = N(1) = 1. Weil N(α) und N(β) beides natürliche Zahlen sind, muss N(α) = N(β) = 1
gelten. „⇐“ Sei α= a+ b

p
−d mit a, b ∈Z. Nach Voraussetzung gilt

a2 + d b2 = N(α) = 1.

Da a2 und b2 natürliche Zahlen sind, muss a = 0 oder b = 0 gelten, darüber hinaus a = ±1 oder d = −1, b = ±1. Es
folgt α = ±1 oder α = ±

p
−1, wobei letzteres nur im Fall d = −1 auftreten kann. Alle vier Elemente sind Einheiten

in R, denn es gilt 1 · 1= 1, (−1)(−1) = 1 und
p
−1 · (−

p
−1) = 1.

zu (ii) Sei α ∈ R und p = N(α) eine Primzahl. Dann kann α keine Einheit sein, denn nach (i) ist dafür N(α) = 1
erforderlich. Sei nun α = βγ eine Zerlegung von α mit β ,γ ∈ R. Dann folgt p = N(α) = N(β)N(γ). Da N(β), N(γ)
natürliche Zahlen und p eine Primzahl ist, folgt N(β) = 1 oder N(γ) = 1. Nach (i) ist damit β oder γ eine Einheit.
Damit ist die Irreduzibilität von α bewiesen.

zu (iii) Nehmen wir an, dass α ∈ R die angegebenen Voraussetzungen erfüllt, aber nicht irreduzibel ist. Wegen
N(α) = p2 kann α keine Einheit sein. Ist α = βγ mit β ,γ ∈ R, und sind β ,γ beides keine Einheiten, dann ist
wegen N(β)N(γ) = p2 nur N(β) = N(γ) = p möglich. Schreiben wir β = a + b

p
−d mit a, b ∈ Z, dann gilt

p = N(β) = a2 + d b2. Aber dies ist unmöglich, da die Gleichung nach Voraussetzung mit a, b ∈ Z nicht lösbar ist.
Also ist α irreduzibel. □

Folgerung 12.16 Sei d ∈N. Für die Einheitengruppe von R=Z[
p
−d] gilt R× = {±1,±

p
−1},

falls d = 1 ist, ansonsten R× = {±1}.

Beweis: Dies ist ein Nebenergebnis des Beweises von Proposition 12.15. □

Als Anwendung der bisherigen Ergebnisse zeigen wir, dass die Elemente 2 und 1 +
p
−3 im Ring R = Z[

p
−3]

irreduzibel, aber keine Primelemente sind. Beide Elemente sind nach Proposition 12.15 (iii) irreduzibel, denn es gilt

N(2) = N(1+
p
−3) = 4 = 22 ,

aber die Gleichung a2+3b2 = 2 ist mit a, b ∈Z nicht lösbar. Um zu zeigen, dass 2 und 1+
p
−3 keine Primelemente

sind, betrachten wir in R die Gleichung

4 = 2 · 2 = (1+
p
−3)(1−

p
−3).

Die Zahl 2 ist ein Teiler des Produkts (1+
p
−3)(1−

p
−3). Andererseits teilt 2 keine der beiden Elemente 1±

p
−3.

Wäre dies der Fall, dann gäbe es ein γ ∈ R mit 1±
p
−3= 2γ, und diese γ wäre eines der beiden Elemente 1

2 ±
1
2

p
−3.
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Insbesondere läge eine dieser beiden Zahlen in R. Dies würde bedeuten, dass a, b ∈ Z existieren, so dass eine der
beiden Gleichungen

1
2 ±

1
2

p
−3 = a+ b

p
−3

erfüllt ist. Vergleichen wir aber den Realteil auf beiden Seiten, dann erhalten wir a = 1
2 im Widerspruch zu a ∈ Z.

Also ist 2 in R tatsächlich kein Primelement. Genauso zeigt man, dass auch das Element 1+
p
−3 nicht prim ist.

Die Primelemente hängen mit den bereits in § 11 definierten Primidealen eng zusammen. Es gilt nämlich

Proposition 12.17 Sei R ein Integritätsbereich und p ∈ R, p ̸= 0R. Genau dann ist p ein
Primelement in R, wenn das Hauptideal (p) ein Primideal ist.

Beweis: „⇒“ Wäre (p) = (1), dann wäre die 1 in (p) enthalten, und folglich gäbe es ein r ∈ R mit rp = 1. Dies würde
bedeuten, dass p eine Einheit ist, was aber nach Voraussetzung nicht der Fall ist. Seien nun a, b ∈ R mit ab ∈ (p).
Dann gibt es ein r ∈ R mit ab = rp, also ist p ein Teiler von ab. Weil p ein Primelement ist, folgt p|a oder p|b. Im
ersten Fall gilt a ∈ (p), im zweiten b ∈ (p).

„⇐“ Wäre p eine Einheit, dann gäbe es ein r ∈ R mit rp = 1. Daraus würde dann 1 ∈ (p) und (p) = (1) folgen,
was aber der Voraussetzung widerspricht. Seien nun a, b ∈ R, so dass p|(ab) gilt. Dann folgt ab ∈ (p), und aus der
Primidealeigenschaft von (p) folgt a ∈ (p) oder b ∈ (p). Im ersten Fall wäre p|a, im zweiten p|b erfüllt. □

Satz 12.18 Sei R ein Hauptidealring, aber kein Körper, und p ∈ R. Dann sind die folgenden
Aussagen äquvialent.

(i) Das Element p ist prim.

(ii) Das Element p ist irreduzibel.

(iii) Das Ideal (p) ist maximal.

(iv) Das Ideal (p) ist ein Primideal, und es gilt p ̸= 0R.

Beweis: „(i)⇒ (ii)“ Nach Satz 12.12 ist jedes Primelment in einem Integritätsbereich irreduzibel.

„(ii)⇒ (iii)“ Zunächst ist (p) = (1) unmöglich, denn sonst wäre p eine Einheit und damit kein irreduzibles Element.
Sei nun m ein Ideal mit (p) ⊆ m ⊆ (1) und a ∈ R mit m = (a). Wegen (p) ⊆ (a) gilt a|p, es gibt also ein b ∈ R mit
p = ab. Weil p irreduzibel ist, muss a oder b eine Einheit sein. Im ersten Fall ist m = (a) = (1), im zweiten m = (p).
Also ist (p) in der Tat ein maximales Ideal.

“(iii)⇒ (iv)“ Nach Folgerung 11.13 ist jedes maximale Ideal in einem Ring ein Primideal. Nehmen wir nun an, es
gilt (p) = (0R). Auf Grund der Maximalität von (p) sind dann (0R) und (1R) die einzigen, voneinander verschiedenen,
Ideale in R. Wegen 0R ̸= 1R ist R kein Nullring. Für jedes c ∈ R mit c ̸= 0R gilt aber (c) = (1R), somit 1R ∈ (c), und
daraus folgt, dass rc = 1R für ein r ∈ R erfüllt ist. Jedes Element in R ungleich null wäre also invertierbar und R
somit ein Körper. Aber das ist laut Voraussetzung ausgeschlossen.

“(iv)⇒ (i)“ Das folgt aus Proposition 12.17. □
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Definition 12.19 Ein faktorieller Ring ist ein Integritätsbereich R mit der Eigenschaft, dass
jedes Element r ∈ R, das weder gleich Null noch eine Einheit ist, als Produkt von Primelementen
dargestellt werden kann. Dies bedeutet: Es gibt ein n ∈ N und Primelemente p1, ..., pn ∈ R, so
dass

r = p1 · p2 · ... · pn gilt.

Lemma 12.20 Sei R ein Integritätsbereich.

(i) Seien a, a′, b, b′ ∈ R, wobei a ∼ a′, b ∼ b′ und a|b gilt. Dann gilt auch a′|b′.

(ii) Jedes Element in R, das eine Einheit teilt, ist selbst eine Einheit.

(iii) Ein Element, das von einem Primelement geteilt wird, ist keine Einheit.

Beweis: zu (i) Wegen a ∼ a′ und b ∼ b′ gibt es Einheiten ϵ,µ in R mit a′ = ϵa und b′ = µb. Aus a|b folgt, dass ein
c ∈ R mit b = ac existiert. Wir erhalten b′ = µac = µϵ−1a′c und somit a′|b′.

zu (ii) Sei ϵ ∈ R× und a ∈ R mit a|ϵ. Weil die Elemente ϵ und 1R assoziiert sind, gilt a|1R nach Teil (i). Umgekehrt
ist 1R das Einselement ein Teiler von a, denn es gilt a = 1R · a. Also sind a und 1R assoziiert. Dies bedeutet, dass ein
µ ∈ R× mit a = µ · 1R = µ existiert.

zu (iii) Wäre ϵ ∈ R× und p ein Primelement mit p|ϵ, dann wäre p nach (ii) eine Einheit. Ein Ringelement kann nach
Definition aber nicht zugleich Einheit und Primelement sein. □

Proposition 12.21 In einem faktoriellen Ring R ist jedes irreduzible Element ein Primelement.

Beweis: Sei p ∈ R irreduzibel. Da R faktoriell und p weder gleich Null noch eine Einheit ist, gibt es eine Darstellung
p = p1 · ... · pn von p als Produkt von Primlementen. Im Fall n> 1 könnten wir p damit als Produkt p = p1 ·(p2 · ... · pn)
schreiben. Dabei ist p1 eine Nicht-Einheit, ebenso das Produkt p2 · ... · pn nach Teil (iii) von Lemma 12.20. Aber dies
widerspricht der Irreduzibilität von p. Also ist n= 1 und p = p1 ein Primelement. □

Satz 12.22 Sei R ein Integritätsbereich. Dann sind äquivalent

(i) R ist ein faktorieller Ring.

(ii) Jedes Element r ∈ R, dass weder gleich Null noch eine Einheit ist, kann als Produkt von
irreduziblen Elementen dargestellt werden, und diese Darstellung ist im wesentlichen
eindeutig. Dies bedeutet genau: Sind m, n ∈ N und p1 · ... · pm = r = q1 · ... · qn zwei
Darstellungen von r als Produkt irreduzibler Elemente pi , q j , dann ist m = n, und nach
eventueller Umnummerierung der Elemente ist pi assoziiert zu qi für 1≤ i ≤ m.

Beweis: „(ii)⇒ (i)“ Hier genügt es zu zeigen, dass unter der gegebenen Voraussetzung jedes irreduzible Element
in R ein Primelement ist. Sei p ∈ R irreduzibel. Dann ist p weder gleich Null noch eine Einheit. Seien nun a, b ∈ R
mit p|(ab) vorgegeben. Zu zeigen ist, dass p ein Teiler von a oder ein Teiler von b ist.
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Nehmen wir zunächst an, dass a = 0R oder b = 0R gilt. Weil das Nullelement 0R von jedem Ringelement geteilt
wird, folgt daraus sofort p|a oder p|b. Nehmen wir nun an, dass eines der Elemente a, b eine Einheit ist, o.B.d.A. das
Element b. Dann wären a und ab assoziiert, und aus p|(ab) würde nach Teil (i) von Lemma 12.20 p|a folgen. Also
können wir auch a, b /∈ R× annehmen. Wegen p|(ab) gibt es ein c ∈ R mit ab = pc. Wäre c = 0R, dann würde daraus
ab = 0R und somit a = 0R oder b = 0R folgen. Aber dies haben wir bereits ausgeschlossen.

Weil a und b beide weder gleich Null noch Einheiten sind, besitzen sie jeweils eine Darstellung als Produkt von
irreduziblen Elementen. Seien also pi , q j ∈ R irreduzible Elemente, so dass a = p1 · ... · pm und b = q1 · ... ·qn erfüllt ist.
Das Element c kann keine Einheit sein, denn sonst hätten wir eine Gleichung der Form (p1 · ... · pm)(q1 · ... · qn) = pc,
wobei rechts ein einziges irreduzibles Element, auf der linken Seite aber ein Produkt von mindestens zwei irreduziblen
Elementen steht. Dies widerspricht der vorausgesetzten Eindeutigkeit. Weil also auch c weder gleich Null noch eine
Einheit ist, besitzt auch c eine Zerlegung der Form r1 · ... · rk mit irreduziblen Elementen ri . Wir erhalten also eine
Gleichung der Form

(p1 · ... · pm) · (q1 · qn) = (r1 · ... · rk) · p.

Auf Grund der Eindeutigkeit der Produktzerlegung ist p zu einem Faktor auf der linken Seite der Gleichung assoziiert.
Gilt p ∼ pi für ein i ∈ {1, ..., m}, dann ist p ein Teiler von a. Gilt p ∼ q j für ein j ∈ {1, ..., n}, dann ist p ein Teiler von
b.

“(i)⇒ (ii)“ Nach Voraussetzung besitzt jede Nicht-Einheit r ∈ R, r ̸= 0R eine Darstellung als Produkt von Primele-
menten, damit insbesondere als Produkt von irreduziblen Elementen. Zu zeigen bleibt, dass diese Produktdarstellung
im Wesentlichen eindeutig ist. Seien also

p1 · ... · pm = r = q1 · ... · qn

zwei Darstellungen von r also Produkt von irreduziblen Elementen pi , q j . Wie wir bereits gezeigt haben, sind die pi

und q j zugleich Primelemente. Wir beweisen nun durch vollständige Induktion über n, dass n = m gilt und nach
Umnummerierung pi zu qi assoziiert ist, für 1≤ i ≤ n. Im Fall n= 1 gilt

p1 · ... · pm = q1.

Weil q1 irreduzibel ist, muss auch das Element auf der linken Seite der Gleichung irreduzibel sein. Dies ist nur dann
der Fall, wenn m = 1 gilt, denn ansonsten wäre das Element links ein Produkt der beiden Nicht-Einheiten p1 und
p2 · ... · pm.

Setzen wir nun die Aussage für n als gültig voraus, und nehmen wir an, dass eine Gleichung der Form

p1 · ... · pm = q1 · ... · qn · qn+1

mit m ∈N und irreduziblen Elementen pi , q j besteht (wobei diese Elemente wiederum zugleich auch prim sind). Weil
das Element auf der rechten Seite der Gleichung nicht irreduzibel ist, kann auch das Element links nicht irreduzibel
sein, es muss also m ≥ 2 gelten. Wiederum teilt q1 als Primelement einen der Faktoren pi , zum Beispiel p1. Es gilt
also wiederum q1 = p1ϵ für ein ϵ ∈ R×, und wir erhalten

p1 · p2 · ... · pm = (p1ϵ) · q2 · ... · qn+1.

Durch Kürzung erhalten wir p2 · ... · pm = (ϵq2) · ... ·qn+1. Nach Induktionsvoraussetzung gilt m−1= n⇔ m= n+1.
Außerdem ist nach Umnummerierung das Element p2 assoziiert zu ϵq2 (also auch zu q2), und es gilt pi ∼ qi für
3≤ i ≤ m. □
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Definition 12.23 Sei R ein Integritätsbereich und P ⊆ R eine Teilmenge bestehend aus Prim-
elementen. Wir nennen P ein Repräsentantensystem der Primelemente in R, wenn jedes Prim-
element q ∈ R zu genau einem p ∈ P assoziiert ist.

Beispielsweise bilden die Primzahlen p ∈ N ein Repräsentantensystem der Primelmente in Z. Ist K ein Körper,
dann bilden die normierten irreduziblen Polynome (also die irreduziblen Polynome mit dem Leitkoeffizienten 1K) ein
Repräsentantensystem in K[x].

Folgerung 12.24 Sei R ein faktorieller Ring und P ⊆ R ein Repräsentantensystem der Primele-
mente. Dann gibt es für jedes Element 0R ̸= f ∈ R eine eindeutig bestimmte Familie (vp( f ))p∈P

von Zahlen vp( f ) ∈N0 und eine eindeutig bestimmte Einheit ϵ ∈ R×, so dass

f = ϵ
∏

p∈P

pvp( f ) erfüllt ist.

Dabei gilt vp( f ) = 0 für alle bis auf endlich viele Elemente p ∈ P.

Beweis: Da R ein faktorieller Ring ist, besitzt f eine Darstellung f = q1 · ... · qm als Produkt von Primelementen.
Für jedes i gibt es ein pi ∈ P und eine Einheit ϵi ∈ R×, so dass qi = ϵi pi gilt. Setzen wir ϵ = ϵ1 · ... · ϵm, dann
ist also die Gleichung f = ϵ · p1 · ... · pm erfüllt. Definieren wir nun für jedes p ∈ P die Zahl vp( f ) ∈ N0 durch
vp( f ) =

�

�{i ∈ {1, ..., m}
�

� pi = p}
�

�, dann ist die Gleichung f = ϵ
∏

p∈P pvp( f ) erfüllt, und für alle bis auf endlich viele
p ∈ P gilt vp( f ) = 0. Die Eindeutigkeit der Zahlen vp( f ) folgt direkt aus der Eindeutigkeit der Zerlegung von f als
Produkt irreduzibler Elemente, und mit den Zahlen vp( f ) ist auch die Einheit ϵ eindeutig bestimmt. □

Für alle a, b ∈ R \ {0R} gilt offenbar vp(ab) = vp(a) + vp(b). Seien nämlich

a = ϵ
∏

p∈P

pvp(a) und b = ϵ′
∏

p∈P

pvp(b)

die Darstellungen von a, b ∈ R wie im Satz angegeben. Dann gilt ab = ϵϵ′
∏

p∈P pvp(a)+vp(b), und aus der Eindeutigkeit
der Exponenten vp(ab) folgt vp(ab) = vp(a)+ vp(b). Die Teilbarkeitsrelation lässt sich mit Hilfe der Zahlen vp(a) also
folgendermaßen umformulieren.

Lemma 12.25 Sei R ein faktorieller Ring, P ⊆ R ein Repräsentantensystem der Primelemente,
und seien f , g ∈ R mit f , g ̸= 0R. Dann gilt f |g genau dann, wenn vp( f ) ≤ vp(g) für alle p ∈ P
erfüllt ist.

Beweis: Ist f ein Teiler von g, dann gibt es ein h ∈ R, h ̸= 0 mit g = f h. Es folgt vp(g) = vp( f h) = vp( f )+vp(h)≥ vp( f )
für alle p ∈ P. Gilt umgekehrt

f = ϵ
∏

p∈P

pvp( f ) und g = ϵ′
∏

p∈P

pvp(g)

mit ϵ,ϵ′ ∈ R× und vp( f )≤ vp(g) für alle p ∈ P, dann erhalten wir durch h= ϵ′ϵ−1
∏

p∈P pvp(g)−vp( f ) ein Element h ∈ R
mit g = f h. Es folgt f |g. □
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Folgerung 12.26 Sei R ein faktorieller Ring, und seien a, b ∈ R\{0R} teilerfremd. Ist 0R ̸= c ∈ R
ein Element mit a|(bc), dann folgt a|c.

Beweis: Nehmen wir an, dass a ∤ c gilt. Dann gibt es ein Primelement p ∈ P mit vp(a) > vp(c). Andererseits
gilt vp(a) ≤ vp(bc) = vp(b) + vp(c) und somit vp(b) > 0. Damit wäre dann p ein Primteiler von b, was aber der
Teilerfremdheit von a und b widerspricht. □

Satz 12.27 Sei R ein faktorieller Ring, und sei P ⊆ R ein Repräsentantensystem der Primele-
mente in R. Seien f1, ..., fm ∈ R beliebige Elemente ungleich Null. Für jedes p ∈ P definieren wir

up =min{vp( fi) | 1≤ i ≤ m} und wp =max{vp( fi) | 1≤ i ≤ m}.

Dann ist f =
∏

p∈P pup ein ggT und g =
∏

p∈P pwp ein kgV der Elemente f1, ..., fm. Dies zeigt
also insbesondere, dass in einem faktoriellen Ring für beliebige endliche Mengen von Elementen
jeweils ein kgV und ein ggT existiert.

Beweis: Wegen vp( f ) = up ≤ vp( fi) für alle p ∈ P und 1≤ i ≤ m ist f nach Lemma12.25 ein gemeinsamer Teiler von
f1, ..., fm. Ist h ∈ R ein weiteres Element mit h| fi für 1 ≤ i ≤ m, dann folgt ebenfalls auf Grund des Lemmas jeweils
vp(h) ≤ vp( fi) für alle p ∈ P und 1 ≤ i ≤ m. Damit gilt vp(h) ≤ up = vp( f ) für alle p ∈ P, und folglich ist h ein Teiler
von f . Der entsprechende Beweis für das kgV läuft analog. □

Wir beenden den Abschnitt mit einem Satz, der die faktoriellen Ringe in die bisher definierten Ringtypen einordnet.

Satz 12.28 Jeder Hauptidealring R ist faktoriell.

Beweis: Wir wissen bereits, dass jedes irreduzible Element in einem Hauptidealring R auch ein Primelement ist, nach
Proposition 12.18. Daher genügt es zu zeigen, dass für jede Nichteinheit a ∈ R, a ̸= 0R eine Zerlegung in irreduzible
Elemente existiert. Nehmen wir nun an, dass a ∈ R wäre eine Nichteinheit ungleich Null, die keine solche Zerlegung
besitzt. Wir zeigen, dass dann eine Folge (an)n∈N von Ringelementen existiert, so dass folgende Bedingungen erfüllt
sind.

(i) an ̸= 0R und an /∈ R×

(ii) Das Element an ist nicht als Produkt irreduzibler Elemente darstellbar.

(iii) an+1|an und an ∤ an+1

Nach Voraussetzung besitzt das Element a1 = a die Eigenschaften (i) und (ii). Zu zeigen ist nun, dass für ein vorge-
gebenes an mit den Eigenschaften (i) und (ii) ein Element an+1 existiert, so dass (iii) gilt und die Bedingungen (i),(ii)
auch für an+1 erfüllt sind. Das Element an ist nicht irreduzibel, weil die Irreduzibilität der Bedingung (ii) widerspre-
chen würde. Sei an = rs eine Darstellung von an als Produkt von Nicht-Einheiten. Dann ist eines der Elemente r, s

— 150 —



nicht als Produkt von irreduziblen Elementen darstellbar, denn ansonsten würde sich erneut ein Widerspruch zu (ii)
ergeben. Wir können annehmen, dass das Element an+1 = r keine solche Darstellung besitzt. Wäre an+1 = 0R, dann
würde an = 0R folgen, im Widerspruch zu (i). So aber sind die Bedingungen (i) und (ii) für an+1 erfüllt. Offenbar
gilt auch an+1|an. Würde an|an+1 gelten, dann gäbe es ein ϵ ∈ R mit an+1 = ϵan, und aus an+1 = ϵan = ϵrs = ϵan+1s
würde mit der Kürzungsregel ϵs = 1R folgen, im Widerspruch dazu, dass s keine Einheit ist. So aber ist die Bedingung
(iii) für an und an+1 erfüllt.

Sei nun (an)n∈N eine Folge mit den Eigenschaften (i), (ii) und (iii). Aus der Bedingung (iii) folgt für die Hauptideale
(an) nach Satz 10.12 (i) die Beziehung

(a1) ⊊ (a2) ⊊ (a3) ⊊ (a4) ⊊ ...

Wir zeigen, dass auch die Vereinigung I =
⋃∞

n=1(an) ein Ideal im Ring R ist. Wegen 0R ∈ (a) liegt 0R auch in I .
Seien nun a, b ∈ I und r ∈ R vorgegeben. Dann gibt es m, n ∈N mit a ∈ (am) und b ∈ (an). Setzen wir o.B.d.A. die
Ungleichung m ≤ n voraus, dann liegen a und b wegen (am) ⊆ (an) also beide in (an). Weil (an) ein Ideal ist, folgt
a+ b ∈ (an) und ran ∈ (an), damit auch a+ b ∈ I und ra ∈ I .

Da R nun ein Hauptidealring ist, gibt es ein b ∈ R mit I = (b). Insbesondere gilt dann (an) ⊆ (b) für alle n ∈N. Nach
Definition von I gibt es andererseits ein m ∈ N mit b ∈ (am), also b ∈ (an) für alle n ≥ m. Es folgt (b) ⊆ (an) und
damit (an) = (b) für alle n ≥ m. Aber dies widerspricht der vorherigen Feststellung (am) ⊊ (am+1). Die Annahme,
dass es ein Element gibt, das sich nicht in irreduzible Elemente zerlegen lässt, hat also zu einem Widerspruch geführt.
□

Die Umkehrung dieses Satzes ist falsch: Es gibt faktorielle Ringe, die keine Hauptidealringe sind. Im nächsten Kapitel
werden wir sehen, dass für jeden faktoriellen Ring R auch der Polynomring R[x] faktoriell ist. Daraus folgt unter
anderem, dass Z[x] ein faktorieller Ring ist. Aber R ist kein Hauptidealring, denn das Ideal I = (2, x) ist kein
Hauptideal.

Zum Beweis nehmen wir an, es gibt ein f ∈ Z[x] mit ( f ) = I , f = an xn + ...+ a1 x + a0 mit a0, ..., an ∈ Z. Wegen
f ∈ (2, x) gibt es Polynome g, h ∈ Z[x] mit f = 2g + xh. Dies zeigt, dass der konstante Term a0 eine gerade ganze
Zahl sein muss. Aber aus ( f ) = (2, x) folgt auch 2 ∈ ( f ), also 2 = uf für ein weiteres Polynom u ∈ Z[x]. Dies ist
nur möglich, wenn f eine Konstante ist. Wegen x ∈ ( f ), also x = v f für ein v ∈Z[x] muss diese Konstante gleich 1
sein. Aber dies steht im Widerspruch dazu, dass a0 gerade ist.

Anhang: Beispiel für einen Hauptidealring, der kein euklidischer Ring ist

Die naheliegende Frage, ob solche Ringe existieren, wird in der aktuellen Lehrbuchliteratur übergangen, so dass
unklar bleibt, ob die Hauptidealringe überhaupt eine echte Verallgemeinerung der euklidischen Ringe darstellen.
Wir zeigen, dass der Ring R = Z[ 1

2 (1 +
p
−19)] zwar ein Hauptidealring, aber kein euklidischer Ring ist. Dabei

folgen wir im Wesentlichen der Darstellung von [Wi], der einen zuvor erbrachten Beweis in der Veröffentlichung
[Ca] weiter vereinfachen konnte.

Satz 12.29 Der Ring R=Z[ 1
2 (1+

p
−19)] ist ein Hauptidealring.
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Beweis: In Satz 9.17 wurde gezeigt, dass die Elemente von R durch R = { 1
2 a + 1

2 b
p
−19 | a, b ∈ Z , a ≡ b mod 2}

gegeben sind. Sei nun I ein Ideal in R ungleich (0). Zu zeigen ist, dass es sich bei I um ein Hauptideal handelt. Die
Normfunktion N(z) = |z|2 nimmt auf R \ {0} nur Werte aus N an, denn für alle a, b ∈ Z mit (a, b) ̸= (0,0) und
a ≡ b mod 2 ist

N( 1
2 a+ 1

2 b
p

−19) = 1
4 (a

2 + 19b2)

positiv und ganzzahlig. Sind nämlich a und b beide gerade, dann sind die Zahlen a2 und 19b2 beide durch vier
teilbar. Sind a und b beide ungerade, dann gilt a2 ≡ b2 ≡ 1 mod 4, und wegen 19 ≡ 3 mod 4 folgt a2 + 19b2 ≡
1+ 3 · 1≡ 4≡ 0 mod 4.

Auf Grund dieser Eigenschaft der Normfunktion gibt es ein α ∈ I \ {0}, so dass |α| minimal ist. Nehmen wir nun an,
I ist kein Hauptideal. Dann gibt es ein β ∈ I \ (α). Sei ρ = β

α . In einem ersten Schritt zeigen wir, dass β so gewählt
werden kann, dass |Im(ρ)| ≤ 1

4

p
19 erfüllt ist. Dazu setzen wir r = 1p

19
Im(ρ) und wählen s ∈Z so, dass |2r − s| ≤ 1

2

erfüllt ist. Definieren wir dann β ′ = β − 1
2 s(1+

p
−19)α, dann folgt

β ′

α = β
α −

1
2 s(1+

p

−19) = Re(ρ) + iIm(ρ)− 1
2 s− i · 1

2 s
p

19 = Re(ρ) + i · r
p

19− 1
2 s− i · 1

2 s
p

19

und somit Im(β
′

α ) =
p

19(r − 1
2 s) und |Im(β

′

α )| ≤
1
4

p
19. Ersetzen wir also β durch β ′, dann ist die Ungleichung

|Im(ρ)| ≤ 1
4

p
19 erfüllt. Außerdem gilt weiterhin β ∈ I \ (α), wenn wir β durch β ′ ersetzen. Denn mit β liegt auch

β ′ = β − 1
2 s(1+

p
−19)α in I , und wäre β ′ ein Element des Hauptideals (α), dann würde dies auch für β gelten.

In einem zweiten Schritt zeigen wir, dass ein γ ∈ I \ {0} mit |γ|< |α| existiert und führen damit die Minimalität von
α zum Widerspruch. Zunächst betrachten wir den Fall, dass sogar |Im(ρ)| < 1

2

p
3 erfüllt ist. Wählen wir a ∈ Z so,

das |Re(ρ)− a| ≤ 1
2 gilt, dann folgt |ρ− a|2 < ( 1

2 )
2+( 1

2

p
3)2 = 1. Sei nun γ= β − aα. Dann liegt γ in I , das Element

ist wegen β /∈ (α) ungleich Null, und es gilt |β − aα|= |α||ρ − a|< |α|, wie gewünscht.

Nun betrachten wir noch den Fall 1
2

p
3≤ |Im(ρ)| ≤ 1

4

p
19. Sei δ = 2β− 1

2 (1+
p
−19)α. Dann gilt δα = 2ρ− 1

2 (1+
p

19).
Ersetzen wir nötigenfalls β durch −β und ρ durch −ρ, dann können wir 1

2

p
3≤ Im(ρ)≤ 1

4

p
19 annehmen. Es folgt

dann
p

3≤ Im(2ρ)≤ 1
2

p
19 und

p
3− 1

2

p
19≤ Im(2ρ− 1

2 (1+
p
−19)) = Im(δα )≤ 0. Wir wählen nun a ∈Z so, dass

|Re(2ρ − 1
2 (1+

p
−19))− a| ≤ 1

2 erfüllt ist und definieren γ= δ− aα. Dann gilt

�

�

γ
α

�

�

2
=

�

�

δ
α − a

�

�

2
= |Re(δα − a) + i Im(δα )|

2 = |Re(δα − a)|2 + |Im(δα )|
2 ≤ 1

4 + (
p

3− 1
2

p

19)2.

Wir zeigen, dass (
p

3 − 1
2

p
19)2 < 3

4 ist. Daraus folgt dann | γα |
2 < 1 und |γ| < |α|, so dass wir auch in diesem Fall

am Ziel sind. Aus
p

19<
p

27= 3
p

3 folgt 1
2

p
19< 3

2

p
3. Durch Subtraktion von

p
3 auf beiden Seiten erhalten wir

1
2

p
3 > 1

2

p
19−
p

3, und 1
2

p
19−
p

3 ist positiv wegen 3 < 19
4 ⇔ 12 < 19. Durch Quadrieren erhalten wir nun die

gewünschte Abschätzung (
p

3− 1
2

p
19)2 < 3

4 . □

Satz 12.30 Der Ring R=Z[ 1
2 (1+

p
−19)] ist kein euklidischer Ring.

Beweis: Mit ähnlichen Argumenten wie in Prop. 12.15 zeigen wir zunächst, dass die Einheitengruppe von R durch
R× = {±1} gegeben ist, und dass die Elemente 2 und 3 in R irreduzibel sind. Wegen 1 · 1= 1 und (−1)(−1) = 1 sind
±1 jedenfalls Einheiten. Ist umgekehrt ϵ ∈ R×, dann gilt N(ϵ)N(ϵ−1) = N(ϵϵ−1) = N(1) = 1. Aus N(ϵ), N(ϵ−1) ∈N
und N(ϵ)N(ϵ−1) = 1 folgt N(ϵ) = 1. Schreiben wir ϵ = 1

2 a + 1
2 b
p
−19 mit a, b ∈ Z und a ≡ b mod 2, dann folgt
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1
4 a2+ 19

4 b2 = N(ϵ) = 1 und a2+19b2 = 4. Die einzigen ganzzahligen Lösungen dieser Gleichung sind (a, b) = (±2, 0).
Es folgt ϵ ∈ {±1}. Die Einheitengruppe von R also gegeben durch R× = {±1} und besteht genau aus den Elementen
mit Norm 1.

Wegen N(2) = 4 > 1 und N(3) = 9 > 1 sind 2 und 3 jedenfalls keine Einheiten. Wäre 2 reduzibel, dann gäbe es
Elemente α,β ∈ R, die keine Einheiten in R sind und αβ = 2 erfüllen. Es wäre dann N(α)N(β) = N(αβ) = N(2) = 4.
Wegen α,β /∈ R× gilt außerdem N(α), N(β) > 1. Damit bleibt N(α) = N(β) = 2 als einzige Möglichkeit. Schreiben
wir α= 1

2 a+ 1
2 b
p
−19 mit a, b ∈Z und a ≡ b mod 2, dann ist N(α) = 2 äquivalent zu 1

4 a2+ 19
4 b2 = 2⇔ a2+19b2 =

8. Aber diese Gleichung besitzt offenbar keine Lösung mit (a, b) ∈ Z2. Ebenso zeigt die Unlösbarkeit der Gleichung
a2 + 19b2 = 12, dass 3 im Ring R irreduzibel ist.

Nach diesen Vorbereitungen nehmen wir nun an, dass R euklidisch und h : R\{0} →N eine Höhenfunktion auf R ist.
Weiter sei π ∈ R eine Nichteinheit mit der Eigenschaft, dass h(π) für alle Nicht-Einheiten aus R \ {0} ein minimaler
Wert ist. Wir zeigen, dass π dann in der Menge {±2,±3} enthalten sein muss. Durch Division mit Rest erhalten wir
Elemente γ,ρ ∈ R mit 2= γπ+ρ, wobei ρ = 0 oder ρ ̸= 0 und h(ρ)< h(π) gelten muss. Auf Grund der Minimalität
von h(π) gibt es nur die beiden Möglichkeiten, dass ρ = 0 oder eine Einheit ist. Es gilt also ρ ∈ {−1,0, 1}. Im Fall
ρ = 0 wäre π ein Teiler von 2. Auf Grund der Irreduzibilität von 2 sind 2 und π dann assoziiert, und daraus folgt
π ∈ {±2}.

Betrachten wir nun den Fall ρ = 1. Die Gleichung 2 = γπ+ 1 liefert dann γπ = 1. Aber dies steht im Widerspruch
dazu, dass π keine Einheit ist. Als letzte Möglichkeit betrachten wir den Fall ρ = −1. Dann gilt 2= γπ−1. Dann gilt
γπ = 3. Weil 3 irreduzibel ist, sind π und 3 assoziiert, also π ∈ {±3}. Damit haben wir insgesamt gezeigt, dass in
jedem möglichen Fall π ∈ {±2,±3} gilt.

Sei nun θ = 1
2 (1+
p
−19). Wiederum wenden wir Division mit Rest an und erhalten Elemente γ,ρ ∈ R mit θ = γπ+ρ,

wobei ρ = 0 oder ρ ̸= 0 und h(ρ) < h(π) gilt. Wie zuvor schließen wir daraus ρ ∈ {−1,0, 1}. Im Fall ρ = 0 gilt
θ = γπ. Im Fall ρ = 1 ist θ−1= γπ, und im Fall ρ = −1 ist θ+1= γπ. Also ist eines der Elemente θ−1,θ ,θ+1 auf
jeden Fall durch π teilbar. Es gilt aber π ∈ {±2,±3}, und wie man sich leicht überzeugt, ist keines der sechs Elemente

1
2 (θ − 1) , 1

2θ , 1
2 (θ + 1) , 1

3 (θ − 1) , 1
3θ , 1

3 (θ + 1)

in R enthalten. Die Annahme, dass eine Höhenfunktion h auf R existiert, hat also insgesamt zu einem Widerspruch
geführt. Also ist R kein euklidischer Ring. □

Zum Schluss sei noch erwähnt, dassZ[
p

d] in einzelnen Fällen auch für positives d euklidisch ist. Beispielsweise sind
Z[
p

2] und Z[
p

3] euklidische Ringe, mit h(a+ b
p

2) = |a2−2b2| bzw. h(a+ b
p

3) = |a2−3b2| als Höhenfunktion.
Dies lässt sich auf ähnliche Weise wie beim RingZ[i] der Gauß’schen Zahlen zeigen. Es gibt aber auch Fälle, in denen
der Ring Z[

p
d] euklidisch ist, die Höhenfunktion aber eine andere Gestalt besitzt. In [Ha] wird dies zum Beispiel

für den Ring Z[
p

14] nachgewiesen.
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§ 13. Irreduzibilitätskriterien und Gauß’sches Lemma

Zusammenfassung. Wie wir insbesondere in der Körpertheorie noch sehen werden, ist es für verschiedene
Anwendungen notwendig, die Irreduzibilität von Polynomen über Körpern nachzuweisen. In diesem Abschnitt
werden wir mehrere solche Kriterien zur Verfügung stellen, wobei wir für die Herleitung insbesondere auf die
Theorie des letzten Kapitels zurückgreifen werden. Von besonderem Interesse ist für uns die Situtation, in der
K Quotientenkörper eines faktoriellen Rings R ist, wie sie z.B. für K = Q und R = Z vorliegt. Hier werden
wir unter anderem zeigen, dass für die Irreduzibilität eines Polynoms f ∈ R[x] über dem Körper K bereits die
Irreduzibilität in R[x] hinreichend ist.

Wichtige Grundbegriffe

– primitives Polynom

Zentrale Sätze

– Kriterium für Nullstellen ganzzahliger Polynome

– Gauß’sches Lemma

– Polynomringe über faktoriellen Ringen sind faktoriell.

– Eisenstein-Kriterium

– Reduktionskriterium

Wir beginnen mit einigen elementaren Feststellungen zur Irreduzibilität von Polynomen über Körpern.

Proposition 13.1 Sei K ein Körper und f ∈ K[x] nicht konstant, also f /∈ K .

(i) Ist grad( f ) = 1, dann ist f im Ring K[x] irreduzibel.

(ii) Im Fall grad( f ) ∈ {2, 3} ist f genau dann irreduzibel, wenn f in K keine Nullstelle besitzt.

(iii) Im Fall grad( f ) ∈ {4, 5} ist f genau dann irreduzibel, wenn f in K keine Nullstelle besitzt
und durch kein normiertes, irreduzibles Polynom vom Grad 2 teilbar ist.

Beweis: zu (i) Sei f ∈ K[x] mit grad( f ) = 1. Dann ist f ungleich null und als nicht-konstantes Polynom nach
Folgerung 11.30 auch keine Einheit. Seien nun g, h ∈ K[x] mit f = gh. Nach Teil (ii) von Proposition 11.29 gilt
grad(g)+grad(h) = grad(gh) = grad( f ) = 1. Wegen grad(g), grad(h)≥ 0 folgt daraus grad(g) = 0 oder grad(h) = 0.
Nach Folgerung 11.30 ist also eines der beiden Polynome g, h eine Einheit in K[x].

zu (ii) „⇒“ Nehmen wir an, dass f irreduzibel ist, aber eine Nullstelle a ∈ K besitzt. Nach Folgerung 12.5 existiert
dann ein g ∈ K[x] mit f = (x − a)g. Wegen grad(x − a) = 1 ist x − a in K[x] keine Einheit. Aus grad( f ) =
grad(x−a)+grad(g) = 1+grad(g) folgt grad(g) = grad( f )−1≥ 1, und somit ist auch g keine Einheit in K[x]. Aber
nun folgt aus der Gleichung f = (x − a)g, dass f in K[x] nicht irreduzibel ist, im Widerspruch zur Voraussetzung.

„⇐“ Nach Voraussetzung besitzt f in K keine Nullstelle. Nehmen wir an, dass f in K[x] nicht irreduzibel ist. Wegen
f /∈ K ist f in K[x] auch keine Einheit und somit ein reduzibles Element. Sei f = gh eine Zerlegung von f in
Nicht-Einheiten g, h ∈ K[x]. Dann sind g und h ungleich null, und außerdem nicht-konstant, denn andernfalls wäre
eines der Elemente g, h in K× enthalten und somit auch eine Einheit in K[x]. Es gilt also grad(g), grad(h) ≥ 1. Da
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zugleich grad(g) + grad(h) = grad( f ) ≤ 3 gilt, muss eines der Polynom g, h vom Grad 1 sein. Aber dies bedeutet,
dass eines dieser beiden Polynome, und damit auch das Polynom f , in K eine Nullstelle besitzt, im Widerspruch zur
Voraussetzung. Denn ist beispielsweise g = cx + d mit c ∈ K× und d ∈ K , dann gilt für a = − d

c offenbar g(a) = 0K .

zu (iii) „⇒“ Wie in Teil (ii) überprüft man unmittelbar, dass aus der Existenz einer Nullstelle in K die Reduzibilität
f in K[x] folgt. Ebenso ist f in K[x] reduzibel, wenn ein normierter Teiler g ∈ K[x] vom Grad 2 existiert. Denn dann
existiert ein h ∈ K[x]mit f = gh, und wegen grad(g) = 2 und grad(h) = grad( f )−grad(g) = grad( f )−2≥ 4−2= 2
sind g und h keine Einheiten in K[x].

„⇐“ Nehmen wir an, dass f in K[x] kein irreduzibles Element und f = gh eine Zerlegung von f in Nicht-Einheiten
g, h ∈ K[x] ist. Wir zeigen, dass f dann eine Nullstelle in K oder einen irreduziblen, normierten Teiler vom Grad 2
besitzt. Wenn wir davon ausgehen, dass f in K keine Nullstelle besitzt, dann müssen g und h beide vom Grad ≥ 2
sein. Denn wegen g, h /∈ K gilt auf jeden Fall grad(g), grad(h) ≥ 1, und wäre eines dieser Polynome vom Grad 1,
dann würde daraus die Existenz einer Nullstelle von f in K folgen, wie wir bereits unter (ii) festgestellt haben. Aber
aus grad(g), grad(h)≥ 2 und grad(g)+grad(h) = grad( f )≤ 4 folgt grad(g) = 2 oder grad(h) = 2. Nach eventueller
Vertauschung von g und h können wir grad(g) = 2 annehmen. Bezeichnet c ∈ K× den Leitkoeffizienten von g, dann
ist g̃ = c−1 g ein normiertes Polynom vom Grad 2. Außerdem ist g̃ in K[x] irreduzibel, dann andernfalls hätte g̃ nach
Teil (ii) in K eine Nullstelle, und dies wäre auch eine Nullstelle von f , im Widerspruch zu unserer Annahme. Darüber
hinaus ist g̃ weiterhin ein Teiler von f in K[x], denn es gilt f = g̃ · (ch). □

Aus Teil (ii) von Proposition 13.1 folgt beispielsweise die Irreduzibilität des Polynom f = x2−2 inQ[x]. Denn andern-
falls wäre eine der beiden reellen Nullstellen ±

p
2 in Q enthalten, im Widerspruch zu Irrationalität von

p
2. Das Bei-

spiel zeigt auch, dass die Irreduzibilität eines Polynoms im Allgemeinen davon abhängt, über welchem Grundkörper
man das Polynom betrachtet. Im Polynomring R[x] ist f ein reduzibles Element, wie man anhand der Zerlegung
f = (x −

p
2)(x +

p
2) erkennen kann.

Mit Hilfe von Teil (iii) kann man beispielsweise zeigen, dass g = x5 + x2 + 1̄ im Polynomring F2[x] irreduzibel ist.
Dafür überprüft man zunächst, dass g wegen g(0̄) = g(1̄) = 1̄ in F2 keine Nullstelle besitzt. Das Polynom kann also
nur dann reduzibel sein, wenn ein normierter Teiler vom Grad 2 existiert. Die normierten Polynome von Grad 2 in
F2[x] sind x2, x2 + 1̄, x2 + x und x2 + x + 1̄, und wie man unmittelbar nachrechnet, ist h = x2 + x + 1̄ als einziges
dieser vier Polynome nullstellenfrei und somit irreduzibel. Aber andererseits ist h kein Teiler von g. Denn wäre dies
der Fall, dann müsste h auch ein Teiler von g − x3 · h= x4 + x3 + x2 + 1̄ und von g − x3 · h− x2 · h= 1̄ sein.

Um die soeben formulierte Proposition anwenden zu können, benötigen wir einfach zu handhabende Kriterien für
die Existenz von Nullstellen. Für Quotientenkörper faktorieller Ringe erweist sich der folgende Satz als hilfreich.

Satz 13.2 Sei R ein faktorieller Ring, K sein Quotientenkörper und f ∈ R[x] ein Polynom vom
Grad n≥ 1. Sei f = an xn + ...+ a1 x + a0 mit a0, ..., an ∈ R.

(i) Ist α ∈ K eine Nulstelle von f , α = p
q mit p, q ∈ R und q ̸= 0, wobei p und q teilerfremd

sind, dann gilt q | an und p | a0.

(ii) Ist insbesondere f normiert, also an = 1, dann liegt α in R und ist ein Teiler von a0.
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Beweis: Offenbar ist die Aussage (ii) eine direkte Folgerung von (i). Zum Beweis von (i) sei α = p
q wie angegeben.

Es gilt

f (α) = 0 ⇔ anα
n +

n−1
∑

k=0

akα
k = 0 ⇔ anα

n = −
n−1
∑

k=0

akα
k ⇔ an(

p
q )

n = −
n−1
∑

k=0

ak(
p
q )

k

⇔ anpn = −
n−1
∑

k=0

ak pkqn−k = q

�

−
n−1
∑

k=0

ak pkqn−1−k

�

.

Dies zeigt, dass anpn durch q teilbar ist. Weil mit p und q auch pn und q teilerfremd sind, muss q | an gelten. Nun gilt
ebenso

f (α) = 0 ⇔
n
∑

k=1

akα
k + a0 = 0 ⇔ a0 = −

n
∑

k=1

akα
k ⇔ a0 = −

n
∑

k=1

ak(
p
q )

k

⇔ a0qn = −
n
∑

k=1

ak pkqn−k = p

�

−
n
∑

k=1

ak pk−1qn−k

�

.

Dies zeigt, dass a0qn von p geteilt wird. Weil p und qn teilerfremd sind, folgt daraus p | a0. □

Mit Hilfe dieses Kriteriums kann beispielsweise leicht gezeigt werden, dass Polynom f = x3−x+2 inQ[x] irreduzibel
ist. Wäre es reduzibel, dann hätte es wegen grad( f ) = 3 eine rationale Nullstelle. Weil aber Z faktoriell und Q
der Quotientenkörper von Z ist, und weil f in Z[x] liegt und normiert ist, muss jede rationale Nullstelle von f
ein ganzzahliger Teiler von 2 sein. Die einzigen möglichen Nullstellen von f in Q sind damit ±1,±2. Es gilt aber
f (1) = f (−1) = 2, f (2) = 4 und f (−2) = −4. Somit besitzt f in Q keine Nullstelle.

Unser nächstes Ziel ist die Formulierung und der Beweis des Gaußschen Lemmas, dass einen Zusammenhang zwi-
schen der Irreduzibilität über einem faktoriellen Ring R und über dessen Quotientenkörper K herstellt. In den An-
wendungen ist man meistens am Spezialfall R=Z und K =Q interessiert.

Lemma 13.3 Sei R ein faktorieller Ring und K sein Quotientenkörper. Sind a1, ..., an ∈ K×

beliebig vorgegeben, dann gibt ein α ∈ K×, so dass die Elemente a′i = αai in R liegen und
ggT(a′1, ..., a′n) = 1 gilt.

Beweis: Nach Definition des Quotientenkörpers gibt es Elemente ri , si ∈ K mit si ̸= 0, so dass ai = ri/si für 1≤ i ≤ n
gilt. Setzen wir α= s1...sn, dann liegt α in K×, und es gilt

αai = ri

�

i−1
∏

k=1

sk

��

n
∏

k=i+1

sk

�

∈ R.

Wir können also o.B.d.A. voraussetzen, das ai ∈ R für 1≤ i ≤ n gilt Sei nun d = ggT(a1, ..., an), α= d−1 und a′i = αai

für 1 ≤ i ≤ n. Angenommen, die Elemente a′1, ..., a′n sind nicht teilerfremd. Dann gibt es ein Primelement p mit p|a′i
für 1≤ i ≤ n. Es folgt pd|ai für 1≤ i ≤ n und somit pd|d nach Definition des ggT. Dies bedeutet, dass ein a ∈ R mit
pda = d existiert, und die Kürzungsregel liefert pa = 1. Aber dies ist unmöglich, denn ein Primelement kann nicht
zugleich Einheit sein. Also ist ggT(a′1, ..., a′n) = 1 erfüllt. □

Definition 13.4 Sei R ein faktorieller Ring und f =
∑n

k=0 ak x k ∈ R[x]. Wir nennen das Poly-
nom f primitiv, wenn f ̸= 0 ist und die Koeffizienten a0, ..., an keinen gemeinsamen Primteiler
besitzen.
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Wir betrachten einige Beispiele.

(i) Normierte Polynome in R[x], also Polynome der Form xn+an−1 xn−1+...+a1 x+a0 mit höchstem Koeffizienten
1 und ansonsten beliebigen Koeffizienten a0, ..., an−1 ∈ R, sind immer primitiv.

(ii) Das Polynom 2x2 + 4x + 6 ist nicht primitiv, denn es gilt ggT(2,4, 6) = 2.

(iii) Ist R ein Integritiätsbereich und f ∈ R[x] ein irreduzibles Element vom Grad≥ 1, dann ist f primitiv. Ansonsten
hätten die Koeffizienten von f einen gemeinsamen Primteiler p ∈ R, und es würde ein Polynom f̃ ∈ R[x] mit
f = p f̃ existieren. Dies aber bedeutet, dass f als Produkt von Nichteinheiten dargestellt werden kann und
somit reduzibel ist.

Folgerung 13.5 Sei R ein faktorieller Ring, K sein Quotientenkörper und f ∈ K[x] ein Polynom
mit f ̸= 0. Dann gibt es ein α ∈ K×, so dass α f in R[x] liegt und primitiv ist.

Beweis: Das folgt unmittelbar aus Lemma 13.3, angewendet auf die Koeffizienten des Polynoms f . □

Sei nun R ein Integritätsbereich, p ⊆ R ein Primideal und R̄ = R/p der zugehörige Restklassenring, mit dem kanoni-
schen Epimorphismus π : R→ R̄. Wir bezeichnen mit p[x] = pR[x] die Menge aller Polynome, deren Koeffizienten
im Primideal p enthalten sind. Es handelt sich um das von der Teilmenge p in R[x] erzeugte Ideal.

Lemma 13.6 Der Homomorphismus φ : R[x] → R̄[x] gegeben durch
∑n

i=0 ai x
i 7→

∑n
i=0π(ai)x i induziert einen Isomorphismus R[x]/p[x]∼= R̄[x] von Ringen.

Beweis: Weil der kanonische Epimorphismus π : R→ R̄ surjektiv ist, gilt dasselbe offenbar auch für φ. Außerdem
ist p[x] ist der Kern von φ. Also folgt die Aussage aus dem Homomorphiesatz. □

Folgerung 13.7 Das Ideal p[x] ist ein Primideal in R[x].

Beweis: Weil p in R ein Primideal ist, handelt es sich beim Faktorring R̄ nach Satz 11.12 um einen Integritätsbe-
reich. Damit ist auch der Polynomring R̄[x] ein Integritätsbereich, auf Grund der Isomorphie also auch R[x]/p[x].
Wiederum nach Satz 11.12 folgt daraus, dass p[x] ein Primideal ist. □

Satz 13.8 (Lemma von Gauß)
Sei R ein faktorieller Ring, und seien f , g ∈ R[x] primitive Polynome. Dann ist auch f g primitiv.

Beweis: Angenommen, das Produkt f g ist nicht primitiv und das Primelement p ∈ R ein gemeinsamer Teiler der
Koeffizienten. Nach Proposition 12.17 ist (p) in R ein Primideal, und nach Folgerung 13.7 erzeugt p auch ein Primideal
in R[x], das wir ebenfalls mit (p) bezeichnen. Nun sind f g nach Voraussetzung in (p) enthalten, es folgt f ∈ (p)
oder g ∈ (p). Setzen wir o.B.d.A. den ersten Fall voraus, dann ist p ein gemeinsamer Teiler der Koeffizienten von f ,
im Widerspruch dazu, dass f primitiv ist. □
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Satz 13.9 Sei R ein faktorieller Ring, K sein Quotientenkörper und f ∈ R[x] ein Polynom mit
grad( f )≥ 1.

(i) Ist g ∈ R[x] ein primitives Polynom mit der Eigenschaft, dass g ein Teiler von f in K[x]
ist, so ist g bereits ein Teiler von f in R[x].

(ii) Ist f irreduzibel in R[x], dann auch in K[x].

Beweis: zu (i) Nach Voraussetzung gibt es ein h ∈ K[x] mit f = gh, und Folgerung 13.5 liefert uns ein Element
α ∈ K×, so dass h̃ = αh in R[x] liegt und primitiv ist. Nach dem Lemma von Gauß ist gh̃ primitiv, und es gilt
f = g(α−1h̃).

Sei α= a/b eine Darstellung von α als gekürzter Bruch, also mit a, b ∈ R, b ̸= 0 und ggT(a, b) = 1. Dann erhalten wir
aus f = g(α−1h̃) Gleichung a f = bgh̃. Angenommen, p ist ein Primteiler von a. Dann wäre p auch ein gemeinsamer
Primteiler der Koeffizienten von gh̃. Aber das ist unmöglich, weil gh̃ primitiv ist. Es folgt α−1 = b/a ∈ R, und die
Gleichung f = g(α−1h̃) zeigt, dass g auch in R[x] ein Teiler von f ist.

zu (ii) Sei f = gh mit g, h ∈ K[x]. Ferner sei α ∈ K× ein Element mit der Eigenschaft, dass g̃ = αg in R[x] liegt und
primitiv ist. Wegen f = g̃(α−1h) ist auch g̃ ein Teiler von f in K[x]. Weil aber g̃ außerdem primitiv ist, ist g̃ nach
Teil (i) sogar ein Teiler von f in R[x]. Es gibt also ein h̃ ∈ R[x] mit f = g̃h̃. Wegen g̃h̃ = f = g̃(α−1h) gilt h̃ = α−1h.
Weil f nach Voraussetzung in R[x] irreduzibel ist, ist g̃ oder h̃ eine Einheit in R[x], also ein Element aus R×. Wegen
g̃ = αg und h̃ = α−1h folgt daraus g ∈ K× oder h ∈ K×. Also ist g oder h eine Einheit in K×, und folglich ist f auch
in K[x] irreduzibel. □

Um also beispielsweise zu zeigen, dass ein normiertes Polynom f ∈ Z[x] im Polynomring Q[x] irreduzibel ist,
genügt es, die Irreduzibilität in Z[x] nachzuweisen. In vielen Fällen ist dies bedeutend einfacher. Überprüfen wir
beispielsweise die Irreduzibilität des Polynoms f = x4 + 1 in Z[x], indem wir davon ausgehen, dass eine Zerlegung
f = gh in Nicht-Einheiten g, h ∈ Z[x] gegeben ist und dies zum Widerspruch führen. Da f normiert ist, dürfen
wir annehmen, dass auch g und h beide normiert sind. Denn die einzige weitere Möglichkeit besteht darin, dass g
und h beide −1 als Leitkoeffizient besitzen, und in diesem Fall ist dann f = (−g)(−h) eine Zerlegung in normierte,
ganzzahlige Faktoren. Die Zerlegung f = gh zeigt auch, dass das Produkt der konstanten Terme von g und h gleich
1 ist. Die konstanten Terme von g und h sind also entweder beide gleich 1 oder beide gleich −1.

Da f als normiertes Polynom primitiv ist, muss grad(g), grad(h) ≥ 1 gelten. Denn ansonsten wären g und h Nicht-
Einheiten in Z, würden also einen Primteiler p besitzen, und dieses p wäre dann auch ein gemeinsamer Teiler der
Koeffizienten von f , im Widerspruch zu p ∤ 1. Aber auch grad(g) = 1 oder grad(h) = 1 ist ausgeschlossen. Denn in
diesem Fall wäre eines der beiden Polynome gleich x − 1 oder x + 1. Aber wegen f = gh wäre dann 1 oder −1 eine
Nullstelle von f , im Widerspruch dazu, dass f nullstellenfrei ist. Wegen grad(g)+ grad(h) = grad( f ) = 4 müssten g
und h also beide vom Grad 2 sein.

Insgesamt kommen wir zu dem Ergebnis, dass a, b ∈Z existieren, so dass entweder g = x2+ax+1 und h= x2+bx+1
oder g = x2 + ax − 1 und h= x2 + bx − 1 erfüllt ist. Die Berechnung der beiden Produkte ergibt

(x2 + ax + 1)(x2 + bx + 1) = x4 + (a+ b)x3 + (ab+ 2)x2 + (a+ b)x + 1

und
(x2 + ax − 1)(x2 + bx − 1) = x4 + (a+ b)x3 + (ab− 2)x2 − (a+ b)x + 1.
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Aber der Vergleich mit dem Term vom Grad 3 in x4+1 zeigt, dass dann b = −a gelten muss. Der quadratische Term
(ab + 2)x2 wäre dann entweder gleich (2− a2)x2 oder gleich −(2+ a2)x2, auf jeden Fall ungleich null. Dies zeigt,
dass in Z[x] auch keine Zerlegung von f in zwei Faktoren vom Grad 2 existiert. Insgesamt ist damit nachgewiesen,
dass f in Z[x] und damit auch in Q[x] irreduzibel ist.

Aus dem Gauß’schen Lemma kann ein weiteres wichtiges Ergebnis abgeleitet werden.

Satz 13.10 Ist R ein faktorieller Ring, dann ist auch R[x] faktoriell.

Beweis: Sei f ∈ R[x] ungleich 0R und keine Einheit in R[x]. Wir zeigen zunächst, dass f in R[x] eine Zerlegung
in irreduzible Elemente besitzt. Sei c ein ggT der Koeffizienten von f im Ring R. Dann können wir f in der Form
f = cg schreiben, mit einem primitiven Polynom g. Weil R faktoriell ist, kann c in R als Produkt irreduzibler Elemente
dargestellt werden.

Wir zeigen nun durch vollständige Induktion über m = grad(g), dass auch g ein Produkt irreduzibler Elemente ist.
Im Fall m= 0 ist g in R[x] eine Einheit und nichts zu zeigen. Setzen wir nun m≥ 1 voraus. Besitzt g keine Zerlegung
in Nicht-Einheiten, so ist g nach Definition irreduzibel. Nehmen wir nun an, es gilt g = h1h2, wobei h1 und h2 in
R[x] keine Einheiten sind. Wäre grad(h1) = 0 oder grad(h2) = 0, dann wäre h1 oder h2 eine Nicht-Einheit in R und
würde somit von einem Primelement p des Rings R geteilt. Somit wäre dann p ein Teiler von g, im Widerspruch dazu,
dass g primitiv ist. So aber gilt 0 < grad(g1), grad(g2) < m. Wir können auf g1 und g2 die Induktionsvoraussetzung
anwenden und erhalten Darstellungen beider Polynome als Produkte irreduzibler Elemente von R[x]. Daraus ergibt
sich eine ebensolche Darstellung für g, womit der Induktionsschritt abgeschlossen ist.

Nun müssen wir noch zeigen, dass die Darstellung von unserem Polynom f im Wesentlichen eindeutig ist. Wieder
stellen wir f als Produkt cg mit einem Element c ∈ R und einem primitiven Polynom g ∈ R[x] dar. In jeder Darstellung
von f als Produkt irreduzibler Elemente bilden die Faktoren vom Grad 0 (bis auf Einheiten) eine Zerlegung von c,
und die übrigen Faktoren eine Zerlegung von g. Da die Eindeutigkeit der Faktorzerlegung in R bereits bekannt ist,
können wir uns auf den Fall f = g beschränken. Nehmen wir nun an, dass durch

g1 · ... · gr = f = h1 · ... · hs

zwei Zerlegungen des primitiven Polynoms f ∈ R[x] in irreduzible Elemente gi , h j des Rings R[x] gegeben sind,
alle von positivem Grad. Nach Satz 13.9 (ii) sind die Elemente gi , h j auch alle irreduzibel in K[x], wobei K den
Quotientenkörper von R bezeichnet. Auf Grund der Eindeutigkeit der Primfaktorzerlegung in K[x]muss r = s gelten,
und nach eventueller Umnummerierung ist gi in K[x] assoziiert zu hi , für 1≤ i ≤ r. Wegen Satz 13.9 (i) gi auch in
R[x] jeweils assoziiert zu hi . Damit ist die Eindeutigkeit der Zerlegung nachgewiesen. □
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Wir formulieren noch zwei Kriterien für die Irreduzibilität von Polynomen über Ringen.

Satz 13.11 (Eisenstein-Kriterium)
Sei R ein faktorieller Ring, p ∈ R ein Primelement und f ∈ R[x] ein primitives Polynom vom
Grad n> 0. Es sei f = an xn+ an−1 xn−1+ ...+ a1 x + a0 mit a0, ..., an ∈ R, und wir setzen voraus,
dass die Koeffizienten von f folgende Bedingungen erfüllen.

(i) p|ai für 0≤ i < n (ii) p ∤ an (iii) p2 ∤ a0

Dann ist f in R[x] irreduzibel.

Beweis: Angenommen, es gibt Polynome g, h ∈ R[x] mit f = gh. Wir schreiben

g =
r
∑

i=0

bi x
i und h =

s
∑

k=0

ck x k mit bi , ck ∈ R, br , cs ̸= 0.

Dann gilt a0 = b0c0, und wegen Bedingung (iii) gilt p|a0, p2 ∤ a0. Nach eventueller Vertauschung von g und h können
wir annehmen, dass p|b0 und p ∤ c0 gilt. Wäre p ein Teiler sämtlicher Koeffizienten von g, dann wäre p auch ein
Teiler von an = br cs, im Widerspruch zur Bedingung (ii). Es gibt also ein minimales u ∈ {1, ..., r} mit p ∤ bu. Nun gilt

au =
u
∑

i=0

bu−ici ,

und p ist ein Teiler von bu−ici für 1 ≤ i ≤ u, aber kein Teiler von buc0. Folglich ist p auch kein Teiler von au, und
wegen Bedingung (i) muss u= n gelten. Damit ist grad(g) = n= grad( f ) und grad(h) = 0. Weil f primitiv ist, muss
h in R× liegen. Damit ist die Irreduzibilität von f in R[x] bewiesen. □

Beispielsweise sind die Polynome x2−5 und x3+2x +6 beide primitiv, weil sie normiert sind. Beim ersten Polynom
kann das Eisenstein-Kriterium auf die Primzahl p = 5, beim zweiten auf p = 2 angewendet werden. Also sind beide
Polynome in Z[x] und nach Satz 13.9 auch in Q[x] irreduzibel.

Satz 13.12 (Reduktionskriterium)
Sei R ein faktorieller Ring, p ∈ R ein Primelement und R̄ = R/(p). Es sei f =

∑n
i=0 ai x

i ∈ R[x]
ein primitives Polynom mit an /∈ (p) und f̄ das Bild von f in R̄[x]. Ist f̄ in R̄[x] irreduzibel, dann
auch das Polynom f in R[x].

Beweis: Nehmen wir an, es gibt eine Zerlegung f = gh von f mit g, h ∈ R[x], wobei wir annehmen, dass weder g
noch h eine Einheit in R[x] ist. Weil f primitiv ist, sind dann g und h auch keine konstanten Polynome. Es gilt dann
f̄ = ḡh̄ in R̄[x], wobei ḡ, h̄ die Bilder von g, h in R̄[x] bezeichnen. Wegen an /∈ (p) gilt grad( f ) = grad( f̄ ), und damit
muss auch grad(g) = grad( ḡ) und grad(h) = grad(h̄) gelten.

Insbesondere sind ḡ und h̄ nicht konstant. Nun ist (p)wegen Proposition 12.17 ein Primideal in R und R̄= R/(p) damit
nach Satz 11.12 (i) ein Integritätsbereich. Daraus folgt, dass die Einheiten im Polynomring R̄[x] genau die Einheiten
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in R̄ sind, siehe Folgerung 11.30. Somit sind ḡ und h̄ keine Einheiten in R̄[x]. Aber dann zeigt die Gleichung f̄ = ḡh̄,
dass f̄ in R̄[x] nicht irreduzibel ist. □

Als Anwendung des Reduktionskriteriums zeigen wir, dass f = x3 + x + 1 in Q[x] irreduzibel ist. Offenbar ist f in
Z[x] ein primitives Polynom. Setzen wir p = (2), dann ist R/p ∼= F2. Der Leitkoeffizient von f ist gleich 1 und liegt
somit nicht in p. Das Bildpolynom

f̄ = x3 + x + 1̄ ∈ F2[x]

hat in F2 keine Nullstelle (es gilt f̄ (0̄) = f̄ (1̄) = 1̄), wegen grad( f̄ ) = 3 ist es also irreduzibel. Auf Grund des
Reduktionskriteriums ist f also in Z[x] irreduzibel, und mit Satz 13.9 erhalten wir die Irreduzibilität in Q[x].
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§ 14. Kongruenzrechnung und Chinesischer Restsatz

Zusammenfassung. Der Chinesische Restsatz ermöglicht unter gewissen Voraussetzungen die Darstellung von
Faktorringen R/I als direktes Produkt von Ringen. Eine zahlentheoretische Anwendung dieses Satzes ist die
Bestimmung der Lösungsmengen von Systemen von Kongruenzen. Hierbei spielt der bereits in § 11 themati-
sierte Zusammenhang zwischen Kongruenzen und Faktorringen eine wichtige Rolle. Als weitere Anwendungen
untersuchen wir die Nullstellen von Polynomen in Restklassenringen. Außerdem bestimmen wir die Struktur
der primen Restklassengruppen (Z/nZ)× als direktes Produkt zyklischer Gruppen.

Wichtige Grundbegriffe

– Teilerfremdheit von Idealen

– Exponent einer Gruppe

– Primitivwurzel modulo einer Primzahl p

Zentrale Sätze

– Chinesischer Restsatz für beliebige Ringe

– Folgerung: simultane Lösbarkeit von Kongruenzen

– Folgerung: (Z/(mn)ZZ)× ∼= (Z/mZ)× × (Z/nZ)×
für m, n ∈N mit ggT(m, n) = 1

– Nullstellen von Polynomen in Restklassenringen

– Einheitengruppen endlicher Körper sind zyklisch.

– Struktur von (Z/prZ)× (p Primzahl, r ∈N)

Bereits in der Linearen Algebra haben wir für jede natürliche Zahl n ∈ N auf Z die Kongruenzrelation modulo n
definiert. In § 11 haben wir dann die Kongruenzrelation für Ideale in beliebigen Ringen eingeführt. In erster Linie
für die Kongruenzen modulo n, teilweise aber auch für die allgemeinen Kongruenzen, werden wir in diesem Kapitel
einige Ergebnisse zusammentragen. Wir beginnen mit dem Beweis einiger elementarer Rechenregeln für Kongruenz-
relationen.

Proposition 14.1 Seien m, n ∈N, außerdem a, b, c, d ∈Z und p eine Primzahl.

(i) Aus a ≡ c mod n und b ≡ d mod n folgt a+ b ≡ c + d mod n und ab ≡ cd mod n.

(ii) Gilt a ≡ b mod n und ist m ein Teiler von n, dann folgt a ≡ b mod m.

(iii) Es gilt a ≡ b mod n genau dann, wenn ma ≡ mb mod mn erfüllt ist.

(iv) Es gilt ap ≡ a mod p. Unter der zusätzlichen Voraussetzung p ∤ a gilt darüber hinaus
ap ≡ 1 mod p.

Die Aussage (iv) ist auch als Kleiner Satz von Fermat bekannt.

Beweis: zu (i) Aus den Voraussetzungen folgt a + nZ = c + nZ und b + nZ = d + nZ. Damit erhalten wir im
Restklassenring Z/nZ die Gleichungen (a + b) + nZ = (a + nZ) + (b + nZ) = (c + nZ) + (d + nZ) = (c + d) + nZ
und ebenso ab+ nZ= (a+ nZ)(b+ nZ) = (c+ nZ)(d + nZ) = cd + nZ. Aus diesen Gleichungen wiederum ergeben
sich die Kongruenzen a+ b ≡ c + d mod n und ab ≡ cd mod n.
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zu (ii) Nach Definition ist a ≡ b mod n äquivalent dazu, dass n|(b−a) gilt. Es existiert also ein k ∈Zmit b−a = nk.
Wegen m | n gilt außerdem n= dm für ein d ∈N. Es folgt b ≡ a+ nk ≡ a+ dmk ≡ a mod m.

zu (iii) Für jedes a ∈Z gilt die Äquivalenz

a ≡ b mod n ⇔ n | (b− a) ⇔ ∃ k ∈Z : nk = b− a ⇔ ∃ k ∈Z : mnk = mb−ma

⇔ (mn) | (mb−ma) ⇔ ma ≡ mb ≡ mn.

zu (iv) Sei a ∈Z, und setzen wir zunächst p ∤ a voraus. Dann ist ā = a+ pZ im Restklassenring Z/pZ ein Element
ungleich null. Weil p eine Primzahl ist, ist dieser Restklassenring nach Satz 11.7 ein Körper und ā somit in (Z/pZ)×

enthalten. Die Einheitengruppe (Z/pZ)× = Z/pZ \ {0̄} besteht aus p − 1 Elementen. Nach dem Satz von Lagrange
ist die Ordnung der Untergruppe 〈a〉 von (Z/pZ)×, also die Elementordnung ord(ā), ein Teiler von p − 1. Es folgt
ap−1 + pZ= (a+ pZ)p−1 = āp−1 = 1̄= 1+ pZ und somit auch ap−1 ≡ 1 mod p.

Mit Teil (i) erhalten wir auch die Kongruenz ap ≡ ap−1 · a ≡ 1 · a ≡ a mod p. Ist p ein Teiler von a, dann gilt auch
p | ap, und es folgt ap ≡ 0≡ a mod p. Insgesamt ist die Kongruenz ap ≡ a mod p also für alle a ∈Z erfüllt. □

Das Hauptziel dieses Kapitels ist die Herleitung des Chinesischen Restsatzes, eines wichtigen Hilfsmittels bei der
Lösung von Kongruenzen. Zur Vorbereitung wird das Konzept der Teilerfremdheit von Ringelementen auf Ideale
ausgedehnt.

Definition 14.2 Sei R ein Ring. Zwei Ideale I , J in R werden teilerfremd genannt, wenn I+J =
(1) gilt, wobei (1) wie üblich das Einheitsideal in R bezeichnet.

Diese Bezeichnung wird durch das folgende Lemma gerechtfertigt.

Lemma 14.3 Sei R=Z, und seien m, n ∈N. Genau dann sind die Ideale I = (m) und J = (n)
teilerfremd, wenn m, n als natürliche Zahlen teilerfremd sind.

Beweis: Sind m und n teilerfremd, dann gibt es nach dem Lemma von Bézout a, b ∈ Z mit am+ bn = 1. Es folgt
1 ∈ (m) + (n) = I + J , also I + J = (1). Setzen wir umgekehrt I + J = (1) voraus. Dann liegt 1 in I + J , es gibt also
a, b ∈ Z mit 1 = am+ bn. Ist d ein gemeinsamer Teiler von m und n, dann teilt d auf Grund der Gleichung auch 1.
Dies zeigt, dass m und n teilerfremd sind. □

Lemma 14.4 Sei R ein Ring, und seien I1, ..., Im, J Ideale in R, wobei I1, ..., Im jeweils teilerfremd
zu J sind. Dann ist auch das Produkt I1 · ... · Im teilerfremd zu J .

Beweis: Wir beweisen die Aussage durch vollständige Induktion über m. Sei zunächst m= 2. Dann ist die Gleichung
I1 I2 + J = (1) zu zeigen. Nun gilt

(1) = (1)(1) = (I1 + J)(I2 + J) = I1 I2 + J I2 + I1J + JJ ⊆ I1 I2 + J

und somit I1 I2 + J = (1). Sei nun die Behauptung für m bereits bewiesen, und seien I1, ..., Im+1, J Ideale, welche
die Voraussetzung des Lemmas erfüllen. Nach Induktionsannahme sind die Ideale I = I1 · ... · Im und Im+1 beide
teilerfremd zu J . Auf Grund des bereits bewiesenen Falls m= 2 ist auch I Im+1 = I1 · ... · Im · Im+1 teilerfremd zu J . □
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Lemma 14.5 Sei R ein Ring, und seien I1, ..., Im Ideale in R, die paarweise teilerfremd sind.
Dann gilt I1 · ... · Im = I1 ∩ ...∩ Im.

Beweis: Wir beweisen die Aussage durch vollständige Induktion über R und beginnen mit dem Fall m = 2. Nach
Lemma 10.16 gilt I1 I2 ⊆ I1 und I1 I2 ⊆ I2, insgesamt also I1 I2 ⊆ I1 ∩ I2. Sei nun umgekehrt r ∈ I1 ∩ I2 vorgegeben.
Wegen I1 + I2 = (1) gibt es Elemente a1 ∈ I1 und a2 ∈ I2 mit a1 + a2 = 1. Es folgt

r = r · 1 = r(a1 + a2) = ra1 + ra2.

Die Elemente ra1 und ra2 liegen beide in I1 I2, also gilt dasselbe auch für die Summe. Sei nun die Behauptung für
m bereits bewiesen, und seien I1, ..., Im+1 paarweise teilerfremde Ideale. Sei J = I1 · ... · Im. Nach Lemma 14.4 sind J
und Im+1 teierfremd. Die Induktionsvoraussetzung liefert also

(I1 ∩ ...∩ Im)∩ Im+1 = J ∩ Im+1 = J Im+1 = I1 · ... · Im · Im+1. □

Man beachte, dass die paarweise Teilerfremdheit eine wesentliche Voraussetzung für die Gültigkeit des Lemmas ist.
Ist beispielweise R = Z, I = (2) und J = (6), dann gilt I J = (12), aber aus Satz 10.12 (iii) folgt I ∩ J = (6), wegen
kgV(2, 6) = 6.

Satz 14.6 (Chinesischer Restsatz)

Sei R ein Ring, I1, ..., Im paarweise teilerfremde Ideale in R und I = I1 · ... · Im Dann gibt es einen
Isomorphismus von Ringen

φ̄ : R/I −→ (R/I1)× ...× (R/Im) mit φ̄(a+ I) = (a+ I1, ..., a+ Im) für alle a ∈ R.

Beweis: Seiφ : R→ (R/I1)×...×(R/Im) gegeben durchφ(a) = (a+I1, ..., a+Im). Nach Lemma 14.5 gilt I = I1∩...∩Im.
Ein Element a ∈ R liegt genau dann im Kern von φ, wenn a+ Ik = Ik⇔ a ∈ Ik für 1≤ k ≤ m gilt. Dies wiederum ist
äquivalent zu a ∈ I . Es gilt also I = ker(φ). Nach Proposition 11.8 gibt es einen Homomorphismus

φ̄ : R/I −→ (R/I1)× ...× (R/Im)

mit φ̄(a+ I) = (a+ I1, ..., a+ Im), und auf Grund des Homomorphiesatzes für Ringe ist φ̄ ein Isomorphismus, wenn
φ surjektiv ist. Dies beweisen wir nun durch vollständige Induktion über m.

Sei zunächst m= 2 und (a1+I1, a2+I2) ∈ (R/I1)×(R/I2) vorgegeben. Weil I1 und I2 teilerfremd sind, gibt es Elemente
s1 ∈ I1, s2 ∈ I2 mit s1 + s2 = 1. Es gilt dann s1 + I1 = I1, s1 + I2 = (1− s2) + I2 = 1+ I2, s2 + I1 = (1− s1) + I1 = 1+ I1

und s2 + I2 = I2. Bilden wir nun das Element a = s2a1 + s1a2, dann folgt

a+ I1 = (s2 + I1)(a1 + I1) + (s1 + I1)(a2 + I2) = (1+ I1)(a1 + I1) + (0+ I1)(a2 + I1) = a1 + I1

und ebenso

a+ I2 = (s2 + I2)(a1 + I2) + (s1 + I2)(a2 + I2) = (0+ I2)(a1 + I2) + (1+ I2)(a2 + I2) = a2 + I2
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insgesamt also φ(a) = (a + I1, a + I2) = (a1 + I1, a2 + I2). Sei nun m ∈ N, und setzen wir die Aussage für dieses m
voraus. Seien I1, ..., Im+1 teilerfremde Ideale und das Element

(a1 + I1, ..., am + Im, am+1 + Im+1) ∈ (R/I1)× ...× (R/Im)× (R/Im+1)

vorgegeben. Nach Induktionsvoraussetzung finden wir ein Element a′ ∈ R mit a′ + Ik = ak + Ik für 1 ≤ k ≤ m. Die
Ideale J = I1 · ... · Im und Im+1 sind nach Lemma 14.4 teilerfremd. Wiederum auf Grund der Induktionsvoraussetzung
finden wir ein a ∈ R mit a + J = a′ + J und a + Im+1 = am+1 + Im+1. Die Gleichung a + J = a′ + J ist äquivalent zu
a− a′ ∈ J , und aus J ⊆ Ik für 1≤ k ≤ m folgt a− a′ ∈ Ik, also a+ Ik = a′+ Ik = ak + Ik für 1≤ k ≤ m. Insgesamt gilt
also a+ Ik = ak + Ik für 1≤ k ≤ m+ 1 und φ(a) = (a1 + I1, ..., am+1 + Im+1). □

Für die Kongruenzrechnung ergibt sich das dem Chinesischen Restsatz das folgende Resultat.

Satz 14.7 Seien r ∈ N mit r ≥ 2, außerdem n1, ..., nr ∈ N paarweise teilerfremde natürliche
Zahlen und n=

∏r
j=1 n j . Seien c1, ..., cr ∈Z. Dann ist die Lösungsmenge L ⊆Z des Kongruenz-

systems
x ≡ c1 mod n1 , x ≡ c2 mod n2 , ... , x ≡ cr mod nr

nicht leer. Ist a ∈ L beliebig gewählt, dann gilt L= a+ nZ.

Beweis: Auf Grund des Chinesischen Restsatzes existiert ein Isomorphismus φ̄ : Z/nZ→ Z/n1Z× ...×Z/nrZ von
Ringen mit φ̄(c + nZ) = (c + n1Z, ..., c + nrZ) für alle c ∈Z. Für jedes c ∈Z gilt die Äquivalenz

c ∈ L ⇔ c ≡ ck mod nk für 1≤ k ≤ r ⇔ c + nkZ= ck + nkZ für 1≤ k ≤ r ⇔

(c + n1Z, ..., c + nrZ) = (c1 + n1Z, ..., cr + nrZ) ⇔ φ̄(c + nZ) = (c1 + n1Z, ..., cr + nrZ).

Weil φ̄ surjektiv ist, besitzt insbesondere das Element (c1 + n1Z, ..., cr + nrZ) der Menge Z/n1Z× ...×Z/nrZ ein
Urbild. Die Äquivalenz zeigt somit, dass die Lösungsmenge L nicht leer ist. Sei nun a ∈ L beliebig gewählt. Dann gilt
für alle c ∈Z auf Grund der Bijektivität von φ̄ die Äquivalenz

c ∈ L ⇔ φ̄(c + nZ) = (c1 + n1Z, ..., cr + nrZ) = φ(a+ nZ) ⇔ c + nZ= a+ nZ ⇔ c ∈ a+ nZ.

Damit ist die Gleichung L= a+ nZ bewiesen. □

Die Bestimmung einer Lösungsmenge L eines Kongruenzsystems wie im Satz reduziert sich also auf die Bestim-
mung einer einzelnen Lösung. Ist das Produkt n klein, dann lässt sich eine solche Lösung am einfachsten dadurch
bestimmen, dass man sie aus der Menge {0, 1, ..., n − 1} durch sukzessive Anwendung der einzelnen Kongruenzen
„herausfiltert“. Als konkretes Beispiel betrachten wir das System

x ≡ 0 mod 2 , x ≡ 2 mod 3 , x ≡ 4 mod 5.

Da es sich bei 2, 3 und 5 um verschiedene Primzahlen handelt, sind die Zahlen insbesondere paarweise teilfremd, und
ihr Produkt ist n= 2 · 3 · 5= 30. Die einzigen Zahlen in der Menge {0,1, ..., 29}, die die letzte der drei Kongruenzen
erfüllen, sind 4, 9,14, 19,24, 29. Unter diese Zahlen erfüllen nur 14 und 29 auch die zweite Kongruenz, und nur 14
auch die erste. Auf Grund des Satzes ist die Lösungsmenge des Systems also durch L= 14+ 30Z gegeben.
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Ist das Produkt n dagegen groß, dann kommt man durch Anwendung des Euklidischen Algorithmus schneller ans
Ziel. Zunächst bemerken wir, dass die Bestimmung einer Lösung für ein System aus r Kongruenzen mit r > 2 leicht
auf den Fall r = 2 zurückgeführt werden kann. Dazu betrachtet man die teilerfremden Zahlen n1 und m= n2 · ... ·nr .
Wir setzen voraus, dass b eine Lösung des Systems bestehend aus den r−1 Kongruenzen x ≡ c j mod n j mit 2≤ j ≤ r
ist. Außerdem sei a eine Lösung des Systems

x ≡ c1 mod n1 , x ≡ b mod m.

Dann ist a auch eine Lösung des ursprünglichen, r-elementigen Systems. Denn nach Definition ist a zunächst eine
Lösung der ersten Kongruenz. Wegen a ≡ b mod m gilt außerdem m | (b − a), und wegen n j | m auch n j | (b − a),
für 2≤ j ≤ r. Dies wiederum ist äquivalent zu a ≡ b ≡ c j mod n j für 2≤ j ≤ r.

Wir können uns also auf die Bestimmung einer Lösung im Fall r = 2 konzentrieren. Seien m, n ∈ N teilerfremd
und c, d ∈ Z. Gesucht wird eine Lösung des Systems x ≡ c mod m, x ≡ d mod n. Hierzu führt man die folgenden
Einzelschritte aus.

(1) Bestimme mit Hilfe des Euklidischen Algorithmus Zahlen u, v ∈Z mit um+ vn= ggT(m, n) = 1.

(2) Berechne a1 = 1− um und a2 = 1− a1. (Dann gilt offenbar a1 ≡ 1− 0 ≡ 1 mod m, a1 ≡ vn ≡ 0 mod n und
ebenso a2 ≡ 1− (1− um)≡ um≡ 0 mod m und a2 ≡ 1− (1− um)≡ 1− vn≡ 1 mod n.)

(3) Setze a = ca1 + da2. (Dann erhalten wir a ≡ c · 1+ d · 0≡ c mod m und b ≡ c · 0+ d · 1≡ d mod n. Also ist a
eine Lösung des Systems.)

Als konkretes Beispiel betrachten wir das System

x ≡ 15 mod 59 , x ≡ 20 mod 73.

Da 59 und 73 Primzahlen sind, gilt ggT(59, 73) = 1, außerdem ist 59 · 73 = 4307. Mit Hilfe des Euklidischen
Algorithmus finden wir für die Gleichung 59u+73v = 1 die Lösung (u, v) = (26,−21). Gemäß Schritt (2) berechnen
wir a1 = 1 − 59u = 1 − 59 · 26 = −1533 und a2 = 1 − a1 = 1534. Wie in Schritt (3) erhalten wir durch a =
15a1+20a2 = 7685 eine Lösung des Systems. Die Lösungsmenge des Systems ist also nach Satz 14.7 gegeben durch
L= 7685+4307Z. Der eindeutig bestimmte Repräsentant der Nebenklasse 7685+4307Z in {0,1, ..., 4306} ist 3378.
Also kann die Lösungsmenge auch in der Form L= 3378+ 4307Z angeschrieben werden.

Als Ergänzung bemerken wir noch, dass der Fall, dass die Zahlen n1, ..., nr ∈N nicht paarweise teilerfremd sind, auf
den teilerfremden Fall zurückgeführt werden kann. Der Einfachheit halber formulieren wir die allgemeine Aussage
nur für den Fall r = 2.

Satz 14.8 Seien m, n ∈N und a, b ∈Z. Wir betrachten die Lösungsmenge L ⊆Z des Kongru-
enzsystems

x ≡ a mod m , x ≡ b mod n.

(i) Es gilt L ̸=∅ genau dann, wenn a ≡ b mod d erfüllt ist, mit d = ggT(m, n).

(ii) Sei ℓ ∈ Z mit b = a + ℓd, außerdem m′ = m
d und n′ = n

d . Sei c eine Lösung des Systems
x ≡ 0 mod m′, x ≡ ℓ mod n′. Dann ist die Lösungsmenge des ursprünglichen Systems
gegeben durch L= a+ dc + kgV(m, n)Z.
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Beweis: Zur Vorbereitung bemerken wir: Ist u ∈Z eine Lösung des Kongruenzsystems, dann ist die Lösungsmenge des
gesamten Systems gegeben durch u+kgV(m, n)Z. Ist nämlich v ∈Z eine weitere Lösung, dann gilt u≡ a ≡ v mod m
und u≡ b ≡ v mod n. Die Differenz v−u ist also eine gemeinsames Vielfaches von m und n, und somit ein Vielfaches
von kgV(m, n). Daraus folgt v ∈ u+kgV(m, n)Z. Setzen wir umgekehrt v ∈ u+kgV(m, n)Z voraus, dann ist v−u ein
gemeinsames Vielfaches von m und n. Es folgt v ≡ u≡ a mod m und v ≡ u≡ b mod n, und somit v ∈ L.

zu (ii) Auf Grund der Vorbereitung genügt es zu überprüfen, dass a + dc eine Lösung des Systems ist. Nach Vor-
aussetzung gilt m′ | c und c ≡ ℓ mod n′. Es existieren also u, v ∈ Z mit c = um′ und c − ℓ = vn′. Zu zeigen ist, dass
a+ dc in L enthalten ist, also eine Lösung des ursprünglichen Kongruenzsystems darstellt. Tatsächlich gilt

a+ dc ≡ a+ dum′ ≡ a+ um ≡ a mod m

und ebenso

a+ dc ≡ a+ d(ℓ+ vn′) ≡ (a+ ℓd) + dvn′ ≡ b+ vn ≡ b mod n.

zu (i) „⇒“ Sei c ∈ L beliebig gewählt. Dann folgt c ≡ a mod m und c ≡ b mod n, wegen d | m und d | n also auch
a ≡ c ≡ b mod d. „⇐“ Dies folgt direkt aus Teil (ii), denn auf Grund der Voraussetzung a ≡ b mod d existiert
ein ℓ ∈ Z mit b = a+ ℓd, und offenbar ist a+ dc + kgV(m, n)Z mit dem in (ii) beschriebenen c ∈ Z eine nichtleere
Menge. □

Bei Teil (ii) von Satz 14.8 beachte man, dass die Zahlen m′, n′ ∈N teilerfremd sind und somit die Bestimmung einer
Lösung dieses Systems mit dem zuvor behandelten Rechenverfahren möglich ist.

Eine weitere Anwendung des Chinesischen Restsatzes besteht in der Lösung von Polynomgleichungen in Restklas-
senringen.

Satz 14.9 Seien m, n ∈N teilerfremd und f ∈Z[x]. Es bezeichne N die Menge der Nullstellen
von f inZ/(mn)Z, und Nm bzw. Nn die Menge der Nullstellen von f inZ/mZ bzw.Z/nZ. Dann
existiert eine Bijektion ψ : N →Nm×Nn mit ψ(a+mnZ) = (a+mZ, a+nZ) für alle a ∈Z mit
a+mnZ ∈N .

Beweis: Weil es sich bei φ̄ um einen Ringhomomorphismus handelt, gilt f (φ̄(ā)) = φ̄( f (ā)) für alle ā ∈Z/(mn)Z.
Stellen wir nämlich f in der Form f =

∑d
k=0 ak x k mit d ∈N und ak ∈ Z für 0 ≤ k ≤ d dar, dann gilt auf Grund der

Homomorphismus-Eigenschaft jeweils

f (φ̄(ā)) =
d
∑

k=0

akφ̄(ā)
k =

d
∑

k=0

φ̄(ak · āk) = φ̄

�

d
∑

k=0

ak āk

�

= φ̄( f (ā)).

Dies zeigt, dass durch die eingeschränkte Abbildung ψ = φ̄|N jedenfalls eine Abbildung N →Nm ×Nn gegeben ist,
denn für alle ā ∈N und (b̄, c̄) =ψ(ā) gilt jeweils

( f (b̄), f (c̄)) = f (b̄, c̄) = f (ψ(ā)) = f (φ̄(ā)) = φ( f (ā)) = φ(0̄) = (0̄, 0̄)

und somit (b̄, c̄) ∈Nm ×Nn. Nach Definition gilt außerdem ψ(a+mnZ) = φ̄(a+mnZ) = (a+mZ, a+ nZ) für alle
a ∈Z mit a+mnZ ∈N .
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Als Einschränkung einer injektiven Abbildung ist auchψ injektiv. Zum Nachweis der Surjektivität sei (b̄, c̄) ∈Nm×Nn

vorgegeben. Sei ā ∈ Z/(mn)Z das eindeutig bestimmte Element mit φ̄(ā) = (b̄, c̄). Wegen φ( f (ā)) = f (φ(ā)) =
f (b̄, c̄) = ( f (b̄), f (c̄)) = (0̄, 0̄) und der Injektivität folgt f (ā) = 0̄, also ā ∈ N und ψ(ā) = φ̄(ā) = (b̄, c̄). Damit ist
die Surjektivität von ψ nachgewiesen. □

Als konkretes Beispiel für die Aussage des Satzes bestimmen wir die Nullstellen des Polynoms f = x2 − x ∈ Z[x]
im Restklassenring Z/35Z. Sei φ̄ :Z/35Z→Z/5Z×Z/7Z der Isomorphismus aus dem Chinesischen Restsatz. Da
5 und 7 Primzahlen sind, handelt es sich bei Z/5Z und Z/7Z nach Satz 11.7 um Körper. In beiden Körpern sind 0̄
und 1̄ offenbar Nullstellen von f , und da ein Polynom vom Grad 2 über einem Körper nach Folgerung 12.5 (ii) nicht
mehr als zwei Nullstellen besitzt, sind es die einzigen. Somit ist

N5 ×N7 = { (0+ 5Z, 0+ 7Z) , (0+ 5Z, 1+ 7Z) , (1+ 5Z, 0+ 7Z) , (1+ 5Z, 1+ 7Z) } .

Nach Satz 14.9 sind die Nullstellen von f in Z/35Z genau die Urbilder von N5 ×N7 unter dem Isomorphismus φ̄.
Offenbar ist 0̄ = 0+ 35Z das Urbild von (0+ 5Z, 0+ 7Z), und 1̄ = 1+ 35Z ist das Urbild von (1+ 5Z, 1+ 7Z). Die
eindeutig bestimmte Lösung des Kongruenzsystems x ≡ 0 mod 5, x ≡ 1 mod 7 in {0,1, ..., 34} ist 15. Also ist 15 das
Urbild von (0+5Z, 1+7Z). Genauso findet man das Urbild 21 von (1+5Z, 0+7Z). Insgesamt ist N = {0̄, 1̄, 15, 21}
also die Nullstellenmenge von f in Z/35Z.

Als weitere Anwendung des Chinesischen Restsatzes bestimmen wir die Struktur der in § 4 eingeführten primen
Restklassengruppen (Z/nZ)×. Dabei handelt es sich um endliche abelsche Gruppen. Aus § 8 wissen wir bereits, dass
solche Gruppen also direkte Produkte endlicher zyklischer Gruppen darstellbar sind. Unser Ziel besteht darin, eine
solche Darstellung von (Z/nZ)× für jedes n ∈N explizit anzugeben.

Lemma 14.10 Seien R und S Ringe. Dann gilt

(i) (R× S)× = R× × S×

(ii) Ist φ : R → S ein Isomorphismus von Ringen, dann gilt φ(R×) = S×. Insbesondere sind
die Einheitengruppen R× und S× also isomorph.

Beweis: zu (i) „⊆“ Das Einselement des Rings R× S ist (1R, 1S). Ist (a, b) ∈ (R× S)×, dann gibt es nach Definition
ein Paar (c, d) ∈ R× S mit (ac, bd) = (a, b)(c, d) = (1R, 1S). Es gilt also ac = 1R, bd = 1S und damit a ∈ R×, b ∈ S×.
„⊇“ Sei (a, b) ∈ R× × S×. Dann gibt es Elememte c ∈ R und d ∈ S mit ac = 1R und bd = 1S . Insgesamt erhalten wir
(a, b)(c, d) = (ac, bd) = (1R, 1S) = 1R×S , also (a, b) ∈ (R× S)×.

zu (ii) Wir beweisen zunächst die Inklusion φ(R×) ⊆ S×. Sei a ∈ φ(R×). Dann gibt es ein b ∈ R× mit φ(b) = a. Weil
b eine Einheit ist, existiert ein c ∈ R× mit bc = 1R, und es folgt aφ(c) = φ(b)φ(c) = φ(bc) = φ(1R) = 1S . Dies zeigt,
dass a eine Einheit in S ist. Wir können nun dasselbe Argument auf den Ringhomomorphismus φ−1 anwenden und
erhalten φ−1(S×) ⊆ R×. Anwendung von φ auf beide Seiten liefert S× ⊆ φ(R×). Insgesamt gilt also φ(R×) = S×. □

Wir erinnern daran, dass die Ordnung der Gruppe (Z/nZ)× gleich ϕ(n) ist, wobei ϕ die in § 3 definierte Eulersche
ϕ-Funktion bezeichnet. Dort hatten wir bereits (ohne Begründung) die Rechenregeln ϕ(mn) = ϕ(m)ϕ(n) für teiler-
fremde m, n ∈ N und ϕ(pr) = pr−1(p − 1) für r ∈ N und Primzahlen p angegeben. Die zweite Gleichung kommt
folgendermaßen zu Stande: Nach Definition ist ϕ(pr) die Anzahl der ganzen Zahlen a mit 0 ≤ a ≤ pr − 1. Die ein-
zigen Zahlen in diesem Bereich, die nicht teilerfremd zu pr sind, sind die Vielfachen von p, und die Anzahl dieser
Vielfachen beträgt pr−1. Es bleiben also genau pr−1(p− 1) = pr − pr−1 Zahlen übrig.
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Die erste Gleichung kann man einfacher beweisen, indem man die Ringtheorie zur Hilfe nimmt.

Proposition 14.11 Sind m, n teilerfremd und m, n≥ 2. Dann gilt für die Eulersche ϕ-Funktion
die Rechenregel ϕ(mn) = ϕ(m)ϕ(n).

Beweis: Auf Grund des Chinesischen Restsatzes und Lemma 14.10 gilt

(Z/mnZ)× ∼= (Z/mZ×Z/nZ)× ∼= (Z/mZ)× × (Z/nZ)×.

Die Menge links enthält ϕ(mn), die Menge rechts ϕ(m)ϕ(n) Elemente. □

Für die weiteren Ausführungen benötigen wir einen neuen Begriff aus der Gruppentheorie. Der Exponent exp(G)
einer Gruppe G ist die kleinste Zahl n ∈N mit der Eigenschaft gn = e für alle g ∈ G. Existiert keine natürliche Zahl
mit dieser Eigenschaft, dann setzt man exp(G) = +∞. Ist G eine endliche Gruppe, dann nimmt der Exponent stets
einen endlichen Wert an.

Man überzeugt sich leicht davon, dass die Exponenten der symmetrischen Gruppen S3 und S4 durch exp(S3) = 6 und
exp(S4) = 12 gegeben sind. In S3 gibt es aber kein Element der Ordnung 6, und ebensowenig in S4 ein Element der
Ordnung 12. Für endliche abelsche Gruppen gilt dagegen

Proposition 14.12 Sei G eine endliche abelsche Gruppe vom Exponenten m. Dann existiert in
G ein Element der Ordnung m.

Beweis: Nach § 8 ist G als endliche abelsche Gruppe isomorph zu einem direkten Produkt endlicher zyklischer
Gruppen ist. Es gibt also m1, ..., mr ∈Nmit G ∼=Z/m1Z×...×Z/mrZ. Der Einfachheit halber können wir annehmen,
dass G zu dem Produkt auf der rechten Seite nicht nur isomorph ist, sondern damit übereinstimmt. Sei nun m der
Exponent von G. Wir zeigen, dass m mit ℓ = kgV(m1, ..., mr) übereinstimmt. Nach Definition des Exponenten gilt
mg = 0G für g ∈ G. Insbesondere gilt

m(1+m1Z, ..., 1+mrZ) = 0G ⇔ (m+m1Z, ..., m+mrZ) = (m1Z, ..., mrZ) ⇔

m+mkZ= mkZ für 1≤ k ≤ r ⇔ mk|m für 1≤ k ≤ r.

Also ist m jedenfalls ein gemeinsames Vielfaches von m1, ..., mr und damit auch ein Vielfaches von ℓ. Weil ℓ ein
Vielfaches von m1, ..., mr ist, gilt andererseits für alle a1, ..., ar ∈Z und 1≤ k ≤ r jeweils mk|(ℓak), also ℓak+mkZ=
mkZ und somit

ℓ(a1 +m1Z, ..., ar +mrZ) = (ℓa1 +m1Z, ...,ℓar +mrZ) = (m1Z, ..., mrZ) = 0G .

Nach Definition des Exponenten folgt daraus ℓ ≥ m. Aus ℓ|m und ℓ ≥ m folgt ℓ = m. Die Rechung von oben zeigt
darüber hinaus, dass (1+m1Z, ..., 1+mrZ) ein Element der maximalen Ordnung m ist. □

Satz 14.13 Sei K ein Körper und U eine endliche Untergruppe der multiplikativen Gruppe K×.
Dann ist U zyklisch. Insbesondere ist die multiplikative Gruppe eines endlichen Körpers immer
eine zyklische Gruppe.
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Beweis: Sei n = |U | und d der Exponent von U . Nach dem Satz von Lagrange ist ord(a) für jedes a ∈ U jeweils
ein Teiler von n, also gilt an = 1 für alle a ∈ U . Dies zeigt, dass d ≤ n gilt. Andererseits gilt nach Definition des
Exponenten auch ad = 1 für alle a ∈ U . Damit sind alle Elemente aus U Nullstellen des Polynoms f = xd −1 ∈ K[x].
Aber ein Polynom vom Grad d über einem Körper kann nach Folgerung 12.5 höchstens d Nullstellen besitzen. Daraus
folgt n≤ d, insgesamt n= d. Nach Proposition 14.12 gibt es in U ein Element der Ordnung n. Also ist U zyklisch. □

Folgerung 14.14 Ist p eine Primzahl, dann gilt (Z/pZ)× ∼=Z/(p− 1)Z.

Beweis: Wie wir bereits festgestellt haben, gilt |(Z/pZ)×| = ϕ(p) = p− 1. Außerdem ist (Z/pZ)× nach Satz 14.13
zyklisch, damit isomorph zu Z/(p− 1)Z. □

Mit den bisherigen Ergebnissen können wir die Struktur der primen Restklassengruppe (Z/nZ)× bereits in vielen
Fällen bestimmen. Beispielsweise gilt

(Z/15Z)× ∼= Z/2Z×Z/4Z

und somit insbesondere ϕ(15) = 8. Denn nach dem Chinesischen Restsatz und Lemma 14.10 existiert ein Isomor-
phismus (Z/15Z)× ∼= (Z/3Z)××(Z/5Z)×. Außerdem gilt (Z/3Z)× ∼=Z/2Z und (Z/5Z)× ∼=Z/4Z nach Folgerung
14.14.

Eine Zahl a ∈Z mit der Eigenschaft (Z/pZ)× = 〈a+ pZ〉 wird Primitivwurzel modulo p genannt. Es ist zwar keine
Formel bekannt, mit der sich ein solches a bestimmen lässt, aber man kann folgenden Satz aus der Gruppentheorie
zur Hilfe nehmen, um es zu finden: Ist G eine zyklische Gruppe der Ordnung n und gilt g

n
p ̸= eG für alle Primteiler

p von n, dann ist g ein erzeugendes Element, es gilt also G = 〈g〉.

Beispiel: Wir bestimmen eine Primitivwurzel modulo 43. Die Gruppenordnung von (Z/43Z)× ist 42= 2 ·3 ·7, ein
Element ā ∈ (Z/43Z)× ist also genau dann eine Primitivwurzel, wenn ām ̸= 1̄ für alle m ∈ { 42

2 , 42
3 , 42

7 } = {21, 14,6}
gilt. Wegen 2̄14 = 1̄ ist 2̄ keine Primitivwurzel. Es gilt aber 3̄21 = 42, 3̄14 = 36 und 3̄6 = 41, also haben wir mit ā = 3̄
eine Primitivwurzel modulo 43 gefunden. Tatsächlich erhält man, wenn man die Potenzen ā1, ā2, ā3, ... der Reihe
nach aufschreibt, die Elemente

3̄, 9̄, 27, 38, 28, 41, 37, 25, 32, 10, 30, 4̄, 12, 36, 22, 23, 26, 35, 19, 14, 42, 40, 34, 16,

5̄, 15, 2̄, 6̄, 18, 11, 33, 13, 39, 31, 7̄, 21, 20, 17, 8̄, 24, 29, 1̄

und somit die gesamte Gruppe (Z/43Z)×.

Das Rechenbeispiel wirft die Frage auf, wie hohe Potenzen von Elementen ā ∈ Z/nZ effizient ausgerechnet werden
können. Es gibt hierzu das Verfahren der schnellen Exponentiation, dass wir hier kurz am Beispiel der Potenz 3̄21 im
Restklassenring Z/43Z erläutern wollen. Zunächst schreibt man den Exponenten als Summe von Zweierpotenzen,
in unserem Fall also 21 = 16 + 4 + 1. Anschließend berechnet man die Elemente 3̄2d

für hinreichend großes d. In
unserem Fall ist

3̄1 = 3̄ , 3̄2 = 9̄ , 3̄4 = (3̄2)2 = 9̄2 = 81= 38 , 3̄8 = (3̄4)2 = (38)2 = (−5̄)2 = 25 ,

3̄16 = (3̄8)2 = (25)2 = 625= 195= 23

weiter 38 · 23= 874= 14 und schließlich 3̄21 = 3̄16 · 3̄4 · 3̄1 = 23 · 38 · 3̄= 14 · 3̄= 42.
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Lemma 14.15

(i) Sei p eine ungerade Primzahl und m ∈N. Dann gilt (1+ p)p
m−1
≡ 1 mod pm und

(1+ p)p
m−1
̸≡ 1 mod pm+1.

(ii) Für alle m ∈N, m≥ 2 gilt 52m−2
≡ 1 mod 2m und 52m−2

̸≡ 1 mod 2m+1.

Beweis: zu (i) Wir beweisen die Aussage durch vollständige Induktion über m. Für m = 1 lautet die Aussage
1 + p ≡ 1 mod p und 1 + p ̸≡ 1 mod p2, und sie ist offenbar erfüllt. Sei nun m ∈ N, und setzen wir die Assuage
für m voraus. Dann gilt (1 + p)p

m−1
≡ 1 mod pm. Es gilt also (1 + p)p

m−1
= 1 + kpm für ein k ∈ Z, aber wegen

(1+ p)p
m−1
̸≡ 1 mod pm+1 ist p kein Teiler von k. Durch Anwendung des Binomischen Lehrsatzes erhalten wir

(1+ p)p
m
= ((1+ p)p

m−1
)p = (1+ kpm)p =

p
∑

j=0

�

p
j

�

(kpm) j = 1+ kpm+1 +
p
∑

j=2

�

p
j

�

k j p jm.

Für 2 ≤ j ≤ p − 1 ist
�p

j

�

= p!
j!(p− j)! durch p teilbar. Also ist der j-te Summand

�p
j

�

k j p jm durch pmj+1 teilbar, und es
gilt mj + 1 ≥ 2m+ 1 ≥ m+ 2. Der letzte Summand

�p
p

�

kp pmp ist durch pmp teilbar, und es gilt mp ≥ 3m ≥ m+ 2.
Insgesamt ist

∑p
j=2

�p
j

�

k j pmj also durch pm+2 teilbar, und wir erhalten (1 + p)p
m
≡ 1 + kpm+1 mod pm+2. Es folgt

(1+ p)p
m
≡ 1 mod pm+1 und (1+ p)p

m
̸≡ 1 mod pm+2.

zu (ii) Auch hier beweisen wir die Aussage durch vollständige Induktion über m. Für den Startwert m = 2 ist die
Aussage wegen 5 ≡ 1 mod 4 und 5 ̸≡ 1 mod 8 erfüllt. Sei nun m ≥ 2 und die Aussage für dieses m vorausgesetzt.
Dann gilt 52m−2

≡ 1 mod 2m und 52m−2
̸≡ 1 mod 2m+1. Es gibt also ein ungerades k ∈ Z mit 52m−2

= 1+ k2m. Durch
Einsetzen erhalten wir

52m−1
= (52m−2

)2 = (1+ k2m)2 = 1+ k2m+1 + k222m.

Wegen 2m≥ m+ 2 folgt 52m−1
≡ 1+ k2m+1 mod 2m+2. Wir erhalten 52m−1

≡ 1 mod 2m+1 und 52m
̸≡ 1 mod 2m+2. □

Satz 14.16

(i) Für jede ungerade Primzahl p und jedes m ∈N ist (Z/pmZ)× eine zyklische Gruppe der
Ordnung pm−1(p− 1).

(ii) Es gilt (Z/2Z)× = {1̄}, (Z/4Z)× ∼=Z/2Z. Für alle m≥ 3 existiert jeweils ein Isomorphis-
mus (Z/2mZ)× ∼=Z/2Z×Z/2m−2Z.

Beweis: zu (i) Wegen Folgerung 14.14 können wir m≥ 2 voraussetzen; außerdem gibt es auf Grund dieses Satzes
ein a ∈ Z mit 〈a + pZ〉 = (Z/pZ)×. Setzen wir ā = a + pmZ und r = ord(ā), dann gilt ār = 1̄ in (Z/pmZ)×, also
ar ≡ 1 mod pm und erst recht ar ≡ 1 mod p. Weil a + pZ in der Gruppe (Z/pZ)× die Ordnung p − 1 hat, folgt aus
(a + pZ)r = 1 + pZ, dass p − 1 ein Teiler von r ist. Sei k ∈ N mit k(p − 1) = r. Auf Grund der Rechenregeln für
Elementordnungen aus der Gruppentheorie ist b̄ = āk in (Z/pmZ)× ein Element der Ordnung p− 1.

Sei nun außerdem c̄ = (1 + p) + pmZ. Nach Lemma 14.15 (i) gilt c̄pm−2
̸= 1̄ und c̄pm−1

= 1̄ in c̄ in (Z/pmZ)×. Dies
zeigt, dass c̄ in (Z/pmZ)× ein Element der Ordnung pm−1 ist. Sei nun die Untergruppen U und V von G = (Z/pmZ)×
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gegeben durch U = 〈b̄〉 und V = 〈c̄〉. Als Untergruppen einer abelschen Gruppe sind U und V Normalteiler von
G. Weil die Ordnungen |U | = p − 1 und |V | = pm−1 der zyklischen Gruppen U ∼= Z/(p − 1)Z und V ∼= Z/pm−1Z

teilerfremd sind, gilt außerdem U ∩ V = {1̄}. Insgesamt ist das Komplexprodukt UV ein inneres direktes Produkt
von U und V . Nach Proposition 4.24 aus der Gruppentheorie und dem Chinesischen Restsatz (der auf Grund der
Teilerfremdheit von pm−1 und p− 1 angewendet werden kann) folgt

UV ∼= U × V ∼= Z/(p− 1)Z×Z/pm−1Z ∼= Z/pm−1(p− 1)Z.

Wegen |G| = ϕ(pm) = pm−1(p − 1) folgt G = UV ∼= Z/pm−1(p − 1)Z, also ist G = (Z/pmZ)× eine zyklische Gruppe
der Ordnung pm−1(p− 1).

zu (ii) Die ersten beiden Aussagen sind unmittelbar klar, denn nach Definition gilt (Z/2Z)× = {1 + 2Z} und
(Z/4Z)× = {1+4Z, 3+4Z}= 〈3+4Z〉. Sei nun m ∈Nmit m≥ 3. Nach Lemma 14.15 (ii) gilt 5̄2m−2

= 1̄ und 5̄2m−3
̸= 1̄

in (Z/2mZ)×. Daraus folgt ord(5̄) = 2m−2. Außerdem ist −1̄ ein Element der Ordnung 2 in (Z/2mZ)×, denn es gilt
−1̄ ̸= 1̄ und (−1̄)2 = 1̄. Außerdem gilt −1̄ /∈ 〈5̄〉. Denn andernfalls würde −1̄= 5̄k und damit −1≡ 5k mod 2m für ein
k ∈ Z gelten. Daraus wiederum würde wegen 5 ≡ 1 mod 4 dann −1 ≡ 5k ≡ 1k ≡ 1 mod 4 folgen, im Widerspruch
zu −1 ̸≡ 1 mod 4. Wegen −1̄ /∈ 〈5̄〉 gilt 〈5̄〉 ∩ 〈−1̄〉 = {1̄}, also bilden die Untergruppen U = 〈5̄〉 und V = 〈−1̄〉 ein
inneres direktes Produkt UV . Wie in Teil (i) liefert der Satz über innere direkte Produkte aus der Gruppentheorie
einen Isomorphismus UV ∼= U×V ∼=Z/2m−2Z×Z/2Z. Aus |UV |= |U×V |= 2m−2 ·2= 2m−1 = ϕ(2m) = |(Z/2mZ)×|
gilt außerdem (Z/2mZ)× = UV . □

Beispiel: Das Element ā = 2̄ ein Erzeuger der 18-elementigen Gruppe (Z/27Z)×. Dies überprüft man mit dem
oben angegebenen Kriterium aus der Gruppentheorie durch die Rechung 2̄9 = 26 ̸= 1̄ und 2̄6 = 10 ̸= 1̄. Die Potenzen
ā1, ā2, ā3, ... sind der Reihe nach gegeben durch

2 , 4 , 8 , 16 , 5 , 10 , 20 , 13 , 26 , 25 , 23 , 19 , 11 , 22 , 17 , 7 , 14 , 1 ,

also genau die Elemente der 18-elementigen Gruppe (Z/27Z)×.
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§ 15. Endliche und algebraische Körpererweiterungen

Zusammenfassung. In diesem Kapitel untersuchen wir die Körpererweiterungen genauer. Der Begriff des
Erzeugendensystems, den wir bereits in der Gruppen- und Ringtheorie kennengelernt haben, besitzt auch hier
eine nützliche Funktion. Ist L|K eine Körpererweiterung, dann besitzt L die Struktur eines K-Vektorraums. Die
Dimension dieses K-Vektorraums wird der Grad [L : K] der Erweiterung genannt. Ist die Dimension endlich,
dann spricht man von einer endlichen Erweiterung. Beispielsweise ist [C : R] = 2, und damit endlich, weil C
als R-Vektorraum zweidimensional ist.

Ein Element α ∈ L wird algebraisch über K genannt, wenn es Nullstelle eines Polynoms f ∈ K[x] mit f ̸= 0K

ist. Trifft dies auf alle Elemente von L zu, dann wird auch die Erweiterung L|K als algebraisch bezeichnet.
Ist f normiert, und besitzt es unter allen Polynomen ungleich null mit α als Nullstelle einen minimalen Grad,
dann nennt man f das Minimalpolynom von α über K . Der Grad der Erweiterung ist dann durch [K(α) : K] =
grad( f ) gegeben. Die Elemente von K(α) besitzen eine einfache, eindeutige Darstellung, und mit Hilfe dieser
Darstellung lassen sich auch die vier Rechenoperationen auf dem Körper K(α), also Addition, Subtraktion,
Multiplikation und Division, auf einfache Weise beschreiben.

Wichtige Grundbegriffe

– Zwischenkörper einer Körpererweiterung

– von einer Teilmenge S über einem Grundkörper K
erzeugter Teilkörper K(S)

– Grad einer Körpererweiterung

– endliche Körpererweiterung

– algebraisches Element in einer Körpererweiterung

– algebraische Körpererweiterung

– Minimalpolynom eines Elements

Zentrale Sätze

– Vektorraumstruktur eines Erweiterungskörpers

– Gradformel

– Erweiterungsgrad [K(α) : K] = Grad des
Minimalpolynoms (falls α über K algebraisch ist)

– Rechenregeln für Elemente in algebraischen Erwei-
terungen

– Klassifikation der quadratischen Erweiterungen des
Körpers Q der rationalen Zahlen

Bereits in § 9 haben wir die Begriffe „Teilkörper“, „Erweiterungskörper“ und „Körpererweiterung“ eingeführt. In der
Körpertheorie spielt darüber hinaus der folgende Begriff eine wichtige Rolle.

Definition 15.1 Sei L|K eine Körpererweiterung. Ein Zwischenkörper von L|K ein Teilkörper
von L, der zugleich Erweiterungskörper von K ist.

Beispielsweise ist C|Q eine Körpererweiterung, undR,Q und C sind Zwischenkörper dieser Erweiterung. Bereits bei
den Untergruppen, den Idealen und den Teilringen ist uns das Konzept des Erzeugendensystems begegnet. Auch bei
den Teilkörpern erweist sich dieses Konzept als sinnvoll.

— 173 —



Satz 15.2 Sei L̃|K eine Körpererweiterung und S ⊆ L̃ eine Teilmenge. Dann gibt es einen
eindeutig bestimmten Zwischenkörper L von L̃|K mit den Eigenschaften

(i) L ⊇ S

(ii) Für jeden weiteren Zwischenkörper L′ von L̃|K mit L′ ⊇ S gilt L′ ⊇ L.

Insgesamt ist L also der kleinste Zwischenkörper von L|K mit der Eigenschaft L ⊇ S.

Beweis: Zunächst beweisen wir die Existenz. Sei (Li)i∈I die Familie aller Zwischenkörper von L̃|K mit Li ⊇ S. Wie
bei den Teilringen sieht man, dass dann auch L =

⋂

i∈I Li ein Teilkörper von L̃ ist. Darüber hinaus gilt L ⊇ Li für alle
i ∈ I und somit L̃ ⊇ K , insgesamt ist L also ein Zwischenkörper von L̃|K . Aus Li ⊇ S für alle i ∈ I folgt auch L ⊇ S.
Da L nach Definition in jedem Zwischenkörper Li von L̃|K enthalten ist, ist auch die Bedingung (ii) für den Körper
L erfüllt.

Sei nun L′ ein weiterer Zwischenkörper von L̃|K mit den Eigenschaften (i) und (ii). Weil L und L′ beide die Bedingung
(ii) erfüllen, gilt L′ ⊇ L und L ⊇ L′, insgesamt also L = L′. □

Wir bezeichnen den nach Satz 15.2 eindeutig bestimmten Körper mit K(S) und nennen ihn den von der Teilmenge S
über K erzeugten Teilkörper von L̃. Ist S eine endliche Menge, S = {a1, ..., an}, dann schreibt man statt K({a1, ..., an})
auch

K(a1, ..., an) ,

man lässt also die Mengenklammern weg. Beispielsweise bezeichnet Q(
p

3,
p

5) den kleinsten Zwischenkörper von
R|Q, der {

p
3,
p

5} als Teilmenge enthält. Wir bemerken bereits hier, dass auf Grund der Teilkörper-Eigenschaft von
Q(
p

3,
p

5) mit
p

3 und
p

5 auch z.B. die Elemente

p
3+
p

5 ,
p

3−
p

5 ,
p

3
p

5=
p

15 , 2+ 7
p

5 ,
3+ 4
p

5
p

3+
p

5
, ...

inQ(
p

3,
p

5) enthalten sind. Insgesamt enthält dieser Körper alle Elemente, die mit Hilfe der vier Grundrechenarten
+, −, · und ÷ aus

p
3,
p

5 und beliebigen rationalen Zahlen gebildet werden können.

Proposition 15.3 Sei L̃|K eine Körpererweiterung, und seien S und T beliebige Teilmengen
von L̃. Dann gilt

K(S ∪ T ) = K(S)(T ).

Beweis: Wir müssen überprüfen, dass K(S)(T ) ein Zwischenkörper von L̃|K ist, der die Bedingungen (i) und (ii) aus
Satz 15.2 für die Menge S∪ T erfüllt. Nach Definition ist K(S) ein Zwischenkörper von L̃|K , und K(S)(T ) ist ein Zwi-
schenkörper von L̃|K(S). Aus K(S)(T ) ⊇ K(S) und K(S) ⊇ K folgt K(S)(T ) ⊇ K , also ist K(S)(T ) ein Zwischenkörper
von L̃|K .

Weiter gilt nach Definition K(S) ⊇ S, und K(S)(T ) enthält sowohl K(S) als auch T als Teilmengen. Insgesamt gilt
damit K(S)(T ) ⊇ S ∪ T . Damit ist Bedingung (i) erfüllt. Zum Nachweis von (ii) sei L′ ein beliebiger Zwischenkörper
von L̃|K mit L′ ⊇ S∪ T . Dann ist L′ insbesondere ein Zwischenkörper von L̃|K mit L′ ⊇ S. Auf Grund der Eigenschaft
(ii) des Körpers K(S) folgt daraus L′ ⊇ K(S), somit ist L′ ein Zwischenkörper von L̃|K(S). Zusammen mit L′ ⊇ T folgt
L′ ⊇ K(S)(T ). Damit ist insgesamt die Bedingung (ii) für den Körper K(S)(T ) nachgewiesen. □
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Als nächstes schauen wir uns auch hier Erweiterungen an, die von einem einzelnen Element erzeugt werden.

Proposition 15.4 Sei L̃|K eine Körpererweiterung und a ∈ L̃. Dann gilt

K(a) =

�

f (a)
g(a)

�

�

�

�

f , g ∈ K[x], g(a) ̸= 0

�

.

Dabei sei K[x] der Polynomring über dem Körper K , und f (a), g(a) bezeichnen die Elemente in
L̃, die durch Einsetzen von a in f , g zu Stande kommen.

Beweis: Sei T ⊆ L̃ die Teilmenge auf der rechten Seite der Gleichung. Wir überprüfen zunächst, dass T ein Zwischen-
körper von L̃|K ist. Zum Nachweis der Teilkörper-Eigenschaft stellen wir zunächst fest, dass 1 ∈ T gilt, denn setzen
wir f = g = 1, dann gilt 1 = f (a)/g(a). Seien nun α,β ∈ T vorgegeben. Dann gibt es Polynome f , f1, g, g1 ∈ K[x]
mit g(a) ̸= 0, g1(a) ̸= 0 und

α=
f (a)
g(a)

und β =
f1(a)
g1(a)

.

Es folgt

α− β =
f (a)g1(a)− f1(a)g(a)

g(a)g1(a)
=

( f g1 − f1 g)(a)
(g g1)(a)

und

αβ =
f (a) f1(a)
g(a)g1(a)

=
( f f1)(a)
(g g1)(a)

.

Somit sind auch die Elemente α− β und αβ in T enthalten. Ist α ̸= 0, dann gilt f (a) ̸= 0, und wir erhalten

α−1 =
g(a)
f (a)

∈ T.

Damit ist gezeigt, dass T ein Teilkörper von L̃ ist. Jedes b ∈ K entsteht durch Einsetzen von a in das konstante
Polynom b ∈ K[x]. Dies zeigt T ⊇ K , d.h. T ist tatsächlich ein Zwischenkörper der Erweiterung L̃|K . Dieser enthält
auch a, denn dieses Element entsteht durch Einsetzen von a in das Polynom x ∈ K[x].

Sei nun L′ ein beliebiger Zwischenkörper von L̃|K mit a ∈ L′. Wegen K ⊆ L und a ∈ L, und weil L′ abgeschlossen
unter Addition und Multiplikation ist, liegt f (a) für jedes Polynom f ∈ K[x] in L′. Ferner ist L′ auch abgeschlossen
unter Inversenbildung. Ist g ∈ K[x] und g(a) ̸= 0, dann gilt g(a) ∈ L′ und somit auch g(a)−1 ∈ L′. Ingesamt sind
also sämtliche Elemente der Form f (a)/g(a) mit f , g ∈ K[x] und g(a) ̸= 0 in L′ enthalten. Damit haben wir T ⊆ L′

und insgesamt T = K(a) nachgewiesen. □

Im weiteren Verlauf werden wir nun die Körpererweiterungen genauer untersuchen. Wir beginnen mit einem Merk-
mal, das es ermöglicht, die Größe solcher Erweiterungen miteinander zu vergleichen.

Definition 15.5 Ist L|K eine Körpererweiterung, dann definieren die beiden Abbildungen

+ : L × L→ L , (α,β) 7→ α+ β und · : K × L→ L , (a,α) 7→ aα

eine K-Vektorraumstruktur auf L. Dabei bezeichnet man [L : K] = dimK L als den Grad der
Körpererweiterung; auch [L : K] =∞ ist als Wert zugelassen. Ist [L : K] endlich, dann nennt
man L|K eine endliche Körpererweiterung.
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Beispielsweise gilt [C : R] = 2, denn jedes Element α ∈ C kann auf eindeutige Weise in der Form α = a + i b mit
a, b ∈R dargestellt werden. Somit ist {1, i} eine Basis von C als R-Vektorraum.

Satz 15.6 (Gradformel)

Seien L|K und M |L endliche Körpererweiterungen. Dann ist auch die Körpererweiterung M |K
endlich, und es gilt

[M : K] = [M : L] · [L : K].

Beweis: Sei m= [L : K], n= [M : L], {α1, ...,αm} eine Basis von L als K-Vektorraum und {β1, ...,βn} eine Basis von
M als L-Vektorraum. Wir zeigen, dass dann durch

{αiβ j | 1≤ i ≤ m , 1≤ j ≤ n}

eine mn-elementige Basis von M als K-Vektorraum ist. Daraus folgt dann die gewünschte Gleichung [M : K] = mn=
[L : K][M : L]. Zunächst rechnen wir nach, dass die Elemente ein Erzeugendensystem bilden. Sei γ ∈ M beliebig
vorgegeben. Weil M als L-Vektorraum von β1, ...,βn aufgespannt wird, gibt es γ1, ...,γn ∈ L mit γ=

∑n
j=1 γ jβ j . Weiter

finden wir ai j ∈ K mit γ j =
∑m

i=1 ai jαi für 1≤ j ≤ n. Einsetzen liefert

γ =
n
∑

j=1

�

m
∑

i=1

ai jαi

�

β j =
m
∑

i=1

n
∑

j=1

ai jαiβ j .

Nun beweisen wir noch die lineare Unabhängigkeit. Seien ai j ∈ K mit
∑m

i=1

∑n
j=1 ai jαiβ j = 0 vorgegeben. Dann gilt

n
∑

j=1

�

m
∑

i=1

ai jαi

�

β j = 0.

Die lineare Unabhängigkeit von β1, ...,βn im L-Vektorraum M liefert
∑m

i=1 ai jαi = 0 für 1 ≤ j ≤ n. Da die Elemente
α1, ...,αn im K-Vektorraum L linear unabhängig sind, folgt daraus wiederum ai j = 0 für 1≤ i ≤ m und 1≤ j ≤ n. □

Umgekehrt gilt: Ist M |K eine endliche Erweiterung, dann sind auch M |L und L|K endlich. Wäre M |L unendlich, dann
gäbe es für jedes n ∈ N ein System α1, ...,αn von Elementen aus M , die über L linear unabhängig sind. Diese sind
dann erst recht linear unabhängig über K . Wäre L|K unendlich, dann gäbe es beliebig große, endliche Systeme von
Elementen in L, die über K linear unabhängig sind. Diese sind dann erst recht in M enthalten.

Für jede Körpererweiterung L|K gilt offenbar [L : K] = 1 genau dann, wenn L = K ist. Denn einerseits ist K ein
eindimensionaler K-Vektorraum, mit {1K} als Basis, und folglich gilt [K : K] = 1. Setzen wir andererseits [L : K] = 1
voraus, dann ist jede einelementige Teilmenge von L \ {0L} eine Basis von L als K-Vektorraum, insbesondere also
{1K}. Jedes α ∈ L kann also in der Form α= a · 1K = a mit a ∈ K dargestellt werden; daraus folgt L = K .

Mit Hilfe der Gradformel kann zum Beispiel gezeigt werden, dass die ErweiterungC|R keinen echten Zwischenkörper,
also keine Zwischenkörper K mit R ⊊ K ⊊ C besitzt. Sei nämlich K ein beliebiger Zwischenkörper von C|R. Dann
erhalten wir durch die Gradformel

2 = [C :R] = [C : K] · [K :R].
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Da die Erweiterungsgrade natürliche Zahlen sind, folgt [C : K] = 1 oder [K : R] = 1. Auf Grund der Gradformel
folgt daraus wiederum C= K oder K =R.

Kommen wir nun zu einem wichtigen Merkmal der Elemente einer Körpererweiterung.

Definition 15.7 Sei L|K eine Körpererweiterung. Ein Element α ∈ L heißt algebraisch über
K , wenn ein Polynom f ̸= 0 in K[x] mit der Eigenschaft existiert, dass α eine Nullstelle von f
ist. Gibt es ein solches Polynom nicht, dann nennt man α transzendent über K .

Wir betrachten einige Beispiele für algebraische und transzendente Körpererelemente.

(i) Das Element
p

2 ist algebraisch überQ, denn es ist Nullstelle des Polynoms x2−2 ∈Q[x]. Weil dieses Polynom
auch in R[x] liegt, ist

p
2 auch algebraisch über R. Alternativ kann zum Nachweis dieser Eigenschaft aber

auch das Polynom x −
p

2 ∈R[x] verwendet werden.

(ii) Allgemein gilt: Ist K ein Körper und a ∈ K , dann ist α als Nullstelle von x − a ∈ K[x] algebraisch über K .

(iii) Die imaginäre Einheit i ∈ C ist algebraisch über R, sogar über Q, als Nullstelle des Polynoms x2 + 1 ∈Q[x].

(iv) Man kann zeigen, dass die Kreiszahlπ und die Eulersche Zahl e transzendent überQ sind. Der Beweis ist leider
so aufwändig, dass wir ihn hier nicht durchführen können. Nach (ii) sind beide Elemente aber algebraisch über
R und C.

Definition 15.8 Sei L|K eine Körpererweiterung, und sei α ∈ L algebraisch über K . Dann
gibt es ein eindeutig bestimmtes, normiertes Polynom f ∈ K[x], f ̸= 0 minimalen Grades mit
f (α) = 0. Man nennt f das Minimalpolynom von α über K . Wir bezeichnen es mit µα,K .

Beweis: Weil α über K algebraisch ist, gibt es jedenfalls ein Polynom 0 ̸= g ∈ K[x] mit der Eigenschaft g(α) = 0.
Bezeichnet an ∈ K× den Leitkoeffizienten von g, dann ist g̃ = a−1

n g ein normiertes Polynom mit g̃(α) = 0. Aus der
Menge aller normierten Polynome f ∈ K[x] mit f (α) = 0 können wir eines mit minimalem Grad wählen.

Zum Beweis der Eindeutigkeit seien f , g ∈ K[x] zwei normierte Polynome minimalen Grades mit f (α) = g(α) = 0.
Ist f ̸= g, dann hat das Polynom h = g − f die Eigenschaft h(α) = g(α)− f (α) = 0− 0 = 0 und grad(h) < grad( f ).
Durch Normierung von h erhalten wir also ein normiertes Polynom mit α als Nullstelle, das einen echt kleineren Grad
als f hat. Dies aber widerspricht der Minimalität. Somit ist nur f = g möglich. □

Wir betrachten die Körpererweiterung R|Q. Das Minimalpolynom µp2,Q des Elements
p

2 ∈R über Q ist f = x2−2.
Denn einerseits gilt f (

p
2) = 0. Gäbe es andererseits ein normiertes Polynom g ∈ Q[x] kleineren Grades, also

g = x + a mit g(
p

2) = 0, dann würde a = −
p

2 folgen, und
p

2 wäre rational.

— 177 —



Proposition 15.9 Sei L|K eine Körpererweiterung, α ∈ L algebraisch über K und f ∈ K[x]
sein Minimalpolynom, also f = µα,K . Dann gilt

(i) Das Polynom f ist irreduzibel.

(ii) Ist g ∈ K[x] mit g(α) = 0, dann folgt f | g.

(iii) Ist g ∈ K[x] ebenfalls normiert, irreduzibel, mit g(α) = 0K , dann folgt f = g.

Beweis: zu (i) Zunächst kann f wegen f ̸= 0 und f (α) = 0 nicht konstant sein. Nehmen wir nun an, f ist reduzibel,
und g, h sind nicht-konstante Polynome mit f = gh. Wegen grad(g)> 0, grad(h)> 0 und grad( f ) = grad(g)+grad(h)
gilt grad(g) < grad( f ) und grad(h) < grad( f ). Aus g(α)h(α) = f (α) = 0 folgt außerdem g(α) = 0 oder h(α) = 0.
Nehmen wir nun o.B.d.A. an, dass g(α) = 0 gilt, und sei g̃ das Polynom, das man durch Normierung von g erhält.
Dann ist g̃ ein normiertes Polynom mit α als Nullstelle, dass einen echt kleineren Grad als f hat. Dies widerspricht
der Voraussetzung f = µα,K .

zu (ii) Durch Division mit Rest erhalten wir Polynome q, r ∈ K[x]mit g = q f + r und r = 0 oder grad(r)< grad( f ).
Es gilt r(α) = g(α)− q(α) f (α) = 0− q(α) · 0 = 0. Damit ist der Fall r ̸= 0 ausgeschlossen, denn ansonsten wäre die
Normierung von r ein Polynom mit echt kleinerem Grad als f und α als Nullstelle. Somit gilt g = q f , d.h. f ist ein
Teiler von g.

zu (iii) Sei g ein Polynom mit der angegebenen Eigenschaft. Nach Teil (ii) gilt f |g. Es gibt also ein h ∈ K[x] mit
g = f h. Weil g irreduzibel ist, muss h konstant sein. Weil f und g beide normiert sind, folgt h= 1 und g = f . □

Mit Hilfe des Minimalpolynoms können wir nun genauer angeben, wie eine Körpererweiterung aussieht, die von
einem einzigen algebraischen Element erzeugt wird.

Satz 15.10 Sei L|K eine Körpererweiterung, α ∈ L algebraisch über K , f = µα,K und
n = grad( f ). Dann bilden die Elemente 1,α,α2, ...,αn−1 eine Basis von K(α) als K-Vektorraum.
Insbesondere gilt [K(α) : K] = n.

Beweis: Sei U der Untervektorraum von L, der durch {1,α, ...,αn−1} aufgespannt wird, also

U =

¨

n−1
∑

k=0

akα
k

�

�

�

�

a0, ..., an−1 ∈ K

«

=

�

g(α)

�

�

�

�

g ∈ K[x] , grad(g)< n oder g = 0

�

.

Wir zeigen, dass U ein Teilkörper von L ist. Durch Einsetzen von α in das konstante Polynom 1 ∈ K[x] sieht man,
dass 1 in U liegt. Seien nun β ,γ ∈ U vorgegeben. Dann gibt es Polynome g, h ∈ K[x] mit β = g(α), γ= h(α), wobei
g und h entweder Null sind oder jedenfalls einen Grad kleiner als n haben. Mit g und h ist auch g − h ein Polynom
mit g − h= 0 oder grad(g − h)< n; daraus folgt β − γ= g(α)− h(α) = (g − h)(α) ∈ U .

Der Nachweis von βγ ∈ U ist etwas aufwändiger, weil der Grad des Polynoms gh auch größer als n− 1 sein kann.
Durch Division von gh durch f mit Rest erhalten wir aber Polynome q, r ∈ K[x] mit gh = q f + r und r = 0 oder
grad(r)< n. Es folgt

βγ = g(α)h(α) = (q f + r)(α) = q(α) f (α) + r(α) = q(α) · 0+ r(α) = r(α).
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Nach Definition der Menge U ist r(α) in U enthalten. Es bleibt zu zeigen, dass im Fall β ̸= 0 auch β−1 in U liegt. Aus
β ̸= 0 folgt zunächst g ̸= 0. Weil f irreduzibel ist, sind die Polynome f und g teilerfremd. Nach dem Lemma von
Bézout aus der Ringtheorie gibt es Polynome a, b ∈ K[x] mit a f + bg = 1. Es folgt

1 = (a f + bg)(α) = a(α) f (α) + b(α)g(α) = a(α) · 0+ b(α)g(α) = b(α)g(α)

und somit β−1 = g(α)−1 = b(α). Division von b durch f mit Rest liefert weiter Polynome q, r ∈ K[x] mit b = q f + r
und grad(r)< n. Es folgt

β−1 = b(α) = q(α) f (α) + r(α) = q(α) · 0+ r(α) = r(α) ∈ U .

Damit haben wir insgesamt nachgewiesen, dass U tatsächlich ein Teilkörper von L̃ ist. Darüber hinaus gilt α ∈ U . Ist
nämlich n = 1, dann gilt K = U , außerdem f = x −α ∈ K[x] und damit α ∈ K . Im Fall n > 1 ist g = x ein Polynom
vom Grad < n, und es gilt α= g(α) ∈ U .

Sei nun L ein beliebiger Zwischenkörper von L̃ mit α ∈ L. Auf Grund der Teilkörpereigenschaft ist L abgeschlossen
unter Addition und Multiplikation. Damit enthält L sämtliche Elemente der Form g(α) mit g ∈ K[x] in L, es gilt also
L ⊇ U . Somit ist U der kleinste Zwischenkörper von L|K mit α ∈ U . Nach Definition des erzeugten Zwischenkörpers
folgt U = K(α).

Aus der Definition von U folgt unmittelbar, dass K(α) als K-Vektorraum von den Elementen 1,α, ...,αn−1 aufgespannt
wird. Nehmen wir nun an, dass diese Elemente über K linear abhängig sind. Dann gibt es Koeffizienten a0, ..., an−1 ∈
K , nicht alle gleich Null, mit

n−1
∑

k=0

akα
k = 0.

Setzen wir g =
∑n−1

k=0 ak x k, dann ist g ∈ K[x] ein Polynom ungleich Null mit den Eigenschaften g(α) = 0 und
grad(g)< n. Durch Normierung von g erhalten wir ein normiertes Polynom mit kleinerem Grad als f und mit α als
Nullstelle. Aber dies ist unmöglich, weil f das Minimalpolynom von α ist. Also sind die Elemente 1,α, ...,αn−1 linear
unabhängig und bilden eine Basis von K(α) als K-Vektorraum. □

Dem Beweis von Satz 15.10 kann entnommen werden, wie die arithmetischen Operationen (Addition, Multiplikation,
Berechnung von Negativen und Kehrwerten) in einem algebraischen Erweiterungskörper K(α) von K ausgeführt
werden können. Sei f ∈ K[x] das Minimalpolynom von α und n = grad( f ). Auf Grund des Satzes kann jedes
Element aus K(α) auf eindeutige Weise in der Form g(α) geschrieben werden, wobei g ∈ K[x] entweder Null oder
vom Grad < n ist. Seien β ,γ ∈ K(α) und g, h ∈ K[x] Polynome passenden Grades mit β = g(α), γ = h(α). Unser
Ziel besteht darin, die Elemente β + γ, −β , βγ und (im Fall β ̸= 0) auch β−1 wiederum in dieser eindeutigen Form
darzustellen.

(i) Addition:
Es gilt β + γ= (g + h)(α), außerdem g + h= 0 oder grad(g + h)< n.

(ii) Negative:
Es gilt −β = (−g)(α) und −g = 0 oder grad(−g)< n.

(iii) Multiplikation:
Durch Division mit Rest bestimmen wir Polynome q, r ∈ K[x] mit gh = q f + r und r = 0 oder grad(r) < n.
Wie im Beweis von Satz 15.10 gezeigt wurde, gilt βγ= r(α).
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(iv) Kehrwerte:
Hier sei β ̸= 0 vorausgesetzt. Wie im Beweis des Satzes gezeigt wurde, gilt ggT( f , g) = 1. Mit dem Euklidischen
Algorithmus können Polynome a, g ∈ K[x] mit a f + bg = 1 berechnet werden. Weiter finden wir Polynome
q, r ∈ K[x]mit b = q f +r und grad(r)< n. Im Beweis haben wir bereits nachgerechnet, dass dann β−1 = r(α)
erfüllt ist.

Wir betrachten ein konkretes Anwendungsbeispiel. Sei L̃ ein Erweiterungskörper von F3 und α ∈ L ein Element mit
α2 + 1̄ = 0̄. Dabei bezeichnen die Elemente 0̄, 1̄ ∈ F3 Null- und Einselement des Körpers F3 und damit zugleich
diejenigen des Körpers L̃. Nach Definition ist α eine Nullstelle des Polynoms f = x2 + 1̄ ∈ F3[x]. Weil f in F3 keine
Nullstellen besitzt, ist es irreduzibel und somit das Minimalpolynom von α. Jedes β ∈ F3(α) kann auf eindeutige
Weise in der Form

β = a0 + a1α mit a0, a1 ∈ F3

dargestellt werden. Weil es für a0 und a1 jeweils |F3| = 3 Auswahlmöglichkeiten gibt, handelt es sich bei F3(α) um
einen Körper mit 9 Elementen. Wegen dimF3

F3(α) = grad( f ) = 2 ist F3(α) ein 2-dimensionaler F3-Vektorraum.

Sei nun konkret β = α+ 1̄ und γ = α− 1̄. Dann ist β = g(α) und γ = h(α) mit g = x + 1̄ und h = x − 1̄. Es folgt
g + h= 2̄x , g − h= 2̄ und somit

β + γ= (g + h)(α) = 2̄α und β − γ= (g − h)(α) = 2̄.

Natürlich kann man auch direkt mit den Elementen rechnen: Es gilt

β + γ = (α+ 1̄) + (α− 1̄) = α+α = 2̄α

und ebenso
β − γ = (α+ 1̄)− (α− 1̄) = 1̄+ 1̄ = 2̄.

Um nach βγ nach der angegebenen Methode zu berechnen, teilen wir das Polynom gh = x2 − 1̄ mit Rest durch f
und erhalten x2− 1̄= 1̄ · (x2+ 1̄)+ 1̄. Es folgt βγ= 1̄, also ist γ im Körper F3(α) der Kehrwert von β . Auch hier hätte
man statt mit den Polynomen direkte mit den Körperelementen rechnen können. Aus f (α) = α2− 1̄= 0̄⇔ α2 = −1̄
folgt

(α+ 1̄)(α− 1̄) = α2 − 1̄ = −1̄− 1̄ = 1̄.

Um den Kehrwert es Elements α auszurechnen, bestimmen wir mit dem Euklidischen Algorithmus Polynome a, b ∈
K[x] mit ax + b f = 1̄. Wir erhalten a = 2̄x und b = 1̄. Der Kehrwert von α ist also durch α−1 = a(α) = 2̄α gegeben.
Tatsächlich gilt (2̄α)α= 2̄α2 = 2̄(−1̄) = −2̄= 1̄.

Die vollständige Tabelle der Kehrwerte sämtlicher Elemente in F3(α)× sieht folgendermaßen aus.

β 1̄ 2̄ α α+ 1̄ α+ 2̄ 2̄α 2̄α+ 1̄ 2̄α+ 2̄

β−1 1̄ 2̄ 2̄α α+ 2̄ α+ 1̄ α 2̄α+ 2̄ 2̄α+ 1̄

Jeder einzelne Eintrag kann durch Multiplikation von β und β−1 unmittelbar verifiziert werden.
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Aus den bisherigen Ausführen folgt noch nicht, dass zum Polynom x2+ 1̄ ∈ F3[x] überhaupt eine Körpererweiterung
L̃|F3 und ein Element α ∈ L̃ mit α2+1= 0 existieren. Dem Problem der Konstruktion und der Eindeutigkeit solcher
Körpererweiterungen wenden wir uns nun als nächstes zu.

Satz 15.11 Sei L|K eine Körpererweiterung, α ∈ L algebraisch über K und f = µα,K . Dann gibt
es einen Isomorphismus

φ̄ : K[x]/( f ) −→ K(α) mit φ(g + ( f )) = g(α) für alle g ∈ K[x].

Dabei bezeichnet K(α) den von α erzeugten Zwischenkörper der Erweiterung L|K .

Beweis: Sei φ : K[x] → L der auf Grund der universellen Eigenschaft von Polynomringen eindeutig bestimmte
Homomorphismus von Ringen mit φ(x) = α und φ|K = idK . Weil φ als Ringhomomorphismus verträglich mit
Addition und Multiplikation verträglich ist, gilt φ(g) = g(α) für alle g ∈ K[x]. Weil der Körper K(α) das Element
g(α) für jedes g ∈ K[x] enthält, ist durch φ ein Homomorphismus K[x] → K(α) gegeben. Nach Satz 15.10 hat
jedes Element aus K(α) die Form g(α) mit g ∈ K[x] und grad(g) < n. Dies zeigt, dass φ als Ringhomomorphismus
K[x]→ K(α) auch surjektiv ist.

Wir zeigen nun, dass ker(φ) = ( f ) gilt, wobei ( f ) das vom Element f erzeugte Hauptideal in K[x] bezeichnet. Ist
g ∈ ( f ), dann gibt es nach Definition ein h ∈ K[x] mit g = hf . Es folgt φ(g) = g(α) = h(α) f (α) = h(α) · 0 =
0, also φ ∈ ker(φ). Sei umgekehrt g ∈ ker(φ). Dann gilt g(α) = 0. Nach Proposition 15.9 ist g ein Vielfaches
des Minimalpolynoms f , also g ∈ ( f ). Der Homomorphiesatz für Ringe, Teil (ii) von Satz 11.9, liefert nun den
angegebenen Isomorphismus. □

Satz 15.12 (Existenz algebraischer Erweiterungen)

Sei K ein Körper und f ∈ K[x] ein irreduzibles Polynom. Dann gibt es eine Körpererweiterung
L|K und ein Element α ∈ L mit f (α) = 0.

Beweis: Zunächst bilden wir den Restklassenring L̃ = K[x]/( f ). Weil f irreduzibel ist und es sich bei K[x] um
einen Hauptidealring handelt, ist das Ideal ( f ) nach Satz 12.18 ein maximales Ideal, und daraus wiederum folgt,
dass der Faktorring L̃ ein Körper ist. Wir überprüfen nun, dass durch die Abbildung φ : K → L̃, a 7→ a + ( f ) ein
Körperhomomorphismus definiert ist. Zunächst gilt φ(1K) = 1K + ( f ) = 1 L̃ . Seien nun a, b ∈ K beliebig vorgegeben.
Dann gilt φ(a+ b) = (a+ b) + ( f ) = (a+ ( f )) + (b+ ( f )) = φ(a) +φ(b) und ebenso

φ(ab) = ab+ ( f ) = (a+ ( f ))(b+ ( f )) = φ(a)φ(b).

Nach Satz 11.16 gilt: Ist φ : R → S ein Monomorphismus von Ringen, dann gibt es einen Erweiterungsring Ŝ ⊇ R
und einen Isomorphismus φ̂ : Ŝ→ S von Ringen mit φ̂|R = φ. Die Anwendung dieses Satzes auf unseren Körperho-
momorphismus φ liefert uns nun einen Erweiterungsring L ⊇ K und einen Isomorphismus φ̂ : L → L̃ von Ringen
mit φ̂|K = φ. Weil L̃ ein Körper und φ̂ ein Isomorphismus ist, ist auch L ein Körper, und somit ist L|K eine Körperer-
weiterung. Wir zeigen nun, dass das Element α= φ̂−1(x +( f )) eine Nullstelle von f ist. Dazu schreiben wir f in der
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Form f =
∑n

i=0 ai x
i mit n ∈N und a0, ..., an ∈ K . Es gilt

φ̂( f (α)) = φ̂

�

n
∑

i=0

aiα
i

�

=
n
∑

i=0

φ(ai)φ̂(α)
i =

n
∑

i=0

(ai + ( f ))(x + ( f ))
i =

n
∑

i=0

(ai x
i + ( f )) =

�

n
∑

i=0

ai x
i

�

+ ( f ) = f + ( f ) = 0+ ( f ) = 0 L̃ ,

und somit f (α) = φ̂−1(0 L̃) = 0L . □

Definition 15.13 Eine Körpererweiterung L|K wird algebraisch genannt, wenn jedes Element
α ∈ L algebraisch über K ist.

Die Eigenschaften „endlich“ und „algebraisch“ hängen folgendermaßen miteinander zusammen.

Proposition 15.14 Sei L|K eine Körpererweiterung.

(i) Ist L|K endlich, dann auch algebraisch.

(ii) Sind α1, ...,αn ∈ L algebraisch über K und gilt L = K(α1, ...,αn), dann ist die Erweiterung
L|K endlich (also insbesondere algebraisch).

Beweis: zu (i) Wir führen den Beweis durch Kontraposition. Ist L|K nicht algebraisch, dann gibt es ein Element
α ∈ L, das transzendent über K ist. Dies bedeutet, dass für jedes n ∈ N die Elemente 1,α, ...,αn über K linear
unabhängig sind. Denn andernfalls gäbe es Elemente a0, ..., an ∈ K , nicht alle gleich Null, mit

∑n
i=0 aiα

i = 0, und
folglich wäre f =

∑n
i=0 ai x

i ∈ K[x] ein Polynom ungleich Null mit f (α) = 0. Daraus würde folgen, dass α algebraisch
über K ist, im Widerspruch zur Voraussetzung. Aus der linearen Unabhängigkeit der n+ 1 Elemente 1,α, ...,αn folgt
[L : K] = dimK L ≥ n+ 1. Da n beliebig gewählt war, erhalten wir [L : K] =∞.

zu (ii) Wir beweisen die Aussage durch vollständige Induktion über n. Für n = 0 gilt L = K und somit [L : K] = 1.
Sei nun n ∈ N vorgegeben, und setzen wir die Aussage für alle m ∈ N mit m < n voraus. Seien α1, ...,αn ∈ L
mit L = K(α1, ...,αn). Nach Induktionsvoraussetzung ist die Erweiterung L0|K mit L0 = K(α1, ...,αn−1) endlich, und
nach Proposition 15.3 gilt L = L0(αn). Weil αn über K algebraisch ist, besitzt αn ein Minimalpolynom über K , erst
recht ein Minimalpolynom f ∈ L0[x] über L0. Nach Satz 15.10 gilt [L : L0] = grad( f ). Weil L0|K und L|L0 endliche
Erweiterungen sind, ist nach Satz 15.6 auch L|K endlich. □

Satz 15.15

(i) Sei L|K eine Körpererweiterung und T ⊆ L die Teilmenge bestehend aus den Elementen,
die algebraisch über K sind. Dann ist T ein Teilkörper von L.

(ii) Seien L|K und M |L Körpererweiterungen. Genau dann ist die Erweiterung M |K algebra-
isch, wenn die Erweiterungen L|K und M |L beide algebraisch sind.
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Beweis: zu (i) Zum Nachweis der Teilkörper-Eigenschaft müssen wir zeigen, dass 1L in T liegt, und mit α,β ∈ T
auch die Elemente α − β und αβ , im Fall α ̸= 0L auch das Element α−1. Wegen 1L = 1K ∈ K ist 1L algebraisch
über K , also in T enthalten. Seien nun α,β ∈ T vorgegeben. Weil α und β algebraisch über T sind, ist K(α,β)|K
nach Proposition 15.14 (ii) eine endliche Erweiterung. Nach Teil (i) ist K(α,β)|K damit auch algebraisch, es gilt also
K(α,β) ⊆ T . Als Teilkörper enthält K(α,β) mit α und β auch die Elemente α− β und αβ , im Fall α ̸= 0L auch das
Element α−1. Damit sind all diese Elemente auch in T enthalten.

zu (ii) „⇒“ Setzen wir voraus, dass M |K algebraisch ist. Dann ist jedes α ∈ M Nullstelle eines Polynoms f ∈ K[x]
ungleich Null. Dieses Polynom ist auch in L[x] enthalten, folglich ist α auch algebraisch über L. Weil α ∈ M beliebig
gewählt war, folgt daraus, dass die Erweiterung M |L algebraisch ist. Wenn jedes α ∈ M algebraisch über K ist, dann
gilt dies insbesondere für jedes Element aus L. Folglich ist auch L|K algebraisch.

„⇐“ Seien nun L|K und M |L algebraische Erweiterungen und α ∈ M ein beliebig vorgegebenes Element. Wir müssen
zeigen, dass α algebraisch über K ist. Nach Voraussetzung ist α jedenfalls algebraisch über L. Sei f = µL,α ∈ L[x],
und seien a0, ..., an ∈ L die Koeffizienten von f . Jedes ai ist laut Voraussetzung algebraisch über K . Nach Proposition
15.14 (ii) ist L0|K mit L0 = K(a0, ..., an) damit eine endliche Erweiterung. Weil das Polynom f in L0[x] liegt, ist α
algebraisch über L0. Damit ist auch L0(α)|L0 endlich. Mit Satz 15.6 können wir schließen, dass L0(α)|K endlich ist.
Aber dies bedeutet nach Proposition 15.14 (i) wiederum, dass L0(α)|K algebraisch und insbesondere α algebraisch
über K ist. □

Folgerung 15.16 Ist L|K eine Körpererweiterung und S ⊆ L eine Teilmenge mit der Eigen-
schaft, dass jedes α ∈ S algebraisch über K ist, dann ist K(S)|K eine algebraische Erweiterung.

Beweis: Sei T ⊆ L die Teilmenge der über K algebraischen Elemente von L. Nach Teil (i) von Satz 15.15 ist T ein
Zwischenkörper von L|K , und es gilt S ⊆ T , nach Definition von S und T . Weil T ein Zwischenkörper von L|K ist,
folgt K(S) ⊆ T . Daraus folgt, dass jedes α ∈ K(S) über K algebraisch ist. Dies wiederum bedeutet, dass K(S)|K eine
algebraische Erweiterung ist. □

Anhang: Die quadratischen Erweiterungen von Q

Eine Körpererweiterung L|K vom Grad [L : K] = 2 wird auch quadratische Erweiterung genannt. Weil solche Er-
weiterungen in Beispielen (bzw. Übungsaufgaben) besonders häufig vorkommen, beweisen wir einige allgemeine
Eigenschaften. Hierbei konzentrieren wir uns besonders auf den Fall des Grundkörpers K =Q.

Proposition 15.17 Sei K ein Körper mit char(K) ̸= 2 und L|K eine Erweiterung mit [L : K] = 2.
Dann existiert ein γ ∈ L mit L = K(γ) und γ2 ∈ K . (Man sagt dazu auch, dass L aus K durch
Adjunktion einer Quadratwurzel entsteht.)

Beweis: Sei α ein beliebiges Element aus L \ K . Dann ist K(α) ein Zwischenkörper von L|K , und auf Grund der
Gradformel gilt [L : K(α)] · [K(α) : K] = [L : K] = 2. Wegen α /∈ K ist K(α) ̸= K und somit [K(α) : K] > 1. Weil
[K(α) : K] zugleich ein Teiler von 2 ist, muss [K(α) : K] = 2 und [L : K(α)] = 1, also L = K(α) gelten. Sei f = µα,K
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das Minimalpolynom von α über K . Wegen grad( f ) = [K(α) : K] = 2 gibt es p, q ∈ K mit f = x2 + px + q. Wegen
char(K) ̸= 2 existiert das multiplikative Inverse von 2K = 1K + 1K , das wir der Einfachheit halber mit 1

2 bezeichnen.
Ebenso schreiben wir 1

4 für 1
2 ·

1
2 . Es gilt nun

f (α) = 0 ⇔ α2 + pα+ q = 0 ⇔ α2 + pα+ 1
4 p2 = 1

4 p2 − q ⇔ (α+ 1
2 p)2 = 1

4δ

wobei δ = p2−4q die Diskriminante des Polynoms f bezeichnet. Setzen wir nun γ= α+ 1
2 p, dann gilt K(α) = K(γ),

denn offenbar ist γ= α+ 1
2 p ∈ K(α) und α= γ− 1

2 p ∈ K(γ). Daraus folgt L = K(γ). Außerdem gilt γ2 = 1
4δ ∈ K . □

Eine ganze Zahl a ∈Z wird quadratfrei genannt, wenn keine Primzahl p mit p2 | a existiert.

Folgerung 15.18 Sei K |Q eine Erweiterung mit [K : Q] = 2. Dann gibt es eine quadratfreie
Zahl m ∈Z \ {0,1} mit K =Q(

p
m).

Beweis: Nach Proposition 15.17 gibt es ein α ∈ K mit K =Q(α) und r = α2 ∈Q. Sei n ∈N so gewählt, dass nr ∈Z
gilt. Dann ist auch K = Q(nα), und außerdem n2r = (nα)2 ∈ Z. Wir können also α durch nα ersetzen und direkt
davon ausgehen, dass r ∈ Z gilt. Dabei ist r ̸= 0, denn andernfalls wäre auch α = 0, somit K = Q(0) = Q und
schließlich [K : Q] = [Q : Q] = 1, im Widerspruch zur Voraussetzung. Sei nun

∏t
i=1 pei

i die Primfaktorzerlegung
von |r|, mit t ∈ N0, e1, ..., et ∈ N und den verschiedenen Primteilern p1, ..., pt von r. Sei ϵ ∈ {±1} das Vorzeichen
von r, es gelte also r = ϵ|r|. Wir definieren e′i = 0, falls ei gerade, und e′i = 1, falls ei ungerade ist. Setzen wir

m= ϵ
∏t

i=1 p
e′i
i , dann ist m offenbar quadratfrei. Außerdem unterscheiden sich r und m nur um ein Quadrat, es gibt

also ein n ∈ N mit r = n2m. Aus ( 1
nα)

2 = ( 1
n )

2r = m folgt 1
nα ∈ {±

p
m} und somit K = Q(α) = Q( 1

nα) = Q(
p

m).
Dabei ist m = 0 bereits ausgeschlossen. Wäre m = 1, dann würde K = Q(1) = Q folgen, was wir weiter oben auch
schon ausgeschlossen hatten. □

Satz 15.19 Seien m, n ∈ Z \ {0,1} zwei verschiedene quadratfreie Zahlen. Dann gilt
p

n /∈
Q(
p

m),
p

m /∈Q(
p

n), also insbesondere Q(
p

m) ̸=Q(
p

n).

Beweis: Offenbar genügt es
p

n /∈ Q(
p

m) zu beweisen, denn der Beweis der anderen Aussage läuft völlig analog.
Zunächst zeigen wir, dass f = x2 −m das Minimalpolynom von

p
m über Q ist. Offenbar ist f normiert und erfüllt

f (
p

m) = 0. Wäre f reduzibel, dann gäbe es a, b ∈Q mit x2−m= (x − a)(x − b) = x2− (a+ b)x + ab, woraus sich
b = −a und m = −ab = a2 ergeben würde. Mit m = a2 müsste auch a ganzzahlig sein (denn eine Primzahl p, die
den Nenner, aber nicht den Zähler von a teilt, würde auch im Nenner einer Darstellung von a2 als gekürzter Bruch
auftreten). Dann aber steht m = a2 im Widerspruch dazu, dass m eine quadratfreie Zahl ungleich 1 ist. Es gilt also
tatsächlich µQ,

p
m = f .

Nach Satz 15.10 gilt [Q(
p

m) :Q] = grad( f ) = 2, und {1,
p

m} ist eine Basis von Q(
p

m) als Q-Vektorraum. Nehmen
wir nun an, es gilt

p
n ∈ Q(

p
m). Dann existieren also (eindeutig bestimmte) r, s ∈ Q mit

p
n = r + s

p
m. Durch

Quadrieren erhalten wir n = (r + s
p

m)2 = (r2 + s2m) + 2rs
p

m. Weil die Menge {1,
p

m} im Q-Vektorraum Q(
p

m)
linear unabhängig ist, dürfen wir in

(r2 + s2m) · 1+ (2rs) ·
p

m = n · 1+ 0 ·
p

m
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einen Koeffizientenvergleich durchführen. Wir erhalten r2 + s2m= n und 2rs = 0, also r = 0 oder s = 0. Betrachten
wir zunächst den Fall s = 0. Dann ist r2 = n, was aber im Widerspruch dazu steht, dass n eine quadratfreie ganze
Zahl ist, siehe oben. Im Fall r = 0 ist s2m = n. Schreiben wir s = a

b mit a, b ∈ Z und ggT(a, b) = 1, so erhalten wir
( a

b )
2m= n⇔ a2m= b2n. Nehmen wir an, die Zahl a besitzt einen Primteiler p. Wegen ggT(a, b) = 1 und p2 | (a2m)

muss dann p2 | n gelten. Aber dies widerspricht der Quadratfreiheit. Also muss a2 = 1 gelten. Ebenso zeigt man
b2 = 1, so dass sich m= n ergibt. Aber auch dies widerspricht unseren Voraussetzungen. Die Annahme

p
n ∈Q(

p
m)

wurde also insgesamt zu einem Widerspruch geführt. □
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§ 16. Fortsetzung von Körperhomomorphismen

Zusammenfassung. In diesem Abschnitt beschäftigen wir uns mit der Frage, unter welchen Bedingungen ein
Homomorphismus φ : K → M von Körpern auf eine algebraische Erweiterung L ⊇ K fortgesetzt werden kann,
und falls ja, wieviele solcher Fortsetzungen existieren. Für den Fall, dass L von einem Element erzeugt wird,
also L = K(α) für ein über K algebraisches Element α gilt, gibt eine einfache Antwort: Die Anzahl ist gleich
der Anzahl der Nullstellen des Minimalpolynoms µα,K im Körper M .

Wie im weiteren Verlauf deutlich werden wird, spielen Körperhomomorphismen und ihre Fortsetzung beim
Studium algebraischer Erweiterungen eine wichtige Rolle. Im folgenden Abschnitt werden wir mit ihrer Hilfe
zeigen, dass der algebraische Abschluss eines Körpers und (allgemeiner) Zerfällungskörper beliebiger Poly-
nommengen bis auf Isomorphie eindeutig bestimmt sind. Die normalen und separablen Erweiterungen, die uns
später begegnen werden, lassen sich durch Eigenschaften der Körperhomomorphismen charakterisieren. In
der Galoistheorie, dem Hauptgegenstand der Vorlesung im nächsten Semester, bildet man Gruppen bestehend
aus Körperhomomorphismen, mit deren Hilfe man Informationen über Struktur algebraischer Erweiterungen
gewinnen kann.

Wichtige Grundbegriffe

– K-Homomorphismus

– K-Automorphismus

– Fortsetzung eines Körperhomomorphismus

Zentrale Sätze

– eindeutige Festlegung einer Fortsetzung durch die Bil-
der der Erzeuger

– Existenz von Fortsetzungen auf endliche und algebrai-
sche Erweiterungen

– Festlegung der Anzahl der Fortsetzungen durch die
Nullstellen des Bildpolynoms in der Erweiterung

Zu Beginn des Kapitels legen wir folgende Notation fest.

(i) Sind L und M Körper, dann bezeichnen wir mit Hom(L, M) die Menge der Körperhomomorphismen L→ M .
(Wir erinnern daran, dass nach Proposition 9.7 Körperhomomorphismen stets injektiv sind.)

(ii) Ist K ein gemeinsamer Teilkörper von L und M , dann bezeichnet HomK(L, M) die Menge der Körperhomo-
morphismen φ : L→ M mit φ(a) = a für alle a ∈ K . Solche Körperhomomorphismen werden auch K-Homo-
morphismen genannt.

(iii) Für jeden Körper L sei Aut(L) die Menge der Automorphismen von L, also die Menge der bijektiven Homo-
morphismen L → L. Es ist leicht zu sehen, dass auf Aut(L) durch die Komposition (φ,ψ) 7→ φ ◦ ψ eine
Gruppenstruktur definiert ist.

(iv) Ist K ein Teilkörper L, dann bezeichnet AutK(L) die Teilmenge von Aut(L) bestehend aus den Automorphismen
von L, die zugleich K-Homomorphismen sind. Man spricht in diesem Zusammenhang von K-Automorphismen.
Offenbar handelt es sich bei AutK(L) um eine Untergruppe von Aut(L).
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Sei L|K eine Körpererweiterung und φ : K → K̃ ein Homomorphismus von K in einen weiteren Körper K̃ . Ein
Homomorphismus ψ : L→ K̃ wird Fortsetzung von φ genannt, wenn ψ|K = φ erfüllt ist. Zunächst formulieren wir
die zentrale Aussage zur Eindeutigkeit von Fortsetzungen

Satz 16.1 Sei L|K eine Körpererweiterung, S ⊆ L eine Teilmenge mit L = K(S) und φ : K → K̃
ein Homomorphismus in einen weiteren Körper K̃ . Sind dannψ1,ψ2 : L→ K̃ zwei Fortsetzungen
von φ mit ψ1|S =ψ2|S , dann gilt ψ1 =ψ2.

Beweis: Wir überprüfen, dass die Teilmenge M = {α ∈ L | ψ1(α) = ψ2(α)} ein Zwischenkörper von L|K ist, der
S als Teilmenge enthält. Zunächst zeigen wir, dass M ein Teilring von L ist. Da ψ1 und ψ2 Ringhomomorphismen
sind, gilt ψ1(1L) = 1K̃ = ψ2(1L) und somit 1L ∈ M . Seien nun α,β ∈ M vorgegeben. Dann gilt ψ1(α) = ψ2(α) und
ψ1(β) =ψ2(β). Es folgtψ1(α−β) =ψ1(α)−ψ1(β) =ψ2(α)−ψ2(β) =ψ2(α−β) und somit α−β ∈ M . Durch eine
analoge Rechnung erhält man αβ ∈ M . Damit ist die Teilring-Eigenschaft von M nachgewiesen. Ist α ̸= 0L , dann gilt
darüber hinaus ψ1(α−1) = ψ1(α)−1 = ψ2(α)−1 = ψ2(α−1) und somit α−1 ∈ M . Also ist M sogar ein Teilkörper von
L. Für alle a ∈ K gilt wegen der Fortsetzungs-Eigenschaft ψ1|K = ψ2|K = φ die Gleichung ψ1(a) = φ(a) = φ2(a)
und somit a ∈ M . Somit ist K in M enthalten, und folglich ist M ein Zwischenkörper von L|K . Aus der Voraussetzung
ψ1|S =ψ2|S folgt schließlich noch S ⊆ M . Insgesamt ist M also ein Zwischenkörper von L|K mit S ⊆ M . Wir erhalten
L = K(S) ⊆ M , also M = L. Dies zeigt, dass ψ1 und ψ2 auf ganz L übereinstimmen. □

Wir formulieren einen wichtigen Spezialfall dieser Aussage: Gilt L = K(α) für ein α ∈ L und ist β ∈ K̃ , dann gibt es
für jeden Homomorphismus φ : K → K̃ und jedes β ∈ K̃ höchstens eine Fortsetzung ψβ : K(α)→ K̃ von φ mit der
Eigenschaft ψβ (α) = β .

Nun befassen wir uns mit der Existenz von Fortsetzungen auf algebraische Erweiterungen. Auf Grund der universel-
len Eigenschaft der Polynomringe gibt es zu jedem Isomorphismusφ : K → K̃ von Körpern einen eindeutig bestimmen
Homomorphismus K[x]→ K̃[x] zwischen den Polynomringen gegeben durch

∑m
i=0 ai x

i 7→
∑m

i=0φ(ai)x i . Offenbar
handelt es sich dabei um einen Isomorphismus zwischen K[x] und K̃[x], den wir ebenfalls mit φ bezeichnen.

Satz 16.2 (Fortsetzungssatz)
Sei φ : K → K̃ ein Isomorphismus von Körpern. Seien außerdem L|K und L̃|K̃ Körpererweite-
rungen und α ∈ L ein über K algebraisches Element mit Minimalpolynom f ∈ K[x]. Ist dann
α̃ ∈ L̃ eine Nullstelle von f̃ = φ( f ) ∈ K̃[x], dann gibt es eine eindeutig bestimmte Fortsetzung
ψ von φ auf K(α) mit ψ(α) = α̃. Dieser Homomorphismus ψ definiert einen Isomorphismus
zwischen den beiden Körpern K(α) und K̃(α̃).

Beweis: Die Eindeutigkeit von ψ ist nach Satz 16.1 klar. Zum Nachweis der Existenz verwenden wir Satz 15.11.
Dieser liefert uns Isomorphismen

φ1 : K[x]/( f )→ K(α) und φ2 : K̃[x]/( f̃ )→ K̃(α̃)

mit φ1(x + ( f )) = α und φ2(x + ( f̃ )) = α̃ sowie φ1(a + ( f )) = a und φ2(ã + ( f̃ )) = ã für a ∈ K und ã ∈ K̃ . Wir
betrachten nun zusätzlich den Ringhomomorphismus ρ : K[x] → K̃[x]/( f̃ ) gegeben durch g 7→ φ(g) + ( f̃ ). Weil
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die Abbildungen φ : K[x] → K̃[x] und K̃[x] → K̃[x]/( f̃ ), h 7→ h + ( f̃ ) surjektiv sind, ist auch ρ ein surjektiver
Ringhomomorphismus. Außerdem ist ker(ρ) = ( f ), denn für alle g ∈ K[x] gilt

g ∈ ker(ρ) ⇔ ρ(g) = 0+ ( f̃ ) ⇔ φ(g) ∈ ( f̃ ) ⇔ g ∈ ( f ) ,

wobei wir im letzten Schritt verwendet haben, dass auf Grund der Isomorphismus-Eigenschaft von φ die Vielfachen
des Polynoms genau auf die Vielfachen von f̃ = φ( f ) abgebildet werden. Wir können also den Homomorphiesatz
für Ringe anwenden und erhalten einen Isomorphismus ρ̄ : K[x]/( f )→ K̃[x]/( f̃ ) mit ρ̄(x + ( f )) = x + ( f̃ ).

Definieren wir nun den Isomorphismusψ durchψ= φ2◦ρ̄◦φ−1
1 , dann giltψ(α) = (φ2◦ρ̄)(x+( f )) = φ2(x+( f̃ )) =

α̃. Andererseits gilt für alle a ∈ K auch ψ(a) = (φ2 ◦ ρ̄)(a + ( f )) = φ2(φ(a) + ( f̃ )) = φ(a), also ψ|K = φ. Als
Isomorphismus K(α)→ K̃(α̃) ist ψ auch ein Homomorphismus K(α)→ L̃ von Körpern. □

Häufig benötigt man auch die folgende Umkehrung des soeben bewiesenen Satzes.

Satz 16.3 Sei φ : K → K̃ ein Isomorphismus von Körpern. Seien außerdem L|K und L̃|K̃
Körpererweiterungen, α ∈ L und f ∈ K[x] ein Polynom mit f (α) = 0. Ist dann ψ : K(α)→ L̃
ein Körperhomomorphismus mit ψ|K = φ, dann ist α̃=ψ(α) eine Nullstelle von f̃ = φ( f ).

Beweis: Sei n= grad( f ) und f =
∑n

i=0 ai x
i mit a0, ..., an ∈ K . Es gilt f̃ =

∑n
i=0φ(ai)x i , und daraus folgt

f̃ (α̃) =
n
∑

i=0

φ(ai)α̃
i =

n
∑

i=0

φ(ai)ψ(α)
i =

n
∑

i=0

ψ(ai)ψ(α)
i

= ψ

�

n
∑

i=0

aiα
i

�

= ψ( f (α)) = ψ(0) = 0.

Dabei wurde im vierten Schritt die Homomorphismus-Eigenschaft von ψ verwendet. □

Insbesondere gilt also: Sind L, L̃ Erweiterungskörper von K , f ∈ K[x], α ∈ L eine Nullstelle von f und ψ : L → L̃
ein K-Homomorphismus, dann ist auch ψ(α) eine Nullstelle von f . Beispielsweisemuss jeder Q-Homomorphismus
Q(
p

2)→Q(
p

2) das Element
p

2 auf
p

2 oder −
p

2 abbilden, denn dies sind die einzigen Nullstellen des Polynoms
f = x2 − 2 ∈Q[x].

Folgerung 16.4 Sei φ : K → K̃ ein Isomorphismus von Körpern. Seien außerdem L|K , L̃|K̃
Körpererweiterungen, α ∈ L algebraisch über K und f = µK ,α. Dann stimmt die Anzahl der
Fortsetzungen ψ : K(α) → L̃ von φ (also die Anzahl der Homomorphismen mit ψ|K = φ)
überein mit der Anzahl der Nullstellen von f̃ = φ( f ) in L̃.

Beweis: Seien s ∈N und β1, ...,βs die verschiedenen Nullstellen von f̃ in L̃. Auf Grund des Fortsetzungssatzes gibt
es für jedes i ∈ {1, ..., s} eine eindeutig bestimmte Fortsetzung ψi : K(α)→ L̃ von φ mit ψi(α) = βi . Ist umgekehrt
ψ : K(α)→ L̃ eine beliebige Fortsetzung vonφ, dann istψ(α) nach Satz 16.3 eine Nullstelle von f̃ , also giltψ(α) = βi

für ein i. Auf Grund der Eindeutigkeitsaussage im Fortsetzungssatz folgt daraus ψ=ψi . □
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Folgerung 16.5 Für jede algebraische Erweiterung L|K gilt HomK(L, L) = AutK(L).

Beweis: Die Inklusion AutK(L) ⊆ HomK(L, L) ist auf Grund der Definitionen trivial. Zum Beweis der umgekehrten In-
klusion seiφ ∈ HomK(L, L) vorgegeben. Als Körperhomomorphismus istφ injektiv; zu zeigen bleibt die Surjektivität.
Für vorgegebenes β ∈ L müssen wir zeigen, dass ein α ∈ L mit φ(α) = β existiert. Sei f = µK ,β das Minimalpo-
lynom von β über K und N ⊆ L die Menge der Nullstellen von f in L. Nach Folgerung 12.5 handelt es sich bei N
um eine endliche Menge; genauer gilt |N | ≤ grad( f ). Wir betrachten nun die eingeschränkte Abbildung φ|N . Als
Einschränkung einer injektiven Abbildung ist auch φ|N injektiv. Nach Satz 16.3 ist für jedes α ∈ N auch φ(α) eine
Nullstelle von f , also φ(α) ∈ N und somit φ(N) ⊆ N . Weil φ|N : N → N injektiv und die Menge N endlich ist, ist
φ|N auch surjektiv. Es gibt also ein α ∈ N mit φ(α) = (φ|N )(α) = β . Damit ist die Surjektivität nachgewiesen. □

Im Fall einer endlichen Erweiterung L|K kann man die Gleichung HomK(L, L) = AutK(L) auch einfacher beweisen:
Jeder K-Homomorphismus φ : L → L ist verträglich mit der Addition und erfüllt für alle a ∈ K und γ ∈ L jeweils
φ(aγ) = φ(a)φ(γ) = aφ(γ), ist also ein Endomorphismus des endlich-dimensionalen K-Vektorraums L. Außerdem
wissen wir bereits, dass Körperhomomorphismen stets injektiv sind. Aus der Linearen Algebra ist nun bekannt, dass
jeder injektive Endomorphismus eines endlich-dimensionalen Vektorraums bijektiv ist; dies war eine Folgerung aus
dem Dimensionssatz für lineare Abbildungen. Also ist φ in AutK(L) enthalten.

Als Anwendungsbeispiel der bisherigen Sätze zeigen wir, dass es genau drei Q-Homomorphismen Q( 3p2)→ C, aber
nur einen einzigen Q-Homomorphismus Q( 3p2)→R gibt. Nach dem Eisenstein-Kriterium (Satz 13.11) ist das Poly-
nom f = x3−2 inQ[x] irreduzibel. Außerdem gilt f ( 3p2) = 0, also ist f nach Proposition 15.9 das Minimalpolynom
von 3p2 über Q.

Um die beiden nicht-reellen Nullstellen von x3−2 darzustellen, benötigt man die Zahl ζ= − 1
2+

1
2

p
−3. Wegen ζ3 = 1

und ζ ̸= 1 bezeichnet man diese Zahl als primitive dritte Einheitswurzel; wir werden solche Zahlen zusammen mit
ihren Minimalpolynomen über Q, den sogenannten Kreisteilungspolynomen, später systematisch untersuchen. Um
die Gleichung ζ3 = 1 zu verifizieren, bemerken wir zunächst

ζ2 + ζ+ 1 = 1
4 (−1+

p
−3)2 − 1

2 +
1
2

p
−3+ 1 = 1

4 (−1+ i
p

3)2 − 1
2 +

1
2 i
p

3+ 1

= 1
4 (1− 2i

p
3− 3)− 1

2 +
1
2 i
p

3+ 1 = − 1
2 −

1
2 i
p

3− 1
2 +

1
2 i
p

3+ 1 = 0.

Daraus folgt dann ζ3 − 1 = (ζ − 1)(ζ2 + ζ + 1) = (ζ − 1) · 0 = 0. Mit Hilfe der Gleichung ζ3 = 1 lässt sich nun
leicht überprüfen, dass ζ 3p2 und ζ2 3p2 die beiden nicht-reellen Nullstellen von f sind: Es gilt f (ζ 3p2) = (ζ 3p2)3 =
ζ3( 3p2)3−2= 1 ·2−2= 0 und f (ζ2 3p2) = (ζ2 3p2)3−2= (ζ3)2( 3p2)3−2= 12 ·2−2= 0. Dies zeigt, dass 3p2, ζ 3p2
und ζ2 3p2 die drei komplexen Nullstellen von f sind.

Die drei Nullstellen entsprechen nun nach Folgerung 16.4 drei verschiedenen Fortsetzungen ψ : Q( 3p2) → C von
idQ, also drei verschiedenen Q-Homomorphismen. Wegen ζ /∈ R ist ζ 3p2 keine reelle Zahl, und wegen ζ2 = − 1

2 −
1
2

p
−3 /∈ R ist auch ζ2 3p2 nicht reell. Dies bedeutet, dass 3p2 die einzige Nullstelle von f in R ist. Folglich gibt

es, wiederum nach Folgerung 16.4, nur einen einzigen Q-Homomorphismus Q( 3p2) → R. Es handelt sich um die
identische Abbildung Q( 3p2)→R, α 7→ α.
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Als Ergänzung bemerken wir noch, dass kein Q-Homomorphismus Q( 3p2)→Q existiert, denn das Minimalpolynom
x3 − 2 von 3p2 besitzt keine Nullstelle in Q. Alternativ kann man das auch damit begründen, dass Q( 3p2) als Q-
Vektorraum dreidimensional ist und somit keine injektive lineare Abbildung in den eindimensionalen Q-Vektorraum
Q existiert.

Zum Schluss beweisen wir noch eine elementare Aussage zum Verhalten von Erzeugendensystemen unter Körperho-
momorphismen, die wir im nachfolgenden Kapitel benötigen werden.

Lemma 16.6 Sei φ : K → K̃ ein Isomorphismus von Körpern und L|K und L̃|K̃ Körperer-
weiterungen. Sei S ⊆ L eine Teilmenge und ψ : L → L̃ eine Fortsetzung von φ. Dann gilt
ψ(K(S)) = K̃(ψ(S)).

Beweis: Sei M =ψ(K(S)). Nach Definition des erzeugten Teilkörpers K̃(ψ(S)) ist zu zeigen:

(i) M ist ein Zwischenkörper von L̃|K̃ , der ψ(S) enthält.

(ii) Ist L1 ein weiterer Zwischenkörper von L̃|K̃ mit L1 ⊇ψ(S), dann folgt L1 ⊇ M .

zu (i) Als Bild von K(S) ⊆ L unter einem Körperhomomorphismus nach L̃ ist ψ(K(S)) auf jeden Fall ein Teilkörper
von L̃. Dieser enthält K̃ = φ(K) = ψ(K), also φ(K(S)) ein Zwischenkörper von L̃|K̃ . Außerdem ist wegen S ⊆ K(S)
auch ψ(S) in ψ(K(S)) enthalten.

zu (ii) Es genügt zu zeigen, dass K(S) in ψ−1(L1) enthalten ist, denn die Anwendung von ψ auf beide Seiten dieser
Gleichung liefert M =ψ(K(S)) ⊆ψ(ψ−1(L1)) ⊆ L1. Dazu reicht es zu überprüfen, dass ψ−1(L1) ein Zwischenkörper
von L|K ist, der S als Teilmenge enthält.

Zunächst zeigen wir, dass ψ−1(L1) ein Teilkörper von L ist. Weil L1 ein Teilkörper von L̃ ist, gilt ψ(1L) = 1 L̃ ∈ L1

und somit 1L ∈ ψ−1(L1). Seien nun α,β ∈ ψ−1(L1) vorgegeben. Dann gilt ψ(α),ψ(β) ∈ L1. Weil L1 ein Teilkörper
von L̃ ist, liegen auch ψ(α− β) = ψ(α)−ψ(β) und ψ(αβ) = ψ(α)ψ(β) in L1. Daraus folgt α− β ∈ ψ−1(L1) und
αβ ∈ ψ−1(L1). Ist außerdem α ̸= 0 L̃ , dann gilt wegen ψ(α)ψ(α−1) = ψ(αα−1) = ψ(1L) = 1 L̃ und der Teilkörper-
Eigenschaft von L1 auch ψ(α−1) =ψ(α)−1 ∈ L1 und damit α−1 ∈ψ−1(L1).

Also ist ψ−1(L1) tatsächlich ein Teilkörper von L. Wegen ψ(K) = φ(K) = K̃ ⊆ L1 gilt K ⊆ψ−1(L1). Also ist ψ−1(L1)
ein Zwischenkörper von L|K . Wegen ψ(S) ⊆ L1 enthält ψ−1(L1) auch die Menge S. □
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§ 17. Zerfällungskörper und normale Erweiterungen

Zusammenfassung. Ist f ∈ K[x] ein nicht-konstantes Polynom, dann bezeichnet man einen minimalen
Erweiterungskörper L von K , über dem f in Linearfaktoren zerfällt, als Zerfällungskörper von f über K . Ebenso
kann jeder beliebigen Menge von nicht-konstanten Polynomen ein Zerfällungskörper zugeordnet werden. Wir
zeigen, dass umgekehrt auch für jede Polynommenge ein entsprechender Zerfällungskörper existiert. Auf diese
Weise können wir für jeden Körper K einen algebraischen Abschluss konstruieren. Dabei handelt es sich um eine
Erweiterung K̃ ⊇ K mit der Eigenschaft, dass jedes nicht-konstante Polynom aus K̃[x] über K̃ in Linearfaktoren
zerfällt.

Erweiterungskörper von K , die als Zerfällungskörper zustande kommen, werden auch als normale Erweite-
rungen bezeichnet. Diese Erweiterungen L|K können auch ohne Bezug auf ein bestimmtes Polynom oder eine
Polynommenge charakterisiert werden, unter anderem durch die Automorphismengruppe AutK(L). Die nor-
malen Erweiterungen werden sowohl in der Theorie der endlichen Körper als auch in der Galoistheorie eine
wichtige Rolle spielen.

Wichtige Grundbegriffe

– Zerfällungskörper eines nicht-konstanten Poly-
noms f ∈ K[x], einer Menge von Polynomen

– algebraische Abgeschlossenheit

– algebraischer Abschluss eines Körpers

– normale Körpererweiterungen

– Konjugierte eines Elements

Zentrale Sätze

– Existenz und Eindeutigkeit des Zerfällungskörpers

– Existenz und Eindeutigkeit des algebraischen
Abschlusses

– Fortsetzbarkeit von Körperhomomorphismen auf al-
gebraische Erweiterungen

– Charakterisierung normaler Erweiterungen als Zer-
fällungskörper, durch die Automorphismengruppe

Wir beginnen mit der Definition des Zerfällungskörpers eines Polynoms.

Definition 17.1 Sei L|K eine Körpererweiterung und f ∈ K[x] ein nicht-konstantes Polynom.
Zerfällt f über L in Linearfaktoren, und bezeichnen α1, ...,αr die Nullstellen von f in L, dann
nennt man K(α1, ...,αr) den Zerfällungskörper von f in L über dem Grundkörper K .

Satz 17.2 Sei K ein Körper. Dann existiert zu jedem nicht-konstanten Polynom f ∈ K[x] ein
Zerfällungskörper von f über K .

Beweis: Wir beweisen die Aussage durch vollständige Induktion über n= grad( f ). Dabei können wir voraussetzen,
dass f normiert ist, weil sich an den Nullstellen nichts ändert, wenn wir f mit einem Element a ∈ K× multiplizieren.
Im Fall n= 1 gilt dann f = x −α für ein α ∈ K . Also ist L = K(α) = K der gesuchte Körper.
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Sei nun n ∈ N und setzen wir die Aussage für Polynomgrade m < n als gültig voraus. Sei f vom Grad n und
f1 ∈ K[x] ein irreduzibler Faktor von f . Nach Satz 15.12 über die Existenz algebraischer Erweiterungen gibt es
einen Erweiterungskörper M0 von K und ein Element α1 ∈ M0 mit f (α1) = f1(α1) = 0. Sei M = K(α1) und g ∈
M[x] mit f = (x − α1)g. Wegen grad(g) < grad( f ) = n können wir die Induktionsvoraussetzung auf g ∈ M[x]
anwenden. Wir erhalten einen Erweiterungskörper L von M , so dass das Polynom g über L in Linearfaktoren zerfällt,
g = (x −α1) · ... · (x −αr), und L = M(α2, ...,αr) gilt. Es folgt

f = (x −α1)(x −α2) · ... · (x −αr) und L = M(α2, ...,αr) = K(α1,α2, ...,αr). □

Nach Satz 15.14 ist jeder Zerfällungskörper eines Polynoms f ∈ K[x] algebraisch über K , weil er von endlich vielen
algebraischen Elementen erzeugt wird.

Betrachten wir das bereits in der Einleitung angekündigte Beispiel mit dem Grundkörpers K = Q und dem Poly-
nom f = x3 − 2 ∈ Q[x]. Offenbar ist 3p2 eine Nullstelle von f in R. Allerdings zerfällt f über Q( 3p2) nicht in
Linearfaktoren. Statt dessen besitzt f über diesem Körper die Zerlegung

f = (x − 3p2)(x2 + 3p2x + 3p4).

Der quadratische Faktor mit den Koeffizienten p = 3p2 und q = 3
p

4 besitzt die negative Diskriminante p2 − 4q =
( 3p2)2 − 4 4

p
3 = 3
p

4− 4 4
p

3 = (−3) 4
p

3, hat also keine reellen Nullstellen. Wegen Q( 3p2) ⊆ R ist somit gezeigt, dass
der quadratische Faktor in Q( 3p2) tatsächlich nicht in Linearfaktoren zerlegt werden kann. Dies kann man auch
anhand der drei komplexen Nullstellen von x3 − 2 überprüfen: Wie wir in § 12 gesehen haben, sind dies neben 3p2
die beiden nicht-reellen Zahlen ζ 3p2 und ζ2 3p2. Letztere müssen zugleich auch die Nullstellen des quadratischen
Faktors sein, was auch direkt nachrechnen kann: Wegen 1+ ζ+ ζ2 = 0 gilt

(x − ζ 3p2)(x − ζ2 3p2) = x2 − (ζ+ ζ2) 3p2x + ζ3 3p4 = x2 + 3p2x + 3p4

Insgesamt gilt also x3−2= (x− 3p2)(x−ζ 3p2)(x−ζ2 3p2). Dies zeigt, dass der Zerfällungskörper von f überQ durch
Q( 3p2,ζ 3p2,ζ2 3p2) =Q( 3p2,ζ) gegeben ist. Für die letzte Gleichung genügt es, die Inklusionen { 3p2,ζ 3p2,ζ2 3p2} ⊆
Q( 3p2,ζ) und { 3p2,ζ} ⊆Q( 3p2,ζ 3p2,ζ2 3p2) zu überprüfen; bei der zweiten Inklusion verwendet man ζ= ζ 3p2/ 3p2.

Man beachte, dass das Polynom f in Satz 17.2 auch reduzibel über dem Grundkörper Q sein darf. Ist beispielsweise
f = (x2 − 2)(x2 − 3)(x − 5) ∈ Q[x] und K = Q(

p
2,
p

3), dann ist K einZerfällungskörper von f über Q, denn die
Nullstellen von f sind ±

p
2, ±
p

3 und 5, und es gilt

K = Q(
p

2,−
p

2,
p

3,−
p

3, 5).

Wir erweitern nun die Definition des Zerfällungskörpers nun von einem Polynom auf eine beliebige Menge von Poly-
nomen.

Definition 17.3 Sei L|K eine Körpererweiterung, und S ⊆ K[x] eine (möglicherweise unendli-
che) Menge von nicht-konstanten Polynomen, die über L alle in Linearfaktoren zerfallen. Weiter
sei N ⊆ L die Menge aller Nullstellen sämtlicher Polynome aus S in L, also

N = {α ∈ L | f (α) = 0 für ein f ∈ S}.

Dann wird K(N) als Zerfällungskörper von S über dem Grundkörper K bezeichnet.
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Auch hier kann man zeigen

Satz 17.4 Ist K ein Körper und S ⊆ K[x] eine Menge nicht-konstanter Polynome, dann existiert
ein Zerfällungskörper von S über K .

Ist die Teilmenge S ⊆ K[x] endlich, dann folgt die Aussage direkt aus Satz 17.2. Bezeichnet nämlich g ∈ K[x] das
Produkt aller Polynome aus S, dann ist jeder Zerfällungskörper von g, wie man unmittelbar überprüft, auch ein Zer-
fällungskörper von S. Für den Beweis im allgemeinen Fall benötigt man nichttriviale Hilfsmittel aus der Mengenlehre,
unter anderem das sog. Zornsche Lemma. Aus algebraischer Sicht bietet der Beweis aber wenig Neues, weshalb wir
ihn in einen Anhang zu diesem Kapitel verschieben.

Proposition 17.5 Sei K ein Körper und S ⊆ K[x] eine beliebige Menge nicht-konstanter
Polynome. Dann ist jeder Zerfällungskörper von S über K eine algebraische Erweiterung von K .

Beweis: Dies ergibt sich direkt aus Folgerung 15.16, weil jeder Zerfällungskörper durch Adjunktion von Nullstellen
von Polynomen über K entsteht, also durch Adjunktion von Elementen, die über K algbraisch sind. □

Wir wenden uns nun einem besonders wichtigen Typ von Zerfällungskörpern zu, dem algebraischen Abschluss eines
Körpers K . Zunächst definieren wir

Definition 17.6 Ein Körper K heißt algebraisch abgeschlossen, wenn jedes nicht-konstante
Polynom f ∈ K[x] in K eine Nullstelle besitzt.

Durch vollständige Induktion über den Polynomgrad grad( f ) zeigt man leicht, dass jedes nicht-konstante Polynom
f ∈ K[x] über K in Linearfaktoren zerfällt, wenn K algebraisch abgeschlossen ist. Wie bereits oben bemerkt, besitzt
der Körper C der komplexen Zahlen die Eigenschaft der algebraischen Abgeschlossenheit.

Definition 17.7 Sei K ein Körper. Ein Erweiterungskörper L von K wird algebraischer Ab-
schluss von K genannt, wenn L|K algebraisch und L algebraisch abgeschlossen ist.

Unser nächstes Ziel besteht in dem Nachweis, dass jeder Körper K einen algebraischen Abschluss besitzt, und dass
dieser „im Wesentlichen“ eindeutig bestimmt ist. Auch für den Zerfällungskörper eines Polynoms f ∈ K[x] werden
wir einen entsprechende Eindeutigkeitsaussage beweisen.

Proposition 17.8 Für jede Erweiterung L|K sind die folgende Aussagen äquivalent.

(i) Der Körper L ist ein algebraischer Abschluss von K .

(ii) Die Erweiterung L|K ist algebraisch, und jedes nicht-konstante Polynom f ∈ K[x] zerfällt
über L in Linearfaktoren.

(iii) Die Erweiterung L|K ist minimal mit der Eigenschaft, dass jedes nicht-konstante Polynom
f ∈ K[x] über L in Linearfaktoren zerfällt. Es gibt also abgesehen von L selbst keinen
Zwischenkörper von L|K mit dieser Eigenschaft.
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Beweis: Die Implikation „(i)⇒ (ii)“ ist auf Grund der Definitionen trivial. Zum Beweis von „(ii)⇒ (iii)“ setzen wir
voraus, dass L|K algebraisch ist, und dass jedes nicht-konstante Polynom f ∈ K[x] über L in Linearfaktoren zerfällt.
Sei L1 ein beliebiger Zwischenkörper von L|K mit derselben Eigenschaft; zu zeigen ist L1 = L. Die Inklusion L1 ⊆ L
ist offenbar erfüllt. Für den Beweis der umgekehrten Inklusion sei α ∈ L vorgegeben. Das Minimalpolynom f = µα,K

ist nicht-konstant, zerfällt also über L1 in Linearfaktoren. Weil α eine Nullstelle von f ist, muss α in L1 liegen.

Nun zeigen wir noch die Implikation „(iii) ⇒ (i)“. Setzen wir voraus, dass L|K die unter (iii) angegebene Mini-
malitätseigenschaft besitzt. Zunächt zeigen wir, dass L|K algebraisch ist. Sei dazu T ⊆ L die Menge der über K
algebraischen Elemente; zu zeigen ist T = L. Sei dazu SK ⊆ K[x] die Menge aller nicht-konstanten Polynome und
N = {α ∈ L | f (α) = 0 für ein f ∈ SK}. Jedes Polynom aus SK zerfällt nicht nur über L, sondern bereits über K(N) in
Linearfaktoren. Auf Grund der Minimalitätseigenschaft gilt also L = K(N). Nach Satz 15.15 ist T ein Zwischenkörper
von L|K , der offenbar N enthält. Es folgt L = K(N) ⊆ T ⊆ L und somit T = L.

Es bleibt zu zeigen, dass L|K algebraisch abgeschlossen ist. Für ein beliebig vorgegebenes nicht-konstantes Polynom
f ∈ L[x] ist die Existenz einer Nullstelle von f in L nachzuweisen. Sei L̃ ⊇ L ein Zerfällungskörper von f über
L und α ∈ L̃ eine beliebige Nullstelle von f . Mit L(α)|L und L|K ist nach Satz 15.15 auch die Erweiterung L(α)|K
algebraisch. Sei h ∈ K[x] das Minimalpolynom von α über K . Nach Voraussetzung zerfällt h über L in Linearfaktoren.
Aus h(α) = 0 folgt α ∈ L. □

Folgerung 17.9 Sei L|K eine Körpererweiterung und SK ⊆ K[x] die Menge aller nicht-
konstanten Polynome über K . Genau dann ist L ein algebraischer Abschluss von K , wenn L
ein Zerfällungskörper von SK ist.

Beweis: Als Zerfällungskörper von SK ist L jedenfalls algebraisch über K . Außerdem zerfällt jedes nicht-konstante
Polynom aus K[x] über L in Linearfaktoren. Auf Grund der Richtung „(ii)⇒ (i)“ in Satz 17.8 ist L damit ein algebrai-
scher Abschluss von K . Setzen wir umgekehrt voraus, dass L ein algebraischer Abschluss von K ist. Dann zerfällt jedes
Polynom aus SK über L in Linearfaktoren. Außerdem wird L über K durch die Menge der Nullstellen der Polynome
f ∈ SK erzeugt, da jedes α ∈ L jeweils Nullstelle von µα,K ∈ SK ist. Also ist L ein Zerfällungskörper von SK über K . □

Wegen Satz 17.4 ergibt sich aus Folgerung 17.9, dass jeder Körper K einen algebraischen Abschluss besitzt. Außerdem
stellen wir fest: Ist K ein Körper und L̃ ein algebraisch abgeschlossener Erweiterungskörper von K , dann ist

K̃ = {α ∈ L̃ | α algebraisch über K}

der eindeutig bestimmte algebraische Abschluss von K in L̃. Denn offenbar ist K̃ der Zerfällungskörper der Menge
SK ⊆ K[x] aller nicht-konstanten Polynome. Die Behauptung folgt ist somit eine Konsequenz von Folgerung 17.9.
Es ist also gerechtfertigt, von dem algebraischen Abschluss eines Körpers K in einem algebraisch abgeschlossenen
Erweiterungskörper L̃ ⊇ K zu sprechen.

Ist insbesondere K ein Zwischenkörper C|Q, dann ist K̃ = {α ∈ C | α algebraisch über K} der eindeutig bestimmte
algebraische Abschluss von K in C. Man beachte, dass C selbst kein algebraischer Abschluss von Q ist, denn dies
würde bedeuten, dass C|Q eine algebraische Erweiterung ist. Wie wir in § 11 bemerkt haben, gibt es in C aber
Elemente, die über Q transzendent sind, zum Beispiel e und π.
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Unser nächstes Ziel ist der Beweis der Eindeutigkeit des algebraischen Abschlusses eines Körpers K bis auf K-Iso-
morphie. Dies soll bedeuten: Sind K̃1 und K̃2 zwei algebraische Abschlüsse von K , dann gibt es einen K-Isomorphis-
mus K̃1→ K̃2.

Proposition 17.10 Sei L|K eine algebraische Erweiterung, K̃ ein algebraisch abgeschlossener
Körper und φ : K → K̃ ein Homomorphismus von Körpern. Dann gibt es eine Fortsetzung ψ von
φ auf den Körper L, also einen Homomorphismus ψ : L→ K̃ mit ψ|K = φ.

Beweis: Wir beschränken uns auf den Fall, dass die Erweiterung L|K endlich ist. Den unendlichen Fall bearbeitet
man auch hier mit Hilfe des Zornschen Lemmas (siehe Anhang). Der Beweis wird durch vollständige Induktion über
n= [L : K] geführt. Ist n= 1, dann gilt L = K , und wir können einfach ψ= φ setzen.

Sei nun n ∈ N, und setzen wird die Aussage für Erweiterungen vom Grad < n voraus. Sei α ∈ L \ K ein beliebiges
Element und f ∈ K[x] das Minimalpolynom von α über K . Weil K̃ algebraisch abgeschlossen ist, besitzt das Polynom
f̃ = φ( f ) eine Nullstelle α̃ in K̃ . Wir wenden nun den Fortsetzungssatz, Satz 16.2, auf den Isomorphismus φ : K →
φ(K) an und erhalten einen (eindeutig bestimmten) Homomorphismus φ̂ : K(α)→ K̃ mit φ̂(α) = α̃ und φ̂|K = φ.
Wegen α /∈ K ist [K(α) : K]> 1, und nach dem Gradsatz gilt

[L : K(α)] =
[L : K]
[K(α) : K]

< [L : K] = n.

Wir können somit die Induktionsvoraussetzung auf die Erweiterung L|K(α) anwenden und erhalten einen Homo-
morphismus ψ : L→ K̃ mit ψ|K(α) = φ̂. Es folgt ψ|K = (ψ|K(α))|K = φ̂|K = φ. □

Satz 17.11 Sei K ein Körper und S ⊆ K[x] eine Menge bestehend aus nicht-konstanten Po-
lynomen. Sei φ : K → K̃ ein Isomorphismus von Körpern und S̃ = {φ( f ) | f ∈ S}. Sei L ein
Zerfällungskörper von S und L̃ ein Zerfällungskörper von S̃. Dann gibt es einen Isomorphismus
ψ : L→ L̃ mit ψ|K = φ.

Beweis: Sei L̂ ein algebraischer Abschluss von L̃. Weil der Körper L̂ algebraisch abgeschlossen ist, kann φ nach 17.10
zu einem Homomorphismus ψ : L→ L̂ fortgesetzt werden. Zu zeigen ist ψ(L) = L̃.

Sei N die Menge der Nullstellen aller Polynome f ∈ S in L, und sei Ñ ⊆ L̃ die entsprechende Menge für S̃. Nach
Definition der Zerfällungskörper gilt L = K(N) und L̃ = K̃(Ñ). Für jedes α ∈ N gibt es ein f ∈ S mit f (α) = 0. Wegen
φ = ψ|K ist ψ(α) nach Satz 16.3 eine Nullstelle von f̃ = φ( f ). Es folgt ψ(α) ∈ Ñ und insgesamt ψ(N) ⊆ Ñ . Mit
Lemma 16.6 erhalten wir

ψ(L) = ψ(K(N)) = K̃(ψ(N)) ⊆ K̃(Ñ) = L̃.

Nun zeigen wir, dass jedes nicht-konstante Polynom aus S̃ über dem Körper ψ(L) in Linearfaktoren zerfällt. Sei also
f̃ ∈ S̃ vorgegeben und f ∈ S mit f̃ = φ( f ). Weil L ein Zerfällungskörper von S ist, zerfällt f über L in Linearfaktoren.
Es gibt also ein c ∈ K und α1, ...,αn ∈ L mit f = c(x − α1) · ... · (x − αn), wobei n = grad( f ) ist. Anwendung von ψ
auf diese Gleichung liefert

f̃ = φ( f ) = ψ( f ) = φ(c)(x −ψ(α1)) · ... · (x −ψ(αn)) ,
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und es giltψ(αi) ∈ψ(L) für 1≤ i ≤ n. Dies zeigt, dass die Nullstellen sämtlicher Polynome f̃ ∈ S̃ in L̃ bereits inψ(L)
enthalten sind. Damit istψ(L) ein Zwischenkörper von L̃|K̃ mitψ(L) ⊇ Ñ . Weil L̃ = K̃(Ñ) nach Definition der kleinste
Zwischenkörper von L̃|K̃ mit dieser Eigenschaft ist, folgt L̃ ⊆ψ(L). Insgesamt ist damit ψ(L) = L̃ nachgewiesen. □

Folgerung 17.12 Sei K ein Körper, und seien L, L̃ algebraische Abschlüsse von K . Dann existiert
ein K-Isomorphismus zwischen L und L̃.

Beweis: Nach 17.9 sind L und L̃ beide Zerfällungskörper der Menge SK aller nicht-konstanten Polynome über K .
Somit existiert nach Satz 17.11 ein Isomorphismus ψ : L→ L̃ mit ψ|K = idK , also ein K-Isomorphismus. □

Definition 17.13 Eine algebraische Körpererweiterung L|K heißt normal, wenn folgende Be-
dingung erfüllt ist: Ist f ∈ K[x] ein irreduzibles Polynom, das in L eine Nullstelle besitzt, dann
zerfällt f über L in Linearfaktoren.

Proposition 17.14 Sei L|K eine Körpererweiterung vom Grad 2. Dann ist L|K normal.

Beweis: Sei f ∈ K[x] ein irreduzibles Polynom, das in L eine Nullstelle α besitzt. Dabei können wir uns auf den Fall
beschränken, dass f normiert und somit das Minimalpolynom von α ist. Wegen [L : K(α)] · [K(α) : K] = [L : K] = 2
gilt grad( f ) = [K(α) : K] ∈ {1, 2}. Im Fall grad( f ) = 1 ist f bereits ein lineares Polynom. Im Fall grad( f ) = 2 ist
x −α ein Teiler von f ∈ L[x]. Es gibt somit ein Polynom grad(g) vom Grad 1 mit f = (x −α)g. Also zerfällt f auch
in diesem Fall über L in Linearfaktoren. □

Wenn wir nach Gegenbeispielen zu normalen Erweiterungen suchen, müssen wir uns also auf solche vom Grad ≥ 3
konzentrieren. Sei etwa K =Q und L =Q( 3p2), wobei wir beide Körper als Teilkörper vonR betrachten. Dann ist die
Erweiterung L|K nicht normal. Denn das Polynom f = x3 − 2 ∈ K[x] ist nach dem Eisenstein-Kriterium irreduzibel
über K , besitzt aber andererseits in L eine Nullstelle, nämlich 3p2. Wäre L|K normal, dann müsste f über Q( 3p2) in
Linearfaktoren zerfallen. Aber wir haben bereits im Abschnitt über Zerfällungskörper gesehen, dass dies nicht der
Fall ist.

Durch den folgende Satz wird gezeigt, dass normale Erweiterungskörper nichts weiter als Zerfällungskörper von
Polynomen des Grundkörpers sind. Die zusätzliche Charakterisierung über die Körperhomomorphismen werden wir
später in der Galoistheorie verwenden.

Satz 17.15 Sei K ein Körper, und seien K̃ ⊇ L ⊇ K Erweiterungen von K , wobei L|K endlich
und K̃ algebraisch abgeschlossen ist. Dann sind folgende Aussagen äquivalent:

(i) L|K ist normal.

(ii) Es gibt ein nicht-konstantes Polynom f ∈ K[x], so dass L der Zerfällungskörper von f
über K ist.

(iii) Es gilt HomK(L, K̃) = AutK(L).
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Beweis: „(i) ⇒ (ii)“ Da L|K endlich ist, gibt es über K algebraische Elemente α1, ...,αr ∈ L mit L = K(α1, ...,αr)
(wähle zum Beispiel eine K-Basis von L). Für jedes i ∈ {1, ..., r} sei fi ∈ K[x] das Minimalpolynom von αi und
f =

∏r
i=1 fi . Jedes fi besitzt offenbar in L eine Nullstelle. Weil L|K normal ist, zerfällt jedes fi und damit auch

das Polynom f über L in Linearfaktoren, und zugleich wird f von den Nullstellen von f erzeugt. Also ist L ein
Zerfällungskörper von f .

„(ii) ⇒ (iii)“ Die Inklusion „⊇“ ist auf Grund der Definition von HomK(L, K̃) und AutK(L) klar. Zum Nachweis
von „⊆“ sei nun φ ∈ HomK(L, K̃) vorgegeben. Außerdem setzen wir voraus, dass L der Zerfällungskörper des nicht-
konstanten Polynoms f ∈ K[x] ist. Dann gilt L = K(α1, ...,αr), wobei α1, ...,αr ∈ L die verschiedenen Nullstellen
von f sind. Für jedes i ist φ(αi) nach Satz 16.3 ebenfalls eine Nullstelle von f und liegt damit in L. Aus

φ({α1, ...,αr}) ⊆ {α1, ...,αr}

erhalten wir durch Anwendung von Lemma 16.6 die Inklusion φ(L) ⊆ L, d.h. φ(L) ist ein Teilkörper von L. Weil φ
aber injektiv ist, muss der Grad [φ(L) : K] mit [L : K] übereinstimmen. Es folgt φ(L) = L und somit φ ∈ AutK(L).

„(iii) ⇒ (i)“ Sei f ∈ K[x] ein irreduzibles Polynom, das in L eine Nullstelle α besitzt. Zu zeigen ist, dass f über
L in Linearfaktoren zerfällt. Zumindest zerfällt f über dem Körper K̃ , da dieser algebraisch abgeschlossen ist. Sei
β ∈ K̃ eine beliebige weitere Nullstelle von f . Auf Grund des Fortsetzungssatzes gibt es einen K-Homomorphismus
φ : K(α)→ K̃ mit φ(α) = β . Nach Proposition 16.2 gibt es eine Fortsetzung ψ : L → K̃ von φ auf L. Dieses ψ ist
nach Definition in HomK(L, K̃) enthalten. Nach Voraussetzung gilt HomK(L, K̃) = AutK(L), also ist β = φ(α) =ψ(α)
in L enthalten. Jede Nullstelle von f liegt also bereits in L, d.h. f zerfällt über L in Linearfaktoren. □

Sei ζ = − 1
2 +

1
2

p
−3 ∈ C und L = Q( 3p2,ζ). Dann ist die Erweiterung L|Q normal, denn wie wir in § 13 gezeigt

haben, handelt es sich bei L um den Zerfällungskörper des Polynoms x3 − 2 ∈ Q[x]. Nach Satz 17.15 (iii) ist jeder
Q-Homomorphismus φ : L→ C ein Q-Automorphismus von L.

Definition 17.16 Sei L|K eine normale Erweiterung und α ∈ L. Dann werden die Nullstellen
des Minimalpolynoms µα,K in L die Konjugierten des Element α über K genannt.

Zum Beispiel sind die Konjugierten eines Elements z ∈ C über R stets das Element z selbst und das konjugiert-
komplexe Element z̄.

Auf Grund des Fortsetzungssatzes und wegen Satz 17.15 lassen sich die Konjugierten in einer normalen Erweiterung
L|K auch folgendermaßen charakterisieren: Sei α ∈ L vorgegeben. Ein Element β ∈ L ist genau dann über K zu α
konjugiert, wenn ein σ ∈ AutK(L)mit σ(α) = β existiert. Sei nämlich L̂ ein algebraischer Abschluss von L. Ist β eine
Nullstelle von f = µα,K ∈ K[x], dann gibt es auf Grund des Fortsetzungssatzes einen K-Homomorphismus σ : L→ L̂,
und wegen Satz 17.15 (iii) ist σ in AutK(L) enthalten. Ist umgekehrt β ∈ L ein Element, für das ein σ ∈ AutK(L) mit
σ(α) = β existiert, dann ist mit α nach Satz 16.3 auch β eine Nullstelle von f . Zum Schluss untersuchen wir noch,
wie sich die Eigenschaft „normal“ bei Türmen von Körpererweiterungen verhält.

Proposition 17.17 Ist L|K eine normale Erweiterung und M ein Zwischenkörper von L|K ,
dann ist auch die Erweiterung L|M normal.

— 197 —



Beweis: Sei f ∈ M[x] ein irreduzibles Polynom und α ∈ L eine Nullstelle von f . Zu zeigen ist, dass f über L in
Linearfaktoren zerfällt. Nach Multiplikation von f mit einem α ∈ M× können wir voraussetzen, dass f normiert
ist. Dann ist f das Minimalpolynom von α über M . Das Minimalpolynom g ∈ K[x] von α über K zerfällt über L in
Linearfaktoren, weil die Erweiterung L|K normal ist. Nun ist g auch ein Polynom in M[x] mit g(α) = 0 und damit
ein Vielfaches des Minimalpolynoms f von α über L. Mit g zerfällt also auch f über L in Linearfaktoren. □

Aus den Voraussetzungen von Proposition 17.17 folgt nicht, dass auch die auch die untere Teilerweiterung M |K
normal ist. Als Beispiel betrachten wir die Körper

K =Q , M =Q( 3p2) und L =Q( 3p2,ζ)

mit ζ = − 1
2 +

1
2

p
−3. Wir haben bereits festgestellt, dass L|K eine normale Erweiterung ist, und auf Grund der

Proposition gilt dasselbe für die Erweiterung L|M . Aber M |K ist nicht normal, wie wir im Beispiel von oben gesehen
haben. Ebenso wenig folgt im Allgemeinen aus der Normalität der beiden Teilerweiterungen M |K und L|M , dass die
Gesamterweiterung L|K normal ist.

Anhang: Unendliche algebraische Erweiterungen und Zornsches Lemma

In diesem Anhang werden die vollständigen Beweise von Satz 17.4 und Proposition 17.10 nachgeliefert.

Zunächst wiederholen wir einige Grundbegriffe der Mengenlehre, die bereits im ersten Semester eingeführt wurden.
Eine Relation ⪯ auf einer Menge X heißt reflexiv, wenn x ⪯ x für alle x ∈ X gilt, anti-symmetrisch, wenn für alle
x , y ∈ X aus x ⪯ y und y ⪯ x jeweils x = y folgt, und transitiv, wenn für alle x , y, z ∈ X aus x ⪯ y und y ⪯ z
jeweils x ⪯ z folgt. Eine Relation auf X , die alle drei Eigenschaften besitzt, wird Halbordnung genannt. Sind je zwei
Elemente x , y ∈ X vergleichbar, gilt also x ⪯ y oder y ⪯ x , dann spricht man von einer Totalordnung. Zusätzlich
definieren wir

Definition 17.18 Sei (X ,⪯) eine Menge mit einer Halbordnung. Eine Teilmenge T ⊆ X heißt
Kette in X , wenn sie nichtleer ist und jeweils zwei Elemente x , y ∈ T miteinander vergleichbar
sind. Dies ist äquivalent dazu, dass die Einschränkung der Relation ⪯ auf T eine Totalordnung
ist.

Ein Element s ∈ X heißt obere Schranke einer Teilmenge T ⊆ X , wenn s ⪰ t für alle t ∈ T gilt. Ein Element x ∈ X
wird maximal genannt, wenn kein y ∈ X mit y ⪰ x und y ̸= x existiert.

Satz 17.19 (Zornsches Lemma)
Sei X eine nichtleere Menge und ⪯ eine Halbordnung auf X mit der Eigenschaft, dass jede Kette
in X eine obere Schranke in X besitzt. Dann existiert in X ein maximales Element.

Offenbar genügt es, die Bedingung für nichtleere Ketten zu überprüfen, denn jedes Element in X ist eine obere
Schranke der leeren Menge.
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Man kann zeigen, dass das Zornsche Lemma äquivalent zum sogenannten Auswahlaxiom ist, welches besagt, dass für
jede Menge X , deren Elemente selbst Mengen sind, eine Menge C existiert, die aus jedem X ∈ X genau ein Element
enthält, und keine weiteren Elemente. Wir können also eine Menge bilden, indem wir aus jeder Menge X ∈ X
genau ein Element auswählen. (Die Gültigkeit dieser Aussage wirkt so offensichtlich, dass man sie häufig unbewusst
anwendet. Wir hatten sie in § 4 im Zusammenhang mit den Repräsentantensystemen bereits kurz erwähnt.) Dabei
bedeutet die Äquivalenz von Auswahlaxiom und Zornschem Lemma folgendes: Setzt man die sog. ZF-Axiome der
Mengenlehre voraus, dann kann das Zornsche Lemma aus dem Auswahlaxiom abgeleitet werden und umgekehrt das
Auswahlaxiom aus dem Zornschen Lemma. Einen Beweis findet man zum Beispiel im Anhang A von [Hi].

Leider können wir aus Platz- und Zeitgründen auf die Zusammensetzung der ZF-Axiome, benannt nach den Mengen-
theoretikern E. Zermelo (1871-1953) und A. Fraenkel (1891-1965), hier nicht genauer eingehen. Sie stellen unter
anderem sicher, dass eine leere Menge, Vereinigungen von Mengen, Potenzmengen und unendliche Mengen existie-
ren, und dass man mit Hilfe prädikatenlogischer Aussagenschemata Teilmengen von Mengen definieren darf. Die
ZF-Axiome werden mit dem Auswahlaxiom zum ZFC-Axiomensystem zusammengefasst. Die gesamte heutige Mathe-
matik kann auf den ZFC-Axiomen aufgebaut werden.

Erwähnt werden sollte noch, dass das Zornsche Lemma an vielen Stellen die früher gebräuchliche transfinite Induk-
tion als Beweisprinzip abgelöst hat. Dabei handelt es sich um eine Verallgemeinerung der vollständigen Induktion,
die nicht auf den natürlichen Zahlen, sondern auf den sog. Ordinalzahlen basiert. Während die vollständige Induk-
tion nur zum Beweis einer abzählbar unendlichen Menge von Aussagen geeignet ist, lassen sich mit der transfiniten
Induktion beliebig große Mengen von Aussagen beweisen. Aus diesem Grund kann auch die Anwendung des Zorn-
schen Lemmas als „verallgemeinerte vollständige Induktion“ betrachten.

Wir beginnen mit einer einfachen mengentheoretischen Anwendung des Zornschen Lemmas. Aus dem ersten Seme-
ster ist folgendes bekannt: Eine Abbildung f : X → Y zwischen zwei Mengen X und Y ist genau dann injektiv, wenn
eine Abbildung g : Y → X mit g ◦ f = idX existiert, und genau dann surjektiv, wenn eine Abbildung h : Y → X mit
f ◦ h = idY existiert. Dabei ist die Abbildung g dann offenbar surjektiv, und h ist injektiv. Existiert also zwischen
zwei Mengen X und Y eine injektive Abbildung X → Y , dann gibt es auch eine surjektive Abbildung Y → X . Gibt
es umgekehrt eine surjektive Abbildung X → Y , dann auch eine injektive Abbildung Y → X . Mit dem Zornschen
Lemma kann nun darüber hinaus gezeigt werden

Satz 17.20 Sind X , Y beliebige Mengen, dann gibt es eine injektive Abbildung X → Y oder
eine injektive Abbildung Y → X .

Beweis: Wir orientieren uns an der Darstellung in [Ph] und betrachten die Menge M aller Paare (A, f ) bestehend
aus einer Teilmenge A ⊆ X und einer injektiven Abbildung f : A → Y . Diese Menge ist nichtleer, denn das Paar
bestehend aus ∅ ⊆ X und der „leeren“ Abbildung ∅ → Y ist offenbar in M enthalten. Auf M definieren wir eine
Relation ⪯ mit der Eigenschaft, dass (A1, f1) ⪯ (A2, f2) genau dann gilt, wenn A1 ⊆ A2 und f2|A1

= f1 erfüllt ist, für
beliebige (A1, f1), (A2, f2) ∈M. Zunächst weisen wir nach, dass ⪯ eine Halbordnung auf M ist. Die Reflexivität ist
offensichtlich, denn für jedes Paar (A, f ) ∈M gilt A⊆ A und f |A = f . Zum Nachweis der Antisymmetrie seien (A1, f1)
und (A2, f2) mit (A1, f1) ⪯ (A2, f2) und (A2, f2) ⪯ (A1, f1) vorgegeben. Dann gilt A1 ⊆ A2 und A2 ⊆ A1, also A1 = A2.
Aus A1 = A2 folgt f2|A1

= f2|A2
= f2, und mit f2|A1

= f1 erhalten wir f2 = f1. Insgesamt gilt also (A1, f1) = (A2, f2). Für
die Transitivität seien (A1, f1), (A2, f2), (A3, f3) ∈M mit (A1, f1) ⪯ (A2, f2) und (A2, f2) ⪯ (A3, f3) vorgegeben. Dann
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gilt A1 ⊆ A2 und A2 ⊆ A3, also A1 ⊆ A3. Aus f3|A2
= f2 und f2|A1

= f1 folgt f3|A1
= ( f3|A2

)|A1
= f2|A1

= f1. Insgesamt ist
damit (A1, f1)⪯ (A3, f3) nachgewiesen.

Nun überprüfen wir, dass die halbgeordnete Menge (M,⪯) die Voraussetzungen des Zornschen Lemmas erfüllt. Dass
M nichtleer ist, haben wir bereits festgestellt. Sei nun T eine nichtleere Kette in M. Zu zeigen ist, dass T in M eine
obere Schranke besitzt. Dafür sei AT ⊆ X die Vereinigung aller Mengen A, für die eine Abbildung f : A → Y mit
(A, f ) ∈ T existiert. Wir definieren eine Abbildung f : AT → Y , indem wir für jedes a ∈ AT ein Paar (A, fa) ∈ T mit
a ∈ A wählen und fT (a) = fa(a) setzen. Das Bild fT (a) ist von der Wahl des Paares (A, fa) unabhängig. Ist nämlich
(A′, f ′) ∈ T ein weiteres Element mit a ∈ A′, dann gilt (A, fa)⪯ (A′, f ′) oder (A′, f ′)⪯ (A, fa), weil T eine Kette ist. Im
ersten Fall gilt fa(a) = ( f ′|A)(a) = f ′(a), im zweiten f ′(a) = ( fa|A′)(a) = fa(a), in beiden Fällen also fa(a) = f ′(a).

Wir behaupten nun, dass (AT , fT ) in M liegt und eine obere Schranke von T ist. Für Ersteres müssen wir noch zeigen,
dass fT injektiv ist. Seien also a1, a2 ∈ AT mit fT (a1) = fT (a2) vorgegeben. Auf Grund der Definition von AT gibt
es Paare (A1, f1), (A2, f2) ∈ T mit a1 ∈ A1, a2 ∈ A2, und unsere Feststellung aus dem vorherigen Absatz zeigt, dass
f1(a1) = fT (a1) = fT (a2) = f2(a2) gilt. Weil T eine Kette ist, dürfen wir o.B.d.A. annehmen, dass (A1, f1) ⪯ (A2, f2)
gilt. Daraus folgt A1 ⊆ A2, also a1, a2 ∈ A2, außerdem f2|A1

= f1 und somit f2(a2) = f1(a1) = ( f2|A1
)(a1) = f2(a1). Die

Injektivität von f2 liefert nun a1 = a2, wie gewünscht. Damit ist (AT , fT ) nachgewiesen. Ist nun (A, f ) ∈ T beliebig
vorgegeben, dann gilt AT ⊇ A nach Definition von AT , und für jedes a ∈ A ist fT (a) = f (a), also fT |A = f . Also gilt
(A, f )⪯ (AT , fT ), und somit ist (AT , fT ) in der Tat eine obere Schranke von T .

Nach dem Zornschen Lemma 17.19 existiert in M nun ein maximales Element (Ã, f̃ ). Ist Ã = X , dann ist f eine
injektive Abbildung X → Y , und wir sind fertig. Gilt f̃ (Ã) = Y , dann ist f̃ : Ã→ Y surjektiv, und wir können f̃ zu
einer surjektiven Abbildung X → Y fortsetzen. Wie wir vor dem Beweis angemerkt haben, existiert dann eine injektive
Abbildung Y → X . Nehmen wir nun an, dass sowohl Ã⊊ X als auch f̃ (Ã) ⊊ Y gilt. Sei a ∈ X \ Ã und b ∈ Y \ f̃ (Ã). Wir
können dann auf A1 = Ã∪ {a} eine injektive Abbildung f1 : A1 → Y definieren, indem wir f1(a) = b und f1|A1

= f̃
festlegen. Aber dann ist (A1, f1) in M ein echt größeres Element als (Ã, f̃ ), im Widerspruch zur Maximalität. Also ist
der Fall Ã⊊ X und f̃ (Ã) ⊊ Y ausgeschlossen. □

Wenden wir uns nun wieder der Körpertheorie zu. Als erstes beweisen wir Proposition 17.10 für beliebige algebraische
Erweiterungen. Sei L|K eine solche Erweiterung, K̃ ein algebraisch abgeschlossener Körper und φ : K → K̃ ein
Homomorphismus von Körpern. Zu zeigen ist, dass ein Homomorphismus ψ : L→ K̃ mit ψ|K = φ existiert.

Es sei F die Menge aller Paare (M ,ψM ) bestehend aus einem Zwischenkörper M von L|K und einer Fortsetzung
ψM : M → K̃ von φ auf M . Wir definieren eine Relation ⪯ auf F , indem wir fordern, dass die Äquivalenz

(M1,ψM1
) ⪯ (M2,ψM2

) ⇔ M1 ⊆ M2 und ψM2
|M1
=ψM1

für alle Paare (M1,ψM1
), (M2,ψM2

) ∈ F gilt. Wegen (K ,φ) ∈ F ist die Menge F nicht leer. Ähnlich wie im Beweis
von Satz 17.20 überprüft man, dass durch ⪯ eine Halbordnung auf F definiert ist; der einzige Unterschied besteht
darin, dass an Stelle von Abbildungen nun Körperhomomorphismen betrachtet werden.

Nun zeigen wir, dass die halbgeordnete Menge (F ,⪯) die Voraussetzungen des Zornschen Lemmas erfüllt. Sei T ⊆ F
eine nichtleere Kette in F . Weiter sei MT die Vereinigung aller Zwischenkörper M von L|K , für die ein Körperhomo-
morphismen ψM : M → K̃ mit (M ,ψM ) ∈ T existiert. Dann ist auch MT ein Zwischenkörper von L|K . Zunächst ist
das Einselement 1K = 1L in MT enthalten, denn weil M für jedes Element (M ,ψM ) aus T ein Teilkörper von L ist,
gilt jeweils 1K ∈ M . Seien nun α,β ∈ MT vorgegeben. Dann gibt es Elemente (Mα,ψMα

), (Mβ ,ψMβ
) ∈ T mit α ∈ Mα

und β ∈ Mβ . Weil T eine Kette ist, können wir o.B.d.A. (Mα,ψMα
) ⪯ (Mβ ,ψMβ

) annehmen. Dann sind α,β beide in
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Mβ enthalten. Weil Mβ ein Teilkörper von L ist, liegen auch die Elemente α− β und αβ in Mβ , im Fall α ̸= 0K auch
das Element α−1. Erst recht enthält MT all diese Elemente. Damit ist die Teilkörpereigenschaft nachgewiesen.

Außerdem definieren wir eine Abbildung ψT : MT → K̃ , indem wir für jedes α ∈ MT ein Element (Mα,ψMα
) mit

α ∈ Mα auswählen und ψT (α) = ψMα
(α) setzen. Ist α ∈ K , dann gilt ψT (α) = ψMα

(α) = φ(α), weil ψMα
eine

Fortsetzung von φ ist. Außerdem ist ψT ein Körperhomomorphismus. Dazu bemerken wir zunächst: Ist α ∈ MT

und (M ,ψM ) ∈ T ein beliebiges Element mit α ∈ M , dann gilt ψT (α) = ψM (α). Denn weil T eine Kette ist, gilt
(M ,ψM )⪯ (Mα,ψMα

) oder (Mα,ψMα
)⪯ (M ,ψM ). Im ersten Fall gilt ψM (α) = (ψMα

|M )(α) =ψMα
(α) =ψT (α), und

durch eine ähnliche Rechnung erhält man dasselbe Resultat auch im zweiten Fall. Seien nun α,β ∈ MT vorgegeben,
und es seien (Mα,ψMα

), (Mβ ,ψMβ
) Elemente aus T wie im vorherigen Absatz. Dann liegen die Elemente α,β ,α+β

und αβ alle in Mβ . Weil ψMβ
ein Körperhomomorphismus ist, gilt

ψT (α+ β) = ψMβ
(α+ β) = ψMβ

(α) +ψMβ
(β) = ψT (α) +ψT (β)

und ebenso ψT (αβ) =ψT (α)ψT (β). Ebenso gilt ψT (1K) =ψMβ
(1K) = φ(1K) = 1K̃ , weil ψMβ

eine Fortsetzung von
φ ist. Nach Konstruktion gilt M ⊆ MT und ψT |M = ψM für jedes (M ,ψM ) ∈ T . Also ist (MT ,ψT ) tatsächlich eine
obere Schranke von T .

Auf Grund des Zornschen Lemmas, Satz 17.19, existiert nun in F ein maximales Element (M̃ ,ψM̃ ). Gilt M̃ = L,
dann ist ψM̃ eine Fortsetzung von φ auf L, wie gewünscht. Im Fall M̃ ⊊ L sei α ∈ L \ M̃ beliebig gewählt. Weil α
über K und erst recht über M̃ algebraisch ist, handelt es sich bei M̃(α)|M̃ nach Proposition 15.14 um eine endliche
Erweiterung. Da Satz 16.2 für endliche Erweiterungen bewiesen wurde, existiert eine FortsetzungψM1

: M1→ K̃ von
ψM̃ auf M1 = M̃(α). Es ist dann (M1,ψM1

) in F ein echt größeres Element als (M̃ ,ψM̃ ). Aber dies widerspricht der
Maximalität von (M̃ ,ψM̃ ). Also muss M̃ = L gelten. □

Um den Beweis von Satz 17.4 über die Existenz von Zerfällungskörpern für beliebige Mengen nicht-konstanter Poly-
nome vorzubereiten, zeigen wir

Lemma 17.21 Sei X eine Menge und P(X ) ihre Potenzmenge. Dann existiert keine surjektive
Abbildung φ : X → P(X ).

Beweis: Die Argumentation ähnelt dem Cantorschen Diagonalverfahren, mit dem gezeigt wird, dass die reellen
Zahlen surjektiv sind. Nehmen wir an, φ : X → P(X ) ist eine surjektive Abbildung, und betrachten wir die Menge
D = {x ∈ X | x /∈ φ(x)}. Weil D surjektiv ist, existiert ein xD ∈ X mit φ(xD) = D, und dieses Element muss xD ∈ D
oder xD /∈ D erfüllen. Betrachten wir den Fall xD ∈ D. Dann ist die Bedingung x /∈ φ(xD) nicht erfüllt, und es
folgt xD /∈ D, ein Widerspruch. Setzen wir nun xD /∈ D voraus. Dann ist die Bedinung xD /∈ φ(xD) erfüllt, und nach
Definition von D gilt xD ∈ D. Also ergibt sich auch im zweiten Fall ein Widerspruch. Dies zeigt, dass unsere Annahme,
die Abbildung φ wäre surjektiv, falsch war. □

Lemma 17.22 Sei K ein Körper.

(i) Es gibt eine Menge Ω0 mit der Eigenschaft, dass für jede algebraische Erweiterung L|K
eine injektive Abbildung L→ Ω0 existiert. (Dies bedeutet, dass die Menge Ω0 groß genug
ist, um sämtliche algebraischen Erweiterungen von K in sich „aufzunehmen“.)

(ii) Es existiert eine Menge Ω mit der Eigenschaft, dass für keine algebraische Erweiterung
L|K eine surjektive Abbildung L→ Ω existiert.
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Beweis: zu (i) Sei Ω0 = K[x] ×N und L|K eine algebraische Erweiterung. Dann erhalten wir folgendermaßen
eine injektive Abbildung φ : L → Ω0: Für jedes nicht-konstante, normierte, irreduzible Polynom f ∈ K[x] wählen
wir eine Nummerierung α1, ...,αn der Nullstellen von f in L und definieren dann φ(α j) = ( f , j). Die Abbildung
ist wohldefiniert, da f jeweils das (eindeutig bestimmte) Minimalpolynom von α j über K ist, und außerdem injek-
tiv, da je zwei verschiedene Elemente aus L entweder verschiedene Minimalpolynome haben, oder den Elementen
unterschiedlichen Nummern zugeordnet wurden.

zu (ii) Sei Ω = P(Ω0), die Potenzmenge von Ω0. Nehmen wir an, es gäbe eine algebraische Erweiterung L|K und
eine surjektive Abbildung L → Ω. Weiter sei φ : L → Ω0 die injektive Abbildung aus Teil (i). Dann können wir
mit Hilfe der Umkehrabbildung der Bijektion φ : φ → φ(L) eine surjektive Abbildung φ(L) → Ω definieren, und
jede Fortsetzung dieser Abbildung auf Ω0 wäre ebenfalls surjektiv. Aber nach Lemma 17.21 existiert keine surjektive
Abbildung von Ω0 auf Ω. □

Nun kann der Beweis von Satz 17.4 durchgeführt werden. Sei K ein Körper und S ⊆ K[x] eine Menge nicht-konstanter
Polynome. Zu zeigen ist, dass ein Zerfällungskörper von S über K existiert. Sei dazuΩ eine Menge wie in Lemma 17.22
(ii). Nach Ersetzung vonΩ durchΩ∪K dürfen wirΩ ⊇ K annehmen. Es sei nun F die Menge aller Erweiterungskörper
(L,+L , ·L) von K mit L ⊆ Ω und der Eigenschaft, dass L Zerfällungskörper einer Teilmenge T ⊆ S ist. Diese Menge
ist nichtleer, denn der Körper K mit seiner Addition und Multiplikation ist Zerfällungskörper der Teilmenge ∅ ⊆ S.
Wir definieren eine Relation ⪯ auf F , indem wir fordern, dass genau dann (L1,+L1

, ·L1
) ⪯ (L2,+L2

, ·L2
) erfüllt ist,

wenn L1 ein Teilkörper von L2 ist. Dies bedeutet unter anderem, dass L1 ⊆ L2 gilt, dass L1 abgeschlossen unter +L2

und ·L2
ist, und dass die Einschränkung von +L2

bzw. ·L2
auf L1 mit +L1

bzw. ·L1
übereinstimmt. Um die Notation

nicht zu aufwändig werden zu lassen, schreiben wir ab jetzt an Stelle von (L,+L , ·L) meist einfach L. Es ist aber
darauf zu achten, dass für L1, L2 ∈ F die additiven und multiplikativen Verknüpfungen im Allgemeinen nur auf K
übereinzustimmen brauchen, selbst wenn L1 und L2 als Teilmengen von Ω gleich sind.

Um das Zornsche Lemma anwenden zu können, überprüfen wir zunächst wieder, dass durch ⪯ eine Halbordnung
auf F gegeben ist. Die Relation ist reflexiv, denn jedes L ∈ F ist ein Teilkörper von sich selbst. Sind L1, L2 ∈ F mit
L1 ⪯ L2 und L2 ⪯ L1, dann gilt insbesondere L1 ⊆ L2 und L2 ⊆ L1, also L1 = L2. Außerdem müssen (auf Grund
der Teilkörper-Eigenschaft) Addition und Multiplikation auf L1 und L2 übereinstimmen. Also stimmen L1 und L2

als Körper überein, und folglich ist die Relation anti-symmetrisch. Sind L1, L2, L3 ∈ F mit L1 ⪯ L2 und L2 ⪯ L3

vorgegeben, dann ist L1 Teilkörper von L2 und L2 Teilkörper von L3. Aus L1 ⊆ L2 und L2 ⊆ L3 folgt L1 ⊆ L3. Schränkt
man die Addition von L3 auf L2 ein, so erhält man die Addition des Körpers L2. Schränkt man diese weiter auf L1

ein, so erhält man die Addition auf L1. Also erhält man die Addition von L1 auch, indem man die Addition von L3

direkt auf L1 einschränkt. Dasselbe gilt für die Multiplikation. Insgesamt ist damit gezeigt, dass L1 ein Teilkörper von
L3 ist und somit L1 ⪯ L3 gilt. Die Relation ⪯ ist also auch transitiv, insgesamt eine Halbordnung.

Für die Anwendbarkeit des Zornschen Lemmas muss noch gezeigt werden, dass jede nichtleere Kette T in F eine
obere Schranke besitzt. Auf der Teilmenge LT =

⋃

L∈T L von Ω definieren wir auf folgende Weise Verknüpfungen +T

und ·T : Sind α,β ∈ LT vorgegeben, dann gibt es einen Körper L1 ∈ T mit α ∈ L1 und ein L2 ∈ T mit β ∈ L2. Weil T
eine Kette ist, dürfen wir o.B.d.A. L1 ⪯ L2 annehmen. Es gilt dann L1 ⊆ L2 und somit α,β ∈ L2. Für jedes Paar (α,β)
von Elementen in LT können wir also einen Körper L(α,β) ∈ T mit α,β ∈ L(α,β) wählen. Bezeichnen +(α,β) und ·(α,β)

die Addition und Multiplikation auf L(α,β), dann definieren wir

α+T β = α+(α,β) β , α ·T β = α ·(α,β) β .

Zu überprüfen ist nun, dass es sich bei (LT ,+T , ·T ) um einen Körper und darüber hinaus um einen Zerfällungs-
körper einer Teilmenge T ⊆ S handelt. Beim Nachweis der Körperaxiome beschränken wir uns auf den Nachweis
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des Assoziativgesetzes der Addition, weil der Nachweis der übrigen Körperaxiome weitgehend analog veräuft. Seien
α,β ,γ ∈ LT vorgegeben, außerdem α′ = α +(α,β) β und γ′ = β +(β ,γ) γ. Weil T eine Kette ist, gibt es unter den
Körpern L(α,β), L(β ,γ), L(α′,γ) und L(α,γ′) ein größtes Element, das wir mit L bezeichnen. Weil in L das Assoziativgesetz
gilt und die vier aufgezählten Körper alles Teilkörper von L sind, gilt

(α+T β) +T γ = (α+(α,β) β) +T γ = α′ +T γ = α′ +(α′,γ) +γ

= α′ +L γ = (α+L β) +L γ = α+L (β +L γ) = α+L γ
′ = α+(α,γ′) +γ

′ =

α+T γ
′ = α+T (β +β ,γ γ) = α+T (β +T γ).

Der Nachweis der übrigen Körperaxiome funktioniert nach dem gleichen Schema; dabei stellt man insbesondere fest,
dass Null- bzw. Einselement von LT mit Null- und Einselement des Grundkörpers K übereinstimmen. Darüber hinaus
ist jedes L ∈ T ein Teilkörper von LT . Ist nämlich + die Addition auf L und sind α,β ∈ L vorgegeben, dann gilt
L ⪯ L(α,β) oder L(α,β) ⪯ L. Dies zeigt, dass α +T β = α +(α,β) β und α + β übereinstimmen. Ebenso stimmt die
Multiplikation von LT mit der Multiplikation von L überein. Weil K ein Teilkörper von L ist, gilt 1L = 1K = 1LT

. Weil
L ein Körper ist und die Verknüpfungen von L und LT übereinstimmen, ist L abgeschlossen unter der Subtraktion
und der Multiplikation in LT , für Elemente ungleich 0K auch unter Inversenbildung.

Zeigen wir nun noch, dass LT Zerfällungskörper einer Teilmenge T ⊆ S ist, dann ist LT insgesamt eine obere Schranke
von T in F . Nach Definition von F existiert für jedes L ∈ F , erst recht für jedes L ∈ T eine Teilmenge TL ⊆ S, so
dass L Zerfällungskörper von TL ist. Wir beweisen jetzt, dass LT Zerfällungskörper von T =

⋃

L∈T TL ist. Jedes f ∈ T
ist in einer Teilmenge TL enthalten. Also zerfällt f über L, und damit auch über dem Erweiterungskörper LT von L,
in Linearfaktoren. Für jedes L ∈ T sei NL ⊆ L jeweils die Menge aller Nullstellen von Polynomen aus TL . Dann gilt
L = K(NL), und N =

⋃

L∈T NL ist die Menge aller Nullstellen von Polynomen aus T . Wir müssen nun LT ⊆ K(N)
nachweisen. Tatsächlich liegt jedes α ∈ LT in L für ein L ∈ T , und somit in K(NL) ⊆ K(N).

Ingesamt haben wir damit die Voraussetzungen des Zornschen Lemmas verifiziert, und demnach existiert in F ein
maximales Element L̃. Nehmen wir an, dass L̃ lediglich Zerfällungskörper einer echten Teilmenge T von S ist. Dann
gibt es ein f ∈ S, das über L̃ nicht in Linearfaktoren zerfällt. Nach Satz 17.2 existiert ein Zerfällungskörper L1 von
f über L̃. Wenn es eine injektive Abbildung φ1 von L1 \ L̃ nach Ω \ L̃ gibt, so können wir eine injektive Abbildung
φ̂1 : L1 → Ω definieren, indem wir φ̂1(α) = α für α ∈ L̃ und φ̂1(α) = φ1(α) für α ∈ L1 \ L̃ setzen. Mit Hilfe
von Satz 11.15 aus der Ringtheorie und der Bijektion φ̂1 zwischen L1 und der Bildmenge φ̂1(L̃) können wir auf
φ̂1(L̃) ⊆ Ω die Struktur eines zu L1 isomorphen Körpers definieren. Wegen φ̂1| L̃ = id L̃ handelt es sich dabei um einen
Erweiterungskörper von L̃, und mit L1 ist auch φ̂1(L̃) Zerfällungskörper einer echten Obermenge von T . Insgesamt
ist φ̂1(L̃) damit in F ein echt größeres Element als L̃, im Widerspruch zur Maximalität.

Betrachten wir nun noch den Fall, dass keine injektive Abbildung von L1 \ L̃ nach Ω \ L̃ existiert. Dann gäbe es nach
Satz 17.20 eine injektive Abbildung Ω \ L̃ → L1 \ L̃ und somit auch eine surjektive Abbildung L1 \ L̃ → Ω \ L̃. Diese
könnte zu einer surjektiven Abbildung ρ : L1→ Ω mit ρ(α) = α für alle α ∈ L̃ fortgesetzt werden. Aber dies steht im
Widerspruch zur Eigenschaft der Menge Ω, keine surjektive Abbildung L1→ Ω von einer algebraischen Erweiterung
L1|K zuzulassen. □
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§ 18. Endliche Körper

Zusammenfassung. Aus der Zahlentheorie-Vorlesung ist bereits bekannt, dass für jede Primzahl p durch
Fp = Z/pZ ein Körper mit p Elementen gegeben ist. In diesem Abschnitt wird das Konzept der Zerfällungs-
körper aus § 17 verwendet, um die endlichen Körper insgesamt zu klassifizieren. Außerdem diskutieren wir
die Teilkörperstruktur und die Automorphismen endlicher Körper.

Wichtige Grundbegriffe

– formale Ableitung eines Polynoms

– Frobenius-Endomorphismus eines Rings
der Charakteristik p

Zentrale Sätze

– Klassifikation der Primkörper

– Die Elementezahl eines endlichen Körpers ist stets eine
Primzahlpotenz pn > 1.

– Existenz und Eindeutigkeit des Körpers mit pn Elementen
bis auf Isomorphie

– Eindeutigkeit des Körpers Fpn Elementen als Teilkörper
des algebraischen Abschlusses Falg

p von Fp

– Rechenregel (a+ b)p = ap + bp in Charakteristik p
(„Freshman’s Dream“)

In diesem Kapitel spielt der in § 9 eingeführte Begriff des Primkörpers eine besondere Rolle. Wir beginnen damit,
dass wir alle Körper, die überhaupt die Rolle eines Primkörpers einnehmen können, bis auf Isomorphie beschreiben.

Satz 18.1 Sei K ein Körper und P sein Primkörper.

(i) Ist char(K) = 0, dann gilt P ∼=Q.

(ii) Ist char(K) = p für eine Primzahl p, dann gilt P ∼= Fp.

Beweis: Nach Folgerung 9.3 existiert ein eindeutig bestimmter Ringhomomorphismus φ : Z → K , gegeben durch
die Zuordnungsvorschrift n 7→ n ·1K . Mit Hilfe dieses Homomorphismus werden wir nun in beiden Fällen den jeweils
angegebenen Isomorphismus konstruieren.

zu (i) Im Fall char(K) = 0 ist φ injektiv. Wäre nämlich n ∈ Z, n ̸= 0 mit φ(n) = 0K , dann wäre auch φ(−n) =
−φ(n) = −0K = 0K . Damit gäbe es auf jeden Fall ein m ∈ N mit m · 1K = φ(m) = 0K , was aber der Voraussetzung
char(K) = 0 widerspricht.

Die Abbildung φ : Z→ K kann zu einer Abbildung φ̂ : Q→ K fortgesetzt werden. Sei dazu r ∈ Q und r = a
b eine

Darstellung von r als gekürzter Bruch, mit a ∈ Z, b ∈ N und ggT(a, b) = 1. Auf Grund der Injektivität von φ ist
φ(b) ̸= 0, so dass wir φ̂(r) = φ(a)φ(b)−1 definieren können. Wegen φ̂( a

1 ) = φ(a)φ(1)
−1 = φ(a) · 1−1

K = φ(a) für
alle a ∈Z gilt φ̂|Z = φ, also ist φ̂ tatsächlich eine Fortsetzung von φ auf Q.
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Ist r ∈Q und r = a
b eine beliebige Darstellung von r als Bruch (mit a ∈Z und b ∈N). Dann gilt φ̂(r) = φ(a)φ(b)−1.

Ist nämlich r = a1
b1

die Darstellung von r als gekürzter Bruch wie oben, dann folgt aus a
b =

a1
b1

die Gleichung ab1 = a1 b
und somit φ(a)φ(b1) = φ(a1)φ(b), woraus sich wiederum

φ(a)φ(b)−1 = φ(a1)φ(b1)
−1 = φ̂( a1

b1
) = φ̂(r)

ergibt. Man überprüft nun leicht, dass durch φ̂ : Q→ K ein Körperhomomorphismus geben ist: Zunächst gilt nach
Definition φ̂(1) = φ̂( 1

1 ) = φ(1)φ(1)
−1 = 1K · 1−1

K = 1K . Seien nun r, s ∈Q vorgegeben, r = a
b und s = c

d mit a, c ∈ Z
und b, d ∈N. Aus den Gleichungen r + s = ad+bc

bd und rs = ac
bd folgt dann

φ̂(r + s) = φ(ad + bc)φ(bd)−1 = φ(ad)φ(bd)−1 +φ(bc)φ(bd)−1 =

φ(a)φ(d)φ(b)−1φ(d)−1 +φ(b)φ(c)φ(b)−1φ(d)−1 = φ(a)φ(b)−1 +φ(c)φ(d)−1

= φ̂( a
b ) + φ̂(

c
d ) = φ̂(r) + φ̂(s)

und

φ̂(rs) = φ(ac)φ(bd)−1 = φ(a)φ(c)φ(b)−1φ(d)−1 = φ(a)φ(b)−1 ·φ(c)φ(d)−1

= φ̂( a
b ) · φ̂(

c
d ) = φ̂(r) · φ̂(s).

Weil Körperhomomorphismen nach Proposition 9.7 stets injektiv sind, definiert φ̂ einen Isomorphismus zwischen Q
und dem Teilkörper φ̂(Q) von K . Weil P als Primkörper der kleinste Teilkörper von K ist, gilt φ̂(Q) ⊇ P. Anderseits
gilt auch φ̂(Q) ⊆ P, denn P enthält als Teilring von K mit 1K auch φ̂(n) = n·1K für alle n ∈Z, und als Teilkörper auch
φ( a

b ) = (a ·1K)(b ·1K)−1 für alle a ∈Z und b ∈N. Insgesamt gilt also φ̂(Q) = P, und damit ist Q∼= P nachgewiesen.

zu (ii) Im Fall char(K) = p gilt φ(p) = p · 1K = 0K . Der Kern von φ ist damit eine Untergruppe von (Z,+), die
〈p〉 = pZ enthält. Nehmen wir an, es gäbe ein Element m ∈ ker(φ) \ pZ. Division mit Rest liefert dann q, r ∈ Z
mit m = qp + r und 0 ≤ r < p, wobei r = 0 wegen m /∈ pZ ausgeschlossen ist. Wegen r = m − qp wäre dann
r ·1K = m ·1K − q · (p ·1K) = m ·1K = φ(m) = 0K , was wegen r < p aber zur Definition von char(K) im Widerspruch
steht.

Also muss ker(φ) = pZ gelten. Der Homomorphiesatz für Ringe liefert einen Ringisomorphismus φ̄ :Z/pZ→ φ(Z).
Wir überprüfen nun, dass φ̄(Fp) = φ(Z) der Primkörper von K ist. Als Bild von Fp unter dem Isomorphismus φ̄ ist
φ̄(Fp) jedenfalls ein Teilkörper von K , und folglich gilt P ⊆ φ̄(Fp). Andererseits gilt aber auch P ⊇ φ̄(Fp), denn als
Teilkörper von K enthält P das Element φ̄(1+ pZ) = 1K und damit auch φ̄(n+ pZ) = n · 1K für alle n ∈Z, also den
gesamten Teilkörper φ̄(Fp). □

Nach dieser Vorbereitung kann nun bereits eine wichtige Aussage über die mögliche Elementezahl eines endlichen
Körpers getroffen werden. Im Gegensatz zu endlichen Gruppen und Ringen, bei denen jede Elementezahl möglich
ist, gilt für die Körper

Satz 18.2 Ist K ein endlicher Körper, dann ist |K | eine Primzahlpotenz. Es gilt also |K |= pn für
eine Primzahl p und ein n ∈N.
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Beweis: Sei P der Primkörper von K . Nach Satz 18.1 gilt P ∼=Q oder P ∼= Fp für eine Primzahl p. Dabei scheidet die
erste Möglichkeit aus, weil |K | und damit |P| endlich ist. Sei also p die Primzahl mit P ∼= Fp. Wegen |K | <∞ muss
auch der Grad n = [K : P] endlich sein. Als P-Vektorraum ist K damit isomorph zu Pn, und es folgt |K | = |P|n = pn.
□

Als nächstes werden wir zeigen, dass jeder Körper mit pn Elementen zwangsläufig ein Zerfällungskörper über seinem
Primkörper ist. Weil nach § 16 jeder Zerfällungskörper eines Polynoms f ∈ K[x] bis auf K-Isomorphie eindeutig be-
stimmt ist, stellt dies einen wichtigen Schritt hin zum Nachweis der Eindeutigkeit dar. Hierzu benötigen wir allerdings
ein wenig Vorbereitung.

Definition 18.3 Sei K ein Körper und f =
∑n

k=0 ak x k ∈ K[x], mit n ∈ N0 und a0, ..., an ∈ K .
Dann nennt man

f ′ =
n
∑

k=1

kak x k−1 die formale Ableitung von f .

Man überprüft unmittelbar, dass die aus der Analysis bekannten Ableitungsregeln ( f + g)′ = f ′ + g ′ und
( f g)′ = f ′g + f g ′ auch für die formale Ableitung gültig sind.

Proposition 18.4 Sei K ein Körper, f ∈ K[x] ein Polynom vom Grad n ≥ 1 und L̃ ein Erwei-
terungskörper von K , über dem f in Linearfaktoren zerfällt. Dann sind die folgenden beiden
Aussage äquivalent:

(i) Es gilt ggT( f , f ′) = 1 in K[x].

(ii) Das Polynom f besitzt in L̃ nur einfache Nullstellen, d.h. es ein a ∈ K× und n verschiedene
Elemente α1, ...,αn ∈ L, so dass f = a

∏n
i=1(x −αi).

Beweis: Sei α ∈ L̃ eine Nullstelle von f . Wir zeigen zunächst, dass α genau dann eine mehrfache Nullstelle von f ist,
wenn f ′(α) = 0 gilt. Wegen f (α) = 0 gibt es ein Polynom g ∈ L̃[x] mit f = (x − α)g. Auf Grund der Produktregel
gilt f ′ = g + (x −α)g ′, und α ist genau dann eine mehrfache Nullstelle von f , wenn

g(α) = 0 ⇔ g(α) + (α−α)g ′(α) = 0 ⇔ f ′(α) = 0

erfüllt ist. Wir beweisen nun die Äquivalenz. Sind die Polynome f und f ′ nicht teilerfremd in K[x], dann haben sie
einen gemeinsamen irreduziblen Faktor p ∈ K[x]. Mit f zerfällt auch p über L̃ in Linearfaktoren. Jede Nullstelle von
p in L̃ ist eine gemeinsame Nullstelle von f und f ′ und somit eine mehrfache Nullstelle von f .

Eine mehrfache Nullstelle α von f in L̃ ist umgekehrt eine gemeinsame Nullstelle von f und f ′. Würde in K[x] nun
ggT( f , f ′) = 1 gelten, dann gäbe es nach dem Lemma von Bézout Polynome a, b ∈ K[x]mit a f + b f ′ = 1. Dies hätte
den Widerspruch

0 = a(α) f (α) + b(α) f ′(α) = 1

zur Folge. Also sind f und f ′ in K[x] nicht teilerfremd. □
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Proposition 18.5 Sei p eine Primzahl, n ∈N und K ein Körper mit pn Elementen. Dann ist der
Primkörper P von K zu Fp isomorph, und K ist ein Zerfällungskörper von fn = x pn

− x ∈ P[x]
über dem Körper P.

Beweis: Dass der Primkörper P von K isomorph zuFp sein muss, haben wir schon im Beweis von Satz 18.2 festgestellt.
Wir zeigen nun, dass K der Zerfällungskörper von fn über P ist. Die multiplikative Gruppe K× hat die Ordnung pn−1.
(Diese Beobachtung ist ganz entscheidend für das Verständnis der endlichen Körper!) Für jedes α ∈ K× gilt deshalb

αpn
= αpn−1α = α ⇔ αpn

−α = 0 ,

also ist jedes solche Element Nullstelle von fn = x pn
− x . Zusätzlich gilt offenbar fn(0K) = 0K . Da fn als Polynom vom

Grad pn andererseits höchstens pn Nullstellen besitzt, kommen wir insgesamt zu dem Ergebnis, dass die Nullstellen-
menge N von fn mit K übereinstimmt. Das Polynom fn zerfällt also über K in Linearfaktoren, und zugleich wird K
wegen P(N) = P(K) = K über dem Grundkörper P von N erzeugt. Also ist K der Zerfällungskörper von fn. □

Umgekehrt werden wir nun zeigen, dass jeder Zerfällungskörper des Polynoms x pn
− x über einem Körper mit p

Elementen aus genau pn Elementen besteht. Dies ist ein wichtiger Schritt in Richtung des Existenzbeweises.

Proposition 18.6 Sei p eine Primzahl, R ein Ring der Charakteristik p und n ∈N.
Dann gilt

(a+ b)p
n
= apn

+ bpn
für alle a, b ∈ R.

Beweis: Ist die Aussage für n= 1 erst einmal bewiesen, dann erhält man die Gleichung für beliebiges n durch einen
einfachen Induktionsbeweis. Wir können uns also auf den Beweis der Gleichung (a+ b)p = ap+ bp beschränken. Auf
Grund des binomischen Lehrsatzes gilt

(a+ b)p =
p
∑

k=0

�

p
k

�

ap−k bk = ap +
n
∑

k=1

�

p
k

�

ap−k bk + bp.

Die Binomialkoeffizienten
�p

k

�

sind für 1≤ k ≤ p− 1 durch p teilbar, denn in

�

p
k

�

=
p!

k!(p− k)!
=

1
k!

 

p
∏

m=p−k+1

m

!

wird das Produkt rechts von p geteilt, und wegen k < p wird p durch den Vorfaktor (k!)−1 nicht weggekürzt. Auf-
gefasst als Elemente in R sind die Binomialkoeffizienten

�p
k

�

für 1 ≤ k ≤ p − 1 also gleich Null, und wir erhalten
(a+ b)p = ap + bp. □

Definition 18.7 Ist R ein Ring der Charakteristik p, dann bezeichnet man die Abbildung ϕ :
R→ R, a 7→ ap als Frobenius-Endomorphismus von R.

Wie wir bereits überprüft haben, ist ϕ verträglich mit der Addition auf R. Außerdem gilt ϕ(1R) = 1p
R = 1R und

ϕ(ab) = (ab)p = ap bp = ϕ(a)ϕ(b). Also ist ϕ tatsächlich ein Endomorphismus des Rings R. Ist K ein endlicher
Körper der Charakteristik p, dann ist der Frobenius-Endomorphismus von K sogar ein Automorphismus. Denn als
Körperhomomorphismus istϕ injektiv, und als injektive Abbildung der endlichen Menge K nach K istϕ auch surjektiv,
insgesamt eine Bijektion. In dieser Situation wird ϕ dann auch der Frobenius-Automorphismus von K genannt.
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Proposition 18.8 Sei p eine Primzahl, P ein Körper mit p Elementen, n ∈ N und K ein Zer-
fällungskörper von fn = x pn

− x ∈ P[x] über P. Dann gilt |K |= pn.

Beweis: Vorweg bemerken wir, dass char(K) = p gilt und Proposition 18.6 somit anwendbar ist. Denn wegen |P|= p
und 1P ̸= 0P muss die Ordnung von 1K = 1P in der Gruppe (P,+) ebenfalls gleich p sein, also char(P) = p gelten.
Da K als Zerfällungskörper eines Polynoms über P ein Erweiterungskörper von P ist, gilt auch char(K) = p. Sei
nun M ⊆ K die Menge der Nullstellen von fn in K . Wir zeigen zunächst, dass M ein Teilkörper von K ist. Wegen
fn(1K) = 1pn

K −1K = 1K −1K = 0K liegt zunächst 1K in M . Seien nun a, b ∈ K vorgegeben. Nach Proposition 18.6 gilt

(a− b)p
n
= (a+ (−b))p

n
= apn

+ (−1)p
n
bpn

= a+ (−1)p
n
b.

Sowohl im Fall p = 2 als auch im Fall p ̸= 2 erhalten wir (a − b)p
n
= a − b und somit a − b ∈ M . Ebenso gilt

(ab)p
n
= apn

bpn
= ab, also ab ∈ M . Im Fall a ̸= 0 gilt schließlich (a−1)p

n
= a−pn

= (apn
)−1 = a−1 und damit auch

a−1 ∈ M . Damit ist der Nachweis der Teilkörper-Eigenschaft abgeschlossen.

Nun zeigen wir, dass M ein Erweiterungskörper von P ist. Die multiplikative Gruppe P× besteht aus p−1 Elementen.
Für alle a ∈ P× gilt deshalb ap = ap−1a = 1 · a = a, und natürlich ist die Gleichung ap = a auch für a = 0K

erfüllt. Damit gilt auch apn
= a für alle a ∈ P, und es folgt P ⊆ M . Insgesamt ist M also ein Erweiterungskörper

von P, der genau aus den Nullstellen von fn besteht und insbesondere von diesen erzeugt wird. Damit ist M der
Zerfällungskörper von fn in K . Dies bedeutet, dass M = K gilt.

Nun brauchen wir nur noch überprüfen, dass fn genau pn Nullstellen besitzt und für M als Nullstellenmenge somit
|K | = |M | = pn gilt. Die formale Ableitung von fn ist gegeben durch f ′n = pn x pn−1 − 1 = −1, also ist ggT( f ′n , fn) = 1.
Nach Proposition 18.4 besitzt fn in K damit pn voneinander verschiedene Nullstellen. Wir erhalten |K |= |M |= pn. □

Wir können nun das Hauptergebnis dieses Abschnitts formulieren.

Satz 18.9 Sei p eine Primzahl und n ∈N. Dann gibt es einen Körper mit pn Elementen, und je
zwei Körper mit pn Elementen sind zueinander isomorph.

Beweis: Zunächst beweisen wir die Existenzaussage. Sei K ein Zerfällungskörper des Polynoms fn = x pn
− x ∈ Fp[x].

Dann gilt |K |= pn nach Proposition 18.8. Sei nun K̃ ein beliebiger Körper mit pn Elementen und P̃ sein Primkörper.
Nach Proposition 18.5 gibt es eine Isomorphismus φ : Fp → P̃, und K̃ ist der Zerfällungskörper von f̃n = x pn

− x ∈
P̃[x]. Offenbar gilt f̃n = φ( fn). Wir können nun Satz 17.11 über die Eindeutigkeit von Zerfällungskörpern auf die
Menge S = { fn} anwenden und erhalten einen Isomorphismus ψ : K → K̃ , der φ fortsetzt. □

Folgerung 18.10 Sei p eine prim und Falg
p ein algebraischer Abschluss von Fp.

(i) Für jedes n ∈N gibt es genau einen Teilkörper Fpn ⊆ Falg
p mit pn Elementen.

(ii) Für m, n ∈N gilt Fpm ⊆ Fpn genau dann, wenn m ein Teiler von n ist.

(iii) Es gilt Falg
p =

⋃

n∈NFpn .
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Beweis: zu (i) Sei Fpn der Zerfällungskörper von fn = x pn
− x ∈ Fp[x] in Falg

p . Dann gilt |Fpn |= pn nach Proposition
18.8. Ist umgekehrt L ⊆ Falg

p ein beliebiger Teilkörper mit pn Elementen, dann ist Fp der Primkörper von L, und nach
Proposition 18.5 ist L der Zerfällungskörper von fn in Falg

p . Also stimmen L und Fpn überein.

zu (ii) Wenn m ein Teiler von n ist, n= dm mit d ∈N, dann ist der Zerfällungskörper von fm im Zerfällungskörper von
fn enthalten. Ist nämlich α ∈ Falg

p eine Nullstelle von fm, dann gilt αpm
= α, und folglich wird α unter der Abbildung

φm(α) = αpm
auf sich selbst abgebildet. Durch vollständige Induktion über k ∈N0 sieht man, dass φk

m(α) = α
pkm

gilt,
und wir erhalten insbesondere αpn

= αpdm
= φd

m(α) = α. Dies zeigt, dass α auch Nullstelle von fn ist.

Seien umgekehrt m, n ∈Nmit der Eigenschaft, dass Fpm ein Teilkörper von Fpn ist. Setzen wir d = [Fpn : Fpm], dann
handelt es sich bei Fpn also um einen d-dimensionalen Fpm -Vektorraum. Dieser enthält (pm)d = pmd Elemente, und
aus pmd = |Fpn |= pn folgt dm= n.

zu (iii) Die Inklusion „⊇“ ist auf Grund der Definition der Teilkörper Fpn offensichtlich. Zum Nachweis von „⊆“ sei
α ∈ Falg

p vorgegeben. Nach Definition von Falg
p ist α algebraisch über Fp. Sei f = µα,Fp

und n = grad( f ). Dann gilt
[Fp(α) : Fp] = n, somit ist Fp(α) ein n-dimensionaler Fp-Vektorraum. Als solcher besteht Fp(α) aus pn Elementen,
und aus der Eindeutigkeitsaussage in Teil (i) folgt Fp(α) = Fpn ; insbesondere gilt α ∈ Fpn . □
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§ 19. Separable Körpererweiterungen und Galois-Erweiterungen

Zusammenfassung. Eine Körpererweiterung L|K wird separabel genannt, wenn das Minimalpolynom jedes
Element von L über K nur einfache Nullstellen hat. Diese Eigenschaft spielt in der Galoistheorie eine wichtige
Rolle, weil sie Auswirkung auf die Anzahl der K-Homomorphismen von L in andere Körper hat. Wie wir sehen
werden, ist sie immer gegeben, wenn K ein Körper der Charakteristik 0 oder ein endlicher Körper ist.

Eine weitere wichtige Eigenschaft endlicher separabler Erweiterungen kommt im Satz vom primitiven Element
zum Ausdruck, welcher besagt, dass solche Erweiterungen stets durch ein einziges Element erzeugt werden
können. In Anbetracht der Tatsache, dass solche Erweiterungen bei einem Grundkörper wieQ bereits eine sehr
komplizierte Struktur haben können, ist dies eine bemerkenswerte Aussage.

Wichtige Grundbegriffe

– separables Polynom

– separables Element in einer Körpererweiterung

– separable Körpererweiterung

– rationaler Funktionenkörper Fp(t) über Fp

– Separabilitätsgrad einer endlichen Erweiterung

Zentrale Sätze

– Separabilität von algebraischen Erweiterungen end-
licher Körper und von Körpern der Charakteristik 0

– Satz vom primitiven Element

– Endliche separable Erweiterungen haben endlich vie-
le Zwischenkörper.

– Kennzeichnung von separablen Erweiterungen durch
die Anzahl von Körperhomomorphismen

Definition 19.1 Sei K ein Körper. Ein irreduzibles Polynom f ∈ K[x] wird separabel genannt,
wenn ggT( f , f ′) = 1 gilt.

Nach Proposition 18.4 ist die Separabilität von f gleichbedeutend damit, dass f irreduzibel ist und in jedem Erwei-
terungskörper L von K nur einfache Nullstellen besitzt.

Definition 19.2 Sei L|K eine Körpererweiterung. Ein Element α ∈ L wird separabel über K
genannt, wenn es algebraisch über K ist und sein Minimalpolynom f ∈ K[x] separabel ist. Wir
nennen die Erweiterung L|K separabel, wenn jedes α ∈ L über K separabel ist.

Proposition 19.3 Ist L|K eine Körpererweiterung, α ∈ L ein über K separables Element und
M ein Zwischenkörper von L|K , dann ist α auch separabel über M .

Beweis: Sei f ∈ K[x] das Minimalpolynom von α über K und g ∈ M[x] das Minimalpolynom von α über M . Da
f auch in M[x] liegt und f (α) = 0 gilt, ist g als Minimalpolynom ein Teiler von f . Sei L̃ nun ein algebraischer
Abschluss von L. Da α über K separabel ist, besitzt f in L̃ keine mehrfachen Nullstellen. Dasselbe gilt dann auch für
den Teiler g von f . Also ist das Minimalpolynom g ∈ M[x] separabel und α damit separabel über M . □
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Satz 19.4 Ist K ein Körper der Charakteristik 0, dann ist jede algebraische Erweiterung L|K
separabel.

Beweis: Sei α ∈ L und f ∈ K[x] sein Minimalpolynom. Ist n = grad( f ), dann ist n ∈N, und f ′ ist vom Grad n− 1.
(Dies ist für Polynome über Körpern positiver Charakteristik falsch, wie man anhand des Polynoms x p − 1 über dem
Körper Fp sieht.) Weil ggT( f , f ′) ein Teiler von f ′ gilt, ist auch ggT( f , f ′) höchstens vom Grad n−1. Andererseits ist
f irreduzibel und ggT( f , f ′) auch ein Teiler von f . Deshalb muss ggT( f , f ′) entweder konstant oder ein konstantes
Vielfaches von f sein. Wegen ggT( f , f ′)≤ n− 1 bleibt nur die erste Möglichkeit. Also sind f und f ′ teilerfremd, das
Polynom f ist also separabel, und damit ist auch α separabel über K . □

Satz 19.5 Ist K ein endlicher Körper, dann ist jede algebraische Erweiterung L|K separabel.

Beweis: Sei |K | = q, q = pr mit einer Primzahl p und einem r ∈N, und sei α ∈ L ein beliebiges Element. Dann gilt
|K(α)| = qn = prn, wobei n = [K(α) : K] ist. Das Element α ist damit Nullstelle des Polynoms g = x prn

− x ∈ K[x],
und wegen g ′ = −1 besitzt dieses im algebraischen Abschluss L̃ von L nur einfache Nullstellen. Das Minimalpolynom
f ∈ K[x] von α ist ein Teiler von g, also hat auch f in L̃ nur einfache Nullstellen, und es folgt ggT( f , f ′) = 1 nach
Proposition 18.4. □

In Anbetracht von Satz 19.4 und Satz 19.5 drängt sich die Frage auf, ob es überhaupt Körper mit nicht-separablen
algebraischen Erweiterungen gibt. Sei p eine Primzahl und K = Fp(t) der rationale Funktionenkörper über Fp.
Dabei handelt es sich um den Quotientenkörper des Polynomrings Fp[t], dessen Elemente durch

Fp(t) =
n g

h

�

� g, h ∈ Fp[t], h ̸= 0̄
o

gegeben sind. Außerdem sei u = p
p

t eine Nullstelle des Polynoms f = x p − t ∈ K[x] in einem Erweiterungskörper
von K , also ein Element u mit up = t. Dann ist dieses Element nicht separabel über K , die Erweiterung L|K mit dem
Körper L = K(u) = K( p

p
t) also eine nicht-separable algebraische Erweiterung.

Um dies zu sehen, bemerken wir zunächst, dass das Polynom f = x p− t über L in Linearfaktoren zerfällt, denn wegen
char(L) = p gilt f = x p − up = (x − u)p. Wäre f über K reduzibel, dann hätte ein Teiler von f die Form (x − u)m

mit 1 ≤ m < p. Insbesondere müsste der konstante Term (−1)mum des Teilers und somit auch das Element um in K
liegen. Aber dies ist nicht der Fall. Denn andernfalls gäbe es g, h ∈ Fp[t] mit

um =
g(t)
h(t)

=
g(up)
h(up)

⇔ g(up) · um = h(up).

Das Element u wäre damit eine Nullstelle des Polynoms F ∈ Fp[x] gegeben durch F = g(x p) · xm− h(x p), und es ist
F ̸= 0̄, weil die Polynome g(x p)·xm und h(x p) von unterschiedlichem Grad sind; der Grad von h(x p) ist im Gegensatz
zum Grad des Polynoms g(x p) · xm durch p teilbar. Die Gleichung F(u) = 0̄ zeigt dann, dass das Element u ∈ L über
Fp algebraisch ist. Dann wäre auch t = up über Fp algebraisch, also Nullstelle eines Polynoms F1 ∈ Fp[x]. Aber dies
ist unmöglich, denn mit F1 ist auch F1(t) ∈ Fp[t] ein Polynom ungleich null.

Der Widerspruch zeigt, dass eine Zerlegung von f ∈ K[x] der oben angegebenen Form nicht existiert und f somit
irreduzibel ist. Insgesamt ist damit f das Minimalpolynom von u über K , also f = µu,K . Da u aber eine p-fache
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Nullstelle von f ist, ist das Minimalpolynom f ein nicht-separables Polynom, und folglich ist das Element u über dem
Grundkörper K nicht separabel.

Wir kommen nun zur Formulierung eines zentralen Resultats über separable Erweiterungen.

Definition 19.6 Eine Körpererweiterung L|K wird einfach genannt, wenn ein Element α ∈ L
mit L = K(α) existiert. In diesem Fall nennt man α eine primitives Element der Erweiterung.

Satz 19.7 (Satz vom primitiven Element)
Jede endliche, separable Erweiterung L|K ist einfach.

Beweis: Ist K ein endlicher Körper, dann ist auch L endlich. Aus der Zahlentheorie-Vorlesung ist bekannt, dass L× als
multiplikative Gruppe eines endlichen Körpers zyklisch ist. Ist α ∈ L× ein Erzeuger der Gruppe, dann gilt offenbar
L = K(α), also ist L|K einfach. Von nun an gehen wir davon aus, dass der Körper K unendlich ist.

Da es sich bei L|K um eine endliche Erweiterung handelt, gibt es Elemente α1, ...,αr mit L = K(α1, ...,αr). (Man
kann zum Beispiel eine Basis von L als K-Vektorraum nehmen.) Wir beweisen nun durch vollständige Induktion über
r, dass eine solche Erweiterung einfach ist. Für r = 1 folgt die Aussage direkt aus der Definition. Sei nun r > 1,
und setzen wir die Aussage für alle s < r voraus. Nach Induktionsvoraussetzung ist L0 = K(α1, ...,αr−1) einfach. Es
gibt also ein α ∈ L0 mit L0 = K(α). Setzen wir β = αr , dann gilt also L = K(α,β). Es bleibt zu zeigen, dass die
Erweiterung L|K von einem einzigen Element erzeugt wird.

Sei L̃ ein algebraischer Abschluss von L, f ∈ K[x] das Minimalpolynom von α über K und g ∈ K[x] das Minimal-
polynom von β über K . Dann zerfallen f und g über L̃ in Linearfaktoren, d.h. es gibt α1, ...,αm ∈ L̃ und β1, ...,βn

mit

f =
m
∏

i=1

(x −αi) und g =
n
∏

j=1

(x − β j) ,

wobei wir α1 = α und β1 = β annehmen können. Ferner sind die Elemente α1, ...,αm und β1, ...,βn jeweils verschie-
den voneinander, weil α und β über K separabel und f und g damit separable Polynome sind. Für jedes c ∈ K× sei
nun γc = α+ cβ und Mc = K(γc). Wir werden zeigen, dass c so gewählt werden kann, dass Mc = K(α,β) erfüllt ist.
Dazu betrachten wir das Polynom hc = f (γc − cx) =

∏m
i=1 hc,i ∈ Mc[x] mit den Linearfaktoren

hc,i = (γc − cx)−αi = γc − (αi + cx) in L̃[x].

Das Polynom hc ist so konstruiert, dass es β = β1 auf jeden Fall als Nullstelle besitzt, denn nach Definition gilt
hc,1(β) = γc−(α1+ cβ) = γc−(α+ cβ) = γc−γc = 0 und somit hc(β1) = hc(β) = 0. Andererseits kann das Element c
so gewählt werden, dass β2, ...,βn nicht als Nullstellen von hc auftreten. Für 1≤ i ≤ m und 2≤ j ≤ n gelten nämlich
ie Gleichungen

hc,i(β j) = γc − (αi + cβ j) = (α+ cβ)− (αi + cβ j) = (α−αi) + c(β − β j)
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und somit die Äquivalenzen

hc,i(β j) ̸= 0 ⇔ (α−αi) + c(β − β j) ̸= 0 ⇔ c ̸= −
α−αi

β − β j
.

Weil K unendlich ist, können wir c so wählen, dass diese Ungleichungen alle erfüllt sind und somit hc(β j) ̸= 0 für
2≤ j ≤ n gilt. In diesem Fall ist dann x −β der einzige Linearfaktor von g, der auch das Polynom hc teilt, es gilt also
x−β = ggT(g, hc). Aber der größte gemeinsame Teiler von zwei Polynomen g, hc ∈ Mc[x] ist wiederum in Mc[x]
enthalten. Es folgt β ∈ Mc und damit auch α = γc − cβ ∈ Mc . Aus α,β ∈ Mc erhalten wir K(α,β) ⊆ Mc = K(γc). Da
andererseits γc = α+ cβ in K(α,β) liegt, erhalten wir insgesamt die gewünschte Gleichung K(α,β) = K(γc). □

Satz 19.8 Sei L|K eine endliche Erweiterung und K̃ ein algebraisch abgeschlossener Erwei-
terungskörper von L. Dann gilt |HomK(L, K̃)| ≤ [L : K] mit Gleichheit genau dann, wenn die
Erweiterung L|K separabel ist.

Beweis: Wir beweisen die Ungleichung und die „⇐“-Richtung der Implikation durch vollständige Induktion über
n = [L : K]. Genauer gesagt zeigen wir etwas allgemeiner: Ist φ : K → K̃ ein beliebiger Körperhomomorphismus,
so gibt es ≤ [L : K] Fortsetzungen von φ auf L; bei einer separablen Erweiterung L|K gibt es genau [L : K] solche
Fortsetzungen. Im Fall n = 1 ist nichts zu zeigen, denn dann gilt L = K , die Erweiterung ist separabel (weil jedes
Minimalpolynom µK ,α eines Elements α ∈ K vom Grad 1 und somit separabel ist), und die einzige Fortsetzung von
φ auf K ist offenbar φ selbst.

Sei nun n = [L : K] > 1, und setzen wir die Aussage für Erweiterungen kleinen Grades voraus. Sei α ∈ L \ K ,
f = µK ,α, m= grad( f ) = [K(α) : K] und f̃ = φ( f ). Nach Folgerung 16.4 ist die Anzahl m1 der Fortsetzungen von φ
zu einem Homomorphismus K(α)→ K̃ gleich der Anzahl der verschiedenen Nullstellen von f̃ in K̃ . Wir bezeichnen
diese Anzahl mit m1. Weil f̃ als Polynom über einem Körper nicht mehr als m = grad( f̃ ) Nullstellen in K̃ haben
kann, gilt m1 ≤ m mit Gleichheit genau dann, wenn das Polynom f̃ separabel ist. Letzteres wiederum ist genau
dann der Fall, wenn f separabel ist (denn die Bedingung ggT( f , f ′) = 1 bleibt unter dem Körperhomomorphismus φ
erhalten), und dies wiederum ist äquivalent zur Separabilität von α über K . Ist nun die Erweiterung L|K separabel,
dann insbesondere das Element α über K , und dann folgt m1 = m. In jedem Fall bezeichnen wir mit ψ1, ...,ψm1

die
verschiedenen Fortsetzungen von φ auf den Körper K(α).

Wegen K ⊊ K(α) gilt [K(α) : K] > 1. Für den Erweiterungsgrad r = [L : K(α)] gilt dann auf Grund der Gradformel
r = [L : K(α)] = [L:K]

[K(α):K] < [L : K] = n. Nach Induktionsvoraussetzung besitzt jedes ψi höchstens r Fortsetzungen
auf L. Weil jede Fortsetzung von φ auf L durch Fortsetzung eines ψi auf L zu Stande kommt, ist die Anzahl der
Fortsetzungen von φ auf L durch m1r ≤ mr = [K(α) : K] · [L : K(α)] = [L : K] = n begrenzt. Ist nun L|K separabel,
dann ist jedes β ∈ L nach Proposition 19.3 auch separabel über K(α), die Erweiterung L|K(α) also separabel. Nach
Induktionsvoraussetzung besitzt jedesψi dann genau r Fortsetzungen, und insgesamt existieren dann genau n= mr
Fortsetzungen von φ auf L. Damit ist der Induktionsschritt abgeschlossen.

Beweisen wir nun noch die Richtung „⇒“ der Äquivalenz und nehmen dazu an, dass L|K nicht separabel ist. Dann
gibt es ein Element α ∈ L, das nicht separabel über K ist. Wie bereits oben bemerkt, ist die Anzahl m1 der K-
Homomorphismen K(α) → K̃ , also die Anzahl der Fortsetzungen der identischen Abbildung K → K̃ , a 7→ a, dann
kleiner als m = [K(α) : K]. Für jeden solchen K-Homomorphismus wiederum gibt es höchstens r = [L : K(α)]
Fortsetzungen von K(α) auf L. Die Gesamtzahl der K-Homomorphismen L → K̃ ist damit beschränkt durch m1r,
insbesondere ist die Anzahl kleiner als mr = [L : K]. □
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Definition 19.9 Sei L|K eine endliche Erweiterung und K̃ ein algebraisch abgeschlossener
Erweiterungskörper von L. Dann nennt man

[L : K]sep = |HomK(L, K̃)|

den Separabilitätsgrad der Erweiterung L|K .

Der Separabilitätsgrad ist von der Wahl des algebraisch abgeschlossenen Erweiterungskörpers K̃ unahängig. Denn
zunächst einmal ist jedes σ ∈ HomK(L, K̃) ein K-Isomorphismus von L auf sein Bild σ(L), und dieses damit eine
endliche und insbesondere algebraische Erweiterung von K . Das Bild σ(L) ist also im algebraischen Abschluss von
K innerhalb des Körper K̃ enthalten, so dass sich HomK(L, K̃) nicht ändert, wenn wir K̃ durch diesen algebraischen
Abschluss ersetzen. Außerdem existiert nach Folgerung 17.12 zwischen je zwei algebraischen Abschlüssen K̃1 und K̃2

ein K-Isomorphismus φ, so dass zwischen HomK(L, K̃1) und HomK(L, K̃2) durch σ 7→ φ ◦σ eine Bijektion gegeben
ist.

Der Satz vom primitiven Element hat auch Auswirkungen auf die Anzahl der Zwischenkörper einer algebraischen
Erweiterung. Diesen Zusammenhang sehen wir uns als nächstes an. Als Vorbereitung beweisen wir

Lemma 19.10 Sei L|K eine einfache algebraische Erweiterung, also L = K(α) für ein α ∈ L.
Sei M ein Zwischenkörper von L|K und

f = xn +
n−1
∑

i=0

ai x
i ∈ M[x]

das Minimalpolynom von α über M . Dann gilt M = K(a0, ..., an−1).

Beweis: Sei M0 = K(a0, ..., an−1). Dann ist M0 jedenfalls in M enthalten, denn jedes der Elemente ai liegt nach
Voraussetzung in M . Wir betrachten nun die Erweiterung L|M0. Wegen L = K(α) gilt erst recht L = M0(α), und das
Polynom f ist irreduzibel in M0[x], weil es sogar in M[x] irreduzibel ist. Also ist f auch das Minimalpolynom von α
über M0, und wir erhalten

[L : M] = grad( f ) = [L : M0].

Der Gradsatz liefert nun

[M0 : K] =
[L : K]
[L : M0]

=
[L : K]
[L : M]

= [M : K].

Zusammen mit M0 ⊆ M erhalten wir M0 = M . □

Satz 19.11 Eine endliche Erweiterung L|K besitzt genau dann nur endlich viele Zwischen-
körper, wenn sie einfach ist.

Beweis: Ist K ein endlicher Körper, dann ist auch L endlich. Weil es in L nur endlich viele Teilmengen gibt, kann
es auch nur endlich viele Zwischenkörper gegeben. Andererseits ist L× als multiplikative Gruppe eines endlichen
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Körpers zyklisch, und ist α ein Erzeuger dieser Gruppe, dann gilt L = K(α). Die Äquivalenz ist im Fall endlicher
Körper also richtig, weil beide Teilaussagen immer erfüllt sind. Wir setzen von nun an voraus, dass K unendlich ist.

„⇐“ Sei α ∈ L ein Element mit L = K(α) und f ∈ K[x] das Minimalpolynom von α über K . Sei außerdem M ein
Zwischenkörper von L|K und g ∈ M[x] das Minimalpolynom von α über M . Da f in M[x] liegt und f (α) = 0 gilt,
ist f ein Vielfaches von g[x]. Außerdem wird M nach Lemma 19.10 von den Koeffizienten von g erzeugt. Jedem
Zwischenkörper kann also ein normierter Teiler von f zugeordnet werden, und diese Zuordnung ist injektiv. Da f
nur endlich viele normierte Teiler besitzt, kann es auch nur endlich viele Zwischenkörper geben.

„⇒“ Da L|K eine endliche Erweiterung ist, gibt es Elemente α1, ...,αr ∈ L mit L = K(α1, ...,αr). Wir zeigen nun
durch vollständige Induktion über r, dass jede algebraische Erweiterung L|K , die nur endlich viele Zwischenkörper
besitzt und von r Elementen α1, ...,αr erzeugt wird, eine einfache Erweiterung ist.

Für r = 1 ist nichts zu zeigen. Sei nun r > 1, und setzen wir die Aussage für alle s < r als gültig voraus. Setzen wir
L0 = K(α1, ...,αr−1), dann hat mit L|K auch die Erweiterung L0|K nur endlich viele Zwischenkörper. Nach Indukti-
onsvoraussetzung gibt es ein α ∈ L0 mit L0 = K(α). Es gilt dann L = K0(β) = K(α,β)mit β = αr . Da L|K nur endlich
viele Zwischenkörper besitzt, der Körper K nach Voraussetzung aber unendlich ist, gibt es Elemente c, d ∈ K , c ̸= d,
so dass

K(α+ cβ) = K(α+ dβ) gilt.

Setzen wir M = K(α+cβ), dann liegen also die Elemente α+cβ und α+dβ beide in M . Es folgt (α+cβ)−(α+dβ) =
(c − d)β ∈ M und wegen (c − d) ∈ K× auch β ∈ M . Dies wiederum bedeutet, dass auch α = (α − cβ) + cβ in M
liegt. Aus α,β ∈ M folgt K(α,β) ⊆ M , und wegen α+ cβ ∈ K(α,β) folgt umgekehrt M ⊆ K(α,β). Also ist L|K eine
einfache Erweiterung. □

Folgerung 19.12 Jede endliche, separable Erweiterung L|K besitzt nur endlich viele Zwischen-
körper.

Beweis: Nach dem Satz vom primitiven Element ist L|K einfach, und nach Satz 19.11 besitzt L|K deshalb nur endlich
viele Zwischenkörper. □
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§ 20. Kreisteilungspolynome und Quadratisches Reziprozitätsgesetz

Zusammenfassung. Die Kreisteilungskörper verdanken ihren Namen der Eigenschaft, von den sog. Einheits-
wurzeln erzeugt zu werden, die als Punkte in der komplexen Ebene den Einheitskreis gleichmäßig unterteilen.
Die Minimalpolynome der Einheitswurzeln bezeichnet man als Kreisteilungspolynome. Die Nullstellen des n-ten
Kreisteilungspolynom sind dabei gerade die primitiven n-ten Einheitswurzeln. Wir werden zeigen, dass es sich
dabei um ganzzahlige Polynome handelt, und geben eine Rekursionsformel für ihre Berechnung an. Besonde-
ren Aufwand erfordert der Beweis, dass die Polynome, die durch die Formel definiert werden, tatsächlich über
Q irreduzibel sind. Hier kommen unter anderem die Ergebnisse aus § 13 zur Anwendung.

Mit dem Quadratischen Reziprozitätsgesetz (QRG) lässt sich die Frage nach der Lösbarkeit von Kongruenzen
der Form x2 ≡ a mod p für eine vorgegebene Primzahl p und ein vorgegebenes a ∈ Z schnell und effizient
beantworten. Der Beweis des QRG durch Gauß in seinen Disquisitiones Arithmeticae gilt als ein Höhepunkt der
Elementaren Zahlentheorie. Die Bemühungen, dieses Gesetz auf höhere Potenzen zu verallgemeinern, hatten
einen entscheidenden Einfluss auf die Entwicklung der Algebraischen Zahlentheorie zu einem eigenständigen
Teilgebiet der Mathematik.

Wichtige Grundbegriffe

– n-te Einheitswurzel, primitive n-Einheitswurzel

– Gruppe µn der Einheitswurzeln

– n-tes Kreisteilungspolynom

– quadratischer Rest, Legendre- und Jacobisymbol

Zentrale Sätze

– Rekursionsformel für Kreisteilungspolynome

– Irreduzibilität der Kreisteilungspolynome über Q

– der Isomorphismus Gal(Q(ζn)|Q)∼= (Z/nZ)×

– Quadratisches Reziprozitätsgesetz und Ergänzungs-
sätze

Wir beginnen mit der Definition der Einheitswurzeln.

Definition 20.1 Sei n ∈N. Eine n-te Einheitswurzel in C ist ein Element ζ ∈ C mit ζn = 1.

Wie man leicht nachrechnet, bilden die n-ten Einheitswurzeln eine Untergruppe von C×, die wir mit µn bezeichnen.
Es gilt µn =

�

e2πik/n
�

� 0≤ k < n
	

, denn nach Definition sind die n-ten Einheitswurzeln genau die Nullstellen von
xn − 1 ∈ Z[x] in C, und da xn − 1 ein Polynom vom Grad n ist, kann es höchstens n verschiedene Nullstellen in
C geben. Andererseits sind durch die Elemente auf der rechten Seite der Gleichung wegen

�

e2πik/n
�n
= e2πik = 1

offenbar n verschiedene Nullstellen des Polynoms gegeben. Das Element ζn = e2πi/n ist ein Erzeuger der Gruppe µn,
es gilt also µn = 〈ζn〉.
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Lemma 20.2 Sei k ∈Z. Genau dann gilt µn = 〈ζk
n〉, wenn ggT(k, n) = 1 ist.

Beweis: Sei G eine zyklische Gruppe der endlichen Ordnung n und g ein Erzeugendes Element. Nach Teil (i) von
Satz 3.9 ist gk genau dann von Ordnung n, und somit ebenfalls ein Erzeuger von G, wenn ggT(k, n) = 1 ist. Das
Lemma ist ein Spezialfall dieser Aussage. □

Definition 20.3 Sei n ∈ N, n ≥ 2. Eine primitive n-te Einheitswurzel ist ein Element ζ ∈ µn

mit µn = 〈ζ〉. Wir bezeichnen mit µ×n ⊆ µn die Menge der primitiven n-ten Einheitswurzeln. Das
Polynom Φn ∈ C[x] gegeben durch

Φn =
∏

ζ∈µ×n

(x − ζ)

wird das n-te Kreisteilungspolynom genannt.

Aus technischen Gründen setzen wirΦ1 = x−1, obwohl wir für n= 1 keine primitiven n-ten Einheitswurzeln definiert
haben. Nach Lemma 20.2 gilt für alle n≥ 2 jeweils

|µ×n | = |{k ∈Z | 0≤ k < n, ggT(k, n) = 1}| = ϕ(n) ,

also ist ϕ(n) auch der Grad des Polynoms Φn. Unser nächstes Ziel besteht in dem Nachweis, dass jedes Kreisteilungs-
polynom nicht nur über C, sondern über den ganzen Zahlen definiert ist.

Lemma 20.4 Für alle n ∈ N gilt xn − 1 =
∏

d|nΦd , wobei d die natürlichen Teiler von n
durchläuft.

Beweis: Nach Definition sind die Nullstellen von xn − 1 genau die Elemente ζ ∈ C× mit ζn = 1. Die Ordnung
d = ord(ζ) von ζ in C× ist dann ein Teiler von n. Also erzeugt ζ erzeugt in diesem Fall die Gruppe µd , ist also eine
primitive d-te Einheitswurzel und somit eine Nullstelle von Φd . Sei umgekehrt ζ eine Nullstelle von Φd für einen
Teiler d von n. Ist k ∈N mit n= kd, dann gilt ζn = (ζd)k = 1k = 1, also ist ζ eine Nullstelle von xn − 1.

Somit haben wir gezeigt, dass die Nullstellenmengen der beiden Polynome auf der linken und rechten Seite der
Gleichung übereinstimmen. Beide Polynome haben darüber hinaus nur einfache Nullstellen, also sind sie gleich. □

Satz 20.5 Es gilt Φn ∈Z[x] für alle n ∈N.

Beweis: Erneut führen wir den Beweis durch vollständige Induktion über n. Für n = 1 ist die Aussage wegen
Φ1 = x − 1 klar. Sei nun n> 1, und setzen wir Φd ∈Z[x] für alle d < n voraus. Nach Lemma 20.4 gilt

xn − 1 =
∏

d|n

Φd .
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Sei nun S = {d ∈ N | d|n, d < n} und g =
∏

d∈S Φd . Dann gilt also xn − 1 = g · Φn, wobei das Polynom g nach
Induktionsvoraussetzung in Z[x] liegt; darüber hinaus ist es normiert. Wir zeigen nun zunächst, dass Φn in Q[x]
enthalten ist. WeilQ[x] ein euklidischer Ring ist, gibt es Polynome q, r ∈Q[x]mit g ·Φn = xn−1= qg+ r und r = 0
oder grad(r)< grad(g). Durch Umformen erhalten wir (Φn − q)g = r, und auf Grund des Grades von g bleibt r = 0
als einzige Möglichkeit. Es gilt also g ·Φn = gq und somit Φn = q ∈Q[x], da Q ein Integritätsbereich ist, in dem die
Kürzungsregel angewendet werden kann.

Also ist g ein normierter Teiler von xn − 1 im Ring Q[x], wobei g und xn − 1 beide in Z[x] liegen. Nach Satz 13.9
folgt daraus, dass g auch ein Teiler von xn − 1 im Ring Z[x] ist. Es gibt also ein eindeutig bestimmtes, normiertes
Polynom h ∈Z[x] mit xn − 1= gh. Aus gh= xn − 1= g ·Φn folgt Φn = h ∈Z[x]. □

Die Produktformel xn − 1 =
∏

d|nΦd kann verwendet werden, um die Kreisteilungspolynome für die einzelnen na-
türlichen Zahlen n rekursiv zu berechnen. Ist p zum Beispiel eine Primzahl, dann gilt

x p − 1 = Φ1Φp = (x − 1)Φp

und somit
Φp =

x p − 1
x − 1

= x p−1 + x p−2 + ...+ x + 1.

Ist q ∈N eine Primzahlpotenz, q = pr mit einer Primzahl p und r ∈N, r ≥ 2, dann gilt

x pr
− 1 =

∏

d|pr

Φd =

 

∏

d|pr−1

Φd

!

Φpr =
�

x pr−1
− 1

�

Φpr

also

Φpr =
x pr
− 1

x pr−1 − 1
=

(x pr−1
)p − 1

x pr−1 − 1
=

�

x pr−1
�p−1

+
�

x pr−1
�p−2

+ ... +
�

x pr−1
�1
+
�

x pr−1
�0

= x pr−1(p−1) + x pr−1(p−2) + ... + x pr−1
+ 1.

Das sechste Kreisteilungspolynom berechnet man durch

Φ6 =
x6 − 1
Φ1Φ2Φ3

=
x6 − 1

(x − 1)(x + 1)(x2 + x + 1)
= x2 − x + 1 ,

und das zwölfte Kreisteilungspolynom erhält man durch die Rechnung

Φ12 =
x12 − 1

Φ1Φ2Φ3Φ4Φ6
=

x12 − 1
(x − 1)(x + 1)(x2 + x + 1)(x2 + 1)(x2 − x + 1)

= x4 − x2 + 1.

Wir zeigen nun, dass die Kreisteilungspolynome über Q irreduzibel sind. Zur Vorbereitung bemerken wir

Lemma 20.6 Für jedes Polynom f ∈ Fp[x] gilt f p = f (x p).

Beweis: Wir können f ̸= 0 voraussetzen. Sei f =
∑n

k=0 ak x k mit n ∈N und a0, ..., an ∈ Fp. Auf Grund der allgemeinen
Rechenregel (a + b)p = ap + bp in Ringen der Charakteristik p und der Gleichung ap = a für alle a ∈ Fp (siehe
Algebra-Skript, Abschnitt endliche Körper) gilt

f p =

�

n
∑

k=0

ai x
p

�p

=
n
∑

k=0

ap
i x ip =

n
∑

k=0

ai x
ip = f (x p). □
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Satz 20.7 Für jedes n ∈N ist das Kreisteilungspolynom Φn in Z[x] und Q[x] irreduzibel.

Beweis: Wir gehen davon aus, dass n > 1 ist, denn für n = 1 ist die Aussage offensichtlich. Wäre das Kreisteilungs-
polynom inQ[x] reduzibel, dann nach Satz 13.9 (ii) auch in Z[x]. Es gibt dann normierte Polynome f , g ∈Z[x]mit
Φn = f g und grad( f ), grad(g) > 1, wobei wir voraussetzen, dass f in Z[x] (und damit auch in Q[x]) irreduzibel
ist. Wir zeigen nun:

Ist p eine Primzahl mit p ∤ n und ζ ∈ C eine Nullstelle von f , dann gilt auch f (ζp) = 0.

Angenommen, es gilt f (ζp) ̸= 0. Wegen Φn(ζ) = 0 und Φn = f g muss dann g(ζp) = 0 gelten. Dies bedeutet, dass
ζ eine Nullstelle des Polynoms g(x p) ist. Weil aber f das Minimalpolynom von ζ ist, teilt f das Polynom g(x p) in
Q[x]. Darüber hinaus ist f normiert, insbesondere primitiv, und nach Satz 13.9 (i) ist f damit auch im Ring Z[x]
ein Teiler von g(x p).

Seien nun f̄ , ḡ die Bilder von f , g im Polynomring Fp[x]. Dann ist f̄ ein Teiler von ḡ(x p), nach Lemma 20.6 also ein
Teiler von ḡ p. Sei f̄1 ein irreduzibler Teiler von f̄ . Dann ist f̄1 wegen f̄ | ḡ p auch ein Teiler von ḡ. Wegen Φn = f g und
Φn | (xn−1) ist f̄ ḡ ein Teiler von xn− 1̄, und wegen f̄1| f̄ und f̄1| ḡ folgt daraus f̄ 2

1 |(x
n− 1̄). Insbesondere hat xn− 1̄

im algebraischen Abschluss Falg
p von Fp mehrfache Nullstellen. Andererseits zeigt die Gleichung

ggT(xn − 1̄, (xn − 1̄)′) = ggT(xn − 1̄, nxn−1) = 1̄ ,

dass dies nicht der Fall ist. Auf Grund dieses Widerspruchs ist die Annahme falsch und die Behauptung bewiesen.

Jede Nullstelle von Φn, also jede primitive n-te Einheitswurzel, kann in der Form ζm dargestellt werden, wobei m ∈N
eine zu n teilerfremde Zahl bezeichnet. Ist m > 1, dann ist m ein Produkt p1 · · · pr bestehend aus Primzahlen pk mit
pk ∤ n für 1 ≤ k ≤ r. Durch mehrfache Anwendung der soeben bewiesenen Behauptung erkennt man, dass mit ζ
auch die Elemente ζp1 , ζp1 p2 , ζp1 p2 p3 , ..., ζm Nullstellen von f sind. Insgesamt sind also alle ϕ(m) verschiedenen
Linearfaktoren von Φn Teiler von f . Daraus folgt Φn| f und f = Φn, insgesamt also die Irreduzibilität von Φn. □

Definition 20.8 Sei p eine Primzahl und a ∈ Z. Man nennt a einen quadratischen Rest
modulo p, wenn eine Zahl c ∈Z mit a ≡ c2 mod p existiert. Andernfalls spricht man von einem
quadratischen Nichtrest.

Eine alternative Formulierung lautet: Die Zahl a ist quadratischer Rest modulo p genau dann, wenn das Bild ā =
a+ pZ in Fp ein Quadrat ist. Anhand dieser Formulierung sieht man, dass die Eigenschaft einer Zahl, quadratischer
(Nicht-)Rest zu sein, nur von ihrer Restklasse modulo p abhängt. Für die Formulierung der nachfolgenden Aussagen
ist die Einführung der folgenden Notation sinnvoll.
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Definition 20.9 Sei p eine ungerade Primzahl und a ∈ Z . Das Legendre-Symbol modulo p
ist definiert durch

�

a
p

�

=











1 falls a quadratischer Rest modulo p und p ∤ a
0 falls p | a

−1 falls a quadratischer Nichtrest modulo p.

Man beachte, dass durch p teilbare Zahlen a auf jeden Fall quadratische Reste sind, denn für sie gilt jeweils a ≡
02 mod p. Für die Primzahl 2 wäre die Definition des Legendre-Symbols zwar auch möglich, aber wenig sinnvoll,
denn jede ganze Zahl (gerade oder ungerade) ist auf Grund der Kongruenzen 02 ≡ 0 mod 2 und 12 ≡ 1 mod 2 ein
quadratischer Rest modulo 2.

Lemma 20.10 Sei p eine ungerade Primzahl, und seien a, b ∈Z. Dann gelten für das Legendre-
Symbol die folgenden Rechenregeln:

(i)
�

a
p

�

≡ a(p−1)/2 mod p (Eulersches Kriterium)

(ii) Aus a ≡ b mod p folgt
�

a
p

�

=
�

a
p

�

.

(iii)
�

ab
p

�

=
�

a
p

�

·
�

b
p

�

Beweis: zu (i) Im Fall p | a ist
�

a
p

�

= 0, und aus a ≡ 0 mod p folgt a(p−1)/2 ≡ 0 mod p. Andernfalls sei ā das Bild von

a in F×p und c̄ = ā(p−1)/2. Wegen |F×p | = p − 1 gilt c̄2 = (ā(p−1)/2)2 = āp−1 = 1̄. Das Element c̄ ist also eine Nullstelle

des Polynoms x2 − 1̄ = (x − 1̄)(x + 1̄), und daraus folgt c̄ ∈ {±1}. Offenbar gilt
�

a
p

�

= 1 genau dann, wenn ā in Fp

ein Quadrat ist. Wir müssen also zeigen, dass dies genau dann der Fall ist, wenn c̄ = 1̄ gilt.

Ist ā = ū2 für ein ū ∈ Fp, dann folgt c̄ = ūp−1 = 1̄. Setzen wir nun umgekehrt voraus, das ā(p−1)/2 = 1̄ gilt. Sei η
ein erzeugendes Element von F×p und ℓ ∈ Z mit ā = ηℓ. Durch Einsetzen erhalten wir ηℓ(p−1)/2 = 1̄, und weil η von
Ordnung p− 1 ist, folgt daraus ℓ(p− 1)/2 = k(p− 1) für ein k ∈ Z. Wir erhalten ℓ = 2k und ā = η2k. Also ist ā ein
Quadrat in Fp.

zu (ii) Aus a ≡ b mod p folgt a(p−1)/2 ≡ b(p−1)/2 mod p, und somt
�

a
p

�

≡
�

b
p

�

mod p. Weil die Legendre-Symbole

nur die Wert −1, 0 oder 1 annehmen können und p > 2 ist, folgt daraus
�

a
p

�

=
�

b
p

�

.

zu (iii) Durch Teil (i) erhalten wir in dieser Situation

�

ab
p

�

≡ (ab)(p−1)/2 ≡ a(p−1)/2 · b(p−1)/2 ≡
�

a
p

�

·
�

b
p

�

mod p ,

und wiederum folgt aus der Kongruenz modulo p die Gleichheit. □
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Satz 20.11 (Ergänzungssätze zum Quadratischen Reziprozitätsgesetz)
Für jede ungerade Primzahl p gilt

�

−1
p

�

= (−1)(p−1)/2 =

(

1 falls p ≡ 1 mod 4

−1 falls p ≡ 3 mod 4

und
�

2
p

�

= (−1)(p
2−1)/8 =

(

1 falls p ≡ 1, 7 mod 8

−1 falls p ≡ 3, 5 mod 8

Beweis: Den zweiten Teil jeder der beiden Gleichungen überprüft man unmittelbar dadurch, dass man die Fälle
einzeln durchgeht. Ist p ≡ 1 mod 4, dann ist 1

2 (p− 1) gerade und folglich (−1)(p−1)/2 = 1. Ist dagegen p ≡ 3 mod 4,
dann ist 1

2 (p−1) ungerade, und wir erhalten (−1)(p−1)/2 = −1. Ist p ≡ 1 mod 8 oder p ≡ 7 mod 8, dann ist p modulo
16 kongruent zu einer der Zahlen −7,−1, 1 oder 7. In jedem Fall gilt dann p2 ≡ 1 mod 16, also ist 1

8 (p
2 − 1) gerade

und (−1)(p
2−1)/8 = 1. Ist p ≡ 3 mod 8 oder p ≡ 5 mod 8, dann gilt p ≡ a mod 16 für ein a ∈ {−5,−3,3, 5} und

p2 ≡ 9 mod 16. In diesem Fall ist 1
8 (p

2 − 1) ungerade und (−1)(p
2−1)/8 = −1.

Auf Grund der Eulerschen Gleichung gilt (−1
p ) ≡ (−1)(p−1)/2 mod p. Weil auf beiden Seiten der Kongruenz nur die

Werte ±1 möglich sind und wegen p > 2 folgt aus der Kongruenz modulo p Gleichheit. Zum Beweis des ersten Teils
der zweiten Gleichung rechnen wir im Ring Z[i] der Gaußschen Zahlen. Weil der Faktorring Z[i]/(p) ein Ring der
Charakteristik p ist, gilt (α+β)p ≡ αp+β p mod p. Auf Grund der Eulerschen Gleichung und wegen 2= (−i)(1+ i)2

erhalten wir

�

2
p

�

≡ 2(p−1)/2 ≡ (−i)(p−1)/2(1+ i)p−1 ≡
(−i)(p−1)/2

1+ i
(1+ i)p ≡

(−i)(p−1)/2(1− i)
(1+ i)(1− i)

(1+ ip) ≡
�

1
2 (−i)(p−1)/2 + 1

2 (−i)(p+1)/2
�

(1+ ip)

Gehen wir nun die einzelnen möglichen Fälle durch. Weil p ungerade ist, gilt p ≡ 1, 3, 5 oder 7 modulo 8. Im Fall
p ≡ 1 mod 8 gilt

�

1
2 (−i)(p−1)/2 + 1

2 (−i)(p+1)/2
�

(1+ ip) = ( 1
2 −

1
2 i)(1+ i) = 1. Im Fall p ≡ 3 mod 8 ist

�

1
2 (−i)(p−1)/2 + 1

2 (−i)(p+1)/2
�

(1+ ip) = ( 1
2 (−i)− 1

2 )(1− i) = −1.

Ist p ≡ 5 mod 8, dann erhalten wir

�

1
2 (−i)(p−1)/2 + 1

2 (−i)(p+1)/2
�

(1+ ip) = (− 1
2 +

1
2 i)(1+ i) = −1 ,

und im letzten Fall p ≡ 7 mod 8 gilt
�

1
2 (−i)(p−1)/2 + 1

2 (−i)(p+1)/2
�

(1+ ip) = ( 1
2 i+ 1

2 )(1− i) = 1. Also ist die Kongruenz
( 2

p ) ≡ (−1)(p
2−1)/8 mod p in jedem der vier Fälle erfüllt. Da auf beiden Seite der Kongruenz nur die Werte ±1, folgt

aus der Kongruenz modulo p wiederum Gleichheit. □
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Das entscheidende Hilfsmittel zur Berechnung des Legendre-Symbol ist nun das berühmte, auf C. F. Gauß zurückge-
hende Gesetz.

Satz 20.12 (Quadratisches Reziprozitätsgesetz)

Für zwei beliebige voeinander verschiedene ungerade Primzahlen p, q gilt

�

p
q

��

q
p

�

= (−1)
p−1

2 ·
q−1

2 =

(

1 falls p ≡ 1 mod 4 oder q ≡ 1 mod 4

−1 falls p ≡ q ≡ 3 mod 4.

Der Beweis, den wir weiter unten angeben werden, basiert auf der Darstellung im Lehrbuch [5]. Zuerst aber zeigen
wir anhand eines Beispiels, wie das Quadratische Reziprozitätsgesetz zur Berechnung des Legendre-Symbols verwen-
det werden kann. Die Zahl 5209 ist eine Primzahl. Mit Hilfe der uns zur Verfüng stehenden Rechenregeln erhalten
wir

�

8498
5209

�

(1)
=

�

3289
5209

�

(2)
=

�

11 · 13 · 13
5209

�

(3)
=

�

11
5209

��

13
5209

��

23
5209

�

(4)
=

�

5209
11

��

5209
13

��

5209
23

�

(5)
=

�

6
11

��

9
13

��

11
23

�

(6)
=

�

2
11

��

3
11

��

3
13

�2 �11
23

�

(7)
=

(−1) ·
�

3
11

�

· 1 ·
�

11
23

�

(8)
= −

�

3
11

��

11
23

�

(9)
= −(−1)

�

11
3

�

· (−1)
�

23
11

�

(10)
= −

�

2
3

��

1
11

�

(11)
= −

�

2
3

�

(12)
= −(−1) = 1.

Dabei kommt die Gleichung (1) durch 8498 ≡ 3289 mod 5209 zu Stande. In Schritt (4) wird zum ersten Mal
das Quadratische Reziprozitätsgesetz angewendet, und zwar auf jeden der drei Faktoren. Wegen 5209 ≡ 1 mod 4
kommt es dabei zu keinem Vorzeichenwechsel. Gleichung (5) ist wegen 5209 ≡ 6 mod 11, 5209 ≡ 9 mod 13 und
5209≡ 11 mod 23 erfüllt. In Schritt (7) wurde auf den ersten Faktor der Zweite Ergänzungssatz angewendet; wegen
11≡ 3 mod 8 gilt

�

2
11

�

= −1. Außerdem ist zu beachten, dass das Legendre-Symbol
�

3
13

�

wegen 13 ∤ 3 gleich 1 oder
−1, das Quadrat also gleich 1 ist. In Schritt (9) wird noch das Quadratische Reziprozitätsgesetz angewendet, auf
beide Faktoren. Wegen 3≡ 3 mod 4, 11≡ 3 mod 4 und 23≡ 3 mod 4 entsteht dabei jeweils ein Vorzeichenwechsel.
Gleichung (10) gilt wegen 11 ≡ 2 mod 3 und 23 ≡ 1 mod 11. Schließlich wird Schritt (12) noch einmal der Zwei-
te Ergänzungssatz angewendet. Insgesamt ergibt unsere Rechnung, dass 8498 ein quadratischer Rest modulo der
Primzahl 5209 ist. Durch aufwändiges Probieren findet man tatsächlich die Kongruenz 8498≡ 20462 mod 5209.

Man beachte, dass die erste Anwendung des Quadratischen Reziprozitätsgesetzes unter (4) nur möglich war, weil wir
zuvor die Zahl 3289 in das Produkt 11 ·13 ·23 von Primzahlen zerlegt haben. Die Berechnung einer solchen Primfak-
torzerlegung ist natürlich bei großen Zahlen sehr aufwändig (sogar so aufwändig, dass unter anderem die Sicherheit
der RSA-Verschlüsselung darauf beruht). Um das Quadratische Reziprozitätsgesetz in dieser Hinsicht praktikabler zu
machen, werden wir es später durch das Jacobi-Symbol verallgemeinern.
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Wir werden nun einen Beweis für das Quadratische Reziprozitätsgesetz entwickeln, der auf dem Rechnen mit Ein-
heitswurzeln basiert. Für jede ungerade Primzahl p sei ζp = e2πi/p. Wir erinnern daran, dass die Nullstellen des
Kreisteilungspolynoms Φp durch ζm

p gegeben sind, wobei m die ganzen Zahlen mit 1≤ m≤ p− 1 durchläuft.

Lemma 20.13 [20.13] Seien p und q zwei verschiedene ungerade Primzahlen. Weiter sei

ζp = e2πi/p ∈ C× , R=Z[ζp] und (q) = qR ,

das von q in R erzeugte Hauptideal. Dann gilt (q)∩Z= qZ und

R = {a0 + a1ζp + ...+ ap−2ζ
p−2
p | a0, a1, ..., ap−2 ∈Z}.

Beweis: Die Gleichung für R zeigen wir ähnlich wie in den Beispielen aus § 9. Sei S ⊆ C die Teilmenge auf der rechten
Seite der Gleichung. Zunächst überprüfen wir, dass es sich dabei um einen Teilring von C handelt. Offenbar gilt 1 ∈ S
(setze a0 = 1 und a j = 0 für 1≤ j ≤ p− 2), und auch dass für vorgegebene α,β ∈ S jeweils auch α−β ∈ S liegt, ist
offensichtlich. Um zu zeigen, dass auch αβ in S liegt, bemerken wir zunächst, dass das Produkt die Form

∑2p−4
j=0 u jζ

j
p

besitzt, mit u0, ..., u2p−4 ∈Z. Es genügt damit zu überprüfen, dass die Potenzen ζ j
p für 0≤ j ≤ 2p−4 in S liegen. Weil

es keinen zusätzlichen Aufwand bereitet, zeigen wir die Aussage ζ j
p ∈ S für alle j ∈N0, durch vollständige Induktion

über j. Für j ≤ p − 2 ist die Aussage auf Grund der Definition von S erfüllt. Sei nun j > p − 2, und setzten wir die
Aussage für kleinere Werte von j voraus. Weil ζp eine Nullstelle des p-ten Kreisteilungspolynoms Φp ist, gilt

ζ j
p = ζ j−p+1

p · ζp−1
p = ζ j−p+1

p ·

�p−2
∑

k=0

(−ζk
p)

�

=
p−2
∑

k=0

(−ζ j−p+k+1
p ).

Die Aussage ζ j
p ∈ S folgt nun durch Anwendung der Induktionsvoraussetzung und der Tatsache, dass S abgeschlossen

unter Addition und Subtraktion ist. Damit ist die Teilring-Eigenschaft nachgewiesen. Offenbar gilt auch Z∪{ζp} ⊆ S.
Ist nun R′ ein beliebiger Teilring von C mit R′ ⊇ Z∪ {ζp}, dann folgt unmittelbar aus der Abgeschlossenheit von R′

unter Addition und Multiplikation, dass jedes Element aus S in R′ enthalten ist.

Kommen wir nun zum Beweis der Gleichung (q) ∩Z = qZ. Die Inklusion „⊇“ ist offensichtlich, weil qZ sowohl in
(q) = qR als auch in Z enthalten ist. Zum Nachweis von „⊆“ sei a ∈ (q) ∩Z vorgegeben. Dann existiert ein α ∈ R
mit a = qα. Das Element α kann in der Form α=

∑p−2
j=0 a jζ

j
p mit a0, ..., ap−2 ∈Z dargestellt werden. Durch Einsetzen

erhalten wir die Gleichung

a · 1 = qα =
p−2
∑

j=0

qa j · ζ j
p.

Weil Φp ∈Z[x] auf Grund der Irreduzibilität das Minimalpolynom von ζp überQ ist, handelt es sich bei {ζ j
p | 0≤ j ≤

p−1} nach § 15 um eine Basis vonQ(ζ j
p) alsQ-Vektorraum. Jedes Element aus diesem Körper kann also auf eindeutige

Weise als Linearkombination dieser Menge dargestellt werden. Daraus folgt qa0 = a und a j = 0 für 1 ≤ j ≤ p − 2.
Damit ist a ∈ qZ nachgewiesen. □
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Definition 20.14 Sei p eine ungerade Primzahl und a ∈ Z mit p ∤ a. Dann ist die Gaußsche
Summe ga,p ∈Z[ζp] gegeben durch

ga,p =
p−1
∑

n=1

�

n
p

�

ζna
p .

Für jede ungerade Primzahl p setzen wir p∗ = p, falls p ≡ 1 mod 4 und p∗ = −p, falls p ≡ 3 mod 4 ist. Offenbar
gilt p∗ = (−1)(p−1)/2p, was auf Grund des ersten Ergänzungssatzes 20.11 auch in der Form p∗ = (−1

p )p geschrieben
werden kann.

Lemma 20.15 Für die Gaußschen Summen gelten die folgenden Rechenregeln. Es seien p, q
zwei verschiedene ungerade Primzahlen und a ∈Z mit p ∤ a.

(i) ga,p =
�

a
p

�

g1,p (ii) g2
1,p =

�

−1
p

�

p = p∗ (iii) gq
1,p ≡ gq,p mod (q)

wobei unter (iii) die Kongruenz im Ring Z[ζp] gemeint ist.

Beweis: zu (i) Wegen p ∤ a durchläuft mit n auch na die Restklassen in Z/pZ ungleich 0̄, und ζna
p durchläuft die

von 1 verschiedenen ganzzahligen Potenzen von ζp. Damit erhalten wir

�

a
p

�

ga,p =
p−1
∑

n=1

�

a
p

��

n
p

�

ζna
p =

p−1
∑

n=1

�

na
p

�

ζna
p =

p−1
∑

n=1

�

n
p

�

ζn
p = g1,p.

Wegen ( a
p ) ∈ {±1} folgt daraus ga,p = (

a
p )g1,p.

zu (ii) Dasselbe Argument wie unter (i) erlaubt es im dritten Schritt der folgenden Rechnung in der zweiten Summe
n durch mn zu ersetzen. Damit erhalten wir

g2
1,p =

� p−1
∑

m=1

�

m
p

�

ζm
p

��p−1
∑

n=1

�

n
p

�

ζn
p

�

=
p−1
∑

m=1

�

m
p

�

ζm
p

p−1
∑

n=1

�

n
p

�

ζn
p =

p−1
∑

m=1

�

m
p

�

ζm
p

p−1
∑

n=1

�

mn
p

�

ζmn
p

=
p−1
∑

m=1

p−1
∑

n=1

�

m2n
p

�

ζm+mn
p =

p−1
∑

m=1

p−1
∑

n=1

�

n
p

�

ζm(1+n)
p =

p−1
∑

n=1

p−1
∑

m=1

�

n
p

�

ζm(1+n)
p =

p−1
∑

n=1

�

n
p

� p−1
∑

m=1

ζm(1+n)
p

=
p−2
∑

n=1

�

n
p

� p−1
∑

m=1

ζm(1+n)
p +

�

p− 1
p

� p−1
∑

m=1

ζmp
p

(∗)
=

p−2
∑

n=1

�

n
p

�

(−1) +
�

−1
p

�

(p− 1).

Dabei wurde an der Stelle (*) verwendet, dass wegen p ∤ (n + 1) mit ζm
p auch ζm(1+n)

p alle von 1 verschiedenen
Potenzen von ζp durchläuft, und dass sich diese Potenzen zu −1 addieren.

Im Beweis von 20.10 haben wir festgestellt: Ist c eine Primitivwurzel mod p, dann sind die verschiedenen quadrati-
schen Reste modulo p ungleich 0 gegeben durch c2k mit 0 ≤ k < 1

2 (p − 1), und die quadratischen Nichtreste durch
c2k+1 mit 0≤ k < 1

2 (p−1). Für 1≤ n≤ p−1 nimmt das Legendre-Symbol ( n
p ) deshalb 1

2 (p−1)-mal den Wert 1 und

— 224 —



genauso oft den Wert −1 an. Daraus folgt
∑p−1

n=1(
n
p ) = 0 und

∑p−2
n=1(

n
p )(−1) = ( p−1

p ) = (
−1
p ). Setzen wir dies in das

Ergebnis unserer Rechnung ein, so erhalten wir g2
1,p = (

−1
p )p = p∗ wie gewünscht.

zu (iii) WeilZ[ζp]/(q) ein Ring der Charakteristik q ist, gilt (α+β)q ≡ αq+βq mod (q), und dieselbe Kongruenz gilt
auch für eine beliebig große endliche Anzahl von Summanden. (Diese Rechenregel haben wir in der Körpertheorie
unter dem Namen „Freshman’s Dream“ kennengelernt.) Damit erhalten wir

gq
1,p ≡

�p−1
∑

n=1

�

n
p

�

ζn
p

�q

≡
p−1
∑

n=1

��

n
p

�

ζn
p

�q

≡
p−1
∑

n=1

�

n
p

�q

ζnq
p ≡

p−1
∑

n=1

�

n
p

�

ζnq
p ≡ gq,p mod (q). □

Mit Hilfe dieser Lemmata können wir nun das Quadratische Reziprozitätsgesetz erneut beweisen. Seien p, q unge-
rade Primzahlen. Durch aufeinanderfolgende Anwendung der Rechenregeln (i) und (iii) und mit dem Eulerschen
Kriterium ?? erhalten wir zunächst die Kongruenz

�

q
p

�

g1,p ≡ gq,p ≡ gq
1,p ≡ g1,p · (g2

1,p)
(q−1)/2 ≡ g1,p · (p∗)(q−1)/2 ≡ g1,p

�

p∗

q

�

mod (q).

Multiplizieren wir diese Kongruenz mit g1,p, so erhalten wir mit Regel (ii)
�

q
p

�

p∗ ≡
�

q
p

�

g2
1,p ≡

�

p∗

q

�

g2
1,p ≡

�

p∗

q

�

p∗ mod (q).

Weil q und p∗ teilerfremd sind, gibt es nach dem Lemma von Bézout Zahlen k,ℓ ∈Z mit kq+ℓp∗ = 1. Multiplizieren
wir die soeben erhaltene Kongruenz mit ℓ, so kürzt sich der Faktor p∗ wegen ℓp∗ ≡ 1 mod (q) weg, und wir erhalten
( q

p )≡ (
p∗

q ) mod (q).

Wir bemerken jetzt, dass damit auch die Kongruenz ( q
p ) ≡ (

p∗

q ) mod q im Ring Z gilt. Denn die Kongruenz beider
Seiten modulo (q) im Z[ζp] bedeutet, dass die Differenz beider Seiten im Hauptideal (q) enthalten ist. Damit liegt
die Differenz auch in (q) ∩Z, denn die Legendre-Symbole sind ganze Zahlen. Dieser Durchschnitt stimmt mit dem
Hauptideal qZ in Z überein: Die Inklusion qZ ⊆ (q) ∩ Z ist unmittelbar klar. Setzen wir umgekehrt α ∈ (q) ∩ Z
voraus. Weil Φp das Minimalpolynom von ζp ist, wissen wir aus der Körpertheorie, dass unser α wie jedes Element
aus Q(ζp) eine eindeutige Darstellung der Form a0 + a1ζp + ...+ ap−2ζ

p−2
p mit a0, ..., ap−2 ∈ Q besitzt. Aus α ∈ (q)

und ?? folgt ak ∈Z und q | ak für 0≤ k ≤ p− 2. Wegen α ∈Z gilt außerdem a1 = ...= ap−2 = 0. Ingesamt ist damit
α= a0 ∈ qZ nachgewiesen.

Mit Hilfe der Kongruenz ( q
p )≡ (

p∗

q ) mod q in Z erhalten wir nun das Quadratische Reziprozitätsgesetz. Es gilt
�

q
p

�

≡
�

p∗

q

�

≡
�

(−1)(p−1)/2p
q

�

≡
�

−1
q

�(p−1)/2 � p
q

�

≡
�

(−1)(q−1)/2
�(p−1)/2

�

p
q

�

≡ (−1)
p−1

2 ·
q−1

2

�

p
q

�

mod q.

Weil auf beiden Seiten jeweils eine Zahl der Menge {±1} steht und −1 ̸≡ 1 mod q gilt, folgt aus der Kongruenz der
beiden Seiten die Gleichheit.
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Wie oben bereits angekündigt, behandeln wir nun noch eine leichte Verallgemeinerung des Quadratischen Rezipro-
zitätsgesetzes, bei dem die Zerlegung in Primfaktoren vor jeder Anwendung entfällt.

Definition 20.16 Sei n ∈N ungerade und n= p1 · ... ·pr die Primfaktorzerlegung von n, wobei
wir auch das mehrfache Auftreten derselben Primzahl zulassen (und die Anzahl r der Faktoren
im Fall n = 1 gleich Null ist). Sei a ∈ Z. Dann ist das Jacobi-Symbol von a modulo n definiert
durch

�a
n

�

=
�

a
p1

��

a
p2

�

· ... ·
�

a
pr

�

Unmittelbar aus der Definition folgt ( a
mn ) = (

a
m )(

a
n ) für alle a ∈ Z und ungerade m, n ∈ N. Aus 20.10 kann leicht

( ab
n ) = (

a
n )(

b
n ) für alle a, b ∈Z und ungerades n ∈N abgeleitet werden, und ( a

n ) = (
b
n ) falls a ≡ b mod n. Ist nämlich

n= p1 · ... · pr die Primfaktorzerlegung von n, dann gilt

�

ab
n

�

=
r
∏

i=1

�

ab
pi

�

=
r
∏

i=1

�

a
pi

� r
∏

i=1

�

b
pi

�

=
�a

n

�

�

b
n

�

Aus a ≡ b mod n folgt a ≡ b mod pi für 1≤ i ≤ r und somit

�a
n

�

=
r
∏

i=1

�

a
pi

�

=
r
∏

i=1

�

b
pi

�

=
�

b
n

�

.

Darüber hinaus gilt

Satz 20.17 Der Erste und Zweite Ergänzungssatz sowie das Quadratische Reziprozitätsgesetz
gelten unverändert auch für das Jacobi-Symbol.

Beweis: Da das Jacobi-Symbol, wie wir bereits festgestellt haben, in der unteren Komponente multiplikativ ist,
müssen wir zeigen, dass sich auch die „rechten Seiten“ unserer drei Rechenregeln multiplikativ verhalten. Wir be-
weisen für alle ungeraden m1, m2, n1, n2 ∈N die Gleichungen

(−1)
n1−1

2 · (−1)
n2−1

2 = (−1)
n1n2−1

2 , (−1)
n2
1−1

8 · (−1)
n2
2−1

8 = (−1)
(n1n2)

2−1
8

und

(−1)
m1−1

2 ·
n1−1

2 · (−1)
m2−1

2 ·
n1−1

2 = (−1)
m1m2−1

2 · n1−1
2 , (−1)

m1−1
2 ·

n1−1
2 · (−1)

m1−1
2 ·

n2−1
2 = (−1)

m1−1
2 ·

n1n2−1
2 .

Die erste Gleichung ist äquivalent zu (−1)
n1−1

2 + n2−1
2 = (−1)

n1n2−1
2 . Weil allgemein (−1)a für a ∈Z nur von der Restklasse

von a modulo 2 abhängt, ist dies wiederum äquivalent zu

n1 − 1
2

+
n2 − 1

2
≡

n1n2 − 1
2

mod 2 ⇔ (n1 − 1) + (n2 − 1)≡ n1n2 − 1 mod 4 ⇔

n1n2 − n1 − n2 + 1≡ 0 mod 4 ⇔ (n1 − 1)(n2 − 1)≡ 0 mod 4.
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Die letzte Äquivalenz ist offenbar erfüllt, weil die Faktoren n1−1 und n2−1 beide durch 2 teilbar sind. Entsprechend
beweist man die zweite Gleichung durch die Äquivalenzumformung

(−1)
n2
1−1

8 · (−1)
n2
2−1

8 = (−1)
(n1n2)

2−1
8 ⇔ 1

8 (n
2
1 − 1) + 1

8 (n
2
2 − 1)≡ 1

8 ((n1n2)
2 − 1) mod 2 ⇔

(n2
1 − 1) + (n2

2 − 1)≡ (n1n2)
2 − 1 mod 16 ⇔ (n1n2)

2 − n2
1 − n2

2 + 1≡ 0 mod 16 ⇔

(n2
1 − 1)(n2

2 − 1)≡ 0 mod 16 ⇔ (n1 − 1)(n1 + 1)(n2 − 1)(n2 + 1)≡ 0 mod 16.

Wieder sind alle vier Faktoren durch 2 teilbar und die letzte Kongrenz somit erfüllt. Die dritte Gleichung folgt aus
der ersten durch die Rechnung

(−1)
m1−1

2 ·
n1−1

2 · (−1)
m2−1

2 ·
n1−1

2 =
�

(−1)
m1−1

2 · (−1)
m2−1

2

�

n1−1
2

= ((−1)
m1m2−1

2 )
n1−1

2 = (−1)
m1m2−1

2 · n1−1
2 .

Der Beweis der vierten Gleichung verläuft weitgehend analog. Seien nun ungerade natürliche Zahlen m, n ∈ N
vorgegeben, mit zugehörigen Primfaktorzerlegungen m = p1 · ... · pr und n = q1 · ... · qs. Den Ersten Ergänzungssatz
erhält man nun mit Hilfe der ersten Gleichung von oben durch die Rechnung

�

−1
m

�

=
r
∏

i=1

�

−1
pi

�

=
r
∏

i=1

(−1)(pi−1)/2 = (−1)(p1·...·pr−1)/2 = (−1)(m−1)/2 ,

den Zweiten Ergänzungssatz mit der zweiten Gleichung durch
�

2
m

�

=
r
∏

i=1

�

2
pi

�

=
r
∏

i=1

(−1)(p
2
i −1)/8 = (−1)(p

2
1 ·...·p

2
r−1)/8 = (−1)(m

2−1)/8

und das Quadratische Reziprozitätsgesetz für das Jacobi-Symbol schließlich unter Verwendung der dritten und vierten
Gleichung durch

�m
n

�� n
m

�

=
r
∏

i=1

� pi

n

�

�

n
pi

�

=
r
∏

i=1

s
∏

j=1

�

pi

q j

�

�q j

pi

�

=
r
∏

i=1

s
∏

j=1

(−1)
pi−1

2 ·
q j−1

2 =
s
∏

j=1

(−1)
p1 ·...·pr−1

2 ·
q j−1

2 = (−1)
p1 ·...·pr−1

2 · q1 ·...·qs−1
2 = (−1)

m−1
2 ·

n−1
2 . □

Man beachte, dass am Jacobi-Symbol
�

a
n

�

, im Gegensatz zum Legendre-Symbol, nicht abgelesen werden kann, ob a
ein quadratischer Rest modulo n ist. Beispielsweise ist 2 kein quadratischer Rest modulo 15, denn wäre dies der Fall,
dann müsste 2 sowohl ein quadratischer Rest modulo 3 als auch ein quadratischer Rest modulo 5 sein. Ist nämlich
2 ≡ c2 mod 15 für ein c ∈ Z erfüllt, dann folgt daraus auch 2 ≡ c2 mod 3 und 2 ≡ c2 mod 5. Aber wie man durch
Ausprobieren leicht überprüft, ist 2 weder modulo 3 noch modulo 5 ein quadratischer Rest, also erst recht kein
quadratischer Rest moduldo 15. Andererseits gilt

�

2
15

�

=
�

2
3

��

2
5

�

= (−1)(−1) = 1.

Das Jacobi-Symbol ermöglicht aber eine effizientere Berechnung von Legendre-Symbolen, weil es vor der Anwendung
des Reziprozitätsgesetzes nicht mehr nötig ist, die obere Zahl in ihre Primfaktoren zu zerlegen. So vereinfacht sich
zum Beispiel die Rechnung von oben zu

�

8498
5209

�

=
�

3289
5209

�

=
�

5209
3289

�

=
�

1920
3289

�

=

�

27 · 15
3289

�

=
�

2
3289

�7 � 15
3289

�

= 17 ·
�

15
3289

�

=
�

3289
15

�

=
�

4
15

�

=
�

2
15

�2

= 1.
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