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Zusammenfassung

Algebraische Strukturen wie Gruppen, Ringe und Korper bilden die unverzichtbare Grundlage fiir jedes
Teilgebiet der Mathematik, angefangen beim Losen elementarer zahlentheoretischer Probleme oder al-
gebraischer Gleichungen, iiber die Klassifikation diskreter geometrischer Strukturen und topologischer
Raume bis hin zu fortgeschrittenen Bereichen wie der Algebraischen Geometrie oder der Harmonischen
Analysis. Auch in vielen Anwendungsgebieten, in der Informatik beispielsweise in der Kryptographie
und in der Theorie der Programmiersprachen, innerhalb der Physik etwa in der Klassischen Mechanik,
der Quantenmechanik und der Elementarteilchenphysik, spielen sie eine wichtige Rolle.

Jeder der drei oben genannten algebraischen Strukturen ist ein eigener Vorlesungsteil gewidmet, wobei
wir allerdings den theoretischen Konzepten, die in allen drei Gebieten auftreten (zum Beispiel Faktor-
strukturen und Homomorphiesatze), besondere Beachtung schenken. Beim Aufbau der Gruppentheorie
orientieren uns unter anderem am sog. Klassifikationsproblem, bei dem wir vor allem durch die zuletzt
behandelten Sylowsétze noch entscheidende Fortschritte erzielen. Bei der Ringtheorie stehen als Moti-
vation vor allem Probleme der klassischen Zahlentheorie im Vordergrund. Im letzten Teil der Vorlesung
befassen wir uns mit der Theorie der algebraischen Korpererweiterungen. Den kronenden Abschluss
der Algebra wird die (im Sommersemester behandelte) Galoistheorie bilden, bei der die Gruppen- und
die Korpertheorie miteinander verbunden werden. Im Einzelnen werden in der zweisemestrigen Vorle-
sung folgende Themen behandelt.

e Definition der algebraischen Grundstrukturen: Gruppen, Ringe und Korper

e Homomorphismen, Unter- und Faktorstrukturen, Konstruktion von Erweiterungen

e zyklische und abelsche Gruppen

¢ semidirekte Produkte und Auflosbarkeit

e Gruppenoperationen und Sylowsitze

¢ Kongruenzrechnung

o Teilbarkeit und eindeutige Primfaktorzerlegung

¢ endliche und algebraische Korpererweiterungen

e Fortsetzung von Kérperhomomorphismen

e normale Kérperweiterungen

e Theorie der endlichen Korper

e Galoistheorie und Anwendungen
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§ 1. Definition der Gruppen, Beispiele

Zusammenfassung. Das Ziel dieses Kapitels besteht darin, mit dem Gruppenbegriff, den wir schon aus der
Linearen Algebra kennen, besser vertraut zu werden. Zunéchst betrachten wir eine grofe Anzahl konkre-
ter Beispiele von Gruppen: Gruppen als Bestandteile algebraischer Strukturen, Permutationsgruppen, lineare
Gruppen und Symmetriegruppen. Anschliefend sehen wir uns an, wie der Begriff der Gruppe auf einfacheren
Konzepte, denen der Halbgruppe und des Monoids, aufgebaut ist. Mit Hilfe von direkten Produkten kénnen
gegebene Gruppen zu komplexeren Gruppen zusammengesetzt werden. Zum Schluss erldutern wir noch ein
groRBes fernes Ziel der Gruppentheorie, die Klassifikation der Gruppen.

Wichtige Grundbegriffe

— Halbgruppen, Monoide und Gruppen

— Permutationsgruppe, symmetrische Gruppe

— Bewegung, Symmetriegruppe

— Abgeschlossenheit einer Teilmenge unter einer Verkniipfung

— direktes Produkt zweier Gruppen

Im gesamten ersten Teil der Vorlesung dreht sich alles um die folgende Definition, die bereits aus der Linearen Algebra
bekannt ist.

Definition 1.1 FEine Gruppe ist ein Paar (G, * ) bestehend aus einer nichtleeren Menge G und
einer Verkniipfung * auf G (also einer Abbildung GxG — G), so dass die folgenden Bedingungen
erfiillt sind.

(i) Die Verkniipfung ist assoziativ, d.h. es gilt (a * b) xc = a x (b * c) fiir alle a, b,c € G.

(ii) Es gibt ein ausgezeichnetes Element e € G, genannt das Neutralelement der Gruppe, mit
der Eigenschaft, dass e xa = a x e = a fiir alle a € G gilt.

(iii) Fiir jedes Element a € G gibt es ein Element a~! € G, genannt das zu a inverse Element,

i 1

mitaxa - =a xa=e.

Gilt dariiber hinaus a * b = b % a fiir alle a, b € G, dann spricht man von einer abelschen oder
auch einer kommutativen Gruppe.

Bevor wir uns mit dieser Definition genauer auseinandersetzen, sollten wir uns zunichst klarmachen, dass uns viele
konkrete Beispiele von Gruppen bereits bekannt sind.




(1) Gruppen kommen als Bestandteile anderer, uns bereits bekannter algebraischer Strukturen, vor. Ist etwa
(R, +, -) ein Ring, ist (R, +) eine abelsche Gruppe, mit dem Neutralelement Oz. Zum Beispiel ist (Z, +) eine
abelsche Gruppe.

(2) Wichtige Beispiele fiir abelsche Gruppen erhélt man durch die bereits bekannten Restklassenringe Z/nZ. Fiir
jedes n € Nist (Z/nZ, +) eine abelsche Gruppe bestehend aus n Elementen. Hier ist 0 = 0+nZ, die Restklasse
der Null, das Neutralelement.

(3) Ist (K, + -) ein Korper, dann ist (K>, -) eine Gruppe. Dabei bezeichnet K* die Menge K \ {0}, also die Ge-
samtheit aller Kérperelemente ungleich dem Nullelement Og. Beispielsweise ist (C*, - ) eine abelsche Gruppe,
und fiir jede Primzahl p ist (IF;, -) ist eine abelsche Gruppe mit p — 1 Elementen. (Wir erinnern daran, dass
fiir jede Primzahl p der Restklassenring Z/pZ ein Korper ist, den wir dann auch mit I, bezeichnet hatten.)

(4) Ist K ein Korper und (V, +, ) ein K-Vektorraum, dann ist (V, +) eine abelsche Gruppe. Beispielsweise ist
(R%, +) eine abelsche Gruppe, wobei + die Vektoraddition durch (a;,a,) + (b1, by) = (a; + by,a, + by,)
bezeichnet.

Mit den symmetrischen Gruppen sind uns aus der Linearen Algebra auch schon Beispiele fiir nicht-abelsche Gruppen
bekannt. Im Hinblick auf spédtere Anwendungen fithren wir hier einen etwas allgemeineren Begriff ein. Fiir jede
Menge X sei Abb(X) die Menge der Abbildungen X — X.

Definition 1.2 Sei X eine Menge. Dann ist das Paar (Per(X), o) bestehend aus der Teilmenge
Per(X) € Abb(X) der bijektiven Abbildungen X — X und der Komposition o von Abbildungen ei-
ne Gruppe, die man als Permutationsgruppe der Menge X bezeichnet. Die Elemente von Per(X)
nennt man auch Permutationen von X .

Ist n € N und M, = {1,...,n}, dann ist S,, = Per(M,,) die bereits aus der Lineare Algebra bekannte symmetrische
Gruppe. Wir haben in der Linearen Algebra die Gruppeneigenschaft nur fiir S,, nachgewiesen, aber der Beweis ist fiir
eine beliebige Permutationsgruppe Per(X) derselbe: Zunéachst erinnern wir daran, dass die Komposition o o T zweier
bijektiver Abbildungen o, 7 : X — X wiederum eine bijektive Abbildung ergibt, so dass es sich bei o tatsdchlich um
eine Verkniipfung auf Per(X) handelt. Auch wissen wir bereits, dass sich die Komposition von Abbildungen assoziativ
verhilt, also (p c0)o T = p o (0 o 7) fiir alle p,o,T € Per(X) gilt. Der Grund dafiir war, dass die Anwendung
der beiden Abbildungen links und rechts auf ein beliebiges Element x € X jeweils iibereinstimmend das Element

p(o(t(x))) ergibt.

Fiir jedes o € Per(X) gilt jeweils 0 cidy = 0 und idy o 0 = . Auch dies tiberpriift man durch, dass man o oidy und
idy o o auf ein beliebiges x € X anwendet; das Ergebnis ist in beiden Fillen o(x). Also ist idy das Neutralelement
der Gruppe (Per(X), o). SchlieRlich gilt noch o o 0! = idy und 0! o o = idy fiir jedes o € Per(X), wobei 0!
jeweils die Umkehrabbildung bezeichnet. Dies folgt direkt aus der Definition der Umkehrabbildung. Die Gleichungen

zeigen, dass o~ jeweils das zu o inverse Element ist.




Wir geben einige Eigenschaften der symmetrischen Gruppe S, an, die zum Teil in der Lineare Algebra hergeleitet
wurden, und die wir von nun an als bekannt voraussetzen.

(i) Die Gruppe S, besteht aus n! Elementen.

(i) Die Elemente der Gruppe S, konnen in der sog. Tabellenschreibweise dargestellt werden: Sind a,, ..., a,, € M,
vorgegeben, dann verwenden wir den Ausdruck

( 1 2 -« n )

g =

al az e an

zur Darstellung der Abbildung o : M,, — M,, gegeben durch o(k) = q, fiir 1 < k < n. Offenbar ist o genau
dann in S,, enthalten, wenn jede Zahl aus M,, unter den Werten a,, ..., a,, genau einmal vorkommt.

(iii) Sein € IN und k € {2,...,n}. Ein k-Zykel in S,, ist ein Element o € S,, mit der folgenden Eigenschaft: Es gibt
eine k-elementige Teilmenge {m;,...,m;} € M, so dass

mi,, fallsx=m;, 1<i<k
o(x) = m falls x = my,
x sonst

fiir alle x € M,, erfiillt ist. Fiir ein solches Element wird die Notation o = (m; ... m;) verwendet. Die 2-Zykel
in S, bezeichnet man auch als Transpositionen.

(iv) Die Signumsfunktion ist eine Abbildung sgn : S,, — {£1}, die die Gleichung sgn(c o 7) = sgn(o)sgn(7) fiir
alle o, 7 € S, erfiillt. Ist o ein k-Zykel, dann gilt sgn(o) = (—1)*L.

(v) Die Teilmenge A,, C S,, gegeben durch A, = {0 € S,, | sgn(o) = +1} wird als alternierende Gruppe bezeichet.

Sind o, 7 € A,,, dann gilt dasselbe fiir das Produkt o o 7, denn es gilt sgn(o o 7) = sgn(o)sgn(7) = (+1)(+1) = +1.
Die Gleichungskette

sgn(c™!) = (+1)sgn(c™') = sgn(o)sgn(c™!) = sgn(coo ) = sgn(idg.) = +1

1

zeigt, dass auch 0~ in A, enthalten ist. Es 1dsst sich nun leicht zeigen, dass A, mit der Komposition o als Verkniipfung

tatsdchlich ebenfalls eine Gruppe bildet.

Wir werden spater mit Hilfsmitteln der Gruppentheorie beweisen, dass jedes Element aus S, auf im wesentlichen
eindeutige Weise als Produkt disjunkter Zyklen dargestellt werden kann. Eine solche Darstellung bezeichnet man als
Zykelschreibweise. Die Zykelschreibweise erméglicht es, die Elemente von S, in Klassen einzuteilen und auf diese
Weise eine bessere Ubersicht herzustellen.

Definition 1.3 Ist r € IN und sind ki, ...,k, € IN mit k; > ... = k, = 2, dann bezeichnet man
das Tupel (kq, ..., k) als Zerlegungstyp eines Elements o € S,, wenn o als Produkt disjunkter
Zyklen der Langen (kq, ..., k,) dargestellt werden kann.

Beispielsweise ist o = (1 2 3)(4 5)(6 7) € S, ein Element vom Zerlegungstyp (3,2,2). Der Identitét id wird per
Konvention das leere Tupel () als Zerlegungstyp zugeordnet.




Beispielsweise sind die Elemente der Gruppe S5 durch die folgenden Tabellen gegeben.

icl_123 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
12 3)’\213)’\8321)’\1 3 2/)’\231)’31 2

In Zykelschreibweise ermdglicht eine iibersichtlichere Aufzahlung der Elemente, wenn man diese nach Zerlegungstyp
ordnet; es ist

Auch die Elemente der Gruppe S, lassen sich noch leicht in Zykelschreibweise angeben. Schreiben wir nacheinander
alle Elemente der Zerlegungstypen (), (2), (3), (4) und (2, 2) hin, so erhalten wir die Aufzihlung

S, = {id,(12),(13),(14),(23),(24),((34),
(123),(132),(124),(142),(134),(143),(234), (243),
(1234),(1324),(1432),(1243),(1342),(1423),(12)(34),(13)24),(14(23)}.

Zu beachten ist noch, dass die Zykelschreibweise nicht ganz eindeutig ist. So gilt in S, beispielsweise

1 2 3 4

1234) = (2 3 4 1

) = (2341 ,

also bezeichnen die Schreibweisen (1 2 3 4) und (2 3 4 1) dasselbe Element der Gruppe S,.
Satz 1.4 Die Gruppe S, ist fiir n < 2 abelsch und fiir n > 3 nicht abelsch.

Beweis: Im Fall n =1 ist die Aussage klar, denn es gilt S; = {id}. Fiir n = 2 besteht S,, aus den beiden Elementen id
und (1 2). Hier kann man die Gleichung o o T = 7 o ¢ fiir alle o, T € S, leicht ,,von Hand*“ iiberpriifen, indem man
die vier Moglichkeiten einzeln durchgeht; beispielsweise ist (1 2) oid = (1 2) = id o (1 2). Fiir n > 3 gilt dagegen
(12)0(23)=(123)und (23)0o(12)=(132),und diese Elemente sind offenbar voneinander verschieden. O

Aus der Linearen Algebra sind uns noch weitere Beispiele fiir nicht-abelsche Gruppen bekannt.

(1) Istn € IN und K ein Korper, dann ist das Paar (GL,(K), - ) bestehend aus der Menge GL, (K) der invertierbaren
nxn-Matrizen iiber K mit der Multiplikation - von Matrizen als Verkniipfung eine Gruppe, die sog. allgemeine
lineare Gruppe iiber dem Korper K. Sie ist nur fiir n = 1 abelsch, ansonsten nicht-abelsch.

(2) Auch die Teilmenge SL,(K) bestehend aus den Matrizen A € GL,(K) mit det(A) = 1, bildet mit der Multipli-
kation von Matrizen eine Gruppe. Man bezeichnet sie als spezielle lineare Gruppe. Auch sie ist fiir alle n > 2
nicht-abelsch.

(3) Uber dem Kérper K = R haben wir im dritten Semester noch fiir beliebiges n € IN die orthogonale Gruppe
O(n) kennengelernt. Diese besteht aus den orthogonalen Matrizen von GL,(IR), also den Matrizen A mit der
Eigenschaft 'A-A = E,. Eine zur Orthogonalitit dquivalente Bedingung kann, wie wir wissen, mit dem euklidi-
schen Standard-Skalarprodukt formuliert werden und lautet, dass (Av,Aw) = (v, w) fiir alle Vektoren v,w € R"
gilt. Die Matrizen der Teilmenge SO(n) = O(n) N SL,,(RR) bilden ebenfalls mit der Multiplikation von Matrizen
eine Gruppe, die spezielle orthogonale Gruppe. In der Vorlesung hatten wir gesehen, dass beispielsweise
SO(3) aus Drehungen besteht (um eine beliebige Achse durch Ogs, den Koordinatenursprung), und dass bei
O(3) die Spiegelungen an einer Ebene durch Og: hinzukommen.




(4) Uber dem Koérper K = C gibt es entsprechend die unitire Gruppe U(n) = {A € GL,(C) | "A-A = E,}
und die spezielle unitire Gruppe SU(n) = U(n) N SL,(C). Die Elemente von U/(n) werden auch als unitdre
Matrizen bezeichnet. Eine Matrix A € GL,,(C) ist genau dann unitir, wenn (Av,Aw) = (v, w) fir alle v,w € C"

. . . . . . n -
erfiillt ist, wobei (-, -) in diesem Fall das hermitesche Standard-Skalarprodukt gegeben durch (v, w) = ijl VW,
bezeichnet.

Auch bei den allgemeinen und den speziellen linearen Gruppen kann man sich die Frage stellen, aus wievielen
Elemente diese bestehen. Ist K ein unendlicher Kérper (z.B. K = R), dann ist die Elementezahl von GL,(K) und
SL,(K) ebenfalls unendlich. Wir werden spéter in der Kérpertheorie zeigen, dass es fiir jede Primzahlpotenz q einen
im Wesentlichen eindeutig bestimmten Korper Iy im q Elementen gibt. (Vorsicht: Ist g keine Primzahl, dann stimmt
IF; nicht mit dem Restklassenring Z/qZ {iberein.) Es gilt nun

n
IGL,(F)l = q%”("*l) l_[(qk —1) fiir alle n € IN und jede Primzahlpotenz q.
k=1

Diese Gleichung kann man sich folgendermaf3en klarmachen: Aus der Linearen Algebra wissen wir, dass eine Matrix
A € M,(IF,) genau dann invertierbar ist, wenn ihre n Spaltenvektoren, die wir hier mit v,,...,v, € ]F;‘ bezeichnen
wollen, linear unabhéngig sind, was wegen dim IE‘;‘ = n dazu &quivalent ist, dass diese Vektoren eine Basis des IF-
Vektorraums IFZ bilden. Der Basisergdnzungssatz aus der Linearen Algebra besagt, dass wir jedes linear unabhangige
System von Vektoren zu einer Basis ergdnzen konnen. Dies bedeutet, dass wir jede Basis von IFg dadurch aufbauen
konnen, dass wir die Vektoren vy, v,, ..., v, nacheinander geeignet wéahlen.

Wir iiberlegen uns nun, wieviele Moglichkeiten es fiir die Wahl einer Basis gibt. Fiir jeden Vektor v; € ]Fg ist {vy}
genau dann linear unabhéngig, wenn v, # OFZ gilt. Dies bedeutet, dass wir g" — 1 Moglichkeiten haben, das erste
Element v; unserer Basis zu wahlen. Ist nun v; bereits bewéhlt, so ist fiir jeden Vektor v, die Menge {v;,v,} genau
dann linear unabhéngig, wenn v, nicht in <V1>]Fq , dem von v; aufgespannten Untervektorraum, enthalten ist. Da dieser
Untervektorraum aus q Elementen besteht, bleiben also g" —q Moglichkeiten fiir die Wahl von v,. Bei der Wahl von v,
sind entsprechend die g? Elemente von (v;, V2)]Fq ausgeschlossen usw. Auf diese Weise kommen wir auf n:;é (q"—q")
Moglichkeiten fiir das gesamte System vy, Vs, ..., v,.. Fiir den k-ten Faktor gilt ¢" — g = ¢*(¢"* —1). Schreiben wir
die Faktoren q* vor das Produkt, so erhalten wir die angegebene Formel, mit dem Vorfaktor qZZ;ék = q%(”_l)”, wobei
die Gleichheit ]_[Z;é(q”_k -1 = nzzl(qk — 1) durch Umparametrisierung zu Stande kommt. Mit Hilfe von etwas
Gruppentheorie beweisen wir spater noch die Gleichung

n
SL(F)l = ¢ D] [t - .
k=2

Gruppen spielen unter anderem in der Geometrie, und hier besonders bei der Klassifikation geometrischer Strukturen,
eine wichtige Rolle. Auf diesen Aspekt soll nun etwas genauer eingegangen werden. Im Linearen Algebra-Teil des
dritten Semesters war uns der Begriff der Bewegung begegnet. Dabei handelte es sich um eine Abbildung ¢ : R" —
R", unter der Abstiande zwischen beliebigen gleich bleiben, d.h. es gilt ||[¢p (v) — p(w)|| = ||lv — w|| flr alle v,w € R",
wobei || - || die bekannte eudklidische Standard-Norm auf dem R" bezeichnet. Dort hatten wir auch erfahren, dass
fiir jede Bewegung ¢ jeweils ein eindeutig bestimmter Vektor u € R"™ und eine eindeutig bestimmte Matrix A € O(n)
existieren, so dass ¢ (v) = u+Av fiir alle v € R" erfiillt ist. Wir verwenden fiir die Bewegung, die durch diesen Vektor
u und diese Matrix A gegeben ist, die Bezeichnung ¢, 4. In dem Fall, dass A in SO(n) liegt, hatten wir von einer
orientierungserhaltenden Bewegung gesprochen, ansonsten von einer orientierungsumkehrenden Bewegung.




Definition 1.5 Die Menge der Bewegungen im R" bildet zusammen mit der Komposition eine
Gruppe, die wir mit B, bezeichnen. Die orientierungserhaltenden Bewegungen bilden ebenso
eine Gruppe; diese bezeichnen wir mit 55} .

Fiir den Nachweis der Gruppeneigenschaften miissen wir zunéchst {iberpriifen, dass die Komposition zweier Bewe-
gungen wiederum eine Bewegung ist. Seien dazu A,A’ € O(n) und u,u’, v € R" vorgegeben. Es gilt

(Pupo Pua)v) = P aW +AV) = u+AW +AY) = (u+Au)+AAv.

Dies zeigt, dass ¢, 4 © ¢,y o mit P4, 44 libereinstimmt, und dies ist wiederum eine Bewegung, weil mit A und A’
auch AA’ ein Element von O(n) ist. Da sich die Komposition beliebiger Abbildungen assoziativ verhalt, gilt auch in
B, das Assoziativgesetz. Das Neutralelement in B, ist durch die identische Abbildung idy. gegeben. Dass es sich
dabei um eine orthogonale Abbildung handelt, erkennt man daran, dass idg. = ¢, 5, gilt und die Einheitsmatrix
E, orthogonal ist. SchlieBlich miissen wir noch zeigen, dass jedes Element ¢, 4, € B, (mit u € R" und A € O(n)) ein
Inverses besitzt. Fiir alle v,w € R" gilt die Aquivalenz

w=¢,.(v) & w=u+tAd & Alw=Alu+v © v=AT(—W+Aw S v=uiia-

Dies zeigt, dass ¢4-1(_) o1 die Umkehrabbildung von ¢, 4 ist, und weil mit A auch A7t in O(n) liegt, handelt es sich
dabei um eine Bewegung. In der Gruppe B,, ist also ¢4-1(_,) 4= das zu ¢, 4 inverse Element. Nach demselben Schema
zeigt man, dass auch B} eine Gruppe ist.

Definition 1.6 Ist T C R" eine beliebige Teilmenge, dann bezeichnet man

Sym(T) = {¢€B,[¢(T)=T}

als Symmetriegruppe von T. Die Elemente von Sym™(T) = Sym(T) N BB} bezeichnet man als
orientierungserhaltende Symmetrien der Menge T.

Fiir alle ¢,+ € Sym(T) sind auch ¢ o) und ¢! in Sym(T) enthalten. Denn auf Grund der Gruppeneigenschaft
von B, sind die beiden Abbildungen ebenfalls in B, enthalten; auflerdem gilt (¢ o P)(T) = ¢(Y(T)) = d(T) =T
und auf Grund der Bijektivitit von ¢ auch ¢ (T) = ¢ (p(T)) = (¢! 0 ¢p)(T) = idg.(T) = T. Der Nachweis
der Gruppeneigenschaften von Sym(T) ist nun reine Routine. (Er wird sich im néchsten Kapitel noch etwas weiter
vereinfachen, wenn wir Sym(T) als sog. Untergruppe von B, erkennen.) Auch der Nachweis, dass Sym*(T) eine
Gruppe ist, bereitet keine Schwierigkeiten.

Zu interessanten geometrischen Anwendungen kommt man nun, indem man Teilmengen T C R" mit einer bestimm-
ten geometrischen Bedeutung betrachtet. In der Analysis mehrerer Variablen haben wir den Begriff der konvexen
Teilmenge des R" eingefiihrt. Eine Teilmenge T C IR" haben wir konvex genannt, wenn fiir alle v,w € T jeweils die
Verbindungsstrecke [v,w] ganz in T enthalten ist. Ist X C IR" eine beliebige Teilmenge des R" und sind T, T’ C R"
beliebige konvexe Mengen mit T 2 X und T’ 2 X, dann ist auch T N T’ eine konvex Menge mit dieser Eigenschaft.

Die kleinste konvexe Teilmenge des R", die eine Teilmenge X C R" enthélt, wird die konvexe Hiille von X genannt
und mit conv(X) bezeichnet. Die konvexe Hiille einer endlichen Teilmenge vom RR" bezeichnet man als Polytop. Ist
X nicht in einem echten affinen Unterraum des R" enthalten, spricht man von einem nicht ausgearteten Polytop.




Definition 1.7 Sein € IN mit n > 3, und fiir 0 < k < n sei der Punkt P, ; € R? gegeben durch
Py = (cos(@), sin(#)). Dann bezeichnen wir die konvexe Hiille der endlichen Punktmenge
{P,x | 0 < k < n} als das regelmdfsiges Standard-n-Eck A,. Die Symmetriegruppe D, = Sym(A,,)
wird die n-te Diedergruppe genannt.

Es bezeichne p € B} die Drehung um den Koordinatenursprung Og. mit dem Winkel 27” und 7 € B, die Spiegelung
an der x-Achse. Wie man leicht iiberpriift, bleibt die Punktmenge {P,; | 0 < k < n} unter p und 7 unverdndert,
und daraus kann auch leicht p(A,) = A, und 7(4A,) = A, abgeleitet werden. Dies bedeutet, dass p und 7 in
D, = Sym(A,) enthalten sind. Auf Grund der Gruppeneinschaft liegen auch beliebige Kompositionen von p und 7
in D,,. Mit den Methoden der Diskreten Geometrie kann man zeigen, dass D, aus genau 2n Elementen besteht; es gilt

D, = {pFlo<k<n}u{pFor|O0<k<n}.

Wir werden spater sehen, wie sich zumindest mit geringem Aufwand {iberpriifen 1asst, dass die Elemente der Menge
rechts eine Gruppe bilden. Der erste Teil der Menge aus Drehungen; genauer gesagt ist p* die Drehung um O, mit
dem Winkel 2"7“ Bei den Abbildungen p* o7 handelt es sich um Spiegelungen unterschiedlichen Typs. Ist n ungerade,
dann durchlauft die Achse jeder Spiegelung durch eine Ecke und eine gegeniiberliegende Kante des Polytops. Ist n
dagegen gerade, dann lauft die Spiegelungsachse entweder durch zwei gegeniiberliegende Ecken oder durch zwei
gegeniiberliegende Seiten von A,,.

Dass die Abbildungen der Form p* o T Spiegelungen sind, ist keineswegs offensichtlich, deshalb betrachten wir die
Sache etwas genauer. Fiir jedes a € R sei R, € SO(2) die Matrix, welche die Drehung um Op. mit dem Winkel a

R, = (cos(a) —sin(a))'

sin(a) cos(a)

beschreibt, also

Wie man sich leicht anschaulich klar macht (oder auch nachrechnen kann), gilt R, oRg =R, g und ToR,0T =R_,
fiir beliebige a, 8 € R, wobei wir R, der Einfachheit halber als Bezeichnung fiir die Abbildung v — R,v verwenden.
Nach Definition gilt p* = Rojr/n flir 0 <k <n.

Der Einfachheit halber beschrénken wir uns auf den Fall, dass n ungerade ist. Sei k € Z mit 0 < k < n. Die Spiegelung
an der Achse, die durch Og. und den Punkt P, ; verlduft, ist gegeben durch pko10p7* Denn durch p=* wird der
Punkt P, , auf den Punkt P, , der x-Achse gedreht, anschlieGend durch 7 gespiegelt und anschliefend der Punkt P, ,

durch p* wieder zuriickbewegt. Wendet man die Gleichung ToR, o7 = R_, auf den Wert a = —2k% an, so erhilt man

n
die Gleichung 7 o p* o 7 = p*, was auf Grund der Identitit 72 = idg. <> 77! = 7 zu 7 0 p % = p* o T umgeformt

werden kann. Einsetzen ergibt

pkoTopfk = pkopkoT = kaoT,

Es gilt p" = Rgn/n = R,, = idr.. Wahlen wir m € {0,1} so, dass { = 2k — mn die Bedingung 0 < ¢ < n erfiillt,
dann gilt p% = Rokr/n = Rokrjn—omn = Rek—mm)n/n = Ratrm = pl. Es gilt also p* o 70 p7* = p o 1. Damit ist
nachgewiesen, dass es sich bei dem Element p‘ o 7 tatsichlich um eine Spiegelung von A, handelt. Wie man leicht
iiberpriift, durchlduft ¢ alle ganzen Zahlen mit 0 < £ < n, wenn k denselben Bereich durchliuft (sofern n ungerade
ist). Dies zeigt, dass der zweite Teil der Menge von oben tatsichlich vollstindig aus Spiegelungen besteht.




Es gibt noch eine andere Moglichkeit, dies zu {iberpriifen. Wie p wird auch die Bewegung © durch eine orthogonale

s=(5 2)

Diese Matrix hat die Determinate —1, wihrend fiir alle & € R jeweils det(R,) = +1 gilt. Die Abbildung p‘ o
besitzt nun die Darstellungsmatrix Ry,/,S, und deren Determinante ist gleich det(Ry,/,S) = det(Ry,,,)det(S) =

Matrix dargestellt, ndmlich durch

(+1)(—1) = —1. Nun verwendet man die bekannte Tatsache, dass die orthogonalen Matrizen mit Determinante —1
genau die linearen Abbildungen sind, welche die Spiegelung bzgl. einer Achse durch Og. beschreiben. Die Matri-
zen dieser Form besitzen immer die beiden Eigenwerte £1, und die Spiegelungsachse ist durch einen beliebigen
Eigenvektor zum Eigenwerte +1 gegeben.

Wir betrachten nun einige geometrisch interessante Polytope in Dimension 3. Ein Punkt, den man als Durchschnitt
eines Polytops P mit einer (affinen) Ebene erhilt, wird als Ecke von von P bezeichnet. Eine Strecke, die als Durch-
schnitt von P mit einer Ebene zu Stande kommt, wird Kante von P genannt. Jede nichtleere Teilmenge, die als
Durchschnitt von P mit einer Ebene E zu Stande kommt, bei der der Rest P vollstindig auf einer Seite von E liegt
und die weder eine Ecke noch eine Kante ist, wird als Seite von P bezeichnet. Wir bezeichnen zwei Teilmengen
S,T € R? als kongruent, wenn ein ¢ € B, mit ¢(S) = T existiert. Von grundlegender Bedeutung in der Geometrie
ist nun die folgende Definition.

Definition 1.8 Ein nicht ausgeartetes Polytop im R® bezeichnet man als regulér oder auch
als Platonischen Korper, wenn all seine Seiten zueinander regelmél3ige kongruente n-Ecke sind
und sich an jeder Ecke dieselbe Anzahl von Seiten treffen.

Zwei Teilmengen S, T C R? bezeichnet man als dhnlich, wenn ein Skalierungsfaktor r € R* und ein ¢ € B, existie-
ren, so dass T = ¢(rS) gilt. Dabei ist S = {rp | p € S} die Teilmenge des R, die durch Skalierung von S mit dem
Faktor r zu Stande kommt. Seit der Antike ist bekannt, dass es bis auf Ahnlichkeit genau fiinf Platonische Kérper
gibt.

(1) Einen Tetraeder erhélt man als konvexe Hiille der vier Punkte P, = (1,1,1), P, = (1,—1,—1), P; =(—1,1,—1),
b, =(—1,—1,1). Allgemein kommt eine Tetrader dadurch zu Stande, dass man iiber dem Schwerpunkt eines
gleichseitigen Dreiecks eine weitere Ecke hinzufiigt und dabei die Hohe so wéhlt, dass alle Kanten gleich lang
werden. Jeder Tetraeder hat vier regelmé@ige Dreiecke als Seiten, auflerdem sechs Kanten und vier Ecken.

(2) Einen Oktader erhilt man zum Beispiel als konvexe Hiille der sechselementigen Punktmenge bestehend aus
(£1,0,0), (0,£1,0), (0,0,£1). Allgemein konstruiert man einen Oktaeder dadurch, dass man {iber und unter
dem Mittelpunkt eines Quadrats zwei weitere Ecken hinzufiigt, wobei die Abstédnde so gewahlt werden, dass
alle Kanten dieselbe Linge haben. Jeder Oktaeder hat acht Seiten, zwolf Kanten und sechs Ecken.

(3) Einen Wiirfel erhélt man unter anderem als konvexe Hiille der achtelementigen Punktmenge bestehend aus
(£1,£1,%1) (d.h. man bildet alle acht Vorzeichenkombinationen). Geometrisch wird jeder Wiirfel dadurch
konstruiert, indem man von einem Quadrat im Raum ausgeht, durch Parallelverschiebung ein weiteres Qua-
drat bildet und dann die korrespondierenden Ecken miteinander verbindet, wobei der Verschiebungsvektor
so gewahlt wird, dass die neu entstandenen Kanten auf den Quadraten senkrecht stehen und dieselbe Liange
wie die Seiten der Quadrate haben. Jeder Wiirfel besitzt sechs Seiten, zwolf Kanten und acht Ecken.
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(4) Einen Dodekaeder erhilt man zum Beispiel als konvexe Hiille der 20 Punkte
(ﬂ:T, :l:T; :l:T)’ (:l:Tla:t]-)O), 5(:|:1’O’ :l:Tl)’ a(O’iTlail) B

wobei jeweils alle Vorzeichenkombinationen zu beriicksichtigen sind, T = %(«/3 + 1) das Verhiltnis des gol-
denen Schnitts bezeichnet und 7, = 7 + 1 ist. (Wenn eine Strecke s im Verhéltnis 7 : 1 in zwei Teilstrecken
a und b geteilt wird, dann gilt T = § = 2.) Fiir eine geometrische Konstruktion geht man von einem regel-
maligen Fiinfeck aus, setzt an jede Seite ein gleichartiges Fiinfeck und fiigt anschliefend die sechs Fiinfecke
zu einer Halbkugelschale zusammen. Zwei identische Halbkugelschalen dieser Form konnen dann zu einem

Dodekaeder zusammengesetzt werden. Jeder Dodekaeder besitzt 12 Seiten, 30 Kanten und 20 Ecken.

(5) Einen Ikosaeder erhilt man unter anderem als konvexe Hiille der zwolf Punkte
(Oyi]-: :l:T)’ (:*:1, 0: j:T)’ (il,iT; 0)

Fiir eine geometrische Konstruktion geht man von zwei parallel {ibereinanderliegenden, regelmé3igen Fiinf-
ecken aus und verdreht diese in einem 36°-Winkel gegeneinander. Jede Ecke des oberen Fiinfecks wird mit
den zwei nichstgelegenen Ecken des unteren Fiinfecks verbunden. Man erhélt auf diese Weise zwischen den
beiden Fiinfecken zehn gleichschenklige Dreiecke. Anschlieend wird der Abstand zwischen den parallelen
Fiinfecken so eingestellt, dass die zehn gleichschenkligen Dreicke zu gleichseitigen Dreiecken werden. Nun
setzt man noch einen Punkt senkrecht iiber den Mittelpunkt des oberen Fiinfecks und verbindet diesen Punkt
mit den Eckpunkten des Fiinfecks. Auf diese Weise erhalt man fiinf weitere Dreiecke. Die Hohe des neuen
Punkts wird so gewéhlt, dass die fiinf Dreiecke zu gleichseitigen Dreiecken werden. Zum Schluss setzt man
einen Punkt unter das untere Fiinfeck und erzeugt auf dieselbe Weise fiinf weitere gleichseitige Dreiecke, die
an dem neuen Punkt anliegen. Jeder Ikosaeder besteht aus 20 Seiten, 30 Kanten und besitzt 12 Ecken.

Definition 1.9 Bezeichnet T einen beliebigen Tetraeder, dann nennt man Sym(T) eine Te-
traedergruppe und Sym*(T) eine eigentliche Tetraedergruppe. Ist O ein Oktaeder, dann wird
Sym(Q) eine Oktaedergruppe und Sym*(Q) eine eigentliche Oktaedergruppe. Entsprechend
werden (eigentliche) Wiirfelgruppen, Dodekaedergruppen und Ikosaedergruppen definiert.

Ein typische Element von Sym*(Q) erhilt man dadurch, dass man zwei gegeniiberliegen Ecken, die Mittelpunkte
zweier gegeniiberliegender Kanten oder die Mittelpunkte zweier gegeniiberliegender Seiten durch Achsen mitein-
ander verbindet und dann Rotationen um diese Achse betrachtet, die das Polytop O in sich iiberfithren. Auf diese
Weise erhélt man sogenannte dreizdhlige bzw. zweizédhlige bzw. vierzahlige Symmetrien. Jedes nicht orientierungs-
erhaltende Element aus Sym(Q) kommt durch eine Spiegelung zu Stande, wobei die Spiegelungsebene durch zwei
gegeniiberliegende Ecken, Kanten oder Seiten laufen kann.




Nachdem wir nun eine Vielzahl konkreter Beispiele von Gruppen zu sehen bekommen haben, wenden wir nun wieder
allgemeineren, abstrakten Konzepten zu.

Definition 1.10 Seien G und H Gruppen. Dann bildet das kartesische Produkt G x H mit der
Verkniipfung * gegeben durch

(81,h1) x(g2,hy) = (8182,h1hy) fir alle (g,h;),(g2,hy) €GXxH

ebenfalls eine Gruppe. Man nennt sie das (4uflere) direkte Produkt von G und H. Sind G und
H abelsch, dann gilt dasselbe fiir (G x H, ).

Beweis: Zunichst beweisen wir das Assoziativgesetz. Seien (gi,h1), (g, h5),(g3,h3) € G x H vorgegeben. Nach
Definition der Verkniipfung * und auf Grund der Assoziativitdt der Verkniipfungen von G und H erhalten wir

((g1,h1) (82, h2)) x (g3,h3) = (g182,Mhy) *x(g3,hs) =  ((8182)8s, (Mhydhs) =
(81(8283),hi(hah3)) = (g1,h1) # (8283, hahs) = (g1,hy) x ((82,hy) * (g3, h3)).

Seien nun eg, ey die Neutralelemente der Gruppen G und H. Fiir alle (g,h) € G x H gilt dann (g, h) * (eg,ey) =
(geg,hey) = (g,h) und ebenso (eg,ey) * (g, h) = (eqg,exyh) = (g, h). Dies zeigt, dass e,y = (eg, ey) das Neutral-
element von (G x H, x) ist. SchlieRlich gilt auch (g,h)*(g™1,h™!) =(gg ™, hh™!) = (eg,ey) = egxy und (g7, A1) %
(g,h) = (g7'g,h th) = (eg,ey) = egxy- Dies zeigt, dass (g71,h!) jeweils ein Inverses von (g,h) ist, fiir alle
(g,h) € G x H. Insgesamt sind damit alle Gruppenaxiome verifiziert.

Beweisen wir nun noch die zusétzliche Aussage. Laut Annahme sind G und H abelsch. Seien (g;,h;), (g5,h,) € GxH
vorgegeben. Dann gilt (g1, 1) * (82, h2) = (8182, h1ha) = (8281, hah1) = (82, h2) * (81, hy)- O

Beispielsweise ist Z /27 x 7./ 4Z. eine achtelementige abelsche Gruppe, und S, x S5 ist eine nicht-abelche Gruppe be-
stehend aus (4!)-(5!) = 24-120 = 2880 Elementen. Als nichstes sehen wir uns, auf welche Weise der Gruppenbegriff
auf einfacheren algebraischen Strukturen aufgebaut ist.

Definition 1.11

(i) Eine Halbgruppe ist ein Paar (G, * ) bestehend aus einer nichtleeren Menge G und einer
assoziativen Verkniipfung * auf G.

(ii) Ein Element e € G der Halbgruppe wird als Neutralelement bezeichnet, wenn e xa = a
und a x e = a fiir alle a € G erfiillt ist.

(iii) Eine Halbgruppe mit mindestens einem Neutralelement bezeichnet man als Monoid.

Jede Halbgruppe besitzt hdchstens ein Neutralelement. Sei ndmlich (G, %,) eine Halbgruppe, und seien e, ¢’ Neu-
tralelemente von (G, * ). Weil e Neutralelement ist, gilt a *x e = a fiir alle a € G, insbesondere also ¢’ x e = ¢’. Weil ¢’
Neutralelement ist, gilt e/ * a = a fiir alle a € G, also insbesondere e’ x e = e. Insgesamt erhalten wir e’ = e’ xe =e.




Jedes Monoid (G, *) besitzt also ein eindeutig bestimmtes Neutralelement, fiir das wir, wie beiden Gruppen, die
Bezeichung e oder e einfiihren.

Definition 1.12 Sei (G, *) ein Monoid mit dem Neutralelement e;. Ein Element g € G wird
invertierbar in (G, *) genannt, wenn ein h € G mit g xh = h * g = e existiert. Man nennt h in
diesem Fall ein Inverses von g.

Wir formulieren einige einfache Regeln fiir das Rechnen mit inversen Elementen.

Proposition 1.13 Sei (G, *) ein Monoid.

(i) Jedes Element g € G besitzt hochstens ein Inverses; sofern es existiert, wird es mit g—*
bezeichnet.

(ii) Seien g,h € G invertierbare Elemente. Dann sind auch die Elemente g xh und g~! inver-
tierbar, und es gilt (g xh) ' =h'xglund (g') ' =g.

(iii) Das Neutralelement eg; ist invertierbar, und es gilt egl =eg-

Beweis: zu (i) Nehmen wir an, dass h und h’ beides Inverse von g sind. Dann gilt g *h = e; und h’ * g = e, und
esfolgth=e;xh=(N*g)xh=h x(gxh)=hxe;=h".

zu (ii) Die Gleichungen (h™'xg V) x(gxh) =h 'x(g 7 xg)xh=h"lxe;xh=h"'xh=e; und (gxh)x(h txg™1) =
gx(hxh VDxgl=gxexg ! =gxg ! =e; zeigen, dass h™! x ¢! das (eindeutig bestimmte) Inverse von G ist.
Ebenso sieht man anhand der Gleichungen g™! x g = e; und g * g~! = e, dass es sich bei g um das Inverse von g~ !
handelt.

zu (iii) Wie unter (ii) folgt dies direkt aus der Gleichung e; x e; = eg. O

Als Folge dieser Proposition ist nun klar, dass die Gruppen genau diejenigen Monoide sind, bei denen alle Elemente
invertierbar sind. Wie wir nun aber sehen werden, lasst sich aus jedem Monoid stets eine Gruppe gewinnen.

Definition 1.14 Sei (X, o) eine Menge mit einer Verkniipfung. Eine Teilmenge U C X wird
abgeschlossen unter o genannt, wenn fiir alle x, y € U auch das Element x o y in U liegt.

Ist U C X abgeschlossen unter o, dann ist die Abbildung o;; : U x U — X, die man durch Einschrankung von o auf
die Teilmenge U x U C X x X erhélt, zugleich eine Abbildung U x U — U, also eine Verkniipfung auf U.

Beispielsweise ist die Teilmenge IN C Z abgeschlossen unter der Addition und der Multiplikation auf Z, denn die
Summe und das Produkt von zwei positiven ganzen Zahlen ist wiederum positiv. Dagegen ist die Menge A = {1, 2, 3}
nicht abgeschlossen unter der Addition auf Z, denn es gilt 1,3 € A, aber das Element 4 = 1+ 3 ist nicht in A enthalten.
Die Menge A ist auch nicht abgeschlossen unter der Multipliktation, denn einerseits gilt 2,3 € A, andererseits aber
6=2-3¢A.




Satz 1.15 Sei (G, *) ein Monoid und G* C G die Teilmenge der invertierbaren Elemente. Dann
ist G* abgeschlossen unter der Verkniipfung *, und (G*, ¢~ ) ist eine Gruppe. Das Neutralele-
ment e; von G ist zugleich das Neutralelement von (G, g ).

Beweis: Nach Proposition (ii) ist das Produkt zweier invertierbarer Elemente wiederum invertierbar. Die Teil-
menge G* C G ist also unter x abgeschlossen, und somit existiert, wie oben erldutert, eine Verkniipfung 5. auf G*.
Wir iiberpriifen nun fiir (G*, ¢« ) die Gruppenaxiome. Das Assoziativgesetz ist in G* erfiillt, denn fiir alle g, h, k € G*
gilt

g*ge (hxg< k) = gx(hxk) = (gxh)xk = (g*gh)*g k.

Das Assoziativgesetz ,iibertragt“ sich also von (G, %) auf (G, #4x ). Nach Proposition (iii) ist e; in G* enthalten,
und fiir alle g € G* gilt g %5« eq = g *eg = g und eg *g« § = e * g = g. Dies zeigt, dass e; in der Halbgruppe
(G*,xgx) ein Neutralelement ist. Somit ist (G*, *4~ ) ein Monoid, mit Neutralelement eg« = e.

Wiederum auf Grund von Proposition (ii) folgt aus g € G* auch g™} € G*. Wegen g#s« g ' =g*g ! =eg
und g ' kg g = gt % g = e, ist g1 das Inverse von g in (G*, *). Jedes Element aus G* ist also im Monoid (G*, )
invertierbar. Somit ist (G*, *g«) eine Gruppe. |

Der Einfachheit halber wird die Verkniipfung der Gruppe (G*, *g~) von nun an einfach wieder mit * bezeichnet.

Wie wir anhand der bisherigen Beispiele bereits deutlich geworden ist, werden bei Halbgruppen, Monoiden und
Gruppen in zwei unterschiedlichen Schreibweisen verwendet, die von der Form des Verkniipfungssymbols abhiangen.
Bei einem ,,punktéhnlichen” Symbol wie - oder ® bezeichnet man das Neutralelement eines Monoids neben e; auch
mit 1, und die Schreibweise fiir das Inverse eines Elements g ist stets g~'. Man spricht in diesem Zusammenhang von
multiplikativer Schreibweise. Haufig wird ein punktéhnliches Verkniipfungssymbol auch weggelassen, das Element
g - h also mit gh bezeichnet.

Bei einem ,,plusartigen“ Verkniipfungssymbol wie + oder & verwendet man fiir das Neutralelement die Notation O,
und die Schreibweise fiir das Inverse von g ist —g statt g~1. Die Gleichungen (g-h) ' =h'-glund (g7}) =g
haben bei additiver Schreibweise also die Form —(g + h) = (—h) + (—g) und —(—g) = g. Hier spricht man von
additiver Schreibweise; sie ist nur bei abelschen Halbgruppen (bzw. Monoiden oder Gruppen) gebrauchlich.

Ein wichtiges (und zugleich noch weit entferntes) Ziel der Algebra besteht darin, fiir jede Zahl n € IN , alle“ Gruppen
mit n Elementen zu bestimmen. Ein grundséitzliches Problem besteht aber darin, dass es einerseits uniiberschaubar
viele n-elementige Mengen M gibt, auf den man jeweils eine Gruppenstruktur definieren konnte (durch Angabe
einer Verkniipfung -, einem Neutralelement e € M und einer Inversenabbildung M — M, a — a™ '), dass sich aber
andererseits viele dieser Gruppen anhand ihrer Strukturmerkmale gar nicht unterscheiden. (Was fiir Merkmale das
sein konnen, ist das Thema der folgenden Kapitel.) Um diesem Problem zu begegnen, fiir man den Isomorphiebegriff
in die Gruppentheorie ein.

Definition 1.16 Man bezeichnet zwei Gruppen (G, -) und (H, %) als isomorph und schreibt
G = H, wenn eine bijektive Abbildung ¢ : G — H existiert, so dass ¢(g - g’) = ¢(g) * ¢ (g’) fiir
alle g, g’ € G erfiillt ist.




Mit Hilfe des Chinesischen Restsatzes werden wir beispielsweise zeigen konnen, dass die Gruppen Z /157 und Z /37, x
7./57. zueinander isomorph sind. Durch die Hilfsmittel, die wir im Kapitel {iber Gruppenoperationen entwickeln
werden, werden wir beziiglich der Diedergruppen und der Symmetriegruppen der platonischen Korper zeigen konnen

(i) Jede Diedergruppe D,, (mit n > 3) ist isomorph zu einer 2n-elementigen Untergruppe von S,,.
(ii) Fir die Symmetriegruppen des Tetraeders gilt Sym™ (T) = A, und Sym(T) = S,,.

(iii) Es gilt Sym*(0) = Sym*(W) = S, und Sym(Q) = Sym(W) = S, x Z/27 fiir die Symmetriegruppen von Wiirfel
und Oktaeder.

(iv) Fiir die Symmetriegruppen von Dodekaeder und Ikosaeder gilt Sym* (D) = Sym*(I) = As und Sym(D) =
Sym(I) £ A x Z/27.

Dass die Symmetriegruppe von Wiirfel und Oktaeder bzw. Dodekaeder und Ikosaeder isomorph sind, hat folgenden
Grund: Jedem nicht-ausgearteten Polytop P mit dem Nullpunkt Oy in seinem Inneren kann mit Hilfe des euklidischen
Skalarprodukts durch

PY = {xeR®|(x,y)<1VyeP}

ein sogenanntes duales Polytop zugeordnet werden. Dieses ist ebenfalls nicht-ausgeartet und enthilt Op; als inneren
Punkt. Jede Ecke von P entspricht einer Seite von PV, jede Seite von P entspricht einer Ecke von PV, und es gibt
eine bijektive Korrespondenz zwischen den Kanten von P und denen von P". Es ist relativ leicht zu sehen, dass stets
P und PV isomorphe Symmetriegruppen besitzen, und dass (PV)Y = P gilt. Durch Dualisierung eines Wiirfels erhélt
man einen Oktaeder, und ein Dodekaeder wird durch diesen Vorgang in ein Ikosaeder iiberfiihrt. Ein Tetrader geht
durch Dualisierung in einen anderen Tetraeder iiber.

Wie wir sehen werden, haben stimmen zwei isomorphe Gruppen beziiglich jedes Strukturmerkmals iiberein. Dazu
gehort zum Beispiel die Anzahl der Untegruppen und Normalteiler, die Anzahl der Elemente bestimmter Ordnung
und Eigenschaften wie ,zyklisch®, ,,abelsch® oder ,auflosbar”, um nur ein paar der Merkmale zu nennen, mit denen
wir uns im weiteren Verlauf befassen. Die Frage, welche , wesentlich voneinander verschiedenen® Untergruppen einer
bestimmten Ordnung n es gibt, lisst sich mit dem Isomorphiebegriff folgendermafien konkretisieren.

Definition 1.17 Das Klassifikationsproblem fiir endliche Gruppen kann folgendermafRen
formuliert werden: Gegeben ein n € IN, bestimme alle Gruppen mit n Elementen bis auf Isomor-
phie. Damit ist gemeint: Bestimme eine Zahl r(n) und Gruppen Gy, G, ..., G,(,) mit der Eigen-
schaft, dass jede Gruppe G mit |G| = n zu genau einer dieser Gruppen isomorph ist.

Aus der Formulierung ergibt sich unmittelbar, dass in der Liste der r(n) Gruppen fiir 1 < i, j < r(n) nur dann G; = G;
gilt, wenn i = j ist. Mit Hilfe der Theorie, die wir hier entwickeln, werden wir zeigen kénnen

* Ist p eine Primzahl, dann ist jede Gruppe G mit |G| = p isomorph zu Z/pZ. Es gilt also r(p) = 1.

* Fiir jede Primzahl p gilt: Jede Gruppe G mit |G| = p? ist entweder isomorph zu Z/p?Z oder isomorph zu
Z/pZ x Z./pZ. Es gilt also r(p?) = 2.

* Fiir jede ungerade Primzahl p gilt auerdem: Jede Gruppe der Ordnung 2p ist entweder isomorph zu Z/2pZ
oder zur Diedergruppe D,,. Es gilt also auch r(2p) = 2.




Des Weiteren werden wir in der Lage sein, alle Gruppen mit < 15 Elementen bis auf Isomorphie zu bestimmen. Das
Ergebnis kann in der folgenden Tabelle zusammengefasst werden.

| n | r(n) | Gruppen bis auf Isomorphie
1| 1 |z/1z
2 1 |Z/27Z
3 1 | Z/3%Z
4 | 2 |Z/AZ, Z/2Z x 7./]27Z
5 1 | Z/57Z
6 2 |Z/6Z, S,
7 1 |Z/7Z
8 5 | Z/8Z, 7./AZ x 7./]2Z, (Z]27.)*, D,, Qg
9 2 |Z/97, 7./]37. x Z.]3Z
10| 2 |z/10Z, Ds
11| 1 |z/11Z
12| 5 | Z/127, Z./]27. x 2|67, D¢, A4, Z2./37. % Z./4Z.
13| 1 |z/137
14| 2 | Z/14Z, D,
15| 1 |z/15Z

Dabei bezeichnet Qg die sog. Quaternionengruppe bestehend aus der achtelementigen Menge {£E,+I,+J,+K} C
GL,(C) mit den Matrizen

1 0 —i 0 0 -1 0 i
E = , I= . , J= und K=/ . .
0 1 0 i 1 0 i O

Bei Z/37. % 7./ 47 handelt es sich um ein semidirektes Produkt, eine Verallgemeinerung des direkten Produkts aus
diesem Kapitel, das wir zu einem spéteren Zeitpunkt noch definieren werden.




§2. Untergruppen und der Satz von Lagrange

Zusammenfassung. Eine Untergruppe ist eine Teilmenge U einer Gruppe G mit der Eigenschaft, dass e; in
U liegt, und mit g,h € U auch gh und g~! in U enthalten sind. Durch diese Bedingungen ist sichergestellt,
dass auch U die Struktur einer Gruppe besitzt. Jeder Teilmenge S einer Gruppe G kann eine Untergruppe
(S) zugeordnet werden. Es handelt sich dabei um die kleinste Untergruppe von G, die S enthélt. Oft reicht
eine recht kleine Teilmenge S aus, um sogar ganz G zu erzeugen; bei den symmetrischen Gruppen S,, gentigt
beispielsweise eine zweielementige Menge. Untergruppen, die von einem einzigen Element erzeugt werden,
nennt man zyklisch.

Der Satz von Lagrange besagt, dass bei einer endlichen Gruppe G die Ordnung jeder Untergruppe U ein Teiler
von |G| ist. Der Beweis beruht auf der Beobachtung, dass jede Untergruppe U eine Zerlegung der Gruppe in
gleich grofde Teilmengen ermoglicht, die sog. Links- und Rechtsnebenklassen der Untergruppe. Wir wiederho-
len den bereits aus der Linearen Algebra bekannten Zusammenhang zwischen Zerlegungen und Aquivalenz-
relationen. Fiir den praktischen Umgang mit Nebenklassenzerlegungen ist das Konzept der Reprdsentantensy-
steme hilfreich.

Wichtige Grundbegriffe Zentrale Siitze
— n-te Potenz eines Gruppenelements (n € Z) ° — Gruppen-Eigenschaft der Untergruppen
— Definition der Untergruppen — Existenz und Eindeutigkeit der von einer Teilmenge

. S C G erzeugten Untergruppe (S)
- Erzeugendensysteme einer Gruppe

. — Vertauschbarkeit von Permutationen mit disjunktem
— zyklische Gruppe i
Trager

— Konjugation von Gruppenelementen
Jus PP — Satz von Lagrange

— Links- und Rechtsnebenklassen einer Untergruppe .
gruppe - _ Kleiner Satz von Fermat

— Représentantensystem

— Index (G : U) einer Untergruppe

Bereits in der Analysis-Vorlesung wurde die n-te Potenz eines Korperelements fiir alle n € Z definiert. Die Definition
lésst sich problemlos auf die Elemente einer Halbgruppe bzw. eines Monoids iibertragen.

Definition 2.1 Ist (G, ) eine Halbgruppe und g € G ein beliebiges Element, dann definiert
man rekursiv g! = g und g"*! = g" x g fiir alle n € IN. Ist (G, *) ein Monoid, dann setzt man
g% = e;. Ist g dariiber hinaus invertierbar, dann setzt man g™ = (g")™* fiir alle n € IN und hat
damit insgesamt g" fiir alle n € Z definiert.




Lemma 2.2 Sei (G, %) eine Halbgruppe.

m+n

(i) Fiir alle ge Gund m,ne N gilt g™ * g" = g™ und (g™)" = g™".

(ii) Sind g,h € G vertauschbare Elemente, gilt also gxh = h* g, dann folgt (g *h)" = g"«h"
fir g,he Gund ne N.

(iii) Ist allgemeiner {gy, ..., &, A1, ..., h,} eine Menge in G bestehend aus paarweise vertausch-
baren Elementen (mit r € IN), dann gilt die Regel

(gy*..xg)x(hyx...xh,) = (gy*xhy)*..x(g,xh)

und auBerdem (g; ... % g, )™ = g7" *...x g".

In einem Monoid gelten alle Regeln entsprechend fiir m, n € IN, im Falle invertierbarer Elemente
g,h firm,neZ.

Den Beweis dieses Lemmas behandeln wir in den Ubungen.

Liegt die Halbgruppe (G, +) in additiver Schreibweise vor, dann schreibt man ng statt g". Die rekursive Definition
der n-ten Potenz lautet dann 1 g = g und (n+ 1)g = ng + g, und die {ibrigen Rechenregeln nehmen die folgende
Form an.

mg+ng=(m+n)g , n(mg)=(mn)g , n(g+h)=ng+nh ,
(g1 +...+g )+ +...+h)=(g+h)+...+(g-+h.) , g+.+g=g+..+g ,
m(g,+...+g,)=mg; + ...+ mg,.

Man beachte, dass die dritte bis sechste Regel wiederum die Vertauschbarkeit der Elemente erfordert. Allerdings
hatten wir ja bereits bemerkt, dass die additive Schreibweise nur bei kommutativen Strukturen verwendet wird.

Definition 2.3 Sei (G, -) eine Gruppe. Eine Teilmenge U C G wird Untergruppe von G genannt,
wenn e in U liegt und fiir alle a, b € U auch die Elemente a- b und a ! in U liegen.

Die Schreibweise U < G bedeutet, dass U eine Untergruppe von G ist.
Wir erginzen die Definition um zwei Bemerkungen.

(1) In der Definition enthalten ist die Bedingung, dass U eine unter der Verkniipfung - abgeschlossene Teilmenge
ist. Wie in § 1 ausgefiihrt, erhdlt man somit durch Einschrankung eine Verkniipfung -; auf U.

(2) Unmittelbar aus Definition ergibt sich auch, dass fiir alle a € U und m € Z auch a™ in U enthalten ist, und
das fiir jedes r € IN mit aq, ..., a, € U auch das Produkt a; - ...-a, in U enthalten ist. Beide Aussagen zeigt man
durch einfache Induktionsbeweise.




An die Bemerkung (1) schlief3t sich folgende Feststellung an, durch den Begriff ,,Untergruppe® letztlich rechtfertigt.

Proposition 2.4 Das Paar (U, -y) ist eine Gruppe.

Beweis: Die Verkniipfung -; stimmt auf ihrem gesamten Definitionsbereich mit - iiberein. Wieder iibertragt sich das
Assoziativgesetz von (G, -) auf (U, -y), d.h. fir alle a,b,c € U gilt (a-y b) -yc=(a-b)-c=a-(b-c)=a-yz(b-yc)
fiir alle a, b,c € U. Auf Grund der Voraussetzung e; € U und wegen e; -y a =e;-a =a,d -yeg =da-e; = a ist
e; ein Neutralelement der Halbgruppe (U, -;); die Halbgruppe ist also ein Monoid. Fiir jedes a € U ist auch a ! in
U enthalten. Die Gleichungen a-ya™! =a-a=-e; und a! -y a = a™! - a = e zeigen jeweils, dass a im Monoid
(U, -y) ein invertierbares Element ist, und das Inverse von a in (G, -) zugleich das Inverse von a in (U, -;;). Insgesamt
ist (U, -yy) also tatséchlich eine Gruppe. m|

Bereits im ersten Kapitel sind uns eine Vielzahl von Untergruppen begegnet.

(1) Ist G eine beliebige Gruppe, dann sind {e;} und G Untergruppen von G. Man bezeichnet {e;} auch als die
triviale Untergruppe von G. Fiir beide Mengen kontrolliert man unmittelbar, dass die Untergruppen-Bedin-
gungen erfiillt sind.

(i) Die Gruppe (Z, +) ist eine Untergruppe von (Q, + ), und diese wiederum ist eine Untergruppe von (R, +).

(iii) Fiir jedes n € N ist die alternierende Gruppe A, eine Untergruppe der symmetrischen Gruppe S,,. Des Weiteren
ist die vierelementige Menge

v, = {id,(12)(34),(13)(24),(14)23)}

ihrerseits eine Untergruppe von A,. Man nennt sie die Kleinsche Vierergruppe. Zum Nachweis der Untergruppen-
Eigenschaft bemerken wir zunédchst, dass das Neutralelement id von A, in V, liegt. Die Verkniipfungstabelle

o id (12)(34)|(13)24) | (14)(23)

id id (12)34)|(13)24) | (14)(23)
(12)34) || (1234 id 14)23)|13)24)
13)24) | (13)24) | (14)(23) id (12)(34)
14)23)|01423)|(13)249) | (12)34) id

hat nur Eintrédge in V,; dies zeigt, dass V, eine beziiglich o abgeschlossene Teilmenge von A, ist. Auflerdem
rechnet man unmittelbar nach, dass

(2E49)? = (132497 = (14923) = id
gilt und somit neben id auch jedes andere Element in V, sein eignes Inverses ist. Fiir jedes o € V, gilt also
insbesondere ™! € V,, wodurch auch die letzte Untergruppen-Eigenschaft nachgewiesen ist.

(iv) Die spezielle lineare Gruppe SL,,(K) ist eine Untergruppe der allgemeinen linearen Gruppe GL,(K) (fiir jeden
Korper K und n € IN). Ebenso ist O(n) eine Untergruppe von GL,(IR), und ¢(n) ist eine Untergruppe von
GL,(C).

(v) Die Gruppe B, der Bewegungen ist eine Untergruppe von Per(R"), und B ist eine Untergruppe von 5,, und
wiederum auch von Per(IR").




(vi) Fiir jede Teilmenge T C R" ist die Symmetriegruppe Sym(T) eine Untergruppe von 3,, und Sym™*(T) ist eine
Untergruppe von B;.

Um die Struktur einer Gruppe G zu verstehen, ist es wichtig, einen Uberblick iiber die Untergruppen von G zu
erhalten. Als nichstes befassen wir uns deshalb mit der Frage, wie sich die Untergruppen auf moglichst effiziente
Weise spezifieren lassen. Dies fiihrt uns auf den Begriff des Erzeugendensystems.

Proposition 2.5 Sei (G, -) eine Gruppe, und sei (U;),; eine Familie von Untergruppen von G.

Dann ist auch U = ﬂ U; eine Untergruppe von G.

iel
Beweis: Weil jedes U; eine Untergruppe von (G, ) ist, gilt e; € U; fiir alle i € I und damit auch e; € U. Seien nun

a,b € U vorgegeben. Dann gilt a,b € U, fiir alle i € I, und aus der Untergruppe-Eigenschaft von U; folgt jeweils
ab € U; und a™! € U, fiir jedes i € I. Daraus wiederum folgt ab€ U und a™! € U. O

In vielen Situationen ist es wiinschenswert, Untergruppen auf moéglichst kurze und einfache Art und Weise zu spezi-
fizieren. Eine einfache Moglichkeit ist die Beschreibung von Untergruppen durch Erzeugendensysteme.

Satz 2.6 Sei G eine Gruppe und S C G eine Teilmenge. Dann gibt es eine eindeutig bestimmte
Untergruppe U von G mit den folgenden Eigenschaften.

@»H U2S

(i) Ist V eine weitere Untergruppe von G mit V 2 S, dann folgt V 2 U.

Beide Bedingungen lassen sich zusammenfassen in der Aussage, dass U die kleinste Untergruppe
von G ist, die S als Teilmenge enthilt.

Beweis: Existenz: Sei (U;) die Familie aller Untergruppen von G mit U; 2 S. Dann ist nach Proposition [2.5]auch
U =(");; U; eine Untergruppe von G, und aus U; 2 S fiir alle i € I folgt U 2 S. Sei nun V eine weitere Untergruppe
von G mit V 2 S. Dann gilt V = U; fiir ein j € I, und weil nach Definition U C U; fiir alle i € I gilt, folgt V 2 U.

Eindeutigkeit: Seien U,U’ zwei Untergruppen von G, die beide (i) und (ii) erfiillen. Dann gilt U 2 S und U’ 2 S.
Aus der Eigenschaft (ii) fiir U folgt U’ 2 U, und aus Eigenschaft (ii) fiir U’ folgt U 2 U’, insgesamt also U = U’. 0O

Definition 2.7 Die Untergruppe U aus Satzwird die von S erzeugte Untergruppe genannt
und mit (S) bezeichnet. Ist V eine beliebige Untergruppe von G, dann wird jede Teilmenge T
von G mit V = (T) ein Erzeugendensystem von V genannt.

Ist S eine einelementige Teilmenge einer Gruppe G, S = {g} fiir ein g € G, dann verwendet man die Notation {(g) an
Stelle der korrekten, aber umstindlichen Schreibweise ({g}). Auch bei endlichen Mengen mit mehr Elementen wird
haufig an Stelle von ({g4, ..., g,}) die einfachere Notation (g, ..., g,) verwendet. Wir betrachten nun eine Reihe von
Beispielen fiir Erzeugendensysteme von Untergruppen.




(i) In jeder Gruppe G gilt (&) = {e;}. Denn wie wir bereits festgestellt haben, ist {e;} eine Untergruppe, und
diese enthalt trivialerweise & als Teilmenge. Andererseits ist e in jeder Untergruppe U von G enthalten, also
ist {eg} eine Teilmenge jeder Untergruppe V von G mit V 2 @.

(ii) Es ist leicht zu sehen, dass die Gruppe (Z, +) von der einelementigen Menge {1} erzeugt wird, denn jedes
Element k € Z kann in der Form k - 1 dargestellt werden, wobei k - 1 die k-te Potenz des Elements 1 in
additiver Schreibweise bedeutet. Ebenso ist {—1} ein Erzeugendensystem, denn jedes k € Z hat die Darstellung
k = (—k) - (—1). Allgemein gilt (m) = mZ = {ma | a € Z} fiir jedes m € IN,,.

Wir werden spater sehen, dass alle Untergruppen von (Z,+) diese Form haben. Dass sich alle Untergruppen
einer Gruppe so leicht angeben lassen, ist leider nur sehr selten der Fall.

Definition 2.8 Eine Gruppe G wird zyklisch genannt, wenn ein g € G mit G = (g) existiert.
Existiert eine endliche Teilmenge S € G mit G = (S), dann nennt man G eine endlich erzeugte
Gruppe.

Die zyklischen Gruppen werden wir in § 3 ausfiihrlich studieren. Ein einfaches Beispiel ist, wie wir oben gesehen
haben, die Gruppe (Z, +). Die endlich erzeugten Gruppen sind leider nicht so {ibersichtlich, aber in § 5 werden wir
zumindest die endlich erzeugten abelschen Gruppen bis auf Isomorphie klassifizieren. Es ist relativ leicht zu sehen,
dass beispielsweise die Gruppe (Q, +) nicht endlich erzeugt ist. Den Beweis behandeln wir in den Ubungen.

Unser néchstes Ziel besteht darin, die in einer Untergruppe der Form (S) liegenden Elemente explizit anzugeben. Dazu
verwenden wir sowohl die im Anschluss an Definition [2.3|formulierte Eigenschaft von Untergruppen als auch die in
Proposition[1.13|formulierten Rechenregeln fiir invertierbare Elemente. Um die folgenden Aussagen zu vereinfachen,
fiihren wir die folgende Konvention ein: Das Neutralelement e einer Gruppe G ist bei uns stets ein Produkt aus null
Faktoren. Der Ausdruck g; - ... g, steht also im Fall r = O fiir das Element e.

Satz 2.9 Sei G eine Gruppe und S C G eine Teilmenge.
(i) Die Elemente von (S) sind gegeben durch
() = {g' g7 lreNy, g,...8 €S, e, €{1} fir1 <k <r}.

(ii) Sei S endlich, S = {g, ..., gn} fiir ein m € IN;, und setzen wir voraus, dass jedes Element
der Menge S mit jedem anderen vertauschbar ist. Dann gilt

(S)={gy" .- g |y € Zfiir 1 <k <m}.

Beweis: zu (i) Sei U die Teilmenge auf der rechten Seiten der Gleichung. Zunéchst iiberpriifen wir, dass U eine
Untergruppe von G ist. Da wir in der Definition von U Produkte der Lange r = O eingeschlossen haben, ist das
Neutralelement e; in U enthalten. Seien nun g, g’ € U vorgegeben. Dann gibt es nach Definition Elemente r,s € IN,),




81,8 81> 8 €S und &1, ...,&,,¢€],...,6, € {£1}, so dass g = gy g und g’ = (g{)g1 .- (g% erfiillt ist.
Offenbar sind die Elemente

gg'=gy' g (gD (gD und  gTl=gelg”
nach Definition ebenfalls in U enthalten. Also handelt es sich bei U tatsachlich um eine Untergruppe von G. Aullerdem
enthélt sie S als Teilmenge: Ist g € S beliebig vorgegeben, dann setzt man g; = g, €; = 1 und erhélt g = gil ev.

Nun miissen wir noch zeigen, dass U die kleinste Untergruppe von G mit U 2 S ist. Sei V eine beliebige Untergruppe
von G mit V 2 S; nachzuweisen ist V 2 U. Zunéchst bemerken wir, dass das Produkt der Liange r = 0 in V enthalten
ist, denn als Untergruppe von G enthélt V das Neutralelement e;. Seiennunr € N, g4, ..., g, € Sund ¢4, ..., €, € {£1}.
Wegen S C V gilt dann auch g,...,g, € V. Weil V eine Untergruppe von G ist, folgt gZ" eV firl <k <rund
schlieBlich gil -...- g € V. Damit ist der Nachweis der Inklusion U € V erbracht.

zu (ii) Hier gehen wir nach demselben Schema vor und zeigen zunichst, dass die Menge auf der rechten Seite der

Gleichung, die wir mit U bezeichnen, eine Untergruppe von G ist. Durch Setzen von e, = 0 fiir 1 < k < m sieht man,

/

dass U das Neutralelement enthlt. Seien nun g, g’ € U vorgegeben. Dann gibt es Elemente ey, ...,e,, e}, ...,e,, € Z

mit g = gil “ergimund g’ = gil -...- g Es folgt

/ e/ / / +/ m+:n
g8 = (g5 8Ny &) = (878 (gmgm) = gy tregm
und
g = (g = @) (g)T = gmg = g gy el

Damit ist der Nachweis der Untergruppen-Eigenschaft abgeschlossen. Nun zeigen wir, dass U 2 S gilt. Sei dazu
k € {1,...,m} vorgegeben. Setzen wir e, = 1 und e; = 0 fiir 1 <i < m miti # k, dann erhalten wir g, = gil-...-g,‘j;" ev.
Sei nun V eine beliebige Untergruppe von G mit V 2 S. Dann gilt g, € V fiir 1 < k < m. Sind ey,...,e,;, € Z
beliebig vorgegeben, dann folgt auf Grund der Untergruppen-Eigenschaft gik € V fiir 1 < k < m und schlief3lich
gil “...* grm € V. Damit ist der Nachweis von U C V abgeschlossen. m|

Folgerung 2.10

(i) Ist G eine Gruppe und g € G, dann gilt (g) = {g¢ | e € Z}.
(i) Jede zyklische Gruppe ist abelsch.

Beweis: Die Aussage (i) ist der Spezialfall von Satz (i) mit m = 1. Zum Beweis von (ii) sei G eine zyklische
Gruppe und g; € G ein Element mit G = (g;). Sind g,h € G beliebig vorgegeben, dann gilt nach (i) g = gI" und
h = g} fiir geeignete m,n € Z. Es folgt gh = g"g} = gI"*" = g™ = g1g" = hg. O

Als konkretes Beispiel betrachten wir nun Erzeugendensysteme der symmetrischen Gruppen S,, und der alternieren-
den Gruppen A,,. Fiir den Beweis benétigen wir den folgenden Begriff: Der Tréiger supp(c) eines Elements o € S,
ist die Menge aller j € M,, mit o(j) # j. Wird o als Produkt disjunkter Zykel dargestellt, so besteht der Tréger aus
genau denjenigen Elementen, die in einem der Zykel vorkommen.




Das Konzept des Tragers ist vor allem aus folgendem Grund wichtig: Seien o, T € S,, mit supp(c) N supp(7) = &.
Dann sind die Elemente o und © vertauschbar, d.h. es gilt

ooT = TOCO.

Zum Beweis bemerken wir vorweg: Fiir jedes o € S,, und jedes k € M,, gilt k € supp(c) genau dann, wenn auch o (k)
in supp(o) liegt. Denn wire k € supp(o) und o (k) ¢ supp(c), dann wiirde o (k) = o(o(k)) gelten, im Widerspruch
zur Bijektivitdt von o. Der Fall k ¢ supp(o) und o (k) € supp(c) kann ebenfalls nicht eintreten, denn aus k ¢ supp(o)
folgt o(k) = k.

Nun {iberpriifen wir, dass unter der Voraussetzung supp(c) N supp(7t) = @ die Abbildungen o o T und 7 o o auf
jedem k € M, iibereinstimmen. Fiir k ¢ supp(c) U supp(t) gilt (o o 7)(k) = k = (7 o o)(k). Betrachten wir nun
den Fall k € supp(o) und k ¢ supp(t). Dann gilt (o o 7)(k) = o(7(k)) = o(k) und wegen o (k) € supp(c) und
o (k) ¢ supp(t) auch (7 o o)(k) = t(o(k)) = o(k). Der Fall k ¢ supp(c) und k € supp(7) lduft analog. Der Fall
k € supp(o) und k € supp(7) schliellich kann auf Grund der Voraussetzung nicht eintreten.

Satz 2.11 Sein € IN beliebig.

(i) Die Menge der Transpositionen bildet ein Erzeugendensystem von S,,.

(ii) Die Menge der 3-Zykel bilden ein Erzeugendensystem von A,,.

Beweis: zu (i) Wir beweisen durch vollstindige Induktion tiber |supp(c)|, dass jedes o € S, als Produkt von
Transpositionen dargestellt werden kann, wobei wir id wie immer als ,leeres“ Produkt mit null Faktoren ansehen.
Im Fall [supp(o)| = 0 gilt supp(o) = @ und o =1id, also ist hier nichts zu zeigen. Elemente o € S, mit |supp(c)| =1
existieren nicht, und die Elemente mit |[supp(c)| = 2 sind genau die Transpositionen.

Seinunk € {3, ...,n} und o € §,, mit |supp(c)| = k, und setzen wir die Aussage fiir Werte < k per Induktionsannahme
voraus. Sei i € supp(o) beliebig gewéhlt und 7 = (i o(i))oo. Miti auch o (i) in supp(c’) enthalten. Damit ist klar, dass
jedes k ¢ supp(o) auch nicht in supp(7) enthalten ist, also supp(7) € supp(o) gilt. Andererseits ist offenbar (i) =i,
also i € supp(o) \ supp(7) und deshalb sogar supp(t) & supp(c). Wir kénnen damit die Induktionsvoraussetzung
auf T anwenden und erhalten eine Darstellung T = 7, o... o 7, von 7 als Produkt von Transpositionen 7. Folglich
istauch o = (i 0(i)) Yot = (i 0(i)) ' 0 75 0... 0 T, als Produkt von Transpositionen darstellbar.

zu (ii) Sei T C S, die Menge der 3-Zyklen in S,. Wir zeigen zunéichst, dass jedes o € A, das Produkt von 3-
Zyklen dargestellt werden kann und beweisen damit die Inklusion A, € (T). Nach (i) besitzt o eine Darstellung
0 = Ty 0...0 7, als Produkt von Transpositionen, und wegen sgn(c) = 1 und sgn(7;) = —1fiir 1 < k < ristr
gerade. Nun gilt allgemein fiir je zwei Transpositionen mit einem gemeinsamen Element im Tréger die Gleichung
(i j)o(i k) =(i k j), wie man unmittelbar {iberpriift. Stimmen zwei Elemente im Tréger iiberein, dann gilt offenbar
(i j)o(ij)=id. Sind (i j) und (k £) schlief8lich disjunkte Zykel, dann gilt (i j) o (k £) = (i k j)o (i k £). Somit kann
jeder der Faktoren 7,0 7,, T307y, ..., T,_; © T, als Produkt von 0 bis zwei 3-Zyklen dargestellt werden. Damit ist der
Beweis von A, C (T) abgeschlossen. Umgekehrt hat jeder 3-Zykel ein positives Signum, somit gilt T € A,,. Da (T) die
kleinste Untergruppe ist, die T als Teilmenge enthélt, folgt (T) € A,, und insgesamt (T) =A,,. O

Wie wir gleich sehen werden, gentigen sogar zwei Elemente, um die gesamte Gruppe S,, zu erzeugen; dieses Resultat
wird auch spéter in der Galoistheorie benétigt. Hierfiir benétigen wir den Begriff der Konjugation. Sind g und h
Elemente einer Gruppe G, dann bezeichnet man ghg™! als das Element, dass durch Konjugation h mit g entsteht.




Proposition 2.12 Fiir jedes n € IN ist die Menge {o, T} bestehend aus den beiden Elementen
o =(12..n)und T = (1 2) ein Erzeugendensystem von S,. Ist n eine ungerade Primzahl,
dann wird S, sogar von jeder zweielementigen Menge bestehend aus einem n-Zykel und einer
Transposition erzeugt.

Beweis: Fiir das Verstdndnis dieses Beweises ist es hilfreich, sich vorher die Auswirkung der Konjugation eines
Elements von S, mit einem anderen Element klar zu machen. (Wir gehen im Kapitel iiber die Klassengleichung
detailliert darauf ein.) Beispielsweise entsteht durch Konjugation von T mit o das Element

oto ! = (c(Do(2) = (23)

Ebenso erhilt man durch Konjugation von T mit o2, o, ... die Transpositionen (3 4), (4 5), ... und durch Konjugation
von T mit o™ 2 schlieBlich die Transposition (n—1 n). Seinun i € {1, ...,n— 1} vorgegeben. Dann gilt

(i+1i+2)o(i i+1)o(i+1 i+2)=(i+2), ((+2i+3)o(i i +2)o(i+2i+3)=( i+3) usw

Insgesamt kann auf diese Weise jedes Element (i i+ k) mit i + k < n gebildet werden. Dies zeigt, dass (o, T) die
gesamte Menge T C S, aller Transpositionen enthilt. Es folgt (o, ) = (T), und wegen (T) = S, nach Satz ist
damit die erste Aussage bewiesen.

Der Beweis der zweiten Aussage ist recht umfangreich; dariiber hinaus miissen wir im hinteren Teil auf ein wenig
Zahlentheorie und Kongruenzrechnung zuriickgreifen, die wir erst spater in der Vorlesung entwickeln. Sei p = n eine
ungerade Primzahl, o = (i; 1 ... i,) ein p-Zykel und 7 eine beliebige Transposition. Definieren wir p € S, durch

-1
1 2 ves D
P = . . . >
1T 1y lp

dannist das Element & = pop~! gegeben durch & = (p(i;) ... p(i,)) =(12...p). Seiaulerdem 7 = oTp L. Wieman
leicht tiberpriift, ist durch die Konjugationsabbildung ¢,(a) = pap ! ein Automorphismus von S, definiert. Es gilt
¢,({0,7)) =(¢,(0),9,(7)) = (5, 1), denn einerseits ist {G, T} eine Teilmenge von ¢ ,({c, 7)), und andererseits gilt
{o,7} € ¢.1((5, 7)), woraus (0, 7) € ¢, ({5, 7)) und ¢, ({0, 7)) = (G, 7) folgt. Wenn wir nun zeigen konnen, dass
(6,%) =S, gilt, dann folgt daraus (o, T) = d);l(S ») = ¢,-1(S,) =S,. Aus diesem Grund diirfen wir im nachfolgenden
Teil des Beweises o, T durch &, T ersetzen und annehmen, dass o = (1 2 ... p) gilt.

Sei T = (i j) miti,j € M, und i < j. Dann ist auch das Element olitg=! = (1 j—i+1)in (o, 7) enthalten. Nach
Ersetzung von T durch dieses Element konnen wir annehmen, dass 7 die Form (1 i) mit 1 < i < p hat. Wir zeigen
nun: Sind k,r € Nmit 1 <k < p—1und r € My, und gilt r = 1+ k(i — 1) mod p, dann liegt das Element (1 r)
in (o, 7). Wir beweisen die Aussage durch vollstindige Induktion iiber k; die Zahl r ist durch k jeweils eindeutig
festgelegt. Fiir k = 1 ist r = i, und dass (1 i) in (o, T) liegt, ist bereits bekannt. Setzen wir nun die Aussage fiir ein
k € N mit 1 <k < p—1 voraus, und seien r,s € M,, die eindeutig bestimmten Elemente mit r =1+ k(i — 1) mod p
unds =1+ (k+1)(i—1)mod p. Ist r + (i — 1) < p, dann gilt s = r + (i — 1) und somit o 1(1 i)o*™ = (r s).
ImFallr+(i—1)>pgilts=r+(i—1)—p und " 'P(1 i)oo'~ = (r 5). In beiden Fillen zeigt die Gleichung
(r s)(1 r)(r s)=(15s), dass auch (1 s) in (o, ) enthalten ist.

Wegen ggT(i — 1, p) = 1 existieren nun nach dem Lemma von Bézout k,{ € Z mit k(i —1) + {p = 1. Dabei ist p kein
Teiler von k, da aus der Gleichung ansonsten p | 1 folgen wiirde. Sei x € Z so gewihlt, dass 1 < k+ px < p—1 gilt.
Dann folgt (k+ px)(i—1)+ ({ —x(i—1))p = 1; nach Ersetzung von k durch k + px und £ durch £ —x(i — 1) kénnen
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wir also 1 < k < p—1 voraussetzen. Wenden wir nun die im vorherigen Abschnitt bewiesene Aussage auf dieses k an
und setzen wir r =2, dann gilt r € M,, r =1+1=1+k(i—1)+{p=1+k(i—1) mod p und (1r)=(12) € (o, 7).
Wegen 0 = (1 2 ... p) € (o, 1) enthilt (o, T) auf Grund der ersten Aussage der Proposition also ein vollstandiges
Erzeugendensystem von S,,. a

Wenden wir uns nun dem zweiten Thema dieses Kapitels zu, dem Satz von Lagrange.

Definition 2.13 Sei (G, -) eine Gruppe und U eine Untergruppe. Eine Teilmenge von G, die mit
einem geeigneten g € G in der Form

gu = {gulueU}

geschrieben werden kann, wird Linksnebenklasse von U genannt. Ebenso bezeichnet man die
Teilmengen der Form Ug = {ug | u € U} mit g € G als Rechtsnebenklassen von U.

Desweiteren flihren wir die Bezeichnung G/U fiir die Menge der Linksnebenklassen und U\G fiir die Menge der
Rechtsnebenklassen von U ein. Es gilt also G/U = {gU | g € G} und U\G = {Ug | g € G}. Sei beispielsweise G = S
und U = {(1,2)) = {id, (1 2)}. Dann sind die Linksnebenklassen von U gegeben durch

idoU = {idoid,id o (1 2)} = {id, (1 2)}
(12)oU = {(12)0id,(12)o(12)} = {(1 2),id}
(13)oU = {(13)0id,(13)o(12)} = {(13),(123)}
(23)oU = {(23)0id,(23)0o(12)} = {(23),(132)}

(123)oU = {(123)0id,(123)0(12)} = {(123),(13)}
(132)oU = {(132)0id,(132)0(12)} = {(132),(23)}

Es gilt also S5 /U = { {id, (1 2)}, {(13),(123)}, {(23),(132)}}.

Graphisch kann die Menge S;/U der Linksnebenklassen folgendermaf3en dargestellt werden.
Sy /U
U

a3u @23)U

Die Elemente von S;/U sind die Linksnebenklassen U, (1 2)U und (2 3)U, also die blau gezeichneten Objekte. Die
Permutation (1 2 3) ist ein Element von S; und auch ein Element der Linksnebenklasse (1 3)U, die ja ihrerseits eine
Teilmenge von S5 ist. Aber (1 2 3) ist kein Element von S;/U, denn die Elemente von S;/U sind nach Definition
bestimmte Teilmengen von Ss, keine Elemente von S;!




Offenbar ist es moglich, dass zwei Nebenklassen gU und hU iibereinstimmen, ohne dass g = h ist. In unserem
Beispiel gilt etwa (1 3)o U = (1 2 3) o U. Nach dem gleichen Schema kénnen wir auch die Rechtsnebenklassen von
U bestimmen.

Uoid = {idoid, (1 2)oid} = {id,(12)}
Uo(12) = {ido(12),(12)0o(12)} = {(12),id}
Uo(13) = {ido(13),(12)0(13)} = {(13),(132)}
Uo(23) = {ido(23),(12)0(23)} = {(23),(123)}
Uo(123) = {ido(123),(12)0(123)} = {(123),(23)}
Uo(132) = {ido(132),(12)0(132)} = {(132),(13)}

Die Menge der Rechtsnebenklassen U\G ist also gegeben durch {U , {(1 3),(1 3 2)}, {(2 3),(1 2 3)}}.

Das Beispiel zeigt, dass Links- und Rechtsnebenklassen im Allgemeinen nicht iibereinzustimmen brauchen. Beispiels-
weise ist {(1 3), (1 2 3)} zwar eine Links- aber keine Rechtsnebenklasse von U. Ist U aber Untergruppe einer abelschen
Gruppe, dann gilt gU = Ug fiir alle g € G. Ist ndmlich h € gU vorgegeben, dann gilt h = gu = ug fiir ein u € U, und
es folgt h € Ug. Damit ist gU C Ug nachgewiesen, und die umgekehrte Inklusion beweist man genauso.

Wir bemerken noch, dass jedes g € G sowohl in der Linksnebenklasse gU als auch in der Rechtsnebenklasse Ug
enthalten ist. Dies folgt direkt aus den Gleichungen g = g - e; = e - g und der Tatsache, dass e in U liegt.

Bei unserem Beispiel féllt auf, dass jede Links- oder Rechtsnebenklasse genauso viele Elemente enthilt wie die Un-
tergruppe U selbst. Diese Beobachtung ist auch im allgemeinen Fall zutreffend.

Lemma 2.14 Sei G eine Gruppe, U eine Untergruppe von G und g € G ein beliebiges Element.
Dann sind die Abbildungen

Ti :U—-gU,h—gh und "L'; :U—->Ug, h—hg jeweils bijektiv.

Ist U endlich, dann gilt also |U| = |gU| = |Ug| fiir alle g € G.

Beweis: Wir beschranken und auf den Beweis der Surjektivitdt und der Injektivitdt der Abbildung ‘L'Zg .Seih e gU
vorgegeben. Dann existiert nach Definition von gU ein u € U mit h = gu. Es gilt also Tg (u) = gu = h. Damit ist
die Surjektivitdt bewiesen. Seien nun u;,u, € U mit Tg(ul) = T‘é(uz). Dann folgt u; = g 'gu; = g_lfrg(ul) =
g_lrﬁ, (u,) = g~ ' gu, = u,. Dies zeigt, dass 7¢ auch injektiv ist. Die letzte Aussage folgt unmittelbar aus der Tatsache,
dass zwei Mengen, zwischen denen eine Bijektion existiert, gleichméchtig sind. m|

Fiir das Hauptziel dieses Abschnitts, den Beweis des Satzes von Lagrange, ist die Beobachtung entscheidend, dass die
Linksnebenklassen in G/U eine Zerlegung der Menge G bilden, ein Begriff, den wir bereits aus der Linearen Algebra
kennen. Zur Erinnerung: Unter einer Zerlegung einer Menge X verstehen wir ein System Z C P(X) von Teilmengen
von X mit den Eigenschaften @ ¢ Z, UAezA =X und VA,B € Z:A# B = AN B = @; zwei verschiedene Mengen in
einer Zerlegung sind also disjunkt. Man vergewissere sich anhand des Beispiels vom Anfang des Kapitels mit G = S,
und U = ((1 2)), dass sowohl G/U als auch U\G in der Tat eine Zerlegung von Ss liefert.

Aus der Linearen Algebra wissen wir auch, dass der Begriff der Zerlegung mit dem Konzept der Aquivalenzrelation
eng verbunden ist. Eine Aquivalenzrelation = auf einer Menge X ist eine reflexive, symmetrische und transitive
Relation. Fiir jedes x € X wird [x] = {y € X | x = y} die Aquivalenzklasse von x beziiglich = genannt. Zwischen den
Aquivalenzrelationen auf einer Menge X und den Zerlegungen von X besteht nun der folgende Zusammenhang: Ist
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= eine Aquivalenzrelation auf X, so bilden die Aquivalenzklassen beziiglich = eine Zerlegung von X. Ist umgekehrt
Z eine Zerlegung von X, so erhdlt man durch

x=z;y & dAeZ:x,y€A

eine Aquivalenzrelation auf X. Fiir eine Menge X und eine Zerlegung Z von X gilt offenbar allgemein: Genau dann
ist X endlich, wenn sowohl | Z| als auch |A| fiir jedes A € Z endlich ist, und in diesem Fall ist dann die Gleichung
IX| = >,z |Al erfiillt. Diese einfache Beobachtung wird spéter beim Beweis des Satzes von Lagrange eine wichtige
Rolle spielen.

Lemma 2.15 Sei G eine Gruppe und U eine Untergruppe von G. Dann folgt fiir alle g,h € G
aus h € gU jeweils gU = hU.

Beweis: Setzen wir h € gU voraus. Dann gibt es ein u € U mit h = gu. Zum Nachweis der Inklusion ,,C“ sei h; € gU
vorgegeben. Dann gibt es ein u; € U mit h; = gu;, und es folgt h; = h(u'u,) € hU. Ist umgekehrt h; € hU, dann
gilt hy = hu,, fiir ein u, € U. Wir erhalten h; = g(u u,) € gU. O

Satz 2.16 Sei G eine Gruppe und U < G. Dann ist sowohl durch G/U als auch durch U\G eine
Zerlegung von G gegeben. Die zugehorigen Aquivalenzrelationen auf G sind definiert durch
g=heshegUbzw. g=. h& helUg.

Beweis: Wir beweisen die beiden Teilaussagen lediglich fiir die Menge G /U der Linksnebenklassen. Zunéchst zeigen
wir, dass es sich dabei um eine Zerlegung von G handelt, und tiberpriifen dafiir die drei definierenden Bedingungen,
die wir gerade wiederholt haben. Jede Teilmenge A € G/U hat die Form A= gU fiirein g € G,undes gilt g = g-e; €
gU wegen e; € U. Dies zeigt, dass A # @ gilt, die leere Menge in G/U also nicht vorkommt. Weil jedes g € G in
gU liegt, also einem Element von G/U, ist auch die Eigenschaft G = | J,. suA erfiillt. Seien nun A,B € G/U mit
ANB # @ vorgegeben, und sei h € AN B. Nach Lemma folgt daraus A = hU = B. Setzen wir fiir A,B € G/U
umgekehrt A # B voraus, dann muss also AN B = & gelten.

Nach Definition ist die zur Zerlegung G/U gehorende Aquivalenzrelation =, definiert durch die Bedingung, dass fiir
je zwei Elemente g,h € G jeweils genau dann g =, h erfiillt ist, wenn ein A € G/U mit g, h € A existiert. Aber wegen
Lemma [2.15| folgt aus g € A bereits A = gU, so dass g =, h also h € gU impliziert. Setzen wir umgekehrt h € gU
voraus, dann ist durch A = gU ein Element von G/U mit g,h € A gegeben, und es folgt g =, h. O

Im weiteren Verlauf bezeichnen wir mit X /= die Menge der Aquivalenzklassen einer Aquivalenzrelation =. Es handelt
sich also nach Definition um die Menge {[x] | x € X}.

Definition 2.17 SeiX eine Menge und = eine Aquivalenzrelation auf X . Eine Teilmenge R C X
wird Reprisentantensystem der Aquivalenzklassen von = genannt, wenn durch R — X/=,
x — [x] eine bijektive Abbildung gegeben ist. Mit anderen Worten, in jeder Aquivalenzklasse ist
genau ein Element aus R enthalten.




Im Beispiel G = S5, U = {(1 2)) von oben ist {id, (1 3),(2 3)} ein Reprasentantensystem von G/U. Gleiches gilt fiir
die Mengen {id, (1 2 3),(2 3)} und {(1 2),(1 3),(1 3 2)}. Die Wahl eines Reprasentantensystems ist also keineswegs
eindeutig.

Als néchstes zeigen wir, wie sich aus einem Reprasentantensystem der Linksnebenklassen ein Reprdsentantensystem
der Rechtsnebenklassen gewinnen lasst.

Proposition 2.18 Sei G eine Gruppe und U eine Untergruppe. Ist R ein Reprdsentantesystem
der Linksnebenklassen, dann ist R = {g™! | g € R} ein Reprisentantensystem der Rechtsneben-
klassen, und durch g — g~ ist eine Bijektion zwischen R und R’ definiert.

Beweis: Zu zeigen ist, dass fiir jedes h € G die Rechtsnebenklasse Uh genau ein Element aus R’ enthilt. Sei also
h € G vorgegeben. Zunichst beweisen wir, dass in Uh ein Element aus R’ liegt. Nach Voraussetzung enthilt die
Linksnebenklasse h™'U ein Element g € R. Es gibt also ein u € U mit g = h™'u. Daraus folgt g~! = u'h. Diese
Gleichung wiederum zeigt, dass die Rechtsnebenklasse Uh das Element g~ € R’ enthiilt.

Nehmen wir nun an, die Rechtsnebenklasse Uh enthilt die beiden Elemente hy,h, € R’. Dann gibt es u,v € U
mit h; = uh und hy, = vh. Nach Definition von R’ gibt es auferdem g;,g, € R mit g, = hy, g,' = h,. Es folgt
g1 =h{' =h7'u' und g, = h;' = h™'v~. Die Gleichungen zeigen, dass die Elemente g;,g, € R beide in der
Linksnebenklasse h~'U liegen. Weil R ein Reprisentantensystem der Linksnebenklassen ist, muss g; = g, gelten.
Daraus wiederum folgt h; = h,,.

Dass die Abbildung R — R/, g — g~ ! surjektiv ist, folgt direkt aus der Definition von R’. Andererseits folgt aus
g7t =h! sofort g = h, somit ist die Abbildung auch injektiv. O

Aus der Proposition folgt unmittelbar, dass zwischen G/U und U\G eine Bijektion existiert, die aus den Bijektionen
G/U — R — R’ - U\G zusammengesetzt ist. Dies bedeutet, dass die Mengen G/U und U\G gleichmichtig sind.

Definition 2.19 Sei G eine Gruppe und U eine Untergruppe. Die Méachtigkeit |G/U| der Menge
G/U wird der Index von U in G genannt und mit (G : U) bezeichnet.

Aus unserer Voriiberlegung folgt, dass man zur Definition des Index genauso gut die Méchtigkeit der Menge U\G der
Rechtsnebenklassen verwenden kénnte. Im Beispiel oben haben wir gesehen, dass es im Fall G = S; und U = {(1 2))
jeweils drei Links- und drei Rechtsnebenklassen gibt. Hier gilt also (G : U) = 3.

Satz 2.20 (Satz von Lagrange)

Sei G eine endliche Gruppe und U eine Untergruppe. Dann gilt |G| = (G : U)|U|. Insbesondere
ist die Ordnung |U| der Untergruppe immer ein Teiler der Gruppenordnung |G|.

Beweis: SeiR C G ein Reprasentantensystem der Linksnebenklassen. Weil nach Definition der Reprasentantensysteme
eine Bijektion R — G/U existiert, gilt |R| = |G/U| = (G : U). Nach Proposition ist G/U eine Zerlegung von G,

— 28 —



und nach Lemma gilt |gU| = |U| fiir alle Linksnebenklassen. Wir erhalten

Gl = >l = Dllgul = YUl = RI-Ul = (G:U)UL O

AEG/U g€R g<€R

Im Beispiel oben ist die Gleichung aus dem Satz von Lagrange offenbar erfiillt, denn im Fall G = S5, U = {(1 2)) gilt
|G| =6 und (G : U)|U| =3 -2 = 6. Die Untergruppe V = {(1 2 3)) in S5 ist von Ordnung 3, da (1 2 3) ein Element
der Ordnung 3 ist. Der Satz von Langrange liefert hier fiir den Index den Wert

Il _ 6

- = 2.

(G:V) e

Die Zerlegung einer Gruppe in ihre Linksnebenklassen liefert auch eine Aussage fiir beliebige, nicht notwendigerweise
endliche, Gruppen.

Folgerung 2.21 Sei G eine Gruppe und U eine Untergruppe. Genau dann ist G endlich, wenn
sowohl U als auch G/U endliche Mengen sind (und in diesem Fall gilt dann natiirlich der Satz
von Lagrange).

Beweis: ,,=“ Ist G endlich, dann ist U als Teilmenge von G offenbar ebenfalls endlich. Sei R C G ein Représentan-
tensystem der Menge G /U der Linksnebenklassen. Dann gibt es eine Bijektion von R nach G/U. Weil R als Teilmenge
von G endlich ist, handelt es sich auch bei G/U um eine endliche Menge.

,<=“ Setzen wir nun voraus, dass U und G/U endlich sind. Weil fiir jedes g € G zwischen U und gU jeweils
eine Bijektion existiert, ist damit auch jede Linksnebenklasse endlich. Weil es nach Voraussetzung nur endlich viele
Linksnebenklassen gibt, ist G als Vereinigung der endlich vielen Linksnebenklassen selbst eine endliche Menge. O

Wir haben beim Beweis der bisherigen Sétze mehrmals verwendet, dass fiir die Linksnebenklassen einer Untergruppe
U in einer Gruppe G stets ein Reprisentantensystem existiert. Dass dies tatsdchlich der Fall ist, wird durch das soge-
nannte Auswahlaxiom der Mengenlehre gewéhrleistet. Dieses stellt sicher, dass aus jeder Linksnebenklasse ein Re-
prasentant ausgewahlt und die ausgewéhlten Elemente zu einer neuen Menge R zusammengefiihrt werden kénnen.
Da in den Vorlesungen die Axiome der Mengenlehre normalerweise nicht behandelt werden, féllt die Verwendung
des Auswahlaxioms nicht auf, zumal seine Giiltigkeit selbstverstdndlich und trivial erscheint.

Wir notieren noch zwei Folgerungen aus dem Satz von Lagrange.

Satz 2.22

(i) Jede Gruppe von Primzahlordnung ist zyklisch.

(ii) Sei G eine Gruppe, und seien U,V C G endliche Untergruppen teilerfremder Ordnung.
Dann gilt UNV = {es}.




Beweis: zu (i) Wegen |G| > 1 gibt es mindestens ein Element g € G \ {e;}. Nach dem Satz von Lagrange ist
ord(g) = |(g)| ein Teiler der Gruppenordnung p. Weil p eine Primzahl ist, gibt es nur die beiden Mdoglichkeiten

ord(g) = 1 oder ord(g) = p. Wegen g # e scheidet die erste Moglichkeit aus. Es gilt damit |[{g)| = p = |G|, also
G=(g).

zu (ii) Sei U; = UNV. Dann ist U; eine Untergruppe von U, und nach dem Satz von Lagrange ist |U; | ein Teiler von
|U|. Ebenso ist U; eine Untergruppe von V, also teilt |U; | auch |V|. Die Zahl |U, | ist also ein gemeinsamer Teiler von
|U| und |V|. Weil |U| un d |V| teilerfremd sind, folgt |U;| =1 und U; = {es}. |




§ 3. Elementordnungen und die Struktur zyklischer Gruppen

Zusammenfassung. Die Ordnung ord(g) eines Gruppenelements ist die kleinste natiirliche Zahl m mit
g™ = eg; existiert eine solche Zahl nicht, dann setzt man ord(g) = oo. Die Ordnung kann auf zwei weite-
re Arten charakterisiert werden. Kennt man ord(g), so kann ord(g?) fiir jedes a € Z berechnet werden. Im
weiteren Verlauf des Kapitels untersuchen wir die Untergruppenstruktur zyklischer Gruppen. Eine Besonder-
heit dieser Gruppen besteht darin, dass die Anzahl der Untergruppen mit der Anzahl der Teiler ihrer Ordnung

iibereinstimmt.

Wichtige Grundbegriffe Zentrale Sdtze

— Ordnung einer Gruppe — &dquivalente Charakterisierung der Elementordnung
— Ordnung eines Gruppenelements — Rechenregeln fiir die Elementordnung

— Eulersche ¢-Funktion — Beschreibung der Untergruppen zyklischer Gruppen

— Charakterisierung zyklischer Gruppen

— Kleiner Satz von Fermat

Wir beginnen mit der Definition der Gruppen- und Elementordnung.

Definition 3.1 Sei G eine Gruppe. Die Anzahl |G| der Elemente von G wird die Ordnung von G
genannt. Ist ¢ € G ein beliebiges Element, dann bezeichnen wir ord(g) = |(g)| als die Ordnung
von g.

Da (g) fiir jedes g € G jeweils eine Untergruppe von G ist, folgt aus dem Satz von Lagrange unmittelbar: Ist n = |G|
endlich, dann folgt

ord(g) |n fiir alle g €G.

In § 2 wurde gezeigt, dass die Elemente einer zyklischen Gruppe (g) genau die ganzahligen Potenzen von a sind, also
die Elemente der Form g® mit a € Z. Es kann allerdings vorkommen, dass g¢ = g? gilt, obwohl a # b ist.

Lemma 3.2 Sei G eine Gruppe, g € G und m € IN mit g™ = e;. Dann ist die von g erzeugte
Untergruppe gegeben durch (g) ={g" |0 <r <m}.

Beweis: Die Inklusion ,2“ ergibt sich direkt aus Folgerung Zum Nachweis von ,,C“ sei h € (g) vorgegeben.
Wiederum auf Grund der Proposition gibt es ein n € Z mit h = g". Dividieren wir n durch m mit Rest, so erhalten
wireing,r € Zmitn=qm+rund 0<r <m.Esgilth=g" = g = (g")?-g" =el -g" = g". Also ist h in der
Menge auf der rechten Seite enthalten. |




Satz 3.3 Sei G eine Gruppe und g € G ein beliebiges Element. Dann sind fiir jedes n € IN die
folgenden Aussagen dquivalent.

(i) n=ord(g)

(i) Es gibt ein m € IN mit g™ = e, und dariiber hinaus ist n die minimale natiirliche Zahl
mit dieser Eigenschaft.

(iii) Fiir alle m € Z gilt g™ = e, genau dann, wenn m ein Vielfaches von n ist.

Beweis: (i) = (i) Da ord(g) und damit die Menge (g) nach Voraussetzung endlich ist, kénnen die Elemente
2,82, ¢°,... nicht alle voneinander verschieden sein. Es gibt also i,j € N miti < j und g’ = g’. Setzen wir m = j —1i,
dann gilt g™ = g/t = g/ - (g')7! = e, also existiert ein m € IN mit g™ = e;.

Weil die zyklische Gruppe (g) insgesamt nur n verschiedene Elemente besitzt, kénnen bereits die Elemente g, g2, ...,
g™ nicht alle verschieden sein. Wir kénnen also fiir das j von oben j < n+ 1 und damit m < n voraussetzen. Wire
m < n, dann wiirde (g) auf Grund des Lemmas aus der héchstens m-elementigen Menge {e;, g, ..., g™ '} bestehen,
im Widerspruch zu [{g)| = n. Es gilt also m = n, und n ist die minimale natiirliche Zahl mit der Eigenschaft g" = e.

,(ii) = (ii)“ Sei m € Z mit g™ = e; vorgegeben. Dann gibt es g,r € Z mit m =qn+r und 0 < r < n. Es gilt
gh=g" 1" =g".(g") % =ez0ez; = e;. Da n nach Voraussetzung die minimale natiirliche Zahl mit g" = e ist,
muss r = 0 gelten, und m ist somit ein Vielfaches von n. Setzen wir umgekehrt voraus, dass m ein Vielfaches von n

n)k_ k

ist, m = kn fiir ein k € Z, dann gilt g™ = gk" = (g")* = ec = eg.

,(iii) = ()“ Nach Voraussetzung gilt g" = e, und auf Grund des Lemmas ist (g) = {e;, g, ..., g" ' }. Wiirden zwei
Elemente in dieser Menge iibereinstimmen, dann gibe esi,j € Zmit 0 <i < j<n—1und g' = g/, es wire also
g/~ = e;. Dies aber wire ein Widerspruch zur Voraussetzung, da n wegen 0 < j—i < n kein Teiler von j —i ist. Dies
zeigt, dass (n) tatséchlich aus genau n verschiedenen Elementen besteht, also ord(g) = |[{g)| = n gilt. O

Wir geben einige Beispiele fiir Elementordnungen an.

() Istn€ N und G = (Z/nZ,+), dann ist 1 = 1 + nZ ein Element der Ordnung n, denn es gilt k - 1 = k # 0 fiir
1<k<nundn-1=n+nZ=0+nZ=0.

(ii) In §1 (auf Seite 9) haben wir fiir jedes a € R das Element R, der orthogonalen Gruppe O(2) definiert. Es
handelte sich dabei um die Matrix, die eine Drehung um den Ursprung Ok. mit dem Winkel o im Bogenmaf3
beschreibt. Wie man leicht tiberpriift, ist R, , fiir jedes n € IN ein Element der Ordnung n in O(2).

(iii) In den Diedergruppen D, (mit n > 3) sind die n Spiegelungen alles Elemente der Ordnung 2.

Mit Hilfe von Satz konnen wir die Elemente einer endlichen, zyklischen Gruppe nun genau angeben.

Folgerung 3.4 Sei G eine Gruppe. Besitzt g € G die endliche Ordnung n, dann sind durch
ec> 8,82, ...,g" ! die n verschiedenen Elemente der zyklischen Gruppe (g) gegeben.




Beweis: Nach Satz [3.3)gilt g" = eg, und auf Grund von Lemma [3.2] gilt (g) = {eg, g, g% .-, g"'}. Wegen |(g)| =n
sind alle Elemente in dieser Aufzdhlung verschieden. m|

Fiir Elemente unendlicher Ordnung l&sst sich eine zu Satz weitgehend analoge Aquivalenzaussage formulieren.

Satz 3.5 Ist G eine Gruppe und g € G, dann sind die folgenden Aussagen dquivalent.

(D) ord(g) = o0
(ii) Es gibt kein n € IN mit g" = e;.
(iii) Die Abbildung ¢ : Z — G, k — g* ist injektiv.

Beweis: (i) = (i))“ Angenommen, es gilt g" = e, fiir ein n € IN. Dann wiirde aus Lemma die Gleichung
(g) ={eg, g,...,g" !} folgen, im Widerspruch dazu, dass ord(g) = |(g)| unendlich ist.

,(il) = (ili)“ Angenommen, ¢ ist nicht injektiv. Dann gébe es Elemente k,{ € Z mit k < £ und ¢ (k) = ¢(£). Daraus
wiirde gk = ¢! & g'(gF) ™! = e; & g"* = ¢, folgen, was aber wegen { —k € IN im Widerspruch zur Voraussetzung
steht.

(i) = () Es gilt ¢(Z) = {g* | k € Z} = (g). Auf Grund der Injektivitit von ¢ erhalten wir ord(g) = |(g)| =
|¢(Z)| = |Z| = oo. O

Beispielsweise ist 1 ein Element unendlicher Ordnung in (7, +), denn es gilt n- 1 # 0 fiir alle n € IN.

In den symmetrischen Gruppen lassen sich die Ordnungen von Elementen leicht ermitteln. Zur Vorbereitung erinnern
wir an die Definition des grof3ten gemeinsamen Teilers und des kleinsten gemeinsamen Vielfachen einer endlichen
Menge ganzer Zahlen. Seien ay,...,a, € Z vorgegeben. Eine Zahl d € N heil3t gemeinsamer Teiler dieser Zah-
len, wenn d | q; fiir 1 < k < r gilt. Man nennt d den gréfSten gemeinsamen Teiler dieser Zahlen und schreibt
d = ggT(ay,...,a,), wenn d’|d fiir jeden gemeinsamen Teiler d’ von ay,...,a, gilt. Zwei Zahlen a und b werden als
teilerfremd bezeichnet, wenn ggT(a, b) = 1 ist.

Eine natiirliche Zahl d € IN hei3t gemeinsames Vielfachesvon a;, ...,a,, wenn a;. | d fiir 1 < k < r gilt, und kleinstes
gemeinsames Vielfaches, wenn d | d’ fiir jedes gemeinsame Vielfache d’ dieser Zahlen erfiillt ist. Wir bezeichnen
das kleinste gemeinsame Vielfache mit kgV(ay,...,a,). Sowohl der gro3te gemeinsame Teiler als auch das kleinste
gemeinsame Vielfache existieren, sobald die Zahlen aj, ..., a, nicht alle gleich Null sind, und sie sind in diesem Fall
auch eindeutig bestimmt.

Satz 3.6 SeineNundo €S,.
(i) Ist o ein k-Zykel (2 < k < n), dann gilt ord(o) = k.

(ii) Ist o ein Element vom Zerlegungtyp (ky, ..., k), dann gilt ord(c) = kgV(ky, ..., k,).




Beweis: zu (i) Nach Voraussetzung gibt es eine k-elementige Teilmenge {ay,...,a,} € M, mit 0 = (a; a, ... a;).
Durch vollstindige Induktion iiber m € IN, kontrollieren wir zunéchst, dass fiir alle m € IN;, und ¢, j € {1, ..., k} mit
o™(a,) = a; jeweils die Kongruenz £ + m = j mod k erfiillt ist.

Fiir m = 0 gilt dies wegen 0°(a;) = id(a;) = a; und £ + 0 = £ mod k. Sei nun m € INy, und sei j € {1,...,k} die
eindeutig bestimmte Zahl mit 0™(qa;) = a;; dann gilt £ + m = j mod k auf Grund der Induktionsvoraussetzung. Ist
nun j < k, dann gilt 6™*(a,) = o(0™(a,)) = 0(a;) = aj4; und £ + (m+1) = j + 1 mod k. Im Fall j = k gilt
o™ (a,) = o(a;) = a;, und wegen £ + (m+1) =k + 1 =1 mod k ist die Kongruenz auch in diesem Fall erfiillt.

Es ist nun leicht zu sehen, dass k die kleinste natiirliche Zahl mit o = id ist. Ist ndmlich m € IN mit m < k und
0™(a;) = a;, dann gilt j =1+m # 1 mod k, und somit erst recht j # 1 und a; # a;, also o™ # id. Fiir ¢, j € {1, ..., k}
mit o%(a,) = a; gilt dagegen £ + k = j mod k, also £ = j mod k und damit ¢ = j. Die Zahlen aj, ..., a, werden also
durch o* auf sich abgebildet, und fiir die Elemente von i € M, \ {ay, ..., a;} gilt dies wegen o (i) = i natiirlich ebenso.

zu (i) Nach Definition des Zerlegungstyps existiert fiir 1 < j < r jeweils ein k;-Zykel 0}, so dass 0 = 0, 0...00,
gilt und die Zykel o; paarweise disjunkt sind. Wie wir in § 2 festgestellt haben, sind o; und o; fir 1 <i,j < r als
Elemente mit disjunktem Tréger jeweils vertauschbar, und wegen Lemma folgt daraus o™ = o] o...o o} fiir alle
n € Z.. Auf Grund der Disjunktheit der Trédger ist auch leicht zu sehen, dass genau dann o" = id gilt, wenn 0'5‘ =id
fiir 1 < j <r erfiillt ist.

Sei nun m = ord(c); wir zeigen, dass m die definierenden Eigenschaften des kgV von kj,...,k, besitzt. Aus der
Gleichung o' o...0 o' = o™ = id folgt 0'}" =id fiir 1 < j < r. Nach Satz zeigt dies, dass m ein gemeinsames
Vielfaches von k; = ord(c;) mit 1 < j < r ist. Sei nun n ein beliebiges gemeinsames Vielfaches von ky, ..., k.. Dann
folgt 0} =id fiir 1 < j < r mit Satz Wir erhalten 0" = o] o...0 07 = id und somit m | n, erneut durch eine
Anwendung von Satz Es handelt sich bei m also tatsdchlich um die Zahl kgV(k,, ..., k,). |

Der Satz zeigt uns zum Beispiel, dass in der Gruppe S; nur Elemente der Ordnungen 1,2,3,4,5 und 6 existieren.
Denn neben der Identitit, den 2-, 3-, 4- und 5-Zyklen gibt es in Ss noch Elemente der Zerlegungtypen (2,2) und
(3,2), und es gilt kgV(2,2) = 2 und kgV(3,2) = 6. Insbesondere ist o = (1 2 3)(4 5) ein Element der Ordnung 6 in
Ss. Im weiteren Verlauf beschéftigen wir uns nun mit der Untergruppenstruktur zyklischer Gruppen.

Satz 3.7 Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Genauer gilt: Sei G eine zy-
klische Gruppe, g ein Element mit G = (g) und U eine Untergruppe # {e;}. Dann gibt es ein
m € IN mit U = (g™). Ist ord(g) = n endlich, dann kann die Zahl m so gewéhlt werden, dass sie
ein Teiler von n ist.

Beweis: Weil U nichttrivial ist, gibt es ein r € Z, r # 0 mit g" € U. Weil mit g" auch (g")™* = g" in U enthalten
ist, gibt es auch natiirliche Zahlen r mit g" € U. Sei nun m € IN die minimale natiirliche Zahl mit der Eigenschaft
g™ € U. Wir zeigen, dass dann U = (g™) gilt.

Die Inklusion ,2“ gilt nach Definition der erzeugten Untergruppe. Nehmen wir nun an, dass ,,C“ nicht erfiillt ist.
Dann gibt es ein Element h € U \ (g™) und ein b € Z mit h = g°. Durch Division mit Rest erhalten wir q,r € Z mit
b=gm+r und 0 < r < m. Dabei ist der Fall r = 0 ausgeschlossen, denn ansonsten wére b ein Vielfaches von m und
h damit doch in {(g™) enthalten. So aber gilt h- (g™)™9 = g" € U, im Widerspruch zur Minimalitdt von m. Damit ist
die Gleichung U = (g™) bewiesen.




Sei nun n = ord(g) endlich, und nehmen wir an, dass m kein Teiler von n ist. Dann gibt es g, r € Z mit n = gm+r und
0<r<m.Esgiltdann g" = g""™ =g"-(g™)1=(g™)" % € U, im Widerspruch dazu, dass m mit der Eigenschaft
g™ € U minimal gewéhlt wurde. a

Aus der Klassifikation der Untergruppen einer zyklischen Gruppe kénnen wir das folgende zahlentheoretische Resul-
tat herleiten.

Satz 3.8 (Lemma von Bézout)

Seien m,n € Z, (m,n) # (0,0). Dann gibt es a, b € Z mit am + bn = ggT(m, n).

Beweis: Sei G = (Z,+) und U = (m,n), die von m und n erzeugte Untergruppe. Nach Satz (i) gilt U =
Zm+Zn = {am+bn|a,b € Z}. Weil (Z,+) zyklisch ist, gibt es nach Satz[3.7]ein d € N mit U = (d). Wir zeigen,
dass d = ggT(m, n) erfiillt ist.

Wegen m,n € (d) gibt es k,{ € Z mit m = kd und n = {d. Dies zeigt, dass d jedenfalls ein gemeinsamer Teiler
von m und n ist. Sei nun d’ ein weiterer gemeinsamer Teiler. Dann gibt es k’,{’ € Z mit m = k'd’ und n = ¢’'d’.
Die Elemente m, n liegen also in der Untergruppe {(d’), und nach Definition der erzeugten Untergruppe folgt (d) =
U = (m,n) C (d’). Insbesondere ist d in (d’) enthalten, es gibt also ein r € Z mit d = rd’. Folglich ist d’ ein Teiler
von d. Damit ist der Beweis der Gleichung d = ggT(m,n) abgeschlossen. Wegen d € U gibt es nun a,b € Z mit
am+ bn =d = ggT(m,n). O

Mit Hilfe des Lemma von Bézout lassen sich wichtige Rechenregeln fiir Elementordnungen herleiten.

Satz 3.9 Sei G eine Gruppe und g € G ein Element der endlichen Ordnung n.

(i) Fiir beliebiges m € Z gilt ord(g™) = n genau dann, wenn ggT(m,n) = 1 ist.
(i) Istd € N ein Teiler von n, dann gilt ord(g?) = =

(iii) Fiir beliebiges m € Z gilt ord(g™) = 5 mit d = ggT(m, n).

Beweis: zu (i) ,=“ Wegen g™ € (g) ist (¢™) eine Untergruppe von (g). Ist ord(g™) = n = ord(g), dann muss
(g™) = (g) gelten. Es existiert also ein k € Z mit g = (g™)* = g™. Wir erhalten g'~*™ = e, und damit n|(1 — km),
weil n die Ordnung von g ist. Sei nun d € IN ein Teiler von n und m. Aus d|n folgt dann insbesondere d|(1 — km).
Damit ist d auch ein Teiler von km + (1 —km) = 1, also muss d = 1 sein. Wir haben damit gezeigt, dass 1 der einzige
(natiirliche) gemeinsame Teiler von m und n ist, und es folgt ggT(m,n) = 1 wie gewiinscht.

~=“ Wegen g™ € (g) ist (g™) eine Untergruppe von (g). Auf Grund des Lemmas von Bézout gibt es a, b € Z mit
am+ bn = ggT(m,n) = 1. Es folgt

1 _ am+bn

g = g = g = (g

M@ = @ed = g e (g

Also ist auch umgekehrt (g) eine Untergruppe von {(g™). Insgesamt erhalten wir (g) = (¢g™) und ord(g™) = [(g™)| =
I(g)| = ord(g) =n.




zu (i) Wegen n = ord(g) gilt fiir jedes k € Z die Aquivalenz (g) = e; & g% =e; < n|(dk) & 3 | k. Auf Grund
von Satz (iii) folgt daraus ord(g?) = %

zu (ili) Seien m’ und n’ so gewihlt, dass m = m’d und n = n’d gilt. Zu zeigen ist, dass ord(g™) = n’ gilt. Da d ein
Teiler von n ist, konnen wir zunéchst den bereits bewiesenen Teil (ii) anwenden und erhalten ord(gd) = n’. Ferner
sind m’ und n’ teilerfremd. Denn wire p ein gemeinsamer Primfaktor dieser beiden Zahlen, dann kénnten wir m =
m’d = m”pd und n = n’d = n”pd mit geeigneten m”,n” € IN schreiben. Folglich wire pd ein groferer gemeinsamer
Teiler von m und n als d, im Widerspruch zur Definition von d. So aber kénnen wir (i) auf das Gruppenelement g¢ und
die Zahl m” anwenden und erhalten ord(g?) = ord((g?)™) = ord(g™?) = ord(g™), insgesamt also das gewiinschte
Ergebnis. a

Ist beispielsweise G eine Gruppe und g € G ein Element der Ordnung 24, dann gilt ord(g”) = ord(g) = 24, ord(g®) =
4 und ord(g'%) = 12.

Die in der Zahlentheorie eine wichtige Rolle spielende Eulersche ¢-Funktion ist fiir jedes n € IN definiert durch
e(n) = |{keZ|0<k<n, ggT(k,n)=1}.

In der Ringtheorie (Kapitel § 13) werden wir zeigen, dass fiir alle m,n € IN mit ggT(m,n) = 1 stets p(mn) =
@(m)(n) gilt, auBerdem ¢(p") = p"~!(p — 1) fiir jede Primzahl p und jedes r € IN. Damit lisst sich ¢(n) fiir jede
natiirliche Zahl n leicht berechnen.

Ist G = (g) eine zyklische Gruppe der Ordnung n, dann sind g* mit 0 < k < n nach Folgerung (i) die n verschie-
denen Elemente von G. Aus Satz[3.9] (i) kann daher unmittelbar abgeleitet werden, dass G insgesamt ¢(n) Elemente
der vollen Ordnung n enthilt. Es gibt also genau ¢ (n) Elemente h in G mit der Eigenschaft G = (h). Beispielsweise
besitzt jede zyklische Gruppe der Ordnung 24 jeweils genau ¢(24) = ¢©(22)p(3) = 4 - 2 = 8 erzeugende Elemente.

Gelegentlich ist auch das folgende Kriterium fiir die Bestimmung der Ordnung hilfreich.

Satz 3.10 Sei G eine Gruppe und n € IN. Ein Element g € G hat genau dann die Ordnung n,
wenn g" = e, und fiir jeden Primteiler p von n jeweils g"/? # e; gilt.

Beweis: ,=*“ Ist n =ord(g), dann ist n € IN nach Satz minimal mit g" = e;. Insbesondere gilt dann g"/P # e;
fiir jeden Primteiler p von n. ,&<“ Sei m = ord(g) und das angegebene Kriterium fiir ein n € IN erfiillt. Aus der
Gleichung g" = e folgt zunichst m|n. Nehmen wir nun an, dass m ein echter Teiler von n ist. Dann besitzt die Zahl
- € IN einen Primteiler p. Ist k € IN mit .- = kp, dann folgt n = kpm und g = km. Wegen g™ = e; wiirden wir

g"P = (g™)k = ek = ¢, erhalten, im Widerspruch zur Annahme g"/? # e;. |

Satz 3.11 Sei G eine zyklische Gruppe und g € G mit G = (g).

(i) Ist ord(g) = oo, dann sind die verschiedenen Untergruppen von G gegeben durch U, =
{eg} und U,, = (g™), wobei m die natiirlichen Zahlen durchlauft.

(i) Ist ord(g) = n endlich, dann sind U; = (g¢) die verschiedenen Untergruppen von G,
wobei d die Teiler von n durchlauft. Dabei gilt jeweils |U,| = 7.

In (i) und (ii) gilt U,, C U,,, fiir m, m’ € IN genau dann, wenn m’ ein Teiler von m ist.




Beweis: zu (i) Sei U eine beliebige Untergruppe # {e;} von G. Nach Satz gibt es ein m € IN mit U = (g™),
also ist U = U,, fiir dieses m. Seien nun m, m’ € IN vorgegeben. Setzen wir U,, C U, voraus, dann gilt insbesondere

km'—m

g™ € Uy, und folglich gibt es ein k € Z mit g™ = (gm/)k = gkm/, also g = e;. Weil die Ordnung von g unendlich
ist, folgt daraus km’ —m = 0 & m = km’, wie wir im Anschluss an Folgerung gesehen haben. Also ist m’ ein
Teiler von m. Sei nun umgekehrt m’|m vorausgesetzt, also m = km’ fiir ein k € Z. Dann gilt g™ = (g™ )¥ € U,y und

somit U,, C U,,.

zu (i)  Sei auch hier eine beliebige Untergrupe U # {e} vorgegeben. In diesem Fall folgt aus Satz[3.7] dass U = Uy
fiir einen Teiler d von n gilt. Im Fall U = {e;} ist offenbar U = U,,. Fiir jeden Teiler d von n gilt auRerdem ord(g?) = H
nach Satz (ii). Daraus folgt jeweils |Uy| = 5.

Der Beweis der Implikation ,,m’|m = U,, C U,,“ lauft genau wie im Fall unendlicher Ordnung. Auch der Beweis
der Umkehrung braucht nur geringfiigig modifiziert werden. Aus g™ € U, folgt g™ = (g™ )* = ¢™* und somit
g™ ™k = ¢, fiir ein k € Z. Wegen ord(g) = n erhalten wir n | (m — m’k) nach Satz Es gibt also ein ¢ € Z mit
fn=m—m'k oder m’k = m—{n. Aus m’ | (m—£n) und m’ | ({n) folgt, dass m’ ein Teiler von m ist. O

Bei einer zyklischen Gruppe der Ordnung n € IN stimmt die Anzahl der Untergruppen also iiberein mit der Anzahl
der Teiler d € IN von n. Die Zahl 12 = 22 - 3! besitzt beipielsweise die sechs Teiler 2!3/ mit i € {0,1,2} und j € {0,1};
dies sind die Zahlen 1,2, 3,4, 6 und 12. Dementsprechend besitzt jede zyklische Gruppe der Ordnung 12 genau sechs
Untergruppen. Genauer gilt: Ist G zyklisch von Ordnung 12 und g € G ein erzeugendes Element, dann sind die
Untergruppen von G durch folgende Tabelle gegeben.

Untergruppe || U; | Uy | Uz | Uy | Ug | Upy
Ordnung 1216 | 4|3 |2 1

Dabei ist U; = (g¢) fiir jeden Teiler d von 12, insbesondere U; = (g') = G und U;, = (g'%) = (eg) = {eg}.

Zum Abschluss zeigen wir noch, dass die zyklischen Gruppen durch die soeben beschriebene Untergruppeneigen-
schaft sogar charakterisiert werden kénnen.

Satz 3.12 Sei G eine endliche Gruppe der Ordnung n mit der Eigenschaft, dass G fiir jedes
Teiler d € IN von n genau eine Untergruppe U; mit |Uy| = d besitzt. Dann ist G eine zyklische
Gruppe.

Beweis: Wir beweisen zunéchst die Gleichung >’ din ¢ (d) = n fiir die Eulersche ¢-Funktion. Sei dazu H eine zyklische
Gruppe der Ordnung n. Nach Satz[3.11]gibt es fiir jeden Teiler d € IN in H genau eine Untergruppe V; der Ordnung d.
Diese ist nach Satz[3.7|ebenfalls zyklisch, und wie wir oben festgestellt haben, besitzt diese genau ¢(d) Elemente der
Ordnung d. Umgekehrt muss jedes h € H mit ord(h) = d in V; liegen, weil ansonsten (h) eine von V; verschiedene
Untergruppe der Ordnung d wére. Also ist p(d) die Gesamtzahl der Element der Ordnung d in H. Weil nun die
Ordnung jedes Elements nach dem Satz von Lagrange ein Teiler von n ist, und weil n auch die Gesamtzahl der
Elemente von H ist, erhalten wir die Gleichung >’ dln #(d) = n, wenn die Anzahlen der Elemente der Ordnung d in
H fiir alle Teiler d von n aufaddieren.




Sei nun G eine Gruppe mit den im Satz angegebenen Eigenschaften, und sei d ein echter Teiler von n. Ist g € G mit
ord(g) = d, dann ist (g) die einzige Untergruppe der Ordnung d von G, und diese ist zyklisch. Als solche besitzt sie
genau ¢(d) Elemente der Ordnung d. Gabe es in G mehr als ¢(d) Elemente der Ordnung d, dann kénnten diese nicht
alle in (g) liegen, und folglich hitte G mehr als eine Untergruppe der Ordnung d, im Widerspruch zur Voraussetzung.

Fiir jeden echten Teiler d von n gibt es also hochstens ¢(d) Elemente der Ordnung d in G. Bezeichnet D die Menge
der echten Teiler von n in IN, dann liefert der Beweisanfang die Ungleichung Y, ¢(d) < n. Dies zeigt, dass es in G
nicht nur Elemente geben kann, deren Ordnung ein echter Teiler von n ist. Statt dessen muss es in G auch Elemente
der Ordnung n geben. Daraus folgt, dass G zyklisch ist. m|

Aus dem Satz von Lagrange und dem Konzept der Elementordnung ergibt sich noch eine fiir die elementare Zahlen-
theorie wichtige Folgerung.

Folgerung 3.13 (Kleiner Satz von Fermat)

Fiir jede Primzahl p und alle a € Z gilt a’? = a mod p. Ist p kein Teiler von a, dann gilt dariiber
hinaus a?~! = 1 mod p.

Beweis: Es gilt (Z/pZ)* = Z/pZ \ {0}, somit ist (Z/pZ)* eine Gruppe der Ordnung p — 1. Fiir jedes a € Z ist
a+pZ € (Z/pZ)* aquivalent zu p t a. Weil die Ordnung jedes Elements der Gruppe (Z/pZ)* die Gruppenordnung
teilt, gilt (a + pZ)P~! = 1+ pZ fiir diese a, was zu a?~! = 1 mod p dquivalent ist. Durch Multiplikation dieser
Kongruenz mit a folgt a? = a mod p. Diese Kongruenz ist auch im Fall p | a erfiillt, denn dann gilt auch p | a? und
somit a? =0 =a mod p. m|




§4. Homomorphismen und Faktorgruppen

Zusammenfassung. Ein Homomorphismus zwischen zwei Gruppen G, H ist eine Abbildung G — H, die ver-
traglich mit den Gruppenverkniipfungen ist. Diese spielen in der Gruppentheorie eine wichtige Rolle, weil man
durch sie die Struktur der Gruppen G und H zueinander in Beziehung setzen und sie miteinander vergleichen
kann. Beispielsweise hdngen die Untergruppen von G und H sowie die in G und H auftretenden Elementord-
nungen miteinander zusammen.

Als zweites wichtiges Thema dieses Kapitels behanden wir die Faktorgruppen. Diese kommen dadurch zu Stan-
de, dass man auf der Menge G/N der Linksnebenklassen einer Untergruppe N von G eine Gruppenstruktur
definiert. Dies funktioniert allerdings nur bei Untergruppen N von G mit einer zuséatzlichen Eigenschaft, den
sogenannten Normalteilern. Der Homomorphiesatz fiir Gruppen stellt zwischen den Homomorphismen und
den Faktorgruppen einen Zusammenhang her. Der Korrespondenzsatz bringt zum Ausdruck, dass sich ein Teil
der Struktur der Gruppe G auch in der Faktorgruppe G/N widerspiegelt. Allerdings ist Letzere haufig einfacher
zu untersuchen, da sie aus weniger Elementen besteht.

Wichtige Grundbegriffe Zentrale Sditze

— Gruppenhomomorphismus — Erhaltung der Untergruppen-Eigenschaft un-

. . ter Homomorphismen
— Mono-, Epi- und Isomorphismus

— Isomorphismus Aut(G) = (Z/nZ.)* fiir eine

— Endo- und Automorphismen einer Gruppe zyklische Gruppe G der Ordnung n

— Normalteiler einer Gruppe (Notation N < G) — Isomorphismus zwischen innerem und dufe-

— Komplexprodukt zweier Teilmengen einer Gruppe rem direkten Produkt zweier Normalteiler
— inneres (semi-)direktes Produkt — Homomorphiesatz fiir Gruppen

— Faktorgruppe, kanonischer Epimorphismus - Isomorphiesitze fiir Gruppen

— induzierter Homomorphismus — Korrespondenzsatz fiir Gruppen

Wir beginnen mit der Definition der Gruppenhomorphismen.

Definition 4.1 Sind (G, *) und (H, o) Gruppen, so bezeichnet man eine Abbildung ¢ : G - H
als Gruppenhomomorphismus, wenn ¢ (g * g') = ¢ (g) o ¢(g’) fiir alle g, g’ € G gilt.

Obwohl in der Definition nur gefordert wird, dass ¢ vertraglich mit den Verkniipfungen der Gruppen G und H ist,
werden auch das Neutralelement und inverse Elemente aufeinander abgebildet.

Lemma 4.2 Sei ¢ ein Homomorphismus zwischen den Gruppen (G, %) und (H, o). Dann gilt

pleg)=ey und (g H)=¢(g)"! fiiralle geaG.
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Beweis: Es gilt ¢p(eg) = p(eg xeg) = ¢p(eg) © ¢p(eg), und durch Multiplikation beider Seiten von links mit ¢ (eg)™*
erhdlt man

Pleg) T opleg) = ¢leg)  ogleg)odles)
also ey; = e o (eg) und schlieRlich e;; = ¢ (eg). Fiir jedes g € G gilt auBerdem ¢(g)op(g71) = p(gxg ™) = p(eg) =
ey. Multipliziert man beide Seiten von links mit ¢ (g)™?, so erhilt man ¢(g) o ¢p(g)op(g™!) = p(g) ! oey, somit
ey o ¢(g)™" = ¢(g)~" und schlieRlich $(g™") = p(g) 7" O

Definition 4.3 Seien (G, x) und (H, o) Gruppen und ¢ : G — H ein Homomorphismus von
Gruppen. Man bezeichnet ¢ als

(i) Monomorphismus, wenn ¢ injektiv

(ii) Epimorphismus, wenn ¢ surjektiv

(iii) Isomorphismus, wenn ¢ bijektiv ist.

Einen Gruppen-Homomorphismus ¢ : G — G von (G, -) nach (G, -) bezeichnet man als Endomorphismus von G.
Ist die Abbildung ¢ aul’erdem bijektiv, dann spricht man von einem Automorphismus der Gruppe G. Die Menge
der Automorphismen bezeichnen wir mit Aut(G). Wir bemerken, dass nach Definition [1.16|zwei Gruppen G und H
genau dann zueinander isomorph sind, wenn ein Isomorphismus ¢ : G — H existiert.

Lemma 4.4 Ist ¢ : G — H ein Gruppenhomomorphismus, dann gilt ¢(g") = ¢(g)" fiir alle
geGundneZ.

Beweis: Sei g € G vorgegeben. Zunéchst beweist man die Gleichung fiir alle n € IN;, durch vollstdndige Induktion.
Fiir n = 0 ist die Gleichung wegen ¢ (g°) = ¢ (eg) = ey = ¢(g)° erfiillt, und setzen wir sie fiir n voraus, dann ist sie
wegen

(™) = d(g"g) = g9 = o@ &) = ¢

auch fiir n + 1 giiltig. Fiir alle n € IN gilt auRerdem ¢(g™) = ¢((g™)™1) = d(g™) ! = (¢(g)") ! = ¢p(g)™. Dies
zeigt, dass die Gleichung auch fiir negative Exponenten, und damit insgesamt fiir alle n € Z giiltig ist. |

Der folgende Isomorphismus wird spater im Kapitel {iber Gruppenoperationen eine wichtige Rolle spielen.

Satz 4.5 Seien X,Y Mengen und ¢ : X — Y eine Bijektion. Dann ist durch die Abbildung
é : Per(X) — Per(Y), o — ¢ oo o ¢! ein Isomorphismus von Gruppen definiert.

Beweis: Sei o € Per(X) vorgegeben. Durch Komposition der Abbildungen ¢ ' :Y - X,0:X >Xund ¢ : X - Y
erhilt man eine Abbildung Y — Y, und als Komposition bijektiver Abbildungen ist ¢ oo o ¢! ebenfalls bijektiv. Also
ist durch die angegebene Zuordnung qg tatsdchlich eine Abbildung Per(X) — Per(Y') definiert. Um zu zeigen, dass d;
ein Homomorphismus von Gruppen ist, seien o, T € Per(X) vorgegeben. Dann gilt
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$loor) = gogoropl = pooo(¢loglorod =
(porog™o(poood™ = ¢(0)od(r).

Um zu zeigen, dass q§ bijektiv ist, geniigt es zu bemerken, dass durch die Zuordnung o — ¢ oo o ¢ eine Umkehr-
abbildung 1[) : Per(Y) — Per(X) von qg gegeben ist. Fiir jedes o € Per(Y) ist ndmlich ¢ ! o o o ¢ eine Abbildung
X — X, und wiederum bijektiv als Komposition bijektiver Abbildungen. Also ist 1[) tatséchlich eine Abbildung von
Per(Y) nach Per(X). AuRerdem gilt fiir alle o € Per(X) jeweils

(Wod)o) = YP($(0) = Y(pooogp™) = ¢ lo(poocop™ogp =
(ploploogo(plop) = idgoooidy = o = idpeu(o) ,

also 1ﬁ o q!; = idpey(x). Durch eine analoge Rechnung zeigt man <;t; o 1,[1 = idper(y). Dies zeigt, dass 1/3 tatsdchlich die
Umkehrabbildung von qI; ist. |

Nach Satz gilt Per(X) £ S, fiir jede n-elementige Menge X, denn die Gleichung |X| = n bedeutet ja gerade, dass
eine bijektive Abbildung zwischen M, und X existiert.

Wir befassen uns noch mit den Endo- und Automorphismen einer Gruppe und legen dafiir eine beliebige Gruppe
(G, -) zu Grunde. Sind ¢, ¢, : G = G zwei Endomorphismen von G, dann ist auch ¢; o ¢, ein Endomorphismus
von G, denn fiir alle g,h € G gilt

(P10o¢2)(gh) = ¢1(da(gh)) = ¢1(da(g)-Pa(h)) =
$1(P2(8)) - P1(2(h)) = (1 0¢2)(g) - (P10 P2)(h).

Ist ¢ ein weiterer Endomorphismus, dann gilt (¢, 0 ¢,) 0 p3 = ¢, 0 (¢4 © ¢3); diese Gleichung wurde frither bereits
fiir beliebge Kompositionen von Abbildungen verifiziert. Auerdem gilt ¢; cid; = idg; o ¢ = ¢;. Dies zeigt, dass die
Menge End(G) der Endomorphismen von G zusammen mit der Komposition o als Verkniipfung ein Monoid bildet,
mit id; als Neutralelement. Es gilt nun

Proposition 4.6 Die invertierbaren Elemente in End(G) sind genau die Automorphismen der
Gruppe G.

Beweis: Ist ¢ in End(G) ein invertierbares Element, dann gibt es ein ¢ € End(G) mityo¢ =id; und ¢ orp =ids. Aus
den Gleichungen folgt, dass ¢ bijektiv ist. Als bijektiver Homomorphismus ist ¢ nach Definition ein Automorphismus.

Sei nun umgekehrt ¢ ein Automorphismus von G. Dann ist ¢ bijektiv. Wir zeigen weiter unten, dass die Umkehrab-
bildung ¢ ! von ¢ ein Gruppenhomomorphismus ist. Weil mit ¢ auch ¢ ! bijektiv ist, ist durch ¢~ dann insgesamt
ein Automorphismus gegeben. Dariiber hinaus zeigen die Gleichungen ¢ ' o ¢ =id; und ¢ o ¢! =id,;, dass es sich
bei ¢ im Monoid End(G) um ein invertierbares Element handelt.

Zum Nachweis der Homomorphismus-Eigenschaft von ¢! seien g,h € G vorgegeben. Auf Grund der Homomor-
phismus-Eigenschaft von ¢ gilt ¢(¢1(g) - ¢ (h)) = (¢ 1(g)) - (¢ *(h)) = gh. Durch Anwendung von ¢! auf
beide Seiten dieser Gleichung erhalten wir ¢ ~'(g)¢p~(h) = ¢ '(gh). Also ist ¢~ vertriglich mit der Verkniipfung
von G und damit ein Homomorphismus. |




Durch Anwendung von Satz erhalten wir nun

Satz 4.7 Die Automorphismen einer Gruppe G bilden mit der Verkniipfung o selbst eine Gruppe.
Man nennt sie die Automorphismengruppe Aut(G) der Gruppe G.

Ergédnzend bemerken wir noch, dass allgemein gilt: Ist ¢ : G — H ein Isomorphismus von Gruppen, dann gilt dasselbe
fiir die Umkehrabbildung ¢ ! : H — G. Der Nachweis dafiir funktioniert genauso wie im zweiten Teil des Beweises
von Proposition Allerdings lassen sich zwei Isomorphismen G — H in der Regel nicht verkniipfen (jedenfalls
nicht durch die Komposition von Abbildungen), also bilden die Isomorphismen zwischen G und H im Allgemeinen
keine Gruppe.

Als nachstes befassen wir uns mit der Beziehung zwischen Homomorphismen und Untergruppen.

Proposition 4.8 Sei ¢ : G — H ein Gruppenhomomorphismus, auerdem U eine Untergruppe
von G und V eine Untergruppe von H. Dann gilt

(i) Die Bildmenge ¢ (U) ist eine Untergruppe von H.
(ii) Die Urbildmenge ¢ ~!(V) ist eine Untergruppe von G.

Beweis: zu (i) Wegen e; € U und ¢(e;) = ey ist ey € ¢(U) enthalten. Seien nun g’,h’ € ¢ (U) vorgegeben. Dann
gibt es Elemente g,h € U mit ¢(g) = g’ und ¢ (h) = h’. Mit g, h liegen auch die Elemente gh und g~ in U. Es folgt
g'h' = ¢(g)¢p(h) = ¢(gh) € ¢(U), und ebenso erhalten wir (') = ¢(g)™ = ¢(g™") € (V).

zu (ii) Aus ¢(eg) = ey € V folgt e; € ¢~1(V). Sind g,h € ¢ ~1(V) vorgegeben, dann gilt ¢(g), ¢(h) € V. Es folgt
¢(gh) = ¢(g)¢(h) € V und somit gh € ¢ (V). Ebenso gilt p(g7) = ¢p(g) €V, also g7t € p71(V). O

Eine besonders wichtige Rolle spielen in der Gruppentheorie der Kern ker(¢) = ¢ *({ey}) und das Bild im(¢) =
¢(G) eines Gruppenhomomorphismus. Nach Proposition ist ker(¢) eine Untergruppe von G und im(¢) ei-
ne Untergruppe von H. Beispielsweise ist fiir jedes n € IN die alternierende Gruppe A, als Kern des Signums-
Homomorphismus sgn : S, — {£1} eine Untergruppe der symmetrischen Gruppe S,,.

Aus der Linearen Algebra ist bekannt, dass die Determinante auf der Menge M,, x der (n x n)-Matrizen iiber einem
Korper K die Multiplikativitatsregel det(AB) = det(A) det(B) erfiillt. AuBerdem gilt det(A) # O genau dann, wenn A
invertierbar ist. Daraus folgt, dass die Determinantenfunktion einen Gruppenhomomorphismus det : GL,(K) — K*
definiert. Die spezielle lineare Gruppe SL,(K) ist nach Definition genau der Kern dieses Homomorphismus.

Kerne und Bilder sind bereits aus der Linearen Algebra im Zusammenhang mit linearen Abbildungen bekannt. Wie
dort gilt auch hier der Zusammenhang

Proposition 4.9 Sei ¢ : G — H ein Gruppenhomomorphismus. Die Abbildung ¢ ist genau
dann injektiv, wenn ker(¢) = {es} gilt.

Beweis: ,=“ Ist ¢ ein Monomorphismus, dann ist e; das einzige Element, das auf ey abgebildet wird. Also gilt
ker(¢p) = {eg}. ,&“ Setzen wir ker(¢) = {es} voraus, und seien g,h € G mit ¢(g) = ¢ (h) vorgegeben. Dann gilt
¢(g)¢p(h)™! = ey, und wir erhalten ¢p(gh™!) = ¢(g)¢(h) ! = ey. Nach Definition des Kerns folgt gh™* € ker(¢).
Auf Grund der Voraussetzung bedeutet dies gh™! = e; und somit g = h. |




In vielen Anwendungen erweist es sich als niitzlich, dass ein Homomorphismus G — H bereits durch die Bilder eines
Erzeugendensystems eindeutig festgelegt ist. Der Grund dafiir besteht darin, dass viele bedeutende Gruppen (wie
zum Beispiel die symmetrische Gruppen) sehr kleine Erzeugendensysteme besitzen.

Satz 4.10 (Eindeutigkeit von Homomorphismen)

Seien G,H Gruppen und S C G ein Erzeugendensystem von G. Sind ¢, ¢’ : G — H Gruppenho-
momorphismen mit ¢(s) = ¢’(s) fiir alle s € S, dann folgt ¢ = ¢’.

Beweis: Wir zeigen, dass die Teilmenge U = {g € G | ¢(g) = ¢’(g)} eine Untergruppe von G ist. Wegen ¢ (eg) =
ey = ¢’(eg) ist eg € U. Sind g,h € U beliebig vorgegeben, dann gilt

P(gh) = ()p(M)=d'(g)p'(W)='(gh) und (g N=9¢() " '=¢'(g) ' =9¢'(g") ,

also gilt gh € U und g~ € U. Weil U nach Voraussetzung die Menge S enthilt, gilt G = (S) C U und somit G = U.
Die Abbildungen ¢ und ¢’ stimmen also auf der gesamten Gruppe G {iberein. |

Ist also beispielsweise S = {a, b} ein zweielementiges Erzeugendensystem einer Gruppe G, dann ist jeder Homomor-
phismus ¢ : G — H in eine beliebige Gruppe H bereits durch die Bilder ¢ (a), ¢ (b) € H eindeutig festgelegt.

Kommen wir nun zur Frage nach der Existenz von Homomorphismen. Fiir zwei beliebige Gruppen G und H ist durch
G — H, g — ey ein Homomorphismus definiert; man bezeichnet ihn als den trivialen Homomorphismus. Ob es
weitere Homomorphismen zwischen G und H gibt, ist in der Regel nicht leicht zu entscheiden. Der Fall, dass es
sich bei G um eine zyklische Gruppe handelt, ist eine der seltenen Situationen, in denen weit reichende allgemeine
Aussagen moglich sind.

Proposition 4.11 Sei ¢ : G — H ein Gruppenhomomorphismus. Ist g € G ein Element von
endlicher Ordnung n, dann ist auch ord(¢(g)) endlich, und ein Teiler von n.

Beweis: Auf Grund der Homomorphismus-Eigenschaft gilt ¢ (g)" = ¢(g") = ¢(eg) = ey. Aus den Teilen (ii) und
(iii) von Satz folgt sowohl die Endlichkeit von ord(¢(g)) als auch die Teiler-Eigenschaft. |

Proposition 4.12 (Existenz von Homomorphismen auf zyklischen Gruppen)

Sei G eine zyklische Gruppe, g € G ein erzeugendes Element, H eine weitere Gruppe und h € H.
Ist ord(g) = oo oder ord(g) endlich und ein Vielfaches von ord(h), dann existiert ein (eindeutig
bestimmter) Gruppenhomomorphismus ¢ : G — H mit ¢(g) = h.

Beweis: Die Eindeutigkeit folgt in beiden Féllen aus Satz Fiir die Existenz betrachten wir zunéchst den Fall
ord(g) = oo und definieren die Abbildung ¢ durch ¢(g") = h" fiir alle n € Z. Dann ist ¢ eine wohldefinierte
Abbildung und ein Homomorphismus, denn alle Elemente aus G lassen sich auf eindeutige Weise in der Form g™ mit
m € Z darstellen, und fiir alle m,n € Z gilt ¢(g™g") = p(g™™) = ™" = K"h" = p(g™)p(g").




Sei nun n = ord(g) endlich und ein Vielfaches von ord(h). Dann definieren wir ¢ als Abbildung durch ¢(g*) = h*
fiir 0 < k < n. Wir zeigen, dass dann ¢(g™) = h™ fiir alle m € Z erfillt ist. Division von m durch n mit Rest liefert
q,r € Z mit m =qgn+r und 0 < r < n. Da n ein Vielfaches von ord(h) ist, gilt h" = ey, und es folgt

(g™ = ™) = o)) = ¢ = kB = O = h"T = "

Wie im Fall unendlicher Ordnung priift man nun die Homomorphismus-Eigenschaft von ¢. m|

Folgerung 4.13 Je zwei unendliche zyklische Gruppen sind isomorph. Ebenso sind zwei end-
liche zyklische Gruppen derselben Ordnung isomorph.

Beweis: Seien G und H unendliche zyklische Gruppen und g € G, h € H mit G = (g) sowie H = (h). Dann gibt
es nach Proposition eindeutig bestimmte Homomorphismen ¢ : G — H und ¢ : H — G mit ¢(g) = h und
Y(h) = g. Es gilt (¢ o ¢)(g) = g. Aber nach Satz gibt es nur einen Homomorphismus G — G mit g — g,
namlich id;. Somit ist 1) o ¢ = id;. Ebenso schlielft man aus der Gleichung (¢ o p)(h) = h, dass ¢ oy = idy gilt.
Die Abbildungen ¢ und v sind also zueinander invers und damit bijektiv. Es folgt G = H. Im Fall endlicher Ordnung
verlauft der Beweis analog. O

Mit Hilfe dieser Ergebnisse konnen wir nun die Automorphismengruppe zyklischer Gruppen bestimmen. Dazu be-
trachten wir die Teilmenge (Z/nZ)* der invertierbaren Elemente im Monoid (Z/nZ, - ). Nach Satzbildet diese
Menge mit der Multiplikation als Verkniipfung eine Gruppe, die man als prime Restklassengruppe bezeichnet. Mit
dem folgenden Kriterium lasse sich die Elemente dieser Gruppen leicht bestimmen.

Proposition 4.14 Sein € IN und a € Z. Das Element a + nZ € Z/nZ ist genau dann in
(Z/nZ)* enthalten, wenn ggT(a,n) =1 ist.

Beweis: ,,=“ Ista+nZ im Monoid (Z/nZ, -) invertierbar, dann existiert ein b € Z mit (a +nZ)(b+nZ) = 1+nZ.
Daraus folgt ab +nZ = 1+ nZ, was wiederum zu ab = 1 mod n &quivalent ist. Die Zahl 1 —ab ist also teilbar durch
n; es existiert also ein k € Z mit 1 —ab = kn, was zu ab + kn = 1 umgeformt werden kann. Ist nun d € IN ein
gemeinsamer Teiler von a und n, dann folgt aus der letzten Gleichung, dass d auch ein Teiler von 1 sein und somit
d =1 gelten muss. Damit ist ggT(a,n) = 1 nachgewiesen.

»&=“ Aus ggT(a,n) = 1 folgt mit Satz dem Lemma von Bézout, die Existenz von b,k € Z mit ab + kn = 1.
Dasdurch erhalten wir im Restklassenring Z/nZ die Gleichung

(a+nZ)b+nZ) = ab+nZ = ab+kn+nZ=1+nZ.

Dies zeigt, dass a + nZ in (Z/nZ, -) invertierbar ist. |

Sei nun G eine zyklische Gruppe der endlichen Ordnung n und g € G mit G = (g). Wegen Satz ist ord(g?)
fiir jedes a € Z ein Teiler von n. Wir kdnnen also Proposition |4.12| anwenden und erhalten fiir jedes a € Z einen
eindeutig bestimmten Endomorphismus

T,:G—>G mit T.(g) = g%

— 44 —



Wir kénnen nun eine Abbildung ¢ : Z/nZ — End(G) durch ¢ (a + nZ) = 7, fiir 0 < a < n definieren. Es gilt dann
¢(a+nZ) = 7, fir alle a € Z. Teilen wir ndmlich a mit Rest durch n, ist alsoa =qn+r mitq,r € Zund 0 <r <n,
dann gilt 7,(g) = g* = g™ = (g")?-¢g" = qu -g" = g" = 1,(g), und somit T, = 7, nach Satz Es folgt
¢la+nZ)=¢(r+nZ)=r1,.=r1,.

Satz 4.15 Durch Einschridnkung der Abbildung ¢ auf (Z/nZ)* erhélt man einen Isomorphis-
mus (Z/nZ)* = Aut(G).

Beweis: Zunichst zeigen wir, dass ¢ vertraglich mit der Multiplikation auf Z/nZ und der Komposition auf End(G)
ist. Fiir alle a, b € Z gilt
(Teom)(@) = T(1p(8) = w(g?) = (8 = @) = g = 14

Eine Anwendung von Satz liefert 7, 0 T, = 7,4, und es folgt ¢(a + nZ) o ¢p(b + nZ) = ¢(ab + nZ). Als
néchstes iiberpriifen wir, dass ¢ die Teilmenge (Z/nZ)* C Z./nZ. der invertierbare Elemente von Z/nZ surjektiv auf
Aut(G) abbildet. Offenbar ist 7, der eindeutig bestimmte Endomorphismus von G, der g auf g abbildet; daraus folgt
7, = idg. Ist nun a + nZ ein invertierbares Element, dann existiert ein b € Z mit (a + nZ)(b + nZ) = 1 + nZ. Die
soeben bewiesene Gleichung liefert

T,0T, = ¢la+nZ)op(b+nZ) = ¢(Q+nZ) = 1, = idg; ,

und ebenso erhélt man 7, o T, = idg. Dies zeigt, dass T, ein Automorphismus von G und ¢ somit (Z/nZ)* nach
Aut(G) abbildet. Umgekehrt ist jedes Element T € Aut(G) ist im Bild von ¢ (.7« enthalten. Denn wegen 7(g) € (g)
existiert ein a € Z mit 7(g) = g% = 7,(g), woraus T = 7, folgt, erneut auf Grund von Proposition [4.10] Wegen
7(g™) = 1(g)™ = (g*)™ fiir alle m € Z besteht das Bild 7(G) nur aus Potenzen von g%. Wegen 7 € Aut(G) gilt
insbesondere 7(G) = G; also muss g¢ in G ein Element der Ordnung n sein. Daraus folgt ggT(a,n) = 1 (nach Teil (i)
von Satz und somit a + nZ € (Z/nZ)* (nach Proposition [4.14).

Also ist durch ¢|(z/,7)« ein surjektiver Gruppenhomomorphismus (Z/nZ)* — Aut(G) gegeben. Dieser ist auch
injektiv. Ist ndmlich a + nZ € (Z/nZ)* mit ¢ (a + nZ) = id; vorgegeben, dann folgt g¢ = 7,(g) = ¢ (a +nZ)(g) =
id;(g) = g'. Wir erhalten g%~ ! = e, also n | (a — 1), damit a = 1 mod n und a + nZ = 1 + nZ. Die Injektivitit folgt
nun aus Proposition 4.9 O

Auch im Fall, dass G = (g) unendlich ist, 1dsst sich die Automorphismengruppe leicht angeben. Nach Proposition
sind die Endomorphismen einer solchen Gruppe G genau die Abbildungen der Form 7,(g) = g, wobei a die
Menge Z der ganzen Zahlen durchlduft. Im Gegensatz zum endlichen Fall gilt hier 7, = 7, fiir a, b € Z genau dann,
wenn a = b ist, denn nur in diesem Fall ist g% = g?. Wie in Satz tiberpriift man, dass durch Z — End(G),
a — 7, ein Isomorphismus zwischen den Monoiden (Z, -) und (End(G), o) gegeben ist. Wiederum ist 7, genau dann
ein Automorphismus, wenn a in (Z, - ) invertierbar ist, und die invertierbaren Elemente in dieser Gruppen sind *1.

Wie bei den zyklischen Gruppen endlicher Ordnung kommt man so zu dem Ergebnis (Aut(G),o) = ({x1}, -). Da
es sich bei ({£1}, -) und (Z/2Z,+) um zyklische Gruppen der Ordnung 2 handelt, sind diese nach Folgerung
isomorph. Somit gilt auch (Aut(G), o) = (Z/27Z,+) fiir jede unendliche zyklische Gruppe G.




Ist U eine Untergruppe, dann bilden die Nebenklassen gU lediglich eine Menge, die wir mit G/U bezeichnet haben.
Wir betrachten nun im weiteren Verlauf einen speziellen Typ von Untergruppen, die es uns ermoglichen werden, auf
der Menge G/U wiederum eine Gruppenstruktur zu definieren.

Definition 4.16 Sei G eine Gruppe. Eine Untergruppe U von G wird Normalteiler von G
genannt (Schreibweise U < G), wenn gU = Ug fiir alle g € G gilt.

Fiir die Normalteiler-Eigenschaft einer Untergruppe gibt es mehrere dquivalente Kriterien.

Proposition 4.17 Sei G eine Gruppe und U eine Untergruppe. Dann sind die folgenden Bedin-
gungen dquivalent:

(i) U ist Normalteiler von G.
(i) Esgilt gUg™! C U fiir alle g € G, wobei gUg ™! = {gug™" |u € U} ist.
(iii) Esgilt gUg ! = U fiir alle g € G.

Beweis: (i) = (ii)“ Seien g € G und h € gUg ™! vorgegeben. Dann gibt es ein u € U mit h = gug™~'. Auf Grund
der Gleichung gU = Ug finden wir ein v’ € U mit gu = u’g. Es folgt h = (u/g)g™! = v’ € U. Damit ist die Inklusion
gUg™! C U nachgewiesen.

,(i) = (iii)“ Sei g € G vorgeben. Auf Grund der Voraussetzung geniigt es, die Inklusion U € gUg ™! zu beweisen.
Seien g € G und u € U vorgegeben. Nach Voraussetzung gilt auch g™'Ug C U, also liegt das Element u’ = g~ 'ug in
U.Esfolgtu=gu'g e gug™™.

,(i) = ()“ Zunichst beweisen wir die Inklusion gU € Ug. Sei dazu h € gU vorgegeben. Dann gibt es ein u € U
mit h = gu. Nach Voraussetzung liegt das Element u’ = gug™! in U. Es gilt also h = u’g € Ug. Zum Beweis von
Ug C gU sei nun umgekehrt h € Ug enthalten, also h = ug fiir ein u € U. Wegen g~ 'Ug = U liegt ' = g"'ug in U.
Daraus folgt h = gu’ € gU. O

Ist G eine beliebige Gruppe, dann sind {e;} und G stets Normalteiler von G. Man nennt eine Gruppe G einfach,
wenn G # {e;} gilt und es neben diesen beiden keine weiteren Normalteiler von G gibt. Ist G abelsch, dann ist jede
Untergruppe von G ein Normalteiler; vgl. die Bemerkung unmittelbar vor Lemma[2.14] Eine abelsche Gruppe ist also
nur dann einfach, wenn sie aufler {e;} und G keine weiteren Untergruppen besitzt. Wir werden spater sehen, dass
dies bei abelschen Gruppen nur auf die Gruppen von Primzahlordnung zutrifft. Nicht-kommutative einfache Gruppen
haben dagegen (anders als die Bezeichung ,einfach” vermuten lasst) in der Regel eine sehr komplizierte Struktur.

Gilt N 9 G, dann gilt offenbar auch N < U fiir jede Untergruppe U von G mit U 2 N. Neben dem direkten Nachrech-
nen lasst sich die Normalteiler-Eigenschaft auch durch folgende Kriterien feststellen.




Satz 4.18

(i) Ist G eine Gruppe und U eine Untergruppe mit (G : U) = 2, dann gilt U < G.

(ii) Ist G eine Gruppe und (N;);c; eine Familie von Normalteilern, dann ist auch N = ()., N;
ein Normalteiler von G.

(iii) Seinun ¢ : G — H ein Gruppenhomomorphismus. Ist N ein Normalteiler von H, dann ist
¢~(N) ein Normalteiler von G.

(iv) Ist ¢ surjektiv und N Normalteiler von G, dann ist ¢(N) Normalteiler von H.

Beweis: zu (i) Sei g € G beliebig. Ist g in U enthalten, dann gilt gU = U = Ug. Setzen wir nun g ¢ U voraus.
Dann ist gU eine von U verschiedene Linksnebenklasse in G. Wegen (G : U) = 2 sind U und gU die einzigen
Linksnebenklassen, und wir erhalten eine disjunkte Zerlegung G = U U gU, also gU = G \ U. Ebenso zeigt man
Ug = G\ U. Insgesamt erhalten wir gU = Ug.

zu (ii) Fiir beliebiges g € G ist zu zeigen, dass gNg~! C N gilt. Sei also h € gNg~!. Dann gibt es ein n € N mit
h = gng™!. Weil jedes N; Normalteiler und nach Voraussetzung n in jedem N; enthalten ist, gilt h = gng™! € N; fiir
allei € I. Also liegt h in N.

zu (iii) Sein € ¢ }(N), also ¢(n) € N. Dann gilt h¢p(n)h™! € N fiir alle h € H. Insbesondere gilt ¢p(gng™?) =
¢(g2)p(n)p(g)™! €N fiir alle g € G, also gng™* € ¢ }(N) fiir alle g € G.

zu (iv) Sein € ¢(N), also n = ¢(n’) fiir ein n’ € G. Ist nun h € H beliebig vorgegeben, dann finden wir auf
Grund der Surjektivitit von ¢ ein g € G mit ¢(g) = h. Weil N Normalteiler von G ist, gilt gn’g™! € N. Es folgt

hnh™ = ¢(g)p(n)P(g) ™! = p(gn'g™) € p(N). O

Beispielsweise ist N = {(1 2 3)) ein Normalteiler von S3, denn aus |[N| = 3 und |S;| = 6 folgt (G : N) = 2 nach dem
Satz von Lagrange. Die Untergruppe U = ((1 2)) ist dagegen kein Normalteiler von S;, denn wie wir bereits in §4
gesehen haben, stimmen Links- und Rechtsnebenklassen von U nicht {iberein. Fiir g = (1 2 3) beispielsweise gilt
gUuU={(123),(13)}und Ug={(123),(23)}.

Aus Teil (iii) von Satz [4.18] angewendet auf den Normalteiler {e;} von H, folgt insbesondere, dass Kerne von
Homomorphismen stets Normalteiler sind. Umgekehrt werden wir in Kiirze sehen, dass jeder Normalteiler auch
Kern eines geeigneten Homomorphismus ist.

Man beachte, dass Teil (iv) ohne die Voraussetzung der Surjektivitdt falsch wird. Als Beispiel betrachte man die
Inklusionsabbildung ¢ : ((1 2)) — S3, 0 — o. Offenbar gilt ¢({(1 2))) = ((1 2)) und {(1 2)) < {((1 2)). Aber
andererseits ist ((1 2)), wie bereits festgestetllt, kein Normalteiler von Sj.

In bestimmten Situationen kénnen Normalteiler verwendet werden, um Gruppen in dufere direkte Produkte kleine-
rer Gruppen zu zerlegen. Zur Vorbereitung definieren wir

Definition 4.19 Sei G eine Gruppe, und seien A, B C G beliebige Teilmengen. Dann nennt man
die Teilmenge AB = {ab | a € A, b € B} das Komplexprodukt von A und B.




Bei Gruppen in additiver Schreibweise verwendet man fiir das Komplexprodukt die Schreibweise A+ B statt AB. Die
folgenden ,Rechenregeln“ fiir Komplexprodukte werden wir im weiteren Verlauf der Vorlesung an mehreren Stellen
verwenden, in diesem Kapitel beispielsweise weiter unten beim Beweis des Korrespondenzsatzes.

Lemma 4.20 Sei G eine Gruppe, und seien U und N Untergruppen von G.

(i) Gilt UNN = {e}, dann hat jedes Element g € UN eine eindeutige Darstellung der Form
g=un,mitue U undn€N.

(i) Gilt U € N, dann folgt UN =N.

(iii) Gilt UN = NU, dann ist UN eine Untergruppe von G. Ersteres ist insbesondere dann
gegeben, wenn N ein Normalteiler von G ist.

(iv) Sind N und U beides Normalteiler von G, dann folgt UN < G.

Beweis: zu (i) Sei g € UN. Die Existenz einer Darstellung der angegebenen Form ist auf Grund der Definition
des Komplexprodukts offensichtlich. Nehmen wir nun an, es gibt u,u’ € U und n,n’ € N mit g = un = u’n’. Dann
kann die Gleichung un = u’n’ umgeformt werden zu (u’)'u = n’n!. Dieses Produkt liegt in U NN = {e}. Es folgt

1

W) lu=eundn'nl=e alsou=1v'undn=n’.

zu (ii) Ist g € N, dann gilt g =e;g € UN. Liegt umgekehrt g in UN, dann gibt es u € U und n € N mit g = un. Da
N als Untergruppe von G unter der Verkniipfung abgeschlossen ist und u,n in N liegen, folgt g =un € N.

zu (iii) Wir beweisen die Untergruppen-Eigenschaft von UN unter der gegebenen Voraussetzung. Zunéchst ist das
Neutralelement e; = eze; wegen e; € U und e € N in UN enthalten. Seien nun g, g’ € UN vorgegeben. Dann gibt
esu,u’ € U und n,n’ € N mit ¢ = un und g’ = u’n’. Auf Grund der Voraussetzung finden wir einu” € U und n” € N

mit nu’ = u”’n”, so dass das Element

gg’ = @Wn)Wn) = u(mHn’ = u@Wn" M = @@")n"n)
in UN liegt. Aus ¢! = (un) ' =n"'u"! € NU und NU = UN folgt auch g~! € UN.

Sei nun N ein Normalteiler von G und g € UN. Dann gibt es Elemente u € U und n € N mit g = un. Auf Grund der
Normalteiler-Eigenschaft gilt uN = Nu, es existiert also ein n’ € N mit un = n’u. Dies zeigt, dass g in NU enthalten
ist, und wir haben damit die Inklusion UN € NU bewiesen. Der Nachweis der Inklusion NU € UN funktioniert
analog.

zu (iv) Sei g € G beliebig. Um zu zeigen, dass UN Normalteiler von G ist, miissen wir die Inklusion g(UN)g™! C UN
nachrechnen. Ist h € g(UN)g ™}, dann gibt es Elemente u € U und n € N mit h = g(un)g~!. Da U Normalteiler von G
ist, gilt gug™ € U, und aus N < G folgt gng™! € G. Insgesamt erhalten wir h = g(un)g™! = (gug™!)(gng™*) € UN.
O

Selbst wenn U und N beides Untergruppen von G sind, braucht das Komplexprodukt UN im Allgemeinen keine
Untergruppe von G zu sein. Als Beispiel betrachten wir G = S;, U = {((1 2)) und N = {(1 3)). Dann ist UN =
{id, (1 2),(1 3),(1 3 2)}. Nach dem Satz von Lagrange kann diese vierelementige Teilmenge keine Untergruppe der
sechselementigen Gruppe S; sein.




In § 1 hatten wir die Diedergruppen D, fiir n > 3 als Symmetriegruppen des regelmal3igen n-Ecks definiert. Mit dem
soeben eingefiihrten Konzept des Komplexprodukts konnen wir nun auf einfache Art nachweisen, dass die in §1
angegebene Menge von Elementen eine Untergruppe der orthogonalen Gruppe O(2) bildet. Als weiteres Hilfsmittel
bendtigen wir noch den folgenden Begriff.

Definition 4.21 Sei G eine Gruppe und U C G eine Untergruppe. Dann nennt man Ng(U) =
{g € G| gUg™! = U} den Normalisator von U in G.

Die Bedeutung des Normalisators wird durch die folgende Proposition deutlich.

Proposition 4.22 Sei G eine Gruppe und U eine Untergruppe. Dann ist N;(U) die grofite
Untergruppe H von G mit der Eigenschaft, dass U Normalteiler von H ist.

Beweis: Die Untergruppen-Eigenschaft von N;(U) haben wir in den Ubungen nachgewiesen; wir werden sie spéter im
Kapitel {iber Gruppenoperationen noch einmal auf einem anderen Weg herleiten. Fiir jedes g € N;(U) gilt gUg ™! = U
nach Definition von Ng(U). Dies zeigt, dass U < N;(U) ist. Sei nun H eine beliebige Untergruppe von G mit der
Eigenschaft U < H. Fiir jedes h € H gilt dann hUh™! = U und somit h € N;(U). Also ist H tatsichlich in N;(U)
enthalten. |

Sei n € IN mit n > 3. In § 1 hatten wir die Bezeichnung p fiir die 2T’T—Drehung um den Punkt (0,0) und 7 fiir die
Spiegelung an der x-Achse eingfiihrt. Wie man leicht iiberpriift, gilt ord(p) = n und ord(7) = 2. Nach Folgerung|[3.4]
gilt fiir die erzeugten zyklischen Untergruppen somit {p) = {p* | 0 < k < n} und (7) = {r°, '}. Das Komplexprodukt
dieser beiden zyklischen Untergruppen von O(2) ist somit gegeben durch

(p)(r) = {plo<k<nju{p*t|0<k<n} ;

dies sind genau die in § 1 angegebenen Elemente. Um zu zeigen, dass das Komplexprodukt eine Untergruppe von O(2)
ist, geniigt es nach Lemmazu iiberpriifen, dass {(p) ein Normalteiler von {p, 7) ist. Dazu wiederum reicht es nach
Proposition nachzuweisen, dass p und 7 beide im Normalisator N, -({p)) enthalten sind, denn daraus folgt,
dass (o, T) mit dem Normalisator iibereinstimmt. Das Element p ist wegen p € (p) offensichtlich im Normalisator

enthalten. Fiir T verwenden wir die aus § 1 bekannte Gleichung tp %7 = p* fiir 0 < k < n, die wegen 7 = 77!

zu Tp*t7! = p~F umgeformt werden kann. Diese zeigt, dass 7{p)7 ! mit (p) iibereinstimmt und T somit auch im

Normalisator enthalten ist.

Als weitere Anwendungen des Komplexprodukts fiihren wir die folgenden Begriffe ein.

Definition 4.23 Sei G eine Gruppe, und seien U, N Untergruppen von G. Wir bezeichnen G als
inneres direktes Produktvon U und N, wenn U und N beides Normalteiler von G sind und G =
UN sowie UNN = {e} gilt. Ist lediglich N eine Normalteiler von G, aber nicht notwendigerweise
die Untergruppe U, dann spricht man von einem inneren semidirekten Produkt.

Die inneren semidirekten Produkte werden wir erst spéter genauer untersuchen. Die wesentliche Motivation fiir die
Einfithrung der inneren direkten Produkte besteht in der Verbindung zu den duf3eren direkten Produkten der Form
G x H, die wir bereits in § 1 definiert haben.




Proposition 4.24 Sei G eine Gruppe und inneres direktes Produkt ihrer Untergruppen U und
N.Dann gilt G=U x N.

Beweis: Wir zeigen zunéchst, dass fiir alle u € U und n € N die Gleichung un = nu erfiillt ist. Wir beweisen

In™! = e. Weil N ein Normalteiler von G ist, gilt unu™! € N, und somit liegt auch

1 1

die dquivalente Gleichung unu™"n~
unu~'n! in N. Andererseits ist auch U ein Normalteiler von G. Es folgt nu~

gilt also unu™'n"! € UNN = {e}, also unu"'n"! =e.

n'e U und unu'n"! € U. Insgesamt

Nun zeigen wir, dass durch die Abbildung ¢ : U x N — G, (u,n) — un ein Isomorphismus von Gruppen definiert
ist. Zum Nachweis der Homomorphismus-Eigenschaft seien (uq, n;), (uy, n,) € U x N vorgegeben. Durch Anwendung
der zu Beginn bewiesenen Gleichung u;n, = n,u; erhalten wir

P(u,n)p(uz,ny) = (ugng)(uany) = wy(nuydn, = uy(ugng)n, =
(uup)(niny) = P(wuy,niny) = d((ug,n1)(uz, np)).

Jedes g € G kann als Produkt g = un mit u € U und n € N dargestellt werden. Dies beweist die Surjektivitit von ¢,
und die Eindeutigkeit der Darstellung folgt direkt aus Teil (i) von Lemma [4.20 O

Wir bemerken noch, dass die Bijektivitat der Abbildung U x N — UN, (u,n) — un auch dann noch gegeben ist,
wenn U und N nur Untergruppen, aber keine Normalteiler von G sind. Auch dies ist eine direkte Folgerung aus
Teil (i) von Lemma Sind U und N insbesondere endliche Untergruppen von G mit U NN = {e}, dann gilt also
|UN| = [U]-IN|.

Sei G eine Gruppe und N < G ein Normalteiler. Existiert ein weiterer Normalteiler U von G mit G = NU und
N NU = {eg}, dann kann, wie wir soeben gesehen haben, die Gruppe G in die Bestandteile N und U ,zerlegt“
werden. Aber auch, wenn ein solcher Normalteiler U nicht existiert, ist eine Zur{ickfithrung der Struktur von G auf
yeinfachere“ Bestandteile moglich.

Hier kommen die sog. Faktorgruppen ins Spiel. Fiir die Definition der Verkniipfung auf diesen Gruppen wiederholen
wir einen wichtigen, bereits aus der Linearen Algebra bekannten, Satz.

Satz 4.25 Seien X und Y Mengen und sei = eine Aquivalenzrelation auf X.

(i) Istf : X — Y eine Abbildung mit der Eigenschaft, dass fiir alle x, x’ € X aus x = x’ jeweils
f(x) = f(x") gilt, dann existiert eine eindeutig bestimmte Abbildung f : X/= — Y mit
F(Ix]D = f(x) fiir alle x € X.

(ii) Istg:X xX — Y eine Abbildung mit der Eigenschaft, dass fiir alle x,x’ € X und y, y’ € X
aus x = x’ und y = y’ jeweils g(x,y) = g(x’,y’) folgt, dann existiert eine eindeutig
bestimmte Abbildung g : (X/=) x (X/=) = Y mit g([x],[y]) = g(x, y) fiir alle x,y € X

Man nénnt f bzw. g die durch f bzw. g induzierte Abbildung.

Beweis: Die Eindeutigkeit von f und g ist jeweils offensichtlich, denn durch die angegebenen Bedingungen sind f
und g auf ihrem Definitionsbereich eindeutig festgelegt. Zum Nachweis der Existenz verwenden wir ein Reprédsen-
tantensystem R C X der Aquivalenzklassen. Fiir jedes x € X sei xz € R jeweils das eindeutig bestimmte Element
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in der Aquivalenzklasse von x. Dann definieren wir f und g durch f([x]) = f(xz) und g([x],[¥]) = g(xz, Yr)-
(Diese Definitionen sind eindeutig auf Grund der Tatsache, dass xz und yy jeweils nur von den Aquivalenzklas-
sen [x],[y] € X /= abhéngen, nicht aber von der Wahl der Elemente x und y innerhalb ihrer jeweiligen Klasse.)
Auf Grund unserer Voraussetzungen an die Abbildungen f und g gilt fiir alle x,y € X jeweils f(xz) = f(x) und
g(xg, yr) = g(x,y), insgesamt also f([x]) = f(x) und g([x],[y]) = g(x,y) wie gefordert. O

Die Giiltigkeit des Satzes ist keineswegs so selbstverstandlich, wie es auf den ersten Blick erscheint. Beispielsweise
existiert keine Abbildung f : Z/37Z — 7 /47 mit f(a + 3Z) = a + 47 fiir alle a € Z. Denn aus der Existenz einer
solchen Abbildung wiirde sich auf Grund der Gleichung 2+37 = 5+3Z in Z/3Z. die Gleichung 2+47 = f (2+37Z) =
f(5+437) =5+ 47 ergeben, im Widerspruch zu 5+ 47 = 1 + 47 # 2 + 47.

Proposition 4.26 Sei G eine Gruppe und N ein Normalteiler von G. Dann gibt es auf der Menge
G/N eine eindeutig bestimmte Verknilipfung - mit der Eigenschaft

(gN)-(hN) = (gh)N firalle g,heGq.

Beweis:  Dies erhélt man unmittelbar durch Anwendung von Satz (ii) auf die Relation =, gegeben durch
g=, 49 © g’ €gN firalle g, g’ € G und auf die Abbildung G x G — G/N, (g,h) — (gh)N. Die Voraussetzungen
des Satzes sind erfiillt, denn sind g, g’,h,h’ € G mit g =, g’ und h =, h’ vorgegeben, dann gibt es Element n;,n, € N
mit g’ = gn,; und h’ = hn,. Auf Grund der Normalteiler-Eigenschaft ist n’ = h™'n;h in N enthalten. Stellen wir diese

Gleichung zu n;h = hn’ um, so erhalten wir g’h’ = (gn;)(hn,) = (gh)n’n, € (gh)N und somit g’h’ =, gh. O

Man kann iibrigens zeigen, dass fiir eine beliebige Untergruppe U die Existenz einer Verkniipfung - auf der Menge
G/U mit (gU) - (hU) = (gh)U aquivalent zur Normalteiler-Eigenschaft von U ist. Den Beweis dieser Aussage sehen
wir uns in den Ubungen an.

Um die soeben bewiesene Proposition zu illustrieren, betrachten wir als Beispiel die Gruppe G = S5 und die Unter-
gruppe N = {(1 2 3)). Dann besteht die Menge G/N der Linksnebenklassen aus den beiden Elementen

idN={id,(123),(132)} , (12N={(12),(12)(123),(12)(132)}={(12),(23),(13)}.

Wegen (G : N) = 2 ist N ein Normalteiler von G. Fiir die soeben definierte Verkniipfung - auf G/N gilt beispielsweise
({dN)-((12)N)=(ldo(12))N =(12)N und ((1 2)N)-((1 2)N) = ((1 2)o(1 2)) = id N. Insgesamt ist die
Verkniipfungstabelle von - gegeben durch

| - || dN Ja 2|
idN idN [ (12N
Q2N [[Q2N | dN

Stellt man die Nebenklasse (1 2)N durch andere Représentanten dar, so liefert die Verkniipfung - dennoch dassel-
be Ergebnis. Beispielsweise gilt (1 2)N = (2 3)N = (1 3)N, und man erhélt entsprechend ((2 3)N) - ((1 3)N) =
((23)o(13))N =(123)N = N. Als néchstes zeigen wir nun, dass die Verkniipfung - auf der Menge G/N eine
Gruppenstruktur definiert.




Satz 4.27 Sei G eine Gruppe und N ein Normalteiler. Dann ist die Menge G/N der Linksne-
benklassen mit der Verkniipfung gN - hN = (gh)N eine Gruppe, die sogenannte Faktorgruppe
von G modulo N. Die Abbildung 7ty : G —» G/N, g — gN ist ein Epimorphismus von Gruppen,
der sog. kanonische Epimorphismus.

Beweis: Wir miissen fiir die gegebene Verkniipfung die Gruppenaxiome {iberpriifen. Zum Nachweis der Assoziativitat
seien g1, &,, 83 € G vorgegeben. Dann gilt

(81N -g2N)-gsN = (£182IN-gsN = ((8182)83)N = (g1(g283))N =
glN'(g2g3)N = glN-(gzN-ggN).

Die Nebenklasse € = e;N = N iibernimmt die Rolle des Neutralelements, denn fiir alle g € G gilt gN-ecN = (geg)N =
gNunde;N-gN = (egg)N = gN. Auerdem gilt gN-g N = (gg ')N = e;N = é und ebenso g !N-gN =¢;N =¢,
also ist g"'N das zu gN inverse Element in G/N.

Uberpriifen wir nun die angegebenen Eigenschaften der Abbildung 7. Fiir alle g, g’ € G gilt ny(gg’) = (gg’)N =
(gN)(g'N) = nty(g)my(g’). Somit ist 7ty ein Homomorphismus. Ist gN € G/N vorgegeben, dann gilt 7ty (g) = gN.
Also ist 7ty surjektiv. m|

Wie wir bereits wissen, sind Homomorphismen nicht nur mit der Gruppenverkniipfung, sondern auch mit der Po-
tenzierung von Elementen vertrdglich. Damit kdnnen wir eine naheliegende Potenzierungsregel fiir Elemente in
Faktorgruppen herleiten: Fiir g € G und n € Z gilt (gN)" = y(g)" = nn(g"™) = (g")N.

Ein wichtiges Beispiel fiir Faktorgruppen sind die bereits bekannten Restklassengruppen. Sei G = (Z,+), n € IN und
U = (n) = nZ. Dann sind die Elemente von G/U = Z/nZ die schon zuvor erwidhnten Restklassen der Form a + nZ
mit a € Z. Wir bemerken noch, dass jede zyklische Grupper der Ordnung n isomorph zu (Z/n’Z, +) ist. Dies ergibt
sich unmittelbar aus Folgerung [4.13}

Fiir viele Anwendungen ist es niitzlich, Faktorgruppen mit anderen, moglicherweise ,natiirlicher” erscheinenden
Gruppen zu identifizieren. Das zentrale Hilfsmittel dazu ist der Homomorphiesatz, dem wir uns nun zuwenden.

Proposition 4.28 Sei ¢ : G — H ein Gruppen-Homomorphismus und N < G ein Normalteiler
mit N C ker(¢). Dann gibt es einen eindeutig bestimmten Homomorphismus ¢ : G/N — H mit

$(gN) = ¢(g) fiir alle g € G.

Man nennt ¢ den durch ¢ induzierten Homomorphismus.

Beweis: Die Eindeutigkeit von ¢ ist klar, weil durch die Gleichung die Bilder aller Elemente von G/N festgelegt sind.
Zum Beweis der Existenz wenden wir wiederum Satz[4.25|an, diesmal Teil (i). Demnach geniigt es zu zeigen, dass fiir
alle g, g’ € G mit g =, g’ jeweils ¢(g) = ¢(g’) gilt. Aber dies ist der Fall, denn g =, g’ ist nach Definition dquivalent
zu g’ € gN, was wiederum mit (g’)"'g € N gleichbedeutend ist. Wegen N C ker(¢) folgt daraus ¢(g’) 1¢(g) =
$((g')'g) = ey und somit ¢(g) = ¢(g’). Nun iiberpriifen wir noch, dass ¢ ein Homomorphismus ist. Seien g,
h e G/N und g,h € G mit § = gN und h = hN. Dann gilt $(gh) = ¢((gN)(AN)) = ¢((gh)N) = ¢(gh) =
¢(2)¢(h) = ¢(gN)(hN) = $(&)$ (h). O




Satz 4.29 (Homomorphiesatz fiir Gruppen)

Sei ¢ : G — H ein Gruppenhomomorphismus. Dann induziert ¢ einen Isomorphismus

¢ : G/ker(¢p) — im(¢).

Ist der Homomorphismus ¢ surjektiv, dann erhélt man also einen Isomorphismus G /ker(¢) = H.

Beweis: Nach Satz (iii) ist N = ker(¢) ein Normalteiler von G. Anwendung von Proposition auf diesen
Normalteiler liefert einen von ¢ induzierten Homomorphismus ¢ : G/N — H. Auf Grund der Gleichung ¢(gN) =
¢ (g) fiir alle g € G stimmen im(¢) und im(¢ ) iiberein. Wir kénnen ¢ somit als surjektiven Homomorphismus G /N —
im(¢) auffassen. Zusitzlich ist ¢ injektiv. Ist namlich g € ker(¢), § = gN mit g € N, dann gilt ¢(g) = ¢(g) = ey. Es
folgt g € ker(¢), also g € N, und damit ist § = gN = e, N = ¢ das Neutralelement in G/N. Es gilt also ker(¢) = {&}.
Nach Proposition folgt daraus die Injektivitit von ¢. m|

Wir betrachten nun eine Reihe von Anwendungsbeispielen fiir den Homomorphiesatz.

(i) Sei G eine Gruppe und ¢ : G — {e;} gegeben durch g — e fiir alle g € G. Dann ist im = {eg}, und ¢
induziert einen Isomorphismus G/G = {es}.

(ii) Die identische Abbildung id; : G — G hat den Kern {e;} und die gesamte Gruppe G als Bild. Sie induziert also
einen Isomorphismus G/{e;} = G.

(iii) Sei K ein Korper und n € IN. Der Determinanten-Homomorphismus det : GL,(K) — K* besitzt, wie wir in
82 gesehen haben, die Gruppe SL,(K) als Kern. AuBerdem ist sie surjektiv, denn fiir jedes a € K* gibt es
eine invertierbare Matrix mit Determinante a, beispielsweise die Diagonalmatrix mit den Eintrdgen a, 1, ...,1.
Somit liefert der Homomorphiesatz einen Isomorphismus GL,(K)/SL,(K) = K*.

(iv) Die Signumsfunktion sgn : S,, — {£1} hat als Kern die Untergruppe A, = {0 € S,, | sgn(c) = 1}, die bereits aus
der Linearen Algebra bekannte alternierende Gruppe. AufSerdem ist sie fiir n > 2 surjektiv, wegen sgn(id) = 1
und sgn((1 2)) = —1. Also induziert sgn einen Isomorphismus S, /A, = {£1}.

Eine wichtige Anwendung der Faktorgruppen besteht darin, dass sie in vielen Fillen das Studium der Untergruppen
einer Gruppe G vereinfachen. Ist ndmlich N < G, dann korrespondieren die Untergruppen von G/N, wie wir gleich
sehen werden, zu bestimmten Untergruppen der Gruppe G. Dies ist der Inhalt des Korrespondenzsatzes, den wir als
néchstes beweisen werden. Da G/N in der Regel eine einfachere Struktur als G besitzt, lassen sich die Untergruppen
dort im allgemeinen leichter bestimmen.

Proposition 4.30 Sei G eine Gruppe, N < G ein Normalteiler und 7ty : G — G/N der kanoni-
sche Epimorphismus.

(i) Ist U eine Untergruppe von G, dann gilt n;l(nN(U)) =UN.
(i) Ist U eine Untergrupe von G/N, dann gilt ty(m,'(0)) = U.

Beweis: zu (i) Sei g € n;,l(nN(U)). Dann liegt 7y (g) in 7ty (U), es gibt also ein u € U mit ty(g) = my(u). Fir
das Element n = u™!g gilt nN = ny(n) = ny(u)'ny(g) = € = N, also ist nN = N und insbesondere n € N. Es




folgt g = un € UN. Ist umgekehrt g € UN, dann gibt es Elemente u € U und n € N mit g = un. Wir erhalten

iy (g) = iy (un) = my (W) (n) = my(u)e = my(u), und es folgt g € ngl(nN(U)).

zu (ii) Die Inklusion nN(n;,l(U)) C U folgt unmittelbar aus der Definition von Bild- und Urbildmenge. Fiir die
umgekehrte Inklusion sei § € U vorgegeben und g € G mit gN = g. Dann gilt my(g) = & und somit g € n;,l(l_] )
nach Definition der Urbildmenge 7! (U). Es folgt § = my(g) € my(my (D). O

Satz 4.31 (Korrespondenzsatz fiir Gruppen)

Sei G eine Gruppe, N ein Normalteiler, G = G/N und 7ty : G — G der kanonische Epimorphis-
mus. Ferner sei G die Menge der Untergruppen von G und Gy die Menge der Untergruppen U
von G mit U 2 N. Dann sind die beiden Abbildungen

QN—>Q_,UHHN(U) und g_—>gN;U’_’7T;;1(U)

bijektiv und zueinander invers. Aullerdem gilt:

(i) Fiir U,V € Gy gilt U C V genau dann, wenn 7ty (U) € 7ty (V) erfiillt ist.
(ii) Genau dann ist U € Gy ein Normalteiler von G, wenn 7y (U) ein Normalteiler von G ist.

(iii) Ist U € Gy von endlichem Index in G und U = 7y (U), dann gilt (G : U) = (G : U).

Beweis: Sei U € Gy, also eine Untergruppe von G mit U 2 N. Dann gilt n&l(nN(U)) =UN =NU = U, wobei wir im
ersten Schritt Proposition (i), im zweiten Lemma (iii) und im dritten Lemma (ii) verwendet haben.
Umgekehrt liefert Teil (ii) von Proposition die Gleichung my (' (U)) = U fiir alle Untergruppen U von G.

zu (i) Seien U,V € Gy mit U € V. Dann gilt offenbar 7, (U) € 7ty (V). Ist umgekehrt 7ty (U) C my (V) vorausgesetzt,
dann folgt U = n;l(nN(U)) - rc;]l(rcN(V)) =V.

zu (ii) Weil der kanonische Homomorphismus 7 surjektiv ist, folgen ,,=* bzw. ,<* aus Satz (iv) bzw. (iii).

zu (iii) Wir zeigen, dass durch gU — n;,l(gl_]) eine Bijektion zwischen den Linksnebenklassen von U und den
Linksnebenklassen von U gegeben ist. Sei § € G und g € G ein Element mit 75(g) = g. Dann gilt gU = n;l(gl_J). Ist
nimlich gu € gU mit u € U vorgegeben, dann folgt 7ty (gu) = my(g)my(w) = gy (w) € gU und somit gu € m,'(gU).
Ist umgekehrt h € 7' (gU) vorgegeben, dann folgt mty(h) € gU, also my(h) = gi fiir ein & € U. Bezeichnet u € U
ein Urbild von @, dann gilt also AN = guN. Es gibt also ein n € N mit h = gun, und wegen U 2 N folgt h € gU.

Es ist unmittelbar klar, dass die Zuordnung surjektiv ist, denn jede Nebenklasse von U hat die Form gU mit einem
g € G, und folglich ist gU = 7'C;11 (gU) mit § = my(g). Auch die Injektivitit ist offensichtlich. Sind namlich g,U
und g,U zwei verschiedene Nebenklassen in G/U, dann sind sie als Teilmengen von G disjunkt. Die Urbildmengen
n;,l(gl U) und n;,l(gz U) miissen dann erst recht disjunkt sein, und insbesondere voneinander verschieden. O

Wir verwenden nun den Korrespondenzsatz fiir Gruppen, um alle Untergruppen von (Z,+) zu bestimmen, die die
Untergruppe (44) enthalten. Sei 744y : Z — Z/447 der kanonische Epimorphismus. Die Gruppe (Z/447Z,+) ist
eine zyklische Gruppe der Ordnung 44. Durch Satz[3.11]haben wir eine vollstdndige Beschreibung der Untergruppen
von (Z/447Z.,+) zur Verfiigung: Zu jedem Teiler der Gruppenordnung 44 gibt es eine eindeutig bestimmte Unter-
gruppe, und diese werden erzeugt durch gewisse Potenzen des Erzeugers 1 von Z/447. Die vollstindige Liste der
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Untergruppen ist also gegeben durch

(1), (2), (@), (11), (22), (44) ={0}.

Der Korrespondenzsatz besagt nun, dass es korrespondierend zu diesen sechs Untergruppen von Z /447 genau sechs
Untergruppen von (Z, +) gibt, die (44) enthalten. Offenbar ist (44) in {(a) enthalten fiir die Zahlen a € {1,2,4,11,
22,44}, denn jedes ganzzahlige Vielfache von 44 ist auch ein Vielfaches von a fiir jede Zahl a in dieser Menge. Der
Korrespondenzsatz liefert uns die Information, dass es keine weiteren Untergruppen U von (Z, +) mit U 2 (44) gibt.

Auch die folgenden beiden Sitze, mit denen wir dieses Kapitel abschlieRen, erweisen sich beim Umgang mit Faktor-
gruppen immer wieder als niitzlich.

Satz 4.32 (Isomorphiesdtze)
Sei G eine Gruppe, N < G und U eine Untergruppe von G.

(i) Dann ist N NU ein Normalteiler von U, und es gilt U/(NNU) = (UN)/N.
(ii) Istauch U < G und gilt U 2 N, dann gilt G/U = (G/N)/(U/N).

Beweis: zu (i) Zunichst bemerken wir, dass UN nach Lemma [4.20| eine Untergruppe von G ist, und aus N < G
folgt N < UN. Wir wenden nun den Homomorphiesatz, Satz an auf den Homomorphismus ¢ : U — (UN)/N,
u — uN der durch Komposition der Inklusionsabbildung U < G mit dem kanonischen Epimorphismus 7y zu Stande
kommt. Diese Abbildung ist surjektiv, denn jedes Element in (UN)/N hat die Form (un)N mit u € U und n € N.
Wegen u~!(un) = n € N gilt (un)N = uN, und es folgt ¢ (u) = uN = (un)N. Der Kern von ¢ ist genau die Untergrupe
N NU, denn fiir alle u € U gilt die Aquivalenz

ucker(¢p) & ¢(u)=N <& uN=N & ueN & ueNNnU.

Also liefert der Homomorphiesatz tatsdchlich den angegebenen Isomorphismus.

zu (ii) Nach Definition gilt U/N = 75 (U) mit dem kanonischen Epimorphismus 7y : G —» G/N. Aus U < G und
Satz (iv) folgt somit, dass U/N ein Normalteiler von G/N ist. Wir wenden nun den Homomorphiesatz auf die
Abbildungy : G —» (G/N)/(U/N), g — gN(U/N) an, die durch Hintereinanderschaltung der beiden Epimorphismen
7y und 7y y zu Stande kommt. Als Komposition zweier Epimorphismen ist auch v ein Epimorphismus. Damit der
Homomorphiesatz das gewiinschte Ergebnis liefert, miissen wir noch zeigen, dass ker(vy) = U gilt. Tatsachlich gilt
fiir alle g € G die Aquivalenz

ge€ker(y) & Y(g)=U/N < gNWU/N)=U/N & gNeU/N < dJueU:gN=uN &

UaN
JueU:g'ueN < 3FJueUneN:glu=n < 3FJueUneN:g=un! & geU. O




In Teil (ii) von Satz werden tatsichlich Faktorgruppen von Faktorgruppen gebildet, ein auf den ersten Blick
etwas unanschaulicher Vorgang. Wir illustrieren diese Aussage deshalb anhand eines Beispiels. Sei G = (Z, +). Weil
G abelsch ist, sind die Untergruppen N = (6) und U = (2) Normalteiler von G, und wegen 6 =3-2 € U gilt N C U.
Das Bild von U unter dem kanonischen Epimorphismus besteht aus allen Vielfachen von 2 = 2 + 67, ist also durch
(2) = {0, 2,4} gegeben. Der zweite Isomorphiesatz liefert uns somit

7/27. = GJ/U = (G/N)/(U/N) = (Z]6Z)/(2).

Nach demselben Schema zeigt man leicht: Sind m, n € IN und ist m ein Teiler von n, dann gilt Z/mZ = (7Z./nZ)/{m),
mit m = m+ nZ.




§ 5. Endlich erzeugte abelsche Gruppen

Zusammenfassung. In diesem Kapitel werden wir mit Hilfe der bisher entwickelten theoretischen Werkzeuge
alle endlich erzeugten abelschen Gruppen bis auf Isomorphie bestimmen. Genauer zeigen wir, dass jede solche
Gruppe isomorph zu einem dufderen direkten Produkt von (unendlichen und endlichen) zyklischen Gruppe ist.
Insbesondere konnen wir dann fiir jedes n € IN eine endliche Liste Gy, ..., G, von Gruppen angeben, so dass
jede abelsche Gruppe der Ordnung n zu einem der G; isomorph ist. Dies wird am Ende des Kapitels fiir die
Zahl n = 100 exemplarisch vorgefiihrt.

Wichtige Grundbegriffe Zentrale Sdtze

— freie endlich erzeugte abelsche Gruppe — Zerlegung endlich erzeugter abelscher Gruppen in einen

. freien Anteil und eine endliche abelsche Gruppe
— Torsionsuntergruppen abelscher Gruppen

— Zerlegung endlicher abelscher Gruppen in ein Produkt

— torsionfreie abelsche Gruppe endlicher zyklischer Gruppen

— Chinesischer Restsatz fiir Gruppen

In § 2 haben wir eine Gruppe G als endlich erzeugt bezeichnet, wenn eine endliche Teilmenge S C G mit G = (S)
existiert. Im weiteren Verlauf werden wir wiederholt auf die folgende Hilfsaussage zuriickgreifen.

Lemma 5.1 Seien G,H beliebige Gruppen. Ist G endlich erzeugt und existiert ein surjektiver
Homomorphismus ¢ : G — H, dann ist auch H endlich erzeugt.

Beweis: Sei S ={gy, ..., g,} ein endliches Erzeugendensystem von G. Wir zeigen, dass ¢ (S) = {¢(g1), ..., P(g,)} ein
Erzeugendensystem von H ist. Sei dazu U eine beliebige Untergruppe von H, die ¢(S) enthélt. Zu zeigen ist U = H.
Nun ist ¢ ~1(U) nach Proposition eine Untergruppe von G, und diese enthilt S als Teilmenge. Wegen G = (S)
folgt ¢ ~1(U) = G. Aber daraus ergibt sich direkt U = H. Ist nimlich h € H, dann existiert auf Grund der Surjektivitit
von ¢ ein g € G mit ¢(g) = h. Dieses ist zugleich in ¢ ~*(U) enthalten, und daraus folgt h = ¢(g) € U. O

Von nun an sind alle in diesem Kapitel vorkommenden Gruppen abelsch und werden in additiver Schreibweise darge-
stellt. Fiir das Komplexprodukt zweier Teilmengen A, B einer Gruppe G verwenden wir entsprechend die Schreibweise
A+ B statt AB. Fiir das innere direkte Produkt verwenden wir hier die folgende Notation: Wir schreiben G=U® V,
wenn U und V Untergruppen von (G, +) sind und G ein inneres direktes Produkt von U und V ist. Diese Schreibweise
ist nur bei abelschen Gruppen {iiblich. Sie erinnert an die Notation fiir die direkte Summen von Untervektorrdum-
en eines K-Vektorraums V. Tatsdchlich werden wir in diesem Kapitel stellenweise den Vektorraum-Begriff zu Hilfe
nehmen.

Definition 5.2 Sei G eine abelsche Gruppe und m € IN.

(i) Man nennt G[m] = {g € G| mg = 05} die m-Torsionsuntergruppe von G.

(i) Die Teilmenge Tor(G) = | J, o G[n] wird die Torsionsuntergruppe von G genannt.




Man iiberpriift leicht, dass sowohl G[m] fiir jedes m € IN als auch Tor(G) tatséchlich Untergruppen von G sind.
Denn offenbar ist 0; sowohl in G[m] als auch in Tor(G) enthalten. Seien nun g,h € G[m] vorgegeben. Dann gilt
mg = mh = O, und es folgt m(g + h) = mg + mh = O; + 0; = 0; und m(—g) = —(mg) = —0; = 0. Dies
zeigt, dass auch g +h und —g in G[m] liegen. Also ist G[m] tatsdchlich eine Untergruppe von G. Zum Nachweis der
Untergruppen-Eigenschaft von Tor(G) seien nun g,h € Tor(G). Dann gibt es nach Definition m,n € IN mit g € G[m]
und h € G[n], also mg = 05 und nh = Og. Es folgt (mn)g = n(mg) = n0g = 05 und (mn)h = m(nh) = mO; = O,
also g,h € G[mn]. Wie soeben gezeigt, sind damit auch g +h und —g in G[mn] enthalten, und damit erst recht in
Tor(G). Also ist auch Tor(G) eine Untergruppe von G. Man beachte aber, dass fiir eine nicht-abelsche Gruppe G die
Teilmenge {g € G | g™ = e;} im Allgemeinen keine Untergruppe von G ist!

Definition 5.3 Sei G eine endlich erzeugte abelsche Gruppe.

(i) Wir bezeichnen G als torsionsfrei, wenn Tor(G) = {05} gilt.

(ii) Die Gruppe G ist frei, wenn fiir ein r € IN, ein Isomorphismus zwischen G und (Z", +)
existiert, wobei Z° = {0} gesetzt wird.

Wie man unmittelbar iiberpriift, ist jede freie endlich erzeugte abelsche Gruppe auch torsionsfrei. Unser erstes Ziel
in diesem Abschnitt ist der Nachweis, dass jede endlich erzeugte abelsche Gruppe als duf3eres direktes Produkt einer
freien endlich erzeugten abelschen Gruppe und einer endlichen abelschen Gruppe dargestellt werden kann.

Proposition 5.4

(i) Jede Untergruppe einer freien endlich erzeugten abelschen Gruppe ist eine freie endlich
erzeugte abelsche Gruppe.

(ii) Jede torsionsfreie endlich erzeugte abelsche Grupe ist frei.

Beweis: zu (i) Da jede endlich erzeugte freie abelsche Gruppe nach Definition isomorph zu Z" fiir ein n € N ist,
geniigt es, die Aussage fiir Gruppen dieser Form zu beweisen. Wir zeigen durch vollstdndige Induktion iiber n € IN: Ist
U eine Untergruppe von Z", dann ist U eine freie endlich erzeugte abelsche Gruppe. Fiir n = 0 ist Z" = U = {0} und
die Aussage somit offensichtlich. Fiir n = 1 konnen wir Satz[3.7|anwenden, weil (Z, +) zyklisch ist. Die Untergruppe
U stimmt demnach mit mZ fiir ein m € IN,, iiberein. Sie ist also selbst entweder unendlich zyklisch oder trivial, also
isomorph zu Z! oder Z°.

Sei nun n > 1, und setzen wir voraus, dass die Aussage fiir Untergruppen von Z" giiltig ist. Sei U eine Untergruppe
von Z""! und t : Z"*! — Z die Projektionsabbildung auf die letzte Komponente, also gegeben durch (ay, ..., a,.1) =
an41- Nach Definition gilt ker(w) = Z" x {0} = Z", also ist ker(7t|;) = ker(m) N U isomorph zu einer Untergruppe
von Z". Nach Induktionsvoraussetzung ist ker(7t|;) ebenfalls eine freie endlich erzeugte abelsche Gruppe und somit
isomorph zu Z" fiir ein r € IN,.

Das Bild 7t (U) ist eine Untergruppe von Z und somit, wie zu Beginn gezeigt, entweder gleich {0} oder gleich mZ fiir
ein m € IN. Im Fall n(U) = {0} gilt U = ker(rt|y) = Z", und wir sind fertig. Betrachten wir nun den Fall 7(U) = mZ
mit m € IN. Wahlen wir ein v € U mit 7(v) = m, dann wird die Untergruppe (v) von U isomorph auf mZ abgebildet.
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Wir {berpriifen nun, dass U ein inneres direktes Produkt von ker(7t|;) und (v) ist. Zunéchst einmal sind ker(7|;)
und (v) als Untergruppen der abelschen Gruppe U Normalteiler von U. AuRerdem gilt ker(7|;) N (v) = {Ogn }. Ist
namlich w ein Element im Durchschnitt, dann gilt w = kv fiir ein k € Z. Dariiber hinaus gilt km = kn(v) = n(kv) =
(7]y)(w) =0, und somit k = 0 und w = kv = Ogn1.

Fiir den Nachweis von U = ker(7t|; )+ (v) stellen wir zunéchst fest, dass ,,2“ wegen ker(7t|;) € U und v € U offenbar
erfiillt ist. Zum Beweis von ,,C“ sei w € U vorgegeben. Wegen m(U) = mZ gilt =(w) = km fiir ein k € Z. Setzen wir
nun w’ = w—kv, dann erhalten wir w = w’+ kv mit kv € (v) und (z|,)(w’) = n(w') = n(w)—kn(v) = km—km =0,
also w’ € ker(rn|y). Damit ist w € ker(mt|,) + (v) nachgewiesen. Insgesamt sind damit die Voraussetzungen von
Propositionerfﬁllt, und wir erhalten U 2 ker(rt|y) x n(U) 2 Z" x mZ 27" x 7.= 77"

zu (ii) Sei G eine torsionsfreie endlich erzeugte abelsche Gruppe. Weiter sei S ein endliches Erzeugendensystem
und T = {g4,...,&,} € S eine maximale Teilmenge von S mit der Eigenschaft, dass die Abbildung ¢ : Z" — G,
(ay,...,a,) — a; g + ... + a, g, injektiv ist. Dann ist die Untergruppe U = (T) von G frei, denn als Abbildung Z" — U
ist ¢ auch surjektiv, die Gruppe U also isomorph zu Z".

Nun sei g € S\ T ein beliebiges Element. Auf Grund der Torsionsfreiheit gilt ag # O fiir alle a € Z, a # 0. Wegen der
Maximalitat von T finden wir aber einen Satz (a, a, ..., a,,) ganzer Zahlen mit ag +a, g, +... +a,g, = 0; und a # 0,
a; #0fireini € {1,...,n}. Wegen ag = —a; g, —...—a,g, ist dann ag in U enthalten. Auf diese Weise erhalten wir fiir
jedes g € Seina, € Z mita,g € U, wobei wir im Fall g € T jeweils a, = 1 setzen konnen. Weil S endlich ist, kénnen
wir das kleinste gemeinsame Vielfache dieser Zahlen bilden und finden so ein a € IN mit aS C U. Wegen G = (S) gilt
dann auch aG C U. Nunist ¢ : G — G, g — ag ein (auf Grund der Torsionsfreiheit) injektiver Homomorphismus,
dessen Bild ¢(G) in der freien abelschen Gruppe U enthalten ist. Nach Teil (i) ist G = 1)(G) damit selbst eine freie,
endlich erzeugte abelsche Gruppe. m|

Satz 5.5 Ist G eine endlich erzeugte abelsche Gruppe, dann gilt G = Z" x Tor(G) fiir ein r € IN,.
Dariiber hinaus ist Tor(G) eine endliche abelsche Gruppe.

Beweis: Zunéchst bemerken wir, dass die Faktorgruppe G/Tor(G) eine torsionsfreie endlich erzeugte abelsche Gruppe
ist. Zum Beweis sei § € Tor(G/Tor(G)) vorgegeben, mit ¢ = g + Tor(G) fiir ein g € G. Dann gilt mg = 0g /o) flir
ein m € IN. Es folgt mg + Tor(G) = m(g + Tor(G)) = mg = O 1or() = O + Tor(G) und somit mg € Tor(G). Daraus
wiederum folgt, dass ein n € IN mit (nm)g = n(mg) = O existiert. Aber damit ist auch g in Tor(G) enthalten und
& = g +Tor(G) = 0+ Tor(G) = Og 1or(c)- Insgesamt haben wir Tor(G/Tor(G)) = {0 1or(c)}, also die Torsionsfreiheit
der Gruppe G/Tor(G), nachgewiesen.

Weil G/Tor(G) torsionsfrei ist, gilt G/Tor(G) = Z" fiir ein r € Ny, nach Proposition[5.4] (ii). Sei ¢ die Komposition des
kanonischen Epimorphismus G — G/Tor(G) mit diesem Isomorphismus, seien vy, ..., v, Urbilder der Einheitsvektoren
ey, ...,e. € Z" unter ¢, und sei U = (vq, ..., v,.). Wir zeigen, dass G = U & Tor(G) gilt. Weil G abelsch und U und Tor(G)
Untergruppen von G sind, handelt es sich um Normalteiler. Zum Nachweis von U N Tor(G) = {0} sei g ein Element
im Durchschnitt. Wegen g € Tor(G) gilt mg = O, fiir ein m € IN. Wegen g € U gibt es aullerdem kg, ..., k, € Z mit
g =kyv; +... +k.v,. Es folgt mg = mk,v; + ... + mk,v, und 0y, = ¢p(mg) = mkye; + ... + mk,e, = (mky, ...,mk,).
Es gilt also mk; = 0 und somit auch k; = 0 fiir 1 < i < r, und dies wiederum bedeutet g = 0. Fiir den Nachweis
von G = U + Tor(G) sei g € G vorgegeben. Sei (ky,...,k,) = ¢(g), h = kyv; + ... + k,v, und g’ = g — h. Dann ist
g=¢g +h heUund ¢(g') = ¢(g)— d(h) = (ky,....k,) — (ky,....,k.) = Oy, also g’ € ker(¢). Aber der Kern von
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¢ stimmt mit dem Kern des kanonischen Epimorphismus G — G/Tor(G) tiberein, und dies ist Tor(G). Also ist g’ in
Tor(G) enthalten. Also liegt g =h + g’ in U + Tor(G).

Insgesamt ist G = U + Tor(G) damit nachgewiesen. Mit Proposition[4.24]erhalten wir G = U x Tor(G). Wie man leicht
iiberpriift, ist die Abbildung ¢ |, : U — Z" surjektiv (denn wegen ¢ (v;) = e; werden alle Einheitsvektoren getroffen)
und injektiv (denn das einzige Urbild von 0y, ist 0;), aufBerdem ein Homomorphismus. Es gilt also U = Z". Damit ist
G = 7" xTor(G) gezeigt. Die Gruppe Tor(G) ist offenbar abelsch, auf3erdem ist sie als Bild von G unter dem surjektiven
Homomorphismus G — Tor(G), der durch Komposition von G = U x Tor(G) mit der Projektion auf die zweite
Komponente zu Stande kommt, nach Lemma endlich erzeugt. Sei {hy,...,h,} ein endliches Erzeugendensystem
von Tor(G). Wegen h; € Tor(G) gibt es jeweils ein m; € IN mit m;h; = Og, fir 1 <i <s. Wegen Lemma folgt
jeweils (h;) = {kh; | 0 < k < m;}. Zusammen mit Satz[2.9] (i) erhalten wir

TOr(G) = {k1h1 +...+ kshs | kl’ veoy ks S Z} = {klhl +..+ kshs | 0< ki < mi}.

Es gibt in Tor(G) also héchstens [ [;_, m; verschiedene Elemente. Insbesondere ist Tor(G) endlich. O

Wir werden nun zeigen, dass jede endliche abelsche Gruppe in ein dul3eres direktes Produkt endlicher zyklischer
Gruppen zerlegt werden kann. In der Linearen Algebra wurde gezeigt, dass Z/pZ. fiir jede Primzahl p ein Korper ist,
und die Bezeichnung IF, = Z/pZ fiir diesen Korper eingefiihrt.

Lemma 5.6

(i) Sei G eine abelsche Gruppe, seiens € N, my, ...,m; € Nund g4, ..., g, € G mit ord(g;) | m;
fir1 <i<s.SeiU=(gy,...,g,). Dann gibt es einen surjektiven Gruppenhomomorphis-
mus ¢ : Z/myZ x ... x Z/m,Z — U mit

¢(a,...a) = ag +..+ag fir alle ay,...,a, €Z.

(ii) Ist G eine abelsche Gruppe mit G[p] = G, dann gibt es eine Abbildung - : IF, x G — G mit
a-g =ag fiir alle a € Z und g € G. Mit dieser Abbildung wird auf G die Struktur eines
IF,-Vektorraums definiert.

Beweis: zu (i) Wir definieren die Abbildung ¢, indem wir ¢(a,,...,a;) = a;g; +... + a, g, fiir 0 < a; < m; setzen.
Die Gleichung ist dann automatisch fiir beliebige a; € Z erfiillt. Wenden wir namlich Division mit Rest auf jedes g;
an und schreiben a; = q;m; + r; mit 0 < r; < m;, dann gilt auf Grund der Elementordnungen jeweils m;g; = 0; und
somit a;g; = (q;m; + r;)g; = qi(m;g;) + ria; = q; - O¢ + r;a; = r;a;. Wegen a; = 7; in Z/m;7Z fir 1 <i < r folgt dann
o(a,....a,) = ¢(ry,....75) =rig +...+1,g = a; g1 +...+a,g,. Mit Hilfe dieser Gleichung kann die Homomorphismus-
Eigenschaft nun unmittelbar nachgerechnet werden. Nach Satz gilt U = {a,g; +... + a,g; | a3, ...,a, € Z}. Damit
ist auch klar, dass ¢ surjektiv ist.

zu (ii) Die Existenz einer solchen Abbildung erhalten wir, indem wir (i) fiir jedes g € G auf s = 1, m; = p und
g = g; anwenden. Wir zeigen nun, dass (U, +,-) die Vektorraum-Axiome erfiillt. Nach Definition ist (U, +) eine
abelsche Gruppe. Seien nun a,b € I, und g,h € G vorgegeben, und seien a,b € Z Urbilder von a, b unter dem
kanonischen Epimorphismus Z — I¥,. Dann gilt (a +b)-g =a+b-g =(a+b)g =ag+bg=a-g+b-g,
a-(g+h)=a(g+h)=ag+ah=da-g+a-h, (ab)-g=ab-g=abg=a(bg)=a-(b-g)undl-g=1g=g. O




Satz 5.7 Sei G eine abelsche Gruppe.
(i) Sind m,n € N teilerfremd, dann gilt G[mn] = G[m] x G[n].

(ii) Sein € INmit G[n]= G, und sein = ]_[l.r=1 pf" die Primfaktorzerlegung von n, mit r € IN,
Primzahlen p, ..., p, und Exponenten e, ...,e, € IN. Dann ist G = G[pil] X ... x G[p¢].

Beweis: zu (i) Wegen Proposition[4.24]geniigt es, Gimn] = G[m]®G[n] nachzuweisen. Offenbar gilt G[m] € G[mn],
denn ist g € G[m], dann folgt mg = 04, damit auch (mn)g = n(mg) = n0; = 05 und somit g € G[mn]. Ebenso
erhilt man G[n] € G[mn], und als Untergruppen der abelschen Gruppe G sind G[m] und G[n] auch Normalteiler.
Zum Nachweis von G[m] N G[n] = {0} sei g € G[m] N G[n] vorgegeben. Dann gilt mg = ng = O, also ist ord(g)
ein gemeinsamer Teiler von m und n. Auf Grund der Teilerfremdheit von m und n folgt ord(g) = 1, also g = O.
Daraus folgt G[m] N G[n] € {0g}; die Inklusion ,,2“ ist offensichtlich. Es bleibt G[mn] = G[m] + G[n] zu zeigen.
Die Inklusion ,,2“ folgt direkt aus G[m] € G[mn] und G[n] € G[mn]. Zum Nachweis von ,,C“ sei g € G[mn].
Nach dem Lemma [3.8] von Bézout gibt es k,{ € Z mit km + £n = 1. Es folgt g = 1g = (km)g + ({n)g. Wegen
n(km)g = k(mn)g = kO; = 0 liegt (km)g in G[n], und wegen m(¢n)g = ¢(mn)g = £0; = O ist ({n)g in G[m]
enthalten. Damit ist g = (km)g + (n)g € G[m] + G[n] nachgewiesen.

zum (ii) Wir schicken voraus: Ist G eine abelsche Gruppe und sind m,n € IN mit m | n, dann gilt G{m] = G[n][m].
Nun beweisen wir die Aussage durch vollstdndige Induktion iiber die Anzahl r der verschiedenen Primfaktoren p;
von n. Im Fall r € {0, 1} braucht nichts gezeigt werden. Sei nun r > 1, und setzen wir die Aussage fiir kleinere Werte
von r voraus. Sei n = [ [I_, p{* die Primfaktorzerlegung von n. Setzen wir m = [[/_| p%*, dann gilt n = mp? und
ggT(m, p¢r) = 1. Die Untergruppe H = G[m] erfiillt H{m] = H. Wir konnen also die Induktionsvoraussetzung auf H
anwenden; diese liefert einen Isomorphismus H = H[p{'] x ... x H[p/" 1 1= G[p;'] x ... x G[p1 . Nach Teil (i) gilt
auBerdem G = G[n] = H x G[p;r]. Insgesamt erhalten wir somit den angegebenen Isomorphismus. m|

Als weiteres Hilfsmittel benttigen wir

Satz 5.8 (Chinesischer Restsatz fiir Gruppen)
Sind m,n € NN teilerfremd, dann existiert ein Isomorphismus Z/(mn)Z = Z.,/mZ. x Z./n’Z. abel-
scher Gruppen.

Beweis: Die Anwendung von Satz auf G = G[mn] = Z/(mn)Z liefert G = G[m] x G[n]. Dabei ist G[m] =
(n+ (mn)Z). Denn wegen m - (n + (mn)Z) = O (ny)z ist einerseits n + (mn)Z in G[m] enthalten, woraus sich die
Inklusion ,,2“ ergibt. Ist andererseits a + (mn)Z € G[m] vorgegeben, mit a € Z, dann folgt aus ma + (mn)Z =
0z/(mnyz = (mn)Z unmittelbar ma € (mn)Z, und daraus wiederum, dass a ein Vielfaches von n ist, also a = rn fiir
ein r € Z und a + (mn)Z = r(n + (mn)Z) € (n+ (mn)Z) gilt. Weil 1 + (mn)Z ein Element der Ordnung mn ist, ist
n+(mn)Z = n-(1+ (mn)Z) ein Element der Ordnung m nach Satz[3.9] (i), und somit G[m] = Z/mZ. Ebenso zeigt
man G[n] = Z/nZ, und insgesamt erhalten wir G = Z/mZ x Z./nZ. |

Wir werden im Kapitel iiber Kongruenzrechnng zeigen, dass Z/(mn)Z und Z./mZ x Z./n’Z sogar als Ringe isomorph
sind; dies liefert insbesondere einen Isomorphismus zwischen den abelschen Gruppen. Man beachte aber, dass der

— 61 —



Chinesische Restsatz nur fiir teilerfremde m,n € IN giiltig ist! Beispielsweise ist Z/27Z x Z./27 nicht isomorph zu
7./47. Denn Z/47 enthilt mit 1 ein Element der Ordnung 4, wihrend die Gleichung 2 - (@, b) = (0,0) fiir alle
(a,b) € /27 x 7./ 27 zeigt, dass es in dieser Gruppe nur Elemente der Ordnung 1 und 2 gibt.

Satz 5.9 Seie € Ny, p eine Primzahl und G eine endliche abelsche Gruppe mit G[p¢] = G.
Dann gibt es ein r € N, und ny,...,n, € N, so dass

G = Z/pMZXxZ[p™lx..xZ/p™Z gilt.

Beweis: Wir beweisen die Aussage durch vollstindige Induktion {iber e. Iste =0, dann gilt G[1] =G, alsog =1-g =
0 fiir alle g € G. Es folgt G = {04}, und die Behauptung ist offenbar mit r = 0 erfiillt. Sei nun e > 1, und setzen wir
die Aussage fiir Werte kleiner als e voraus. Fiir die Gruppe H = pG gilt H[p¢ '] = H. Nach Induktionsvoraussetzung
gibt es r € Ny, ny, ..., n, und einen Isomorphismus ¢ : Z/p™mZ x ... x Z/p™Z — H. Seien hy, h,, ...,h, € H die Bilder
der Elemente

(1,0,0,..,0) , (0,1,0,..,0) , .. , (0,0,0,..,1).

Wegen h; € pG gibt es jeweils ein g; € G mit pg; = h;, fiir 1 < i < r. Wir zeigen nun zunéichst, dass die Gruppe
U=/{(gy,...,g,) isomorph zu Z/p™*1Z x ... x Z,/p™*'Z ist. Dazu betrachten wir die Abbildung

Y ZpnT X L xZ/p" T - U, (G,..4,) = a;8 + ... +a,g,.

Nach Lemma (i) ist dies ein surjektiver Gruppenhomomorphismus. AuBerdem ist die Abbildung injektiv. Gilt
namlich v (a,,...,a,) = 0; und ist a; € Z jeweils ein Urbild von a;, dann ist a;g; + ... + a,g, = 05 nach Definition
von 4. Es folgt ¢ (a; + p™7Z,...,a, +p™Z)=a,hy +...+a,.h, =pla;g; +... +a,g,.) = p0; = 0. Weil ¢ injektiv ist,
erhalten wir a; +p™Z = 0+p"iZ und p™ | a;, fiir 1 <i < r. Insbesondere gibt es jeweils ein b; € Z mit pb; = a;. Nun
folgt weiter ¢ (b, +p™Z,...,b. +p™2Z)=byhy +...+ b.h. =pb;gy +...+pb.g. =a;8, + ... + a,g, = 0g. Wiederum
auf Grund der Injektivitit von ¢ erhalten wir b; + pZ = 0 + p™Z, also p" | b; und p"*! | q; fiir 1 < i < r. Dies
wiederum bedeutet (a,, ...,a,) = (0, ..., 0). Insgesamt ist ¢ also tatséchlich ein Isomorphismus.

Nach Lemma (ii) besitzen G[p] N U und G[p] jeweils die Struktur eines If,-Vektorraums. Dabei ist G[p] N U
als Untergruppe offenbar auch ein Untervektorraum von G[p]. Wir wéhlen nun eine Basis {v, ..., v} von G[p]NnU
und erginzen diese durch v, q,...,v, (mits,t € N, und s < t) zu einer Basis von G[p]. AnschlieBend definieren
wir V = (vgyq,..., V). Als (t —s)-dimensionaler IF,-Vektorraum ist V isomorph zu IF;_S. Als abelsche Gruppe ist V
damit isomorph zu ]F;’5 = (Z/pZ)"—S. Wenn wir zeigen konnen, dass G = U & V gilt, dann folgt G £ U x V =
Z/p™Z x ... x Z.]p™ 17 x (Z/pZ)'~* nach Proposition Damit hat G dann bis auf Isomorphie die im Satz
angegebene Form.

Als Untergruppen der abelschen Gruppe G sind U und V auch Normalteiler. Zum Beweis der Gleichung UNV = {05}
sei g € UNV vorgegeben. Wegen V C G[p] liegt g dann in (G[p] N U) N V. Wére g ungleich Null, dann kénnte
man g als nichttriviale I ,-Linearkombination der Basis {v;, ..., v;} von G[p] N U darstellen, und —g als nichttriviale
IF,-Linearkombination der Basis {v;,1,...,;} von V. Insgesamt wiirde man eine nichttriviale Linearkombination von
g+ (—g) =0 durch {vy, ..., v, } erhalten. Aber dies steht im Widerspruch zur linearen Unabhéngigkeit dieser Menge.
Also ist nur g = 05 moglich. Nun zeigen wir noch G = U + V. Sei dazu g € G beliebig vorgegeben. Dann liegt pg in




pG, und folglich gibt es k4, ..., k. € Z mit pg = kyhy +...+k,h,.. Setzen wir g’ = k;g;+...+k, g, und g’ = g—g’, dann
giltg’eUund pg” =pg—pg’ =pg—pk,81—-..—pk, & = kyhy +...+ k. h, —kihy—...—k.h, = 0g, also g” € G[p].
Weil {vy,...,v,} eine Basis von G[p] als I ,-Vektorraum ist, kann g” in der Form £;v; + ... +£,v, geschrieben werden,
mit £4,...,4, € Z. Esist dann g’ = g; + gy mit g =£,v; +... +€,v, € U und g, = £, 1 V1 +... + £, v, € V. Insgesamt
hat g also die Form g =g’ +g”" =(g'+g,)+ g, mitg'+g; €U und g, € V. O

Wir kdnnen nun das Hauptergebnis dieses Kapitels formulieren.

Satz 5.10 (Hauptsatz iiber endlich erzeugte abelsche Gruppe)
Sei G eine endlich erzeugte abelsche Gruppe. Dann gibt es r,s € N, und dg, ..., d; € IN mit

G = 7' xZ/dZx..xZ]dZ.

Dabei konnen die Zahlen d; so gewéhlt werden, dass sie entweder (i) alle Primzahlpotenzen
sind oder (ii) d; | d;;; fiir 1 < i < s erfiillt ist. Im Fall (ii) gezeichnet man die Zahlen d; als
Elementarteiler der abelschen Gruppe.

Beweis: Nach Satz[5.5|gilt G = Z" x Tor(G), und die Gruppe Tor(G) ist endlich. Setzen wir H = Tor(G) und n = |H|,
dann gilt H{n] =n. Ist n = proditzlpf‘, dann gilt H = H[p‘il] X ... x H[p{ ] nach Satz (ii), und wegen Satz

ist H [pf" 1 jeweils isomorph zu einem dufSeres direktes Produkt zyklischer Gruppen von p;-Potenzordnung. Also ist G
insgesamt isomorph zu einem dufReren direkten Produkt der Form (i).

Im Ringtheorie-Teil der Vorlesung wird der Begriff des Exponenten exp(G) einer Gruppe G eingefiihrt und gezeigt,
dass der Exponent einer Gruppe, die zu Z/m;Z x ... x Z,/m,Z mit m,...,m, € IN isomorph ist, mit dem kgV von
my, ..., m,, ibereinstimmt. Wir beweisen durch vollstdndige Induktion iiber |H|, dass G auch eine Zerlegung der unter
(ii) beschriebenen Form besitzt, und setzen d = exp(H). Sei H = Z/mZ X ... x Z,/m, Z. die Darstellung nach (i) von
H als dulleres direktes Produkt zyklischer Gruppe von Primzahlpotenzordnung m;.

Im Fall |H| = 1 ist nichts zu zeigen. Setzen wir nun voraus, dass H nicht trival ist, und sei p7'-...- p{ v die Primfaktorzer-
legung von d. Wegen kgV(m,,...,m,) = d miissen die Faktoren p{l, e p{ v unter my, ..., m, vorkommen, andererseits
darf es aber keine hoheren Potenzen von py, ..., p, unter diesen Zahlen geben. Setzen wir H; = Z/ p{l 7x..x1/ p{fv Z,
dann gilt H = H,; x H, bis auf Reihenfolge der Faktoren, wobei in H, die Faktoren der Form Z/m;Z zusammenge-
fasst sind, die in H, aber nicht in H; vorkommen. Es gilt dann |H,| < |H|, und nach Induktionsvoraussetzung gibt es
Zahlen dy,...,d, mit Hy, = 7Z./d,Z x ... x Z./d,Z und der oben beschriebenen Eigenschaft. AuRerdem gilt H, = Z/dZ
nach dem Chinesischen Restsatz, Satz denn die Zahlen pfj sind paarweise teilerfremd. Weil der Exponent von
H, ein Teiler von d ist, gilt d; | d fiir 1 <i <s. Setzen wir d,,; =d, dann ist dy, ..., d,,; eine Folge natiirlicher Zahlen
mit den gewiinschten Eigenschaften. m|

Sowohl die Bedingung (i) als auch die Bedingung (ii) in Satz kann dazu genutzt werden, um zum Beispiel
alle abelschen Gruppen der Ordnung 100 = 2252 bis auf Isomorphie anzugeben. Durch (i) erhilt man die vier
Isomorphietypen

ZJAZ x 7.J257. , ZJ2Z xZ)2Z x 7.J25Z , ZJAZ xZ/5ZxZ)5Z. , 7/2Z x Z.]2Z x Z./5Z x Z5Z.




Andererseits finden wir zur Zahl 100 die Elementarteilerketten 100, 2|50, 5|20 und 10|10, was die Isomorphietypen
7./100Z , 7Z/2Z x7]50Z , 7Z/57Z x7/207Z , 7/10Z xZ/10Z

liefert. Mit dem Chinesischen Restsatz iiberpriift man leicht, dass diese vier Gruppen mit den vier zuvor gefundenen
bis auf Isomorphie iibereinstimmen.

Zu bemerken ist noch, dass im Fall (ii) der Wert r +s die minimale Anzahl der Elemente eines Erzeugendensystems
von G angibt. Insbesondere gilt r +s = 1 genau dann, wenn G eine zyklische Gruppe ist. Ist ndmlich p ein beliebiger
Primteiler von d;, dann existiert ein Epimorphismus

¢:7" <2/ 7 x ...x Z]d, 7 — (Z/pZ)™ , (ai,..,a,,by+diZ,...,b,+d,Z)— (a; +pZ,..., b, + pZ).

Sei g,..., g, ein t-elementiges Erzeugendensystem von G. Dann liefern die Bilder der Elemente in der Gruppe H =
(Z/pZ)™* ein Erzeugendensystem von H. Dieses Erzeugendensystem ist dann zugleich eine Basis von H als IF,-Vek-
torraum. Da in einem (r + s)-dimensionalen Vektorraum jedes Erzeugendensystem aus mindestens r + s Elementen
besteht, muss t > r+s gelten. Andererseits besitzt die Gruppe Z'" xZ/d,Z.x...x Z./ d,Z. offenbar ein (r+s)-elementiges
Erzeugendensystem (gegeben durch die Einheitsvektoren), somit auch die Gruppe G.




§6. Semidirekte Produkte und Auflésbarkeit

Zusammenfassung. In §4 hatten wir neben den inneren direkten auch die inneren semidirekten Produkte
definiert. Der Isomorphismus G = N x U, den wir dort fiir die inneren direkten Produkte hergeleitet haben,
ist fiir die semidirekten in dieser Form nicht giiltig. An die Stelle des dulleren direkten Produkts tritt hier
eine neue Gruppe N X, U, die als Menge mit N x U iibereinstimmt, deren Gruppenverkniipfung aber nicht
komponentenweise definiert ist, sondern von einem Homomorphismus ¢ : U — Aut(N) abhéngt. Dieses Objekt
wird dann als dufSeres semidirektes Produkt bezeichnet. Das Ziel dieses Abschnitts besteht darin, die Gruppe
N x4 U zu definieren und den Zusammenhang mit dem inneren semidirekten Produkt herzustellen.

Aus dem Korrespondenzsatz aus § 4 hatte sich ergeben, dass die Struktur von G/N auch zumindest teilweisen
Aufschluss iiber die Struktur von G selbst gibt, falls N einen Normalteiler von G bezeichnet. Am einfachsten
lasst sich die Struktur von G/N untersuchen, wenn es sich um eine abelsche Gruppe handelt, was sich an der
Ergebnissen von §5 deutlich gezeigt hatte. Im Allgemeinen lasst sich in einer Gruppe G kein Normalteiler
N finden mit der Eigenschaft, dass die Gruppen N und G/N beide abelsch sind. Zumindest aber kann man
hoffen, dass dieser Prozess, mit dem man G gewissermalen in die Gruppen N und G/N ,zerlegt“ hat, durch
Anwendung auf N und G/N iteriert werden kann, und man auf diese G in endlich vielen Schritte in lauter
abelsche ,Komponenten“ zerlegen kann. Gruppen, bei denen dies gelingt, werden als auflésbar bezeichnet.
Der Grund fiir diese Namensgebung ist ein Zusammenhang zwischen der Auflésbarkeit von Gruppen und der
expliziten Losbarkeit von Polynomgleichungen, den wir spater im Rahmen der Galoistheorie erkunden werden.

Wichtige Grundbegriffe Zentrale Sditze
— &dulleres semidirektes Produkt zweier Gruppen, - Isomorphie zwischen innerem und duf3erem
gegeben durch einen Homomorphismus semidirekten Produkt
— hohere Kommutatorgruppen G einer Gruppe G~ — Charakterisierung auflésbarer Gruppen durch
Subnormalreihen

— Auflosbarkeit einer Gruppe
— Kriterium zur Untersuchung der Auflosbarkeit mit
Normalteilern

Sei G eine Gruppe, die ein inneres semidirektes Produkt einer Untergruppe U und eines Normalteiler N ist. Solange
U nicht auch Normalteiler von G ist, reichen U und N allein leider nicht aus, um die Gruppe G vollstdndig zu
rekonstruieren; man bendétigt noch einen Homomorphismus, der diese beiden Gruppen miteinander verbindet. Um
was fiir einen Homomorphismus es dabei geht, sehen wir in der folgenden Proposition.

Proposition 6.1 Sei G eine Gruppe, N ein Normalteiler und U eine Untergruppe von G. Dann
ist jedem u € U durch 7,(n) = unu™! ein Automorphismus von N zugeordnet. Die Abbildung
¢ : U — Aut(N), u — 1, ist ein Homomorphismus von Gruppen.

Beweis: Wegen N < G gilt 7,(n) =unu™! € N fiir jedes n € N und u € U, also definiert 7, eine Abbildung N — N.
Aufderdem ist T, ein Endomorphismus, denn fiir alle n,, n, € N gilt jeweils

t(mny) = ulmndu™t = (umu Dungu™) = tu(ny)Ty(ny).
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Da durch n — u'nu eine Umkehrabbildung von 7, gegeben ist, handelt es sich bei 7, sogar um einen Automor-
phismus von N. Schlie@lich ist die angegebene Abbildung ¢ ein Homorphismus, denn fiir u;,u, € U und n € N
gilt

Tyu,(M) = (wu)dn(uuy)™ = uluznugluf = Tul(uznugl)
= 1,(t,M) = (7,07,)"N)
und somit ¢ (ujuy) = Ty = Tuy © Ty, = ¢ (u1) o p(uy). o

Proposition 6.2 Sei G eine Gruppe und inneres semidirektes Produkt von N < G und U < G.
Unter diesen Voraussetzungen ist G genau dann ein inneres direktes Produkt von N und U, wenn
¢ (u) = idy fiir alle u € U gilt, wobei ¢ den Homomorphismus aus Proposition [6.1] bezeichnet.

Beweis: < Gilt ¢(u) = idy fiir alle u € U, dann folgt unu™ = ¢(u)(n) = idy(n) = n fiir alleu € U und n € N.

Es folgt un = nu und somit auch unu™*

=nfiralleu € Ununn € N. Seien nun g; € G und u € U vorgegeben.
Wegen G = NU gibt es n; € N und u; € U mit g; = n,u;. Wie soeben gezeigt, ist jedes Element aus N mit jedem
Element aus U vertauschbar, so auch die Elemente n, € N und uyuu;" € U. Es folgt g ug;" = ny(wyuu;)n]' =

nyny ! (uyuuy!) = wyuu;! € U; damit ist U < G nachgewiesen.

»,2=>" Ist G ein inneres direktes Produkt von N und U, dann gilt auller N < G auch U < G. Seien nun n € N und
! ™! = n(un"'u™') € N. Wegen

u! = (nunHu! € U, insgesamt also nun"'u"! € NNU = {es}. Fiir alle
1 1

u € U beliebig vorgegeben. Wegen N < G gilt un~'u~! € N und somit auch nun™

U < N gilt andererseits auch nun™"

n € N und u € U gilt somit nun"'u™! = e;, was zu nu = un und unu™! = n umgeformt werden kann. Es folgt

¢(w)(n) =unu~! = n=idy(n) fiir alle u € U und n € N. Damit ist ¢ (u) = idy fiir alle u € U nachgewiesen. m|

Satz 6.3 Seien U und N Gruppen und ¢ : U — Aut(N) ein Homomorphismus. Wir definieren
auf N x U eine Verkniipfung * durch

(ny,uy) *(ng,uy) = (nyp(uy)(ny),uquy)  fiir (ny,uy), (ny,uy) EN x U.

Dann ist (N x U, %) eine Gruppe. Man nennt sie das duf8ere semidirekte Produkt von N und U
und bezeichnet sie mit N X, U.

Beweis: Wir iiberpriifen fiir (N x U, %) die Gruppenaxiome. Zur Verifikation des Assoziativgesetzes seien (ny,u;),
(ny,uz), (n3,u3) € N x U vorgegeben. Dann gilt ((ny,u;) * (ny,uz)) * (n3,us) = (¢ (uy)(ng), uguy) * (ng,uz) =
(n1 ¢ (u1)(nz)¢ (uyuz)(ns), uyusus) und ebenso

(ny,uy) * ((ng,up) ¥ (ng,u3)) = (ng,uy) * (Nadp(ux)(nz),usus) = (ny(uy) (nad(uz)(ng)),uyusus)
= (M1 (u)(n)(@(uy) 0 Pp(u))(nz), uqupusy) = (3 (uy)(ng)e(uyuy)(ng), uyugus).

Nun iiberpriifen wir, dass (ey, e;;) ein beziiglich * neutrales Element ist. Fiir jedes (n,u) € N x U gilt (ey, ey)*(n,u) =

(exn@(ey)(n), eyu) = (eyn, eyu) = (n,u) und (n,u) *(ey, ey) = (n@(u)(ey), uey) = (ney,uey) = (n,u). Damit (ny,u;)




ein Inverses von (n,u) ist, muss (n¢ (u)(ny),uu;) = (n,u) * (ny,u;) = (ey, ey) gelten, also u; = v~ und ¢ (u)(n;) =
nten =¢oW)(nt) = ¢ )(nt). Dieses Element (n,u;) erfiillt auer (n,u) x (ny,u;) = (ey,ey) auch die
Gleichung

(npu)*(mu) = (mo)n),uy) = (P e H(n),uu™) =
(™) 'n)ey) = (pw ey ey) = (en.er)
also handelt es sich tatséchlich um das zu (n,u) inverse Element. O

Ist der Homomorphismus ¢ in Satz trivial, gilt also ¢ (u) = idy fiir alle u € U, dann gilt fiir die Verkniipfung
(n,u) * (ny,u;) = (np)(ny),uuy) = (nidy(ny),uw;) = (nnq,uuy), fir alle (n,u),(ny,u;) € N x U. In diesem Fall
stimmt das dufdere semidirekte Produkt also mit dem dufderen direkten Produkt aus § 1 iiberein.

Wir illustrieren das Rechnen in semidirekten Produkten an einem Beispiel. Sei n € IN und N = Z/n’Z mit dem
Automorphismus ¢ : Z/nZ — Z/nZ, @ — —a. Sei auferdem U = Z/27. Dann ist durch 0 — idy und 1 — ¢ ein
Homomorphismus ¢ : U — Aut(N) definiert. Sei nun G = N x4 U, und seien nun g,h € gegeben durch g = (1,0)
und h = (0, 1). Wir zeigen, dass G = {g,h) gilt sowie die Gleichungen

ord(g)=n , ord(h)=2 und gxhxgxh=e;=/(0,0).
Zunichst gilt fiir alle @, b € Z/nZ jeweils
(@,0)%(b,0) = (a+¢(0)(b),0+0) = (a+idy(b),0) = (a+b,0).

Durch vollstindige Induktion folgt (1,0)™ = (1, 0) fiir alle m € IN. Somit ist n die kleinste natiirliche Zahl mit
g"=(1,0)" = (0,0) = 0, und es folgt ord(g) = n. Ebenso gilt fiir alle ¢,d € Z/2Z die Gleichung

(0,0)*(0,d) = (0+¢(c)0),e+d) = (0+0,6+d) = (0,c+4d).
Also gilt auch h™ = (0,1)™ = (0, m) fiir alle m € IN, und wir erhalten ord(h) = 2. Fiir alle a,c € IN gilt
gixh® = (a,0)x(0,6) = (a+¢(0)(0),0+¢c) = (a+0,&) = (a,d).

Jedes Element in G kann also als Produkt der Form g“«xh® dargestellt werden, mit a, c € IN. Dies beweist die Gleichung
G = (g,h). SchlieBlich gilt noch

gxhxgxh = (L,LDx(1,1) = ((A+¢(M)1),1+1) = (1+(1),0)

Der folgende Satz stellt einen Zusammenhang zwischen dem inneren und dulderen semidirekten Produkten her.

Satz 6.4 Sei G eine Gruppe, U eine Untergruppe und N ein Normalteiler von G. Wir setzen
voraus, dass G das innere semidirekte Produkt N und U ist. Definieren wir ¢ : U — Aut(N) wie
in Proposition dann ist durch (n,u) — nu ein Isomorphismus N x4 U = G definiert.




Beweis: Die Abbildung ¢ : N x4 U — G, (n,u) — nu ist surjektiv, denn wegen G = NU hat jedes g € G eine
Darstellung g = nu mit n € N und u € U. Ist (n,u) € N x U ein Paar mit ¢(n,u) = es, dann folgt nu = e; und
n=uleNnNU = {eg}, also (n,u) = (eg, e5). Ist 1) ein Homomorphismus, dann ist 1) somit auch injektiv. Es muss
also nur noch die Homomorphismus-Eigenschaft nachgewiesen werden.

Seien dazu (ny,u;), (ny, u,) € N x U vorgegeben. Zu zeigen ist Y ((ny,u;) * (ny, uy)) = Y (ny, u; ) (n,y, uy). Definieren
wir wie in Proposition den Automorphismus 7, € Aut(N) durch 7, (n) = ulnu;1 fiir n € N, dann ist die rechte
Seite der Gleichung gegeben durch

Y, up(ng,uy) = njugngu, = nlulnzu;luluz = anul(nz)uluz = nmo(uy)(nyuyuy
und auch fiir die linke Seite erhalten wir ((n,,u;) * (ny,uy)) = P (ny P (uq)(ny), uguy) = nqy ¢ (uy)(ny)uqu,. m|

Die aus § 1 bekannten Diedergruppen liefern ein wichtiges konkretes Beispiel fiir innere semidirekte Produkte.

Proposition 6.5 Fiir jedes n > 3 ist die Diedergruppe D, ein inneres semidirektes Produkt des
Normalteilers N = {(p,,) und der Untergruppe U = (7). Somit ist D,, isomorph zu einem dufReren
semidirekten Produkt von zyklischen Gruppen der Ordnung n bzw. 2.

Beweis: In §4 haben wir gezeigt, dass D, mit dem Komplexprodukt NU {ibereinstimmt. Dass 7 nicht in N enthalten
und der Schnitt von N und U = {idR2, T} somit nur aus dem Neutralelement besteht, ist ebenfalls bekannt. Ebenfalls
wurde an der entsprechenden Stelle von § 4 gezeigt, dass N im Gegensatz zu U nicht nur eine Untergruppe, sondern
auch ein Normalteiler von D, = (p,,T) ist. Insgesamt liegt also tatsdchlich ein inneres semidirektes Produkt vor.
Die zweite Teilaussage der Proposition ergibt sich nun direkt aus Satz und der Tatsache, dass ord(p,) = n und
ord(t) =2 gilt. O

Man kann zeigen, dass D, fiir jedes n > 3 dariiber hinaus zum weiter oben konstruierten duf3eren semidirekten
Produkt von Z/nZ und Z/27 isomorph ist. Kommen wir nun zum zweiten Thema dieses Kapitels, den auflésbaren
Gruppen.

Definition 6.6 Sei G eine Gruppe. Fiir beliebige g,h € G bezeichnet man das Element [g,h] =
ghg 'h™! als den Kommutator von g und h. Bezeichnet S = {[g,h] | g,h € G} die Menge aller
Kommutoren in G, so wird die Untergruppe G’ = (S) die Kommutatorgruppe von G genannt.

Entscheidend fiir die Niitzlichkeit der Kommutatoren ist die Beziehung gh = [g, h]hg. Tatsdchlich gilt
[g.hlhg = (ghg”'h™Dhg = ghg™'(h'h)g = gh(g™'g) = gh

fiir alle g,h € G ab. Ist G eine abelsche Gruppe, dann gilt stets [g,h] = ghg 'h™! = (gg~!)(hh™!) = e. Daraus folgt,
dass die Kommutatorgruppe in diesem Fall trivial ist, also G’ = {e} gilt. Im allgemeinen Fall erhilt man das folgende
wichtige Resultat.




Satz 6.7 Sei G eine Gruppe.

(i) Die Kommutatorgruppe G’ ist ein Normalteiler von G.

(ii) Fiir einen beliebigen Normalteiler N von G gilt N 2 G’ genau dann, wenn die Faktorgrup-
pe G/N abelsch ist.

Also ist G/G’ die grofte abelsche Faktorgruppe von G.

Beweis: zu (i) Sei g; € G vorgegeben und S die Menge der Kommutatoren. Es geniigt, die Inklusion S C gl_lG’g1
nachzuweisen. Denn weil g;'G’g, eine Untergruppe von G ist, folgt daraus G’ = (S) C g 'G’g;. Fiir jedes n € G’
gibt es damit ein n’ € G’ mit n = g;'n’g,. Es folgt g;ng;* =n’ € G’, also ist g;G’g;! € G’ und damit G’ < G erfiillt.
Beweisen wir nun die Inklusion S C gl_lG’gl. Jedes Element in S hat die Form [g,h] = ghg 'h™' mit g,h € G. Es

folgt

ghg'h' = g '(gighg Th g Ng = g'(81887)(81hg (818 g D(gih T g g
= g ' (51887 )(g1hg (1887 ) (ghg N e = g7'[g188, ", 81hg ' 1s €g.'G'g.

zu (ii) ,=“ Sei N ein Normalteiler von G mit N 2 G’. Wie oben bemerkt, gilt [g,h]lhg = gh fiir alle g,h € G.
Wegen [g,h] € N folgt daraus N(hg) = N(gh), also (gN)(hN) = (gh)N = N(gh) = N(hg) = (hg)N = (hN)(gN).
Dies zeigt, dass G/N abelsch ist. ,<“ Ist G/N abelsch, dann gilt (gN)(hN) = (hN)(gN) fiir alle g,h € G. Wie
wir gerade gesehen haben, ist dies gleichbedeutend mit N(hg) = N(gh), also (gh)(hg)™' = ghg'h™! =[g,h] €N.
Somit enthilt N alle Kommutatoren, und es folgt G’ C N. m|

Die Bildung von Kommutatorgruppen ldsst sich iterieren. Man bezeichnet mit G” die Kommutatorgruppe von G’,
also G” = (G')'. Allgemeiner definiert man rekursiv G(© = G und G"*V = (G™Y  fiir alle n € IN,,. Die Untergruppen
G™ mit n > 2 werden die héheren Kommutatorgruppen von G genannt. Nach Satz gilt G < G fiir alle
n € Ny, und die Faktorgruppen G™ /G sind abelsch.

Definition 6.8 Eine Gruppe G wird auflésbar genannt, wenn G™ = {e} fiir ein n € IN, gilt.

Offenbar sind abelsche Gruppen auflésbar, denn fiir jede abelsche Gruppe G gilt GV = {e}, wie wir im Anschluss an
Definition [6.6] gesehen haben.

Definition 6.9 Eine Subnormalreihe fiir eine Gruppe G ist eine Folge von Untergruppen der
Form G =N, 2 N; 2 ... 2 N, = {e} mit r € IN,, wobei fiir 0 < k < r jeweils Ni,; < N gilt. Die
Faktorgruppen N /N; ., bezeichnet man als Faktoren der Subnormalreihe. Sind alle Faktoren
abelsch, dann spricht man von einer abelschen Subnormalreihe.




Proposition 6.10 Jede endliche abelsche Gruppe besitzt eine Subnormalreihe mit zyklischen
Faktoren von Primzahlordnung.

Beweis: Sei G eine endliche abelsche Gruppe. Wir beweisen die Aussage durch vollstdndige Induktion iiber die
Gruppenordnung |G|. Fiir |G| = 1 ist nichts zu zeigen, denn in diesem Fall kénnen wir einfach G, = G setzen. Sei nun
n = |G| > 1, und setzen wir die Aussage fiir endliche, abelsche Gruppen von Ordnung < n voraus. Nach Satz[5.10]
ist G isomorph zu einem &uf3eren direkten Produkt C; X ... x C, zyklischer Faktoren C; von Primzahlpotenzordnung;
wir kénnen o0.B.d.A. voraussetzen, dass G mit einem solchen Produkt {ibereinstimmt. Sei m = |C,|, p ein Primteiler
von m und g € C, ein Element der Ordnung m. Dann ist (g?) eine Untergruppe der Ordnung % von C,. Setzen wir
G, = C; x ... x C,_; x (gP), dann ist G/G, zyklisch von Ordnung p. Nach Induktionsvoraussetzung besitzt G, eine
Subnormalreihe mit zyklischen Faktoren, so dass wir insgesamt eine solche Reihe fiir G erhalten. m|

Satz 6.11 Fiir eine endliche Gruppe G sind die folgenden Eigenschaften dquivalent.

(i) Die Gruppe G ist auflosbar.
(ii) Sie besitzt eine abelsche Subnormalreihe.

(iii) Sie hat eine Subnormalreihe mit zyklischen Faktoren von Primzahlordnung.

Dabei ist die Aquivalenz ,,(i) < (ii)“ auch fiir unendliche Gruppen giiltig.

Beweis: Sei G zunichst ein beliebige, méglicherweise unendliche Gruppe. ,,(i) = (ii)“ Nach Voraussetzung gilt
G = {e} fiir ein r € IN,. Setzen wir also G, = G® fiir 0 < k < r, dann gilt G, = G, G, = {e} und auRerdem
Gy 2 Gy, fiir 0 < k < r nach Definition der hoheren Kommutorgruppen. Wie wir bereits im Anschluss an Satz
festgestellt haben, ist auch G, fiir 0 < k < r jeweils ein Normalteiler von G, und die Faktorgruppen G, /G sind
abelsch. Also bilden die Untergruppen Gy, ..., G, eine Subnormalreihe mit abelschen Faktoren.

,(i) = ([@)“ Sei Gy, ...,G, eine Subnormalreihe von G mit abelschen Faktoren. Wir beweisen durch vollstdndige
Induktion iiber k, dass G¥) C G, fiir 0 < k < r gilt. Fiir k = 0 ist dies erfiillt, denn nach Definition gilt G, = G = G(©),
Sei nun k € {1,...,r}, und setzen wir G) C G, fiir 0 < ¢ < k voraus. Nach Voraussetzung ist G;_, /Gy, abelsch, somit
gilt G, 2 (Gy_,) nach Satz (ii), angewendet auf den Normalteiler N = G;. Mit der Induktionsvoraussetzung folgt
nun GX = (G* VY C (G,_,) € Gy. Aus G C G, und G, = {e} erhalten wir schlieflich G = {e}. Somit ist G
auflosbar.

Sei nun G eine endliche Gruppe. Die Implikation ,,(iii) = (ii)“ ist offenbar giiltig, da zyklische Gruppen stets abelsch
sind (siehe §2). Beweisen wir nun ,,(ii) = (iii)“ und setzen dazu voraus, dass G, ..., G, eine Subnormalreihe von
G mit abelschen Faktoren ist. Fiir jedes k € {0,...,r — 1} ist G = G;/Gy4, also eine endliche, abelsche Gruppe,
und nach Proposition besitzt diese eine Subnormalreihe Uy, ..., U, mit zyklischen Faktoren U,/U,,;. Sei nun
U, = nE:H(Ug) C Gy flir 0 < ¢ <. Dann gilt insbesondere U, = G, und U, = G;,;. Nach Satz (angewendet auf
G =U;, U ="Uy; und N = Gy,) folgt aus U,,; < U, dass Uy, ; ein Normalteiler von U, ist, fiir 0 < { <s. Wegen
Satz gilt auBerdem
U/Up = U/Up

also sind die Faktorgruppen U, /U, ; zyklisch von Primzahlordnung. Fiigen wir zwischen G, und G, also die Grup-
pen Uy, ..., U,_; ein und fithren diesen Schritt fiir jedes k € {0, ...,r — 1} aus, so erhalten wir insgesamt eine Subnor-
malreihe fiir G mit zyklischen Faktoren von Primzahlordnung. |
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Die symmetrischen Gruppen S,, und die alternierenden Gruppen A, sind auflosbar fiir n < 4, aber nicht auflosbar
fiir alle n > 5. Diese Beobachtung wird spéter in der Galoistheorie eine wichtige Rolle spielen. Im nichsten Kapitel
werden wir zeigen, dass endliche Gruppen von Primzahlpotenzordnung stets auflosbar sind. Zum Abschluss schauen
wir uns an, wie man von der Auflosbarkeit einer Gruppe auf andere Gruppen schlieen kann.

Satz 6.12

(i) Jede Untergruppe einer auflosbaren Gruppe ist auflosbar.

(ii) Sei G eine Gruppe und N < G. Unter diesen Voraussetzungen ist G auflésbar genau dann,
wenn N und G/N beide auflésbar sind.

Beweis: zu (i) Sei G eine auflosbare Gruppe und U eine Untergruppe. Jeder Kommutator von U ist auch ein
Kommutator von G. Daraus folgt U’ € G, und durch vollstindige Induktion erhilt man U™ C G™ fiir alle n € IN,.
Gilt nun G™ = {e;} fiir ein n € IN, dann folgt daraus U™ = {e;}. Also ist auch U auflosbar.

zu (ii) ,,=“ Ist G auflosbar, dann folgt daraus, wie wir unter (i) gesehen haben, die Auflésbarkeit von N. Fiir die
Auflésbarkeit von G/N beweisen wir zunéchst die Gleichung (G/N) = 7y (G’). Sei S die Menge der Kommutatoren
von G und S die Menge der Kommutatoren von G/N. Fiir alle g,h € G gilt

[gN,hAN] = (gN)(hN)(gN)'(hN)™"' = (ghgT'h"' )N = [ghIN = mny((g h].

Jedes Element aus S wird also von 7, nach S abgebildet, und die Abbildung ist surjektiv, weil jedes Element aus S
die Form [gN,hN] mit g,h € G hat. Es gilt also my(S) = S. Aus S € ny5(S) € ny(G) und der Untergruppeneigen-
schaft von 7y(G’) folgt (G/N) = (S) C my(G'). Aus my(S) C S folgt umgekehrt S € n,'(S) € m'((G/N)'). Weil
7' ((G/NY') Untergruppe von G ist, erhalten wir G’ = (S) € m,,'((G/N)’) und somit 71y(G") € (G/N)'. Insgesamt
ist damit 7y (G") = (G/N) bewiesen. Vollstindige Induktion liefert (G/N)™ = 1y (G™) fiir alle n € IN,. Gilt also
G™ = {e.} fiir ein n € IN,, dann folgt daraus (G/N)™ = {eg/n}

,<“ Nach Voraussetzung gibt es ein n € IN, mit N = {e.} und (G/N)™ = {eg/n}. Wegen iy (GM) = (G/N)W =
{eg/n} gilt G C N. Daraus folgt G®? C (GM)™ c N = {e..} und somit die Auflésbarkeit von G. O

Aus Satz[6.12]folgt unmittelbar: Ist G ein inneres semidirektes Produkt einer Untergruppe U und eines Normalteilers
N, so ist G genau dann auflsbar, wenn N und G/N = (UN)/N = U beide auflésbar sind. Wie in den Ubungen gezeigt
wird, kann auch jedes duldere (semi-)direkte Produkt der Form N Xy U (bzw. G = N x U) als inneres semidirektes
von Gruppen aufgefasst werden, die zu N und U isomorph sind. Also ist auch N x4 U genau dann auflésbar, wenn
N und U aufl6sbar sind.

Zum Abschluss des Kapitels untersuchen wir die Auflésbarkeit der symmetrischen und alternierenden Gruppen.

Satz 6.13 Die Gruppen S, und A, sind auflosbar fiir n < 4, nicht auflosbar fiir n > 5.

Beweis: Die Gruppe A, ist trivial, also auflésbar, und A, ist als Gruppe von Primzahlordnung zyklisch, also abelsch
und somit ebenfalls auflosbar. Fiir n = 4 betrachten wir die Untergruppenkette {id} € V, € A,, wobei

v, = {id,(12)(34),(13)(24),(14)(23)}
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die Kleinsche Vierergruppe bezeichnet. Offenbar gilt id < V,, und als Gruppe der Ordnung 4 ist die Faktorgruppe
V,/{id} = V, abelsch. Dariiber hinaus ist die Gruppe V, nicht nur ein Normalteiler von A,, sondern sogar von S,. Fiir
den Nachweis seien o € S, und 7 € V, vorgegeben. Im Fall T = id gilt offenbar cto™! = id € V,. Ansonsten ist T

eine Doppeltransposition der Form 7 = (i j)(k £), und die Gleichung

oto™t = (o(d) (oK) a(®))

zeigt, dass oo~ ! ebenfalls eine Doppeltransposition und somit in V, enthalten ist. Als Gruppe der Primzahlordnung
3 ist A,/V, ebenfalls zyklisch und damit abelsch. Insgesamt ist damit nachgewiesen, dass auch A, eine auflésbare
Gruppe ist.

Die Gruppe S; ist trivial und somit auflosbar. Fiir n > 2 ist S, /A,, zyklisch von Ordnung 2, also abelsch und damit
auflosbar. Dies zeigt, dass S, genau dann aufldsbar ist, wenn A, auflosbar ist. Insbesondere ist S, fiir 2 < n < 4
auflésbar. Um den Beweis abzuschlief3en, geniigt es nun zu zeigen, dass A, fiir n > 5 nicht auflosbar ist. Dafiir
wiederum reicht es zu zeigen, dass der Kommutator A’ von A, mit A, selbst iibereinstimmt. Denn daraus folgt
A(n’") = A, fiir alle hoheren Kommutatoren, wihrend eine auflésbare Gruppe G™ = {e.} fiir hinreichend groRes m

erfiillen muss.

Aus Satz ist bekannt, dass A, von der Menge der 3-Zykel in S, erzeugt wird. Fiir die Gleichung A’ = A, geniigt
es also nachzuweisen, dass A’ fiir n > 5 alle 3-Zykel aus S, enthalt. Seien k,£,m,n,p € M,, paarweise verschieden,
auflerdem o = (k £ m) und 7 = (k n p). Dann gilt

[o,7] = otoltt = (ktm)knp)km&(kpn) = (k¢n).

Da die drei Elemente k,¢,n in M, beliebig gewéhlt werden konnen, zeigt die Rechnung, dass jeder 3-Zykel tat-
sachlichn in A’ enthalten ist. O




§ 7. Gruppenoperationen und Klassengleichung

Zusammenfassung. Der Begriff der Gruppenoperation ermoglicht es, die Elemente einer Gruppe auf eine sehr
allgemeine Weise als ,,Symmetrieoperationen® zu interpretieren, wobei sich die Symmetrie auf die Strukturen
der Geometrie (zum Beispiel Polytope, siehe § 1), auf Strukturen der Analysis (Funktionenrdume) oder der
Algebra beziehen kann. Dabei liefert der Aufbau der Gruppen Informationen iiber die jeweilige Struktur, und
umgekehrt 1asst der Aufbau der Struktur, auf der eine Gruppe operiert, haufig Riickschliisse auf die Gruppe
Zu.

Nach der Einfiihrung der wichtigsten Grundbegriffe und der Herleitung einiger elementarer Gesetzmaf3ig-
keiten konzentrieren uns auf zwei spezielle Operationen einer Gruppe auf der Menge ihrer Elemente: der
Operation durch Linkstranslation und der Operationen durch Konjugation. Mit Hilfe des ersten Typs beweisen
wir den Satz von Cayley, der besagt, dass jede endliche Gruppe zu einer Untergruppe einer symmetrischen
Gruppe isomorph ist. Der zweite Typ fithrt uns auf die sog. Klassengleichung, mit deren Hilfe wir zeigen, dass
Gruppen von Primzahlquadratordnung abelsch und Gruppen von Primzahlpotenzordnung auflosbar sind. Au-
Rerdem studieren wir die Klassengleichung der symmetrischen und alternierenden Gruppen und beweisen die
Einfachheit von A,, fiir n > 5.

Wichtige Grundbegriffe Zentrale Sdtze

— Operation einer Gruppe G auf einer Menge X - Untergruppeneigenschaft des Stabilisators G,

— Stabilisator G, eines Elements x € X — Zerlegung von X durch die Bahnen einer Operation
— Bahn G(x) eines Elements x € X, Fixpunkt — Beziehung zwischen Bahnlénge und Stabilisator

— Reprasentantensysteme der Bahnen — Korrespondenz zwischen Operationen von G auf X

und Homomorphismen G — Per(X
— Operation durch Linkstranslation P *)

— Satz von Cayle
— Operation durch Konjugation yiey

. . — Bahngleichung und Klassengleichung
— Konjugationsklasse von Gruppenelementen

. . — Auflésbarkeit von p-Gruppen
— Zentralisator eines Gruppenelements

— Gruppen der Ordnung p? sind abelsch

— Einfachheit der A, firn > 5

Definition 7.1 Sei G eine Gruppe und X eine Menge. Eine Gruppenoperation von G auf X ist
eine Abbildung a : G x X — X mit den Eigenschaften

aleg,x)=x  und  a(g,a(h,x)) = a(gh,x)
fiir alle g,h € G und x € X, wobei e; das Neutralelement der Gruppe bezeichnet.

An Stelle von a(g, x) verwendet man héufig auch die Infix-Schreibweise g - x, wobei - das Symbol fiir die Gruppen-
operation ist. Die definierenden Gleichungen der Gruppenoperation lassen sich dann sparsamer in der Form e;-x = x
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und g-(h-x) = (gh)-x schreiben. Man darf allerdings das Symbol - nicht mit der Verkniipfungsabbildung der Gruppe
verwechseln.

Wir betrachten einige Beispiele fiir Gruppenoperationen.

(i) Die symmetrische Gruppe S, operiert auf der Menge M,, = {1, ...,n} durch o - x = o(x) fiir alle o € S,, und
X € M,,. Ist n =7, dann gilt beispielsweise (12 7)-2=7und (127)-3=3.

(ii) Sei K ein Korper und V ein K-Vektorraum. Dann operiert die Gruppe G = GL(V) der bijektiven linearen
Abbildungen V — V auf V durch ¢ - v = ¢(v) fir alle p €Gund v € V.

Anhand der folgenden Merkmale kann eine Gruppenoperation genauer analysiert werden.

Definition 7.2 Sei G eine Gruppe, X eine Menge und G xX — X, (g, x) — g - x eine Gruppen-
operation.

(i) Fiir jedes x € X nennt man G(x) = {g - x | g € G} die Bahn von x.
(ii) Gibt es ein x € X mit G(x) =X, dann ist die Gruppenoperation transitiv.
(iii) Die Elemente x € X mit G(x) = {x} heillen Fixpunkte der Gruppenoperation.

(iv) Eine Teilmenge Y C X wird als G-invariant bezeichnet, wenn fiir alle g € Gund y € Y
auch g-y €Y gilt.

Die folgende Beobachtung ist fiir nachfolgende Theorie von zentraler Bedeutung, dhnlich wie beim Satz von Lagrange
die Zerlegung einer Gruppe in Nebenklassen beziiglich einer Untergruppe.

Proposition 7.3 Sei G eine Gruppe, X eine Menge und G x X — X, (g,x) — g - x eine Grup-
penoperation. Dann gilt

(i) Die Menge B = {G(x) | x € X} der Bahnen ist eine Zerlegung von X.

(i) Eine Teilmenge Y C X ist genau dann G-invariant, wenn Y eine Vereinigung von Bahnen
der Operation ist.

Beweis: zu (i) Wir liberpriifen die in § 3 angegebenen Bedingungen fiir eine Zerlegung. Jedes x € X ist wegen
eg - x = x in G(x) enthalten. Also ist jede Bahn nichtleer, und jedes x € X ist in mindestens einer Bahn enthalten.
Wir zeigen nun, dass jedes Element in genau einer Bahn enthalten ist und beweisen dafiir: Ist x € X und y € G(x),
dann folgt G(x) = G(y). Wegen y € G(x) gibt es ein Gruppenelement g, € G mit g, - x = y und

&y = & (X)) = (g'%)x = erx = x
Wir iiberpriifen nun die Inklusionen G(x) € G(y) und G(x) 2 G(y). ,,C“ Seiz € G(x). Dann gibt es ein g € G mit
g+ x =gz. Es folgt (gggl) y=g- (go’1 -¥) =g x =z und damit z € G(y). ,2“ Seiz € G(y). Dann existiert nach
Definition der Bahn G(y) ein g € G mit g -y = z. Wir erhalten damit (gg,)-x =g (go-x) =gy =2, also z € G(x).
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zu (ii) ,&“ Setzen wir voraus, dass Y eine Vereinigung von Bahnen der Operation ist. Seien g € Gund y € Y
vorgegeben. Auf Grund der Voraussetzung ist mit y die gesamte Bahn G(y) in Y enthalten; es gilt also g-y € Y.
,=“ Seiy €Y.DaY eine G-invariante Teilmenge ist, folgt g-y €Y fiir alle g € G, und damit G(y) € Y. Dies zeigt,
dass Y eine Vereinigung von Bahnen der Gruppenoperation ist. |

Ist die Gruppenoperation transitiv, so gibt es nur eine Bahn in X. Diese Bedingung ist gleichbedeutend damit, dass je
zwei Elemente x, y € X in derselben Bahn liegen, also jeweils ein g € G mit g - x = y existiert. Dies bedeutet auch,
dass G(x) =X fiir alle x € X erfillt ist.

(i) Die Gruppe S,, operiert transitiv auf M,,. Sind ndmlich a, b € M,, mit a # b vorgegeben, dann gilt 7 -a = b fiir
7 = (a b). Also liegen je zwei Elemente in derselben Bahn.

(i) Seinun G =S, und U = (o) die vom Element o = (1 2 5)(3 4)(6 7) erzeugte, zyklische Untergruppe der
Ordnung 6. Fiir jedes n € Z gilt ¢™(1) € {1,2,5}, wie man mit vollstindiger Induktion leicht tiberpriift. Die
Bahn von 1 ist also durch U(1) = {1,2,5} gegeben. Zugleich ist dies auch die Bahn der Elemente 2 und 5.
Ebenso sieht man U(3) = U(4) = {3,4} und U(6) = U(7) = {6, 7}.

Ist allgemein o € S,, ein Produkt disjunkter Zykel, dann bilden die Tréger der Zykel genau die Bahnen der Operation
von (o) auf M, mit mehr als einem Element. Damit kann gezeigt werden, dass jedes Element o € S,, eine bis auf
Reihenfolge eindeutige Darstellung als Produkt disjunkter Zyklen besitzt.

Satz 7.4 Sei G eine Gruppe, die auf einer Menge X operiert, und x € X. Dann ist die Teilmenge
G, ={g € G| g-x = x} eine Untergruppe von G. Man nennt sie den Stabilisator von x.

Beweis: Wegen e - x = x gilt e; € G,.. Seien nun g,h € G, vorgegeben. Dann gilt g - x = x und h - x = x. Es folgt
(gh)-x=g-(h-x)=g-x = x. Dies zeigt gh € G,. Ferner gilt g™} - x = g™ - (g-x) = (g7 'g)-x = e;-x = x und
somit also auch ¢! € G, . O

Wieder betrachten wir eine Reihe von Beispielen.

(i) Wir betrachten die Operation von G = S, auf X = M,. Der Stabilisator G, des Elements 4 € X besteht nach
Definition aus allen o € G mit ¢ - 4 = o(4) = 4, also allen Permutationen mit 4 ¢ tr(c). Es gilt also

G, = {id,(12),(13),(23),(123),(132)}.

(i) In der Untergruppe U von S, aus Beispiel (ii) von oben ist der Stabilisator von 3 durch die dreielementige
Untergruppe (o2) gegeben. Denn fiir jedes m € Z gilt c™(3) = 3 genau dann, wenn m eine gerade Zahl ist.
Der Stabilisator von 1 ist die Untergruppe (o) der Ordnung 2.

(iii) Sei V=R2, G =GL(V)und X = V. Ist v = e;, dann besteht G, genau aus den Matrizen der Form

1
(0 Z) mit a,beR, b#0 |,

denn an der ersten Spalte der Matrix kann abgelesen werden, dass e; = (1,0) auf sich abgebildet wird. Fiir
den Nullvektor gilt Gy ) = G.




Proposition 7.5 Sein € IN mit n > 2. Wie wir bereits festgestellt haben, existiert eine natiirli-
che Gruppenoperation der symmetrischen Gruppe S, auf der Menge M,,. Der Stabilisator (S,,),
ist eine zu S,,_; isomorphe Untergruppe von S,,.

Beweis: Man iiberpriift leicht, dass durch die Zuordnung o — oy, _, eine Bijektion zwischen (S,,), und S,_; definiert
ist. Denn jedes o € (S,), bildet n auf n und M,,_, bijektiv auf M,_; ab, somit ist o[y,  tatsdchlich ein Element in
S,—1. Umgekehrt kann offenbar jedes v € S,_; durch 7(k) = 7(k) fiir 1 <k <n—1 und 7(n) = n zu einem Element
T €(S,), fortgesetzt werden. Die Zuordnungen (S,,), = S;—1, 0 — Oly,_, und S,_; = (S,),, T — * sind zueinander
invers, also handelt es sich um Bijektionen. Auf3erdem ist die erste Zuordnung ein Gruppenhomomorphismus, denn
fir alle o, p € (S,), ist wegen p(M,_;) € M,,_, die Komposition o |y _ oply, , definiert (der Wertebereich von p|y,
ist im Definitionsbereich von o[y enthalten), und es gilt (o o p)ly,_, = oly,_, © ply, - Insgesamt liegt also ein
Isomorphismus (S,), = S,_; Vor. O

Ebenso kann man zeigen, dass der Stabilisator (S,,); fiir 1 < k < n—1 isomorph zu S,_; ist. Insgesamt sind in S, also
n zu S,_; isomorphe Untergruppen enthalten.

Satz 7.6 Sei G eine Gruppe, die auf einer Menge X operiert, und sei x € X. Dann gibt es eine
Bijektion ¢, : G/G, — G(x) mit ¢,(gG,) = g - x fiir alle g € G. Ist insbesondere X endlich,
dann ist auch der Index (G : G,) endlich, und es gilt (G : G,) = |G(x)|.

Beweis: Fiir die Existenz der Abbildung ¢, geniigt es nach Satz zu lberpriifen, dass fiir alle g,h € G aus der
Bedingung g =, h (gegeben durch h € gG,) jeweils g-x = h-x folgt. Dies ist tatsachlich der Fall. Ist ndmlich h € gG,,
also h = gg, fiirein g, € G,, dann folgt h- x =(gg) x=g-(g,-x) =g x.

Die Abbildung ¢, ist surjektiv: Ist ndmlich y € G(x) vorgegeben, dann existiert nach Definition der Bahn ein Element
g € G mit g - x = y, und wir erhalten ¢,(gG,) = y. Nun beweisen wir noch die Injektivitit. Seien g,h € G/G, mit
$.(8) = ¢,(h) vorgegeben. AuRerdem seien g,h € G so gewihlt, dass § = gG, und h = hG, gilt. Nach Definition
der Abbildung ¢, gilt g-x = ¢,(gG,) = ¢, (hG,) =h - x, also

(g'm)x = gl(h-x) = gli(gx) = x
Es folgt g 'h € G, also § = gG, = g(g~'h)G, = hG, = h. O

In vielen Féllen ist es sinnvoll, eine Gruppe auf der Menge ihrer Elemente oder der Menge ihrer Untergruppen
operieren zu lassen. Wir betrachten hierzu eine Reihe von Beispielen. Aus jeder dieser Operationen werden sich
spater wichtige Anwendungen ergeben.




Definition 7.7 Sei G eine Gruppe und U/ die Menge ihrer Untergruppen.

(i) Die Operation von G auf der Menge ihrer Elemente gegeben durch g - h = gh bezeichnet
man als Operation durch Linkstranslation. Beziiglich dieser Operation ist jeder Stabili-
sator trivial, d.h. es gilt G, = {e} fiir alle h € G, und die Operation ist transitiv.

(i) Die Operation von G auf der Menge ihrer Elemente gegeben durch g -h = ghg™* wird
Operation durch Konjugation genannt. Die Bahnen dieser Operation nennt man auch
Konjugationsklassen, und den Stabilisator eines Elements h € G nennt man auch den
Zentralisator C;(h) von h in G.

(iii) Die Operation von G auf U/ gegeben durch g - U = gUg ! wird ebenfalls als Operation
durch Konjugation bezeichnet. Der Stabilisator eines Elements U € U/ ist der Normali-
sator Ng(U) von U in G (siehe §4).

Wir iiberpriifen kurz die Angaben in der Definition. Bezeichnet - : G x G — G die Operation durch Linkstranslation,
dann gilt fiir alle g, g’ € Gund h € G sowohl e-h =eh =h alsauch g-(g’-h) = g-(g’h) = g(g’h) = (gg")h=(gg’')-h,
also liegt tatséchlich eine Gruppenoperation vor. Ist g € G, ein Element des Stabilisators von h beziiglich dieser
Operation, dann folgt gh = g - h = h, und Multiplikation mit h~* von rechts liefert ghh™ = hh™!, also ge = e und
g = e. Damit ist G, = {e} nachgewiesen. Die Bahn G(e) des Neutralelements umfasst alle Elemente der Gruppe G,
denn fiir alle g € G gilt g = ge = g-e € G(e). Damit ist die gezeigt, dass es sich um eine transitive Gruppenoperation
handelt.

Ebenso ist die Operation durch Konjugation von G auf der Menge G tatséchlich eine Gruppenoperation, denn fiir alle

2,8’ € Gund h € G gilt sowohl e - h = ehe™* = ehe = h als auch

g-(g-h) = g- (g™ = sglghg) Mg = (gghhlgg)™" = (gg)h

Auch die Operation von G auf der Menge U ihrer Untergruppen ist eine Gruppenoperation, denn fiir alle g, g’ € U
und U el gilte-U =eUe ™ =eUe=U und

g-(gU) = g-(UEYH = gUlE) Mg = (gghulgg)™" = (gg)U.

Wir kommen nun zu einer erste wichtigen Anwendung der Gruppenoperationen. Der Satz von Cayley besagt, dass
jede endliche Gruppe isomorph zu einer Untergruppe einer symmetrischen Gruppe S, ist, unter der Voraussetzung,
dass n grofd genug gewahlt wird. Dieses Ergebnis beruht auf dem folgenden allgemeinen Zusammenhang zwischen
Gruppenoperationen und Homomorphismen.




Satz 7.8 Sei G eine Gruppe und X eine Menge.

(i) Ista:GxX — X eine Gruppenoperation, dann kann jedem g € G durch 7,(x) = a(g, x)
ein Element aus Per(X) zugeordnet werden. Die Abbildung G — Per(X), g — 7, ist ein
Gruppenhomomorphismus.

(ii) Seiumgekehrt ¢ : G — Per(X) ein Gruppenhomomorphismus. Dann ist durch a : GxX —
X mit a(g,x) = ¢(g)(x) eine Gruppenoperation gegeben.

Beweis: zu (i) Zunéchst tiberpriifen wir, dass 7, fiir jedes g € G eine bijektive Abbildung ist. Seien x, y € X. Aus
To(x) = 7,4(y) folgt a(g, x) = a(g,y), und es gilt

x = alegx) = alglgx) = alghalg,x) = alghalgy)
= a(glg,y) = alegy) = .

Also ist die Abbildung 7, injektiv. Ist y € X vorgegeben, dann setzen wir x = a(g™,x). Es gilt dann To(x) =
a(g,x)=a(g,al(g™",y)) =a(gg™",y) = ales, y) = y. Dies beweist die Surjektivitit von 7,. Somit ist 7, fiir jedes
g € G ein Element von Per(X). Nun zeigen wir, dass durch g — 7, ein Gruppenhomomorphismus gegeben ist. Seien
dazu g,h € G vorgegeben. Fiir jedes x € X gilt

(tgot)(x) = 71,(th(x)) = 7t la(h,x)) = alg,alh,x)) = a(ghx) = 7g(x).
Also ist die Abbildung g — 7, vertréglich mit den Verkntipfungen auf G und Per(X).

zu (ii) Seien g,h € G und x € X gegeben. Wir miissen die definierenden Gleichungen einer Gruppenoperation
nachrechnen. Weil ¢ ein Gruppenhomomorphismus ist, wird e, auf das Neutralelement idy von Per(X) abgebildet.
Es folgt a(eg, x) = ¢ (eg)(x) = idx(x) = x. Die Homomorphismus-Eigenschaft liefert auBerdem ¢ (gh) = ¢(g)o¢p (h).
Also gilt

a(gh,x) = ¢@h)x) = (¢(@ed(M(x) = ¢P(M(x) =
a(g,¢(M)(x)) = alg,alh,x)). O
Die Gruppenoperation im Beispiel (i) von oben kommt durch den identischen Homomorphismus auf G = S, die

Operation im Beispiel (ii) durch die Inklusionsabbildung GL(V) — Per(V) zu Stande. Jedes Element aus GL(V) ist
inbesondere eine bijektive Abbildung auf V.

Satz 7.9 (Satz von Cayley)

Sei G eine Gruppe der Ordnung n. Dann gibt es einen Monomorphismus G — S,,. Mit anderen
Worten, G ist isomorph zu einer Untergruppe von S,,.




Beweis: Wie wir in Definition festgestellt haben, operiert G durch Linkstranslation auf sich selbst. Nach Satz
existiert ein Gruppenhomomorphismus ¥ : G — Per(G), g — 7,, wobei 7, € Per(G) jeweils durch t,(h) = g-h = gh
definiert ist. Dieser Homomorphismus ist injektiv. Sei ndmlich g € ker(¥) vorgegeben, also ¥(g) = 7, = id;. Dann
gilt insbesondere g = geg = 7,(eg) = idg(eg) = eg. Damit ist die Injektivitédt von ¥ nachgewiesen.

Dariiber hinaus gibt es wegen |G| = n eine Bijektion ¢ : M,, — G, wobei M,, = {1,...,n} ist. Nach Satz liefert
diese Bijektion einen Isomorphismus ¢; zwischen S,, = Per(M,,) und Per(G). Ingesamt ist (f)_l oV : G — S, also ein
Monomorphismus, der einen Isomorphismus zwischen G und der Untergruppe ((jg_1 o ¥)(G) von S,, definiert. O

Dem Beweis des Satzes von Cayley konnen wir folgende einfache Konsequenz aus Satz entnehmen: Ist G ei-
ne Gruppe, die auf einer n-elementigen Menge operiert (n € IN), so liefert diese Operation auf natiirliche Weise
einen Homomorphismus G — S,,. Dies kann verwendet werden, um den Isomorphietyp der Symmetriegruppen der
platonischen Korper, die wir in § 1 betrachtet haben, zu bestimmen.

(i) Tetraedergruppe: Esgilt T* ZA, und T — S,.

Beweis: Die Operation von T auf der 4-elementigen Menge der Ecken des Tetraeders definiert einen Homomor-
phismus ¢ : T — S,. Ein Element der Tetraedergruppe, das alle Ecken festhalt, muss mit idps ibereinstimmen.
Somit ist der Homomorphismus injektiv.

Nun enthélt die Gruppe T™ enthélt genau 12 Elemente. Neben idgs sind dies 8 Drehungen (um 120° und 240°)
um Achsen durch eine Ecke und eine gegeniiberliegende Seite sowie 3 Drehungen (um 180°) um Achsen durch
die Mitten gegeniiberliegender Kanten. Der Homomorphiesatz, angewendet auf die Determinantenabbildung,
liefert einen Isomorphismus T/T" = {+1}. Es gilt also (T : T*) =2 und |T| =2 |T*| =212 =24. Also ist T
isomorph zu einer 24-elementigen Untergruppe von S,, und wegen |S,| = 24 folgt daraus T = S,,. Identifiziert
man die Ecken des Tetraeders mit M, = {1,2,3,4}, dann entsprechen die Elemente von T* neben id den
3-Zykeln und den Doppeltranspositionen in S,. Damit erhélt man T+ = A,.

(ii) Wiirfelgruppe: Es gilt WH =S, und W= S, x Z/27Z.

Beweis: Die orientierungserhaltende Symmetriegruppe W™ des Wiirfels operiert auf der vierelementigen
Menge der Diagonalen, die je zwei gegeniiberliegende Ecken des Wiirfels verbinden. Dadurch erhilt man
einen Homomorphismus v : W* — S,. Eine Drehung, die alle Diagonalen festhilt, stimmt mit idys tiberein;
deshalb ist v injektiv.

Die Gruppe W* besteht aus 24 Elementen. Neben idys sind dies 8 Drehungen um diese Diagonalen, 6 Dre-
hungen um Achsen durch die Mitten gegeniiberliegender Kanten, und 9 Drehungen um Achsen gegeniiber-
liegender Seiten. Daraus kann wie beim Tetraeder geschlossen werden, dass W* isomorph zu S, ist. Die volle
Symmetriegruppe W ist ein inneres direktes Produkt von W+ und der zweielementigen Gruppe erzeugt von
der Punktspiegelung am Koordinatenursprung, gegeben durch das Negative —E5 der Einheitsmatrix. Daraus
ergibt sich ein Isomorphismus W = S, x Z/27Z.

(iii) Ikosaedergruppe: Es gilt Tt ZAs und 1 = Ag x Z/27.

Beweis: Der Ikosaeder enthalt fiinf verschiedene zueinander kongruente regelméf3ige Oktaeder, deren Ecken
mit Ecken des Ikosaders iibereinstimmen. Die Gruppe des Ikosaeders operiert auf diesen Oktaedern. Dies liefert
einen Homomorphismus der orientierungserhaltenden Ikosaedergruppe I™ nach Ss. Die Gruppe I besteht
aus 60 Elementen, und anhand der Klassengleichung (sieche unten) kann man zeigen, dass I* eine einfache
Gruppe ist. Daraus kann gefolgert werden, dass ¢ injektiv ist und das Bild mit der alternierenden Gruppe




Ag fibereinstimmt. Es gilt also I" = A.. Wie beim Wiirfel zeigt man, dass fiir die volle Symmetriegruppe
I=A; x 7./]27. gilt.

Wenden wir uns nun als nachstem Thema der Formulierung der Bahngleichung zu.

Definition 7.10 Sei G eine Gruppe, die auf einer Menge X operiert, B die Menge der Bahnen
dieser Operation und S C B eine Teilmenge. Eine Teilmenge R C X wird Reprédsentantensystem
von S genannt, wenn G(x) € S fiir alle x € R gilt und die Abbildung R — S, x — G(x) bijektiv
ist.

Damit erhalten wir im Fall einer endlichen Menge X

Satz 7.11 (Bahngleichung)

Sei G eine Gruppe, die auf einer endlichen Menge X operiert. Sei F C X die Fixpunktmenge der
Operation und R € X ein Représentantensystem der Menge aller Bahnen G(x) mit mindestens
zwei Elementen. Dann gilt

X| = [|Fl+Y.(G:G,)

X€R

und (G : G,) > 1 fiir alle x €R.

Beweis: Sei B die Menge aller Bahnen, S C B die Teilmenge aller Bahnen der Linge > 1 und R C X ein Re-
préasentantensystem von S. Weil die einelementigen Bahnen genau die Mengen {x} mit x € F sind, ist F UR ein
Représentantensystem von B, und die Mengen R und F sind disjunkt. Weil X die disjunkte Vereinigung der Mengen
aus B ist und nach Definition des Reprasentantensystems fiir jedes B € 1 genau ein x € F UR mit B = G(x) existiert,

gilt
XI = DBl = > 16 = DG+ Y6
BeB x€FUR x€F X€R
= D HxH+ D16 = [FI+ > 1G()|.
X€EF X€R X€R
Durch Anwendung von Satz erhalten wir [X| = |F| + >, (G : G,). Aus der Voraussetzung |G(x)| > 1 folgt
auflerdem jeweils (G : G,) > 1, fiir alle x €R. O

Mit Hilfe der Zerlegung einer Menge X, auf der eine Gruppe G operiert, in die Bahnen dieser Operation, aus der
wir soeben die Bahngleichung hergeleitet haben, ldsst auch die Darstellung von Permutationen in disjunkte Zykel
begriinden.

Satz 7.12 Sein € IN. Dann besitzt jedes o € S, eine Darstellung o = 7; o ... o T, als Produkt
paarweise disjunkter Zykel 7;, und diese Darstellung ist bis auf die Reihenfolge der Faktoren
eindeutig bestimmt.




Beweis: Wir betrachten die Operation der zyklischen Untergruppe G = (o) auf M,,. Es seien By, ..., B, die Bahnen
dieser Operation mit mehr als einem Element (wobei genau dann r = 0 gilt, wenn o = id ist). Fiir 1 < j < r setzen
wir k; = |B;| und definieren 7; : M;, = M,, durch Tj|Bj = O'IBj und 7;(k) =k fiir k € M,, \ B;. Weil B; eine Bahn unter
der Operation von G ist, gilt (B;) € B, und o] B, ist eine Bijektion B; — Bj;. Dies zeigt, dass auch 7; jeweils bijektiv
und somit in S, enthalten ist. Wie man leicht {iberpriift, stimmen o und das Produkt 7; o ... o 7, sowohl auf jeder
Bahn B; als auch auf der Menge F = M,, \ (B, U...UB,) {iberein. Bei Letzerem handelt es sich um die Fixpunktmenge
der Operation von G auf M,,.

Um die Form der Permutationen 7; ndher zu bestimmen, bemerken wir zunéchst, dass fiir jedes a € B; das kleinste
¢ € N mit 0%(a) = a jeweils durch ¢ = k; gegeben ist; denn andernfalls wiirde die Bahn B; = G(a) aus weniger
als k; Elementen bestehen. Wéhlen wir nun fiir 1 < j < r jeweils ein Element a; € B; beliebig und setzen dann
aj = ae(aj) fiir 0 < ¢ < k;, dann muss also B; = {a o, a;y, ..., @ x,—1} gelten. AuBerdem gilt 7;(a;) = o(a;) = a; 41
flir 0 <{ <k;—1und Tj(aj,kj_l) = U(Clj,k,-—l) = ajo, sowie 7;(k) =k fiir k ¢ B;. Dies zeigt, dass 7; mit dem k;-Zykel
(ajo ajy - aj,kj_l) iibereinstimmt. Damit ist gezeigt, dass o tatséchlich als Produkt von paarweise disjunkten Zyklen
dargestellt werden kann.

Zum Nachweis der Eindeutigkeit nehmen wir nun an, dass o = o, o ... o 0, eine beliebige solche Darstellung ist.
Dann sind die Bahnen der Operation von G = (o) mit mehr als einem Element offenbar gegeben durch (o;)(b;)
fiir 1 < i <s, wobei b; jeweils ein beliebiges Element im Tréger von o; bezeichnet. Die Menge dieser Bahnen muss
mit {By,...,B,} ibereinstimmen. Es muss also r = s gelten, und nach Umnummerierung der Zykel o; kénnen wir
B; = (0;)(b;) annehmen. Wegen olej = O'|Bj = leBj und o;(k) = k = 7;(k) fiir k ¢ B; stimmen die k;-Zykel o; und
7; liberein. Damit ist die Eindeutigkeit bis auf Reihenfolge der Faktoren nachgewiesen. |

Proposition 7.13 Der Stabilisator eines Elements h € G unter der Operation durch Konjugation
ist gegeben durch C;(h) = {g € G | gh = hg}. Die Fixpunkte der Operation sind die Elemente
der Menge Z(G) ={g € G| gh =hg YV h € G}, dem sogenannten Zentrum. Auch Z(G) ist eine
Untergruppe, dariiber hinaus sogar ein Normalteiler von G.

Beweis: Wir haben bereits oben die Bezeichnung C(h) fiir den Stabilisator von h € G eingefiihrt. Fiir alle g € G gilt
die Aquivalenz
g€Cs;(h) & g-h=h & ghg''=h < gh=hg.

Ein Element h € G ist genau dann ein Fixpunkt der Operation, wenn g -h = h < gh = hg fiir alle g € G erfiillt ist.
Dies ist gleichbedeutend damit, dass h in Z(G) liegt.

Wir tiberpriifen nun die Untergruppen-Eigenschaft von Z(G). Wegen e;g = geg fiir alle g € G ist eg im Zentrum
enthalten. Sind g,h € Z(G), dann gilt fiir jedes g’ € G die Gleichung g’(gh) = gg’h = (gh)g’. Also ist auch das
Produkt gh in Z(G) enthalten. AuRerdem ist g'g ™! = (gg" 1) 1 =(g'g) ' =g g’ also g7 € Z(G). Ist g € Z(G)
und h € G beliebig, dann gilt hgh™' = ghh™! = g € Z(G). Damit ist auch die Normalteiler-Eigenschaft von Z(G)
nachgewiesen. O




Ist G eine Gruppe und N ein Normalteiler, dann gilt gng™' € N fiir alle g € G und n € N. Durch G x N — N,
g-n=gng ! ist also auch eine Operation von G auf N definiert.

Satz 7.14 (Klassengleichung)

Sei G eine endliche Gruppe, die durch Konjugation auf sich selbst operiert. Sei R ein Reprasen-
tantensystem der Konjugationsklassen mit mehr als einem Element. Dann gilt

Gl = 12(G)+ ) (G : Cylg)):

g€R

Beweis: Dies ist ein Spezialfall der Bahngleichung, wenn man die Beschreibung der Fixpunktmenge und der Stabi-
lisatoren aus Proposition berticksichtigt. m|

Besonders gut lésst sich die Klassengleichung anhand der symmetrischen Gruppen S,, illustrieren, denn hier sind die
einzelnen Konjugationsklassen durch die Zerlegungstypen der Elemente gegeben, die wir in § 1 definiert haben.

Proposition 7.15 Sein € IN, und seien 0,0’ € S,, zwei nicht-triviale Elemente. Genau dann
sind o, o’ zueinander konjugiert, wenn sie denselben Zerlegungstyp besitzen.

Beweis: ,=“ Seien 0,0’ zueinander konjugiert. Dann gilt es ein T € S, mit 0’ = to1"!. Sei 0 = 0 0...0 0, eine
disjunkte Zerlegung von o, wobei die Zykelldngen k; durch k; > ... > k, geordnet sind. Definieren wir o/ = 70,77
fir 1 <i < r, dann gilt 0’ = 0] o...0 0. Wir zeigen, dass o] jeweils ein k;-Zykel ist, fiir 1 < i < r. Sei dazu

supp(0;) = {x1, ..., Xy, }, wobei 0;(x,) = x4 fiir 1 < £ < k; und o;(x;,) = x; gilt. Setzen wir x;, = 7(x,), dann gilt
oi(x)) =107 (t(x)) = T0o(x,) = T(x41) = x,, fiir 1 <i < k; und ebenso

oilx) = o)) = Toix) = ) = xl.

Fiir y & {x/,...,x; } gilt 77'(y) & {xy, ..., x;. } und somit o/(y) = to;7 ' (y) = 70,(v '(y)) = 77 '(y) = y. Also ist
o’ tatsichlich ein k;-Zykel. Ebenso ist klar, dass die Tréger der Zykel 07, ...,0". disjunkt sind.

,<*“ Nach Voraussetzung existieren disjunkte Zykelzerlegungen 0 = 0y 0...00, und 0’ = 0 o...0 o/, wobei 0;
und o] jeweils dieselbe Zykellange k; haben, mit k; > ... > k,. Sei B; = supp(o;) und B; = supp(c}) fir 1 <i <r,
aullerdem

Bo=M,\(B,U...UB,) und  By=M,\(B]U..UB).

Wir ordnen die Elemente von B; jeweils so an, dass B; = {x, ..., X, } mit 0;(x;) = x4 fir 1 <€ <k; und o(x;,) = x;
gilt. Ebenso seien die Elemente in B! = {x, ..., x,’ci} so angeordnet, dass 0;(x;) = x;, fiir 1 <£ < k; und al-(x,;) = X}
gilt. Wir definieren nun 7, : B; — B/ durch 7,;(x,) = x;, und wéhlen eine beliebige Bijektion 7 : By — By. Definieren
wir die Abbildung 7 : M,, —» M, durch 7(x) = 7;(x) fiir x € B; und i € {0,...,r}, dann ist T bijektiv, weil die
Einschrankungen 7|z : B; — B; fiir 0 <i < r bijektiv sind. AuBerdem gilt 0’ = 70 0 o 7. Ist némlich x € B/ fiir ein
ie{l,..,r},x= xé in der Notation von oben mit 1 < £ < k;, dann folgt 7*(x) € B; und

ot l(x) = To(rTi(x)) = To(rT(x) = 7Toilx) = tlxpua)

= X = o) = o).
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Ebenso behandelt man den Fall, dass x = x; ist. Im Fall x € B gilt 0’(x) = x, und wegen 771(x) € B, gilt auch

totH(x) =to(t7H(x)) = (v (x)) = x. Insgesamt gilt also ToT ! = o”. O

Der Beweis der Proposition zeigt, wie sich die Konjugation mit einem Element 7 € S,, konkret auf ein Element o mit
gegebener Zykelzerlegung auswirkt. Ist beispielsweise o = (1 2 3)(4 5) und 7 € S5 beliebig vorgegeben, dann gilt

ot ! = ()72 7(3) ) t(4) 7(5)) (7.1)

Die Gleichung lasst sich auch direkt nachrechnen, indem man sich ansieht, auf welche Elemente 7(1), 7(2), ... durch
die Permutation To 7! abgebildet werden.

Die Konjugationsklassen in S, sind also durch die verschiedenen Zerlegungstypen der Elemente in S,, gegeben. Als
néchstes schauen wir uns an, wie man die Anzahl der Elemente in den einzelnen Konjugationsklassen bestimmt.

Lemma 7.16 Sein€INund 2 <k < n.IstAC M, eine k-elementige Teilmenge, so betragt die
Anzahl der k-Zykel o mit supp(c) = A genau (k —1)!.

Beweis: SeiA = {xy,...,x;}. Dann kann jeder k-Zykel o mit Tréiger Ain der Form (x; X (5)...X-()) geschrieben werden,
wobei 7 die Permutationen der Menge {2, ..., k} durchlduft. Umgekehrt lasst sich aus einem gegebenen k-Zykel o die
Permutation 7 zuriickgewinnen: Fiir jedes i € {2, ...,k} ist (i) bestimmt durch die Gleichung o'(x;) = X(;)- Da
es (k—1)! Permutationen von {2, ..., k} gibt, folgt aus der bijektiven Korrespondenz zwischen k-Zykeln mit Trager A
und Permutationen von {2, ..., k} die Behauptung. |

Folgerung 7.17 Fiirn€ IN und k € {2, ..., n} gibt es jeweils genau (k — 1)!(2) k-Zykel.

Beweis: Fiir die Auswahl einer k-elementigen Teilmenge A € M,, gibt es (Z) Moglichkeiten, und fiir jede solche Menge
A gibt es auf Grund des Lemmas dann (k — 1)! verschiedene k-Zykel mit Tréger A. O

Es ist nicht schwierig, daraus eine Formel abzuleiten, die die Anzahl der Elemente eines beliebigen Zerlegungstyps
liefert.

() Sei (kq,...,k,) ein Zerlegungstyp von Elementen der S,, wobei wir zunéchst annehmen, dass die Zykelldngen
ki > ky > ... > k. = 2 erfiillen, also keine Zykellinge mehrfach vorkommt. Fiir 1 <i < r seis; = Z;ll k;.
Dann ist die Anzahl der Elemente dieses Zerlegungstyps gegeben durch

fll(ki—l)!(n;isi).

Dies kommt durch eine einfache kombinatorische Uberlegung zu Stande: Um ein Element des angegebenen

Typs zu bilden, hat man zunéchst (l: ) Moglichkeiten, den Tréager des k;-Zykels zu wahlen. Fiir die Wahl des

k,-Zykels bleiben dann noch (";Zkl) Moglichkeiten, fiir die des k3-Zykels ("_I;ls_kz) Moglichkeiten usw.




(ii) Seinun (kq,...,k.) ein beliebiger Zerlegungstyp von Elementen der S,, und fiir 1 < £ < n sei a, jeweils die
Anzahl der k; mit k; = {. Dann ist die Anzahl der Elemente des Zerlegungstyps gegeben durch

= T n—s;
g(azg) 1.!:1[(ki—1)!( ki )

Diese Formel erhilt man durch die folgende Uberlegung: Wie im vorherigen Abschnitt sieht man, dass die
Formel ohne den Vorfaktor r[;zl(ag!)_l die Anzahl der Moglichkeiten liefert, zunachst den k;-Zykel, dann
den k,-Zykel usw. zu wihlen. Sei nun ¢ eine Zykelldnge, die im Tupel (ky, ..., k,) insgesamt a;-mal auftritt.
Dann wird durch diese Vorgehensweise dasselbe Produkt von a, Zykeln der Lange ¢ mehrmals, ndmlich genau
a,! mal gewahlt, wobei zu beriicksichtigen ist, dass die paarweise disjunkten £-Zykel vertauschbar sind und
somit die Reihenfolge der Faktoren keine Rolle spielt. Dieser Tatsache wird dadurch Rechnung getragen, dass
wir das Produkt mit dem ,Korrekturfaktor* (a,!)~! multiplizieren.

Wir haben bereits festgestellt, dass die Zerlegungstypen in G = S, neben der Identitdt durch Zykel der Lange 2, 3, 4
und Doppeltranspositionen der Form (a b)(c d) gegeben sind. Fiir die 2-, 3- und 4-Zykel erhilt man durch Einsetzen
in die Formel die Anzahlen 6, 8 und 6, und es ist leicht zu sehen, dass es genau drei Doppeltranspositionen
gibt. Die Operation durch Konjugation liefert also eine Zerlegung der Gruppe in fiinf Bahnen der Lingen 1, 6, 8,
6, 3; insbesondere gibt es nur einen einzigen Fixpunkt. Das heif3t also, dass S, ein triviales Zentrum besitzt. Ein
Reprasentantensystem der Bahnen der Lange > 1 ist zum Beispiel durch

R = {(12),(123),(1234),(12)34)}
gegeben, und die Klassengleichung fiir G = S, hat die Form
24 = 14+6+8+6+3.

Nach demselben Schema kann die Klassengleichung von S, fiir beliebiges n € IN aufgestellt werden. Wegen S; = {id}
gibt es nur eine Konjugationsklasse in S;. Wir geben nun die Konjugationsklassen von S, sowie ihre Grof3en fiir
2<n<7an.

n=2 n=3
Zerlegungstyp (2) Zerlegungstyp (2) (3)
Reprasentant || id | (1 2) Repréasentant || id | (12) | (123)
Anzahl 1 1 Anzahl 1 3 2
n=4
Zerlegungstyp (2) 3) 4) (2,2)
Reprasentant || id | (12)|(123)|(1234)|(12)(34)
Anzahl 1 6 8 6 3
n=>5
Zerlegungstyp (2) (3) (4) (5) (2,2) (3,2)
Reprasentant || id | (12)](123)|(1234)((12345)|(12)(34)|(123)45)
Anzahl 1 10 20 30 24 15 20




n==6

Zerlegungstyp (2) (3) 4) (5) (6)
Reprasentant id (12) (123) (1234) (12345) (123..6)
Anzahl 1 15 40 90 144 120

Zerlegungstyp (6) (2,2) (3,2) (3,3) (2,2,2) (4,2)
Représentant [ (123...6) [(12)(34)|(123)(45)|(123)(456)|(12)(34)56)|(1234)56)
Anzahl 120 45 120 40 15 90
n=7
Zerlegungstyp (2) (3) 4 (5)
Représentant id (12) (123) (1234) (123..5)
Anzahl 1 21 70 210 504
Zerlegungstyp (6) (7) (2,2) (3,2) (3,3)
Représentant (123..6) (123..7) (12)(34) (123)(45) (123456)
Anzahl 840 720 105 420 280
Zerlegungstyp (2,2,2) (3,2,2) (4,2) (4,3) (5,2)
Représentant || (12)(34)(56) | (123)(45)(67)[(1234)56)[(1234)567)|(12345)(67)
Anzahl 105 210 630 420 504

Nun beschéftigen wir uns noch mit der Klassengleichung der alternierenden Gruppen A,. Zunichst einmal ist auf
Grund der Rechenregeln fiir das Signum klar, dass das Signum jedes Elements in S,, nur von seiner Konjugationsklas-
se abhangt. Auflerdem ist offenbar jede A,-Konjugationsklasse A, (o) in der entsprechenden S,-Konjugationsklasse
S, (o) enthalten. Es stellt sich aber die Frage, ob A,(c) eine echte Teilmenge von S,(o0) ist, oder ob die Konjuga-
tionsklassen iibereinstimmen. Das folgende Lemma zeigt wegen (S,, : A,) = 2, dass jede Konjugationsklasse S, (o)
entweder auch eine A, -Konjugationsklasse ist oder in genau zwei A, -Konjugationsklassen zerféllt.

Lemma 7.18 Sei G eine endliche Gruppe, die auf einer endlichen Menge X operiert, und sei U
eine Untergruppe vom Index n = (G : U). Sei R ein Représentantensystem von U\G. Dann gilt

fir jedes x € X jeweils G(x) =,z U(a - x), und alle Mengen U(a - x) auf der rechten Seite der
Gleichung sind gleichméchtig.

Beweis: Die Inklusion ,,2“ ist nach Definition erfiillt. Fiir den Nachweis von ,,C“ sei y € G(x) vorgegeben. Dann gilt
y = g - x fiir ein x € X. Weil R ein Repriasentantensystem von U\G ist, existiert ein a € R mit g € Ua. Schreiben wir
g = ua mit einem geeigneten u € U, dann folgt y = g-x = (ua) - x =u-(a-x) € U(a - x).

Nun zeigen wir fiir vorgegebenes a € R, dass die Mengen U(x) und U(a - x) gleichméchtig sind. Dazu beweisen wir
die Gleichung U,., = aU,a'.Isth € U,.,, dann gilt h - (a - x) = a - x. Daraus folgt

(atha)-x = atl-(h-(ax)) = at-(ax) = (@la)-x = ex = x.

Also liegt u = a ‘ha in U,, und es folgt h = aua™' € aU,a™!. Sei nun umgekehrt h € aU,a™! vorgegeben , also
h = aua™! mit einem Element u € U,.. Dann folgt

he(a-x) = (aua-(a-x) = (a)-(a'-(ax) = (a) (@'a)x) =

(au)-(e-x) = (au)-x = a-(u-x) = a-x




und somit h € U,.,.. Damit ist die Gleichung bewiesen. Da durch u — aua™" eine Bijektion zwischen U, und aU,a™!
gegeben ist (mit u — a 'ua als Umkehrabbildung), folgt daraus |U,| = |aU,a™!| = |U,.,|. Der Zusammenhang
zwischen Bahnlédnge und Index des Stabilisators, Satz liefert nun

|G| |G|

ue)l = (G:U,) = AR (G:Upy) = [U(a-x)I O

Die folgende Proposition gibt Auskunft dariiber, welcher der beiden Fille fiir jede Konjugationsklasse S,(c) mit
o €A, jeweils vorliegt.

Proposition 7.19 Sein € IN mit n > 2, und sei o0 € A, ein Element ungleich dem Neutral-
element mit Zerlegungstyp (ky, ..., k). Sind alle k; ungerade und voneinander verschieden, also
ky > ky > ... > k., und hat o hochstens einen Fixpunkt, dann zerféllt S, (o) in zwei verschiedene
A,-Konjugationsklassen. Andernfalls gilt S,(c) = A, (o).

Beweis: Setzen wir zunéchst voraus, dass k; > ... > k, > 3 gilt und alle Werte k; ungerade sind. Sei oy = (i; i ... i)
der Zykel der Liange k; in der disjunkten Zykelzerlegung von o, und sei T = (i; i,). Wir zeigen, dass o und ¢’ =
tot ! in A, nicht zueinander konjugiert, die Konjugationsklassen A,(c) und A,(c”) also verschieden sind. Da o
und ¢’ in S, zueinander konjugiert sind, hat auch ¢’ den Zerlegungstyp (k;, ..., k,). Nehmen wir nun an, dass ein

p €A, mit o’ = pop~?

existiert, und seien 04,0, ...,0, die Elemente in der disjunkten Zykelzerlegung von o.
Wegen pop~! = ¢/ = 107! und der Eindeutigkeit der disjunkte Zykelzerlegung muss dann pojff1 = o; fiir
2<j<rund po;p! =710;7" . AuRerdem muss der einzige Fixpunkt von o, sofern er existiert, von p auf sich

selbst abgebildet werden.

Die Gleichung po; pl=0  fir2 < j <r zeigt, dass p; = plsupp((,j) entweder die Identitéit ist oder die Elemente von
supp(c ;) in der Reihenfolge, in der sie in o; auftreten, zyklisch vertauscht. Ist nédmlich o; = (m; mj ... mkj), so gilt
po jp’l = 0 genau dann, wenn p; mit der Identitét oder einem der folgenden Elemente {ibereinstimmt.

(ml m, mg - mkj) (m1 m, my - mkj) mp my mg e my

my; mz my -+ My ’ mg my ms -+ My o My, My My -0 My

Dies zeigt, dass p; eine Potenz eines k;-Zykels (ndmlich eine Potenz des zuerst angezeigten Elements) ist. Da k;
ungerade ist, ist das Signum von p; positiv. Aus demselben Grund folgt aus p o4 pl=10,77, dassp; = Plsupp(o) =
p = pio..o0p, gt insgesamt sgn(p) = —1, im Widerspruch zur Annahme p € A,. Dies zeigt, dass tatsichlich
A (0) #A,(0") gilt.

Betrachten wir nun den Fall, dass in der disjunkten Zykelzerlegung von o zwei Zykel (i; ... i,) und (j; ... j.) derselben
ungeraden Lange vorkommen, wobei wir auch den Fall r = 1 zulassen. Wir definieren das Element 7 € S, durch
7 =(i; j1)o...0(i, j.). Konjugiert man nun o mit dem Element 7, dann werden in der disjunkten Zykelzerlegung die
beiden angegebenen r-Zykel vertauscht, wihrend die iibrigen Zykel unverindert bleiben. Es gilt also tot™! = 0.
Weil r ungerade ist, gilt sgn(7) = —1. Daraus folgt nun S,(c) = A,(0), die S,,-Konjugationsklasse von o zerfallt also
nicht in zwei A,-Konjugationsklassen. Sei ndmlich p € S,(o) vorgegeben. Dann gibt es ein 7; € S,, mit p = Tlcmf.
Gilt T, € A,,, dann folgt unmittelbar daraus p € A,(c). Andernfalls gilt sgn(7;7) = (—1)(—1) = 1 und somit ebenfalls

p=T10T] =T1T0T Tll =(1;7)0(7t,7) €A (o).




Nehmen wir nun an, dass in der disjunkten Zykelzerlegung von o ein Zykel o; = (i; ... i,) gerader Linge r vorkommt.

1
iibrigen Zykel in der disjunkten Zykelzerlegung mit o fiihrt ebenfalls zu keiner Anderung, da der Triger {iy,...,i,}

Konjugieren wir diesen Zykel mit sich selbst, dann ergibt sich wegen 00,07 = o, keine Anderung. Konjugation der
von o, zum Tréiger jedes anderen Zykels disjunkt ist. Insgesamt gilt also 010011 = 0. Weil r gerade ist, ist das
Signum von o; negativ. Wie im vorherigen Absatz kann daraus nun geschlossen werden, dass S,,(0) =A,(o) gilt. O

Wir gehen nun mit Hilfe von Proposition die Félle n < 2 < 7 durch, um die Klassengleichung von A, fiir diese
Fdlle explizit anzugeben.

e Im Fall n = 2 ist A, trivial, die Klassengleichung also die triviale Gleichung 1 = 1.

* Im Fall n = 3 liegt neben {id} nur eine Konjugationsklasse von S5 auch in A;, ndmlich die Klasse der 3-Zykel.
Auf Grund der Proposition zerféllt diese 2-elementige S;-Klasse in zwei A;-Klassen mit jeweils einem Element.
Die Klassengleichung lautet also 3 =1+1+1.

* Im Fall n = 4 sind neben {id} die S,-Konjugationsklasse der 3-Zykel und die S,-Konjugationsklasse der Dop-
peltranspositionen in A, enthalten. Lediglich die 8-elementige Konjugationsklasse der 3-Zykel zerféllt in zwei
A,-Konjugationsklassen. Die Klassengleichung lautet also 12=14+4+44+ 3.

* Im Fall n = 5 liegen neben {id} die 3-Zykel, die 5-Zykel und die Doppeltranspositionen in As. Nur die 24-
elementige Klasse der 5-Zykel zerféllt. Wir erhalten die Klassengleichung 60 =1+20+ 12+ 12+ 15.

e ImFall n = 6 liegen neben {id} die 3-Zykel, die 5-Zykel, die Doppeltranspositionen und die Elemente der Zerle-
gungstypen (3, 3) und (4,2) in Ag. Nur die Klasse der 5-Zykel zerfallt. Daraus ergibt sich die Klassengleichung
360=1+4+40+72+4+72+4+45+40+90.

* Im Fall n = 7 liegen neben {id} die 3-, 5- und 7-Zykel, die Doppeltranspositionen und die Elemente der
Zerlegungstypen (3,3), (3,2,2) und (4,2) in A,. Hier zerfallt nur die Klasse der 7-Zykel. Wir erhalten die
Klassengleichung 2520 = 1 + 70 + 504 + 360 + 360 + 105 + 280 + 210 + 630.

Im folgenden Abschnitt dieses Kapitels verwenden wir die Klassengleichung zur Untersuchung endlicher Gruppen
mit Primzahlpotenzordnung.

Definition 7.20 Sei p eine Primzahl. Eine endliche Gruppe G wird als p-Gruppe bezeichnet,
wenn sie von p-Potenzordnung ist, also |G| = p® fiir ein e € N, erfiillt ist.

Wir werden nun mit Hilfe der Klassengleichung einige wichtige Eigenschaften der p-Gruppen herleiten.

Satz 7.21 Sei G eine nichttriviale p-Gruppe. Dann ist das Zentrum Z(G) von G ebenfalls nicht-
trivial, besteht also aus mindestens p Elementen.




Beweis: Seir € INmit |G| = p”. Wir stellen fiir die Gruppe G die Klassengleichung auf. Sei R ein Reprasentantensystem
der Konjugationsklassen von G, die aus mehr als einem Element bestehen. Nach Satz gilt dann

Gl = 12(G®)|+).(G: Cslg)).

g€R

Die Zahl |G| ist nach Voraussetzung durch p teilbar. Die Indizes (G : C;(g)) sind Teiler > 1 von p" und wegen
(G : Cz(g)) > 1 somit ebenfalls Vielfache von p. Damit muss auch |Z(G)| durch p teilbar sein. Wegen e € Z(G) ist
|Z(G)| > 0, und das kleinste positive Vielfache von p ist die Zahl p selbst. O

Lemma 7.22 Ist G eine Gruppe mit der Eigenschaft, dass die Faktorgruppe G/Z(G) zyklisch
ist, dann ist G selbst abelsch.

Beweis: SeiN = Z(G)und g € G so gewahlt, dass g = gN die Faktorgruppe G/N erzeugt. Seien aullerdem g;,g, € G
beliebig vorgegeben. Zu zeigen ist die Gleichung g,g, = g,8;- Wegen G/N = (g) gibt es m,n € Z mit g;N = g™,
g,N = g". Insbesondere gilt g; € g™N, g, € g"N, also gibt es Elemente a,b € N mit g; = g™a und g, = g"b. Weil
a und b als Elemente des Zentrums mit jedem Gruppenelement vertauschbar sind, erhalten wir

818, = gMag"b = ghglab = g"Mab = g"gMab = g"bg"a = g,g&. O

Satz 7.23 Sei p eine Primzahl. Dann ist jede Gruppe der Ordnung p? abelsch. Bis auf Isomorphie
sind also Z/p*Z und Z/pZ x 7./ pZ die einzigen Gruppen der Ordnung p2.

Beweis: Sei G eine Gruppe mit |G| = p2. Als p-Gruppe besitzt G nach Satz ein nichttriviales Zentrum Z(G). Da
|Z(G)| ein Teiler von p? ist, kann somit nur |Z(G)| = p oder |Z(G)| = p? gelten. Im Fall |Z(G)| = p? gilt Z(G) = G.
Jedes Element aus G ist dann mit jedem anderen vertauschbar, also ist G abelsch. Im Fall |Z(G)| = p ist |G/Z(G)| =
pZ

& =pvon Primzahlordnung, die Faktorgruppe G/Z(G) also zyklisch und G nach Lemma abelsch. |

Satz 7.24 Jede p-Gruppe ist auflésbar.

Beweis: Sei G eine p-Gruppe, |G| = p" fiir ein n € IN,,. Wir beweisen die Aussage durch vollstindige Induktion {iber
n. Flir n < 2 ist G nach Satz abelsch und somit auflosbar. Sei nun n > 3, und setzen wir die Aussage fiir Werte
kleiner als n voraus. Nach Satz ist Z(G) eine nichttrivale Untergruppe von G, wegen Proposition dartiiber
hinaus ein Normalteiler von G. Ist G = Z(G), dann ist G wiederum abelsch und damit auflésbar. Ansonsten sind
durch Z(G) und G/Z(G) zwei p-Gruppen kleinerer Ordnung als G gegeben, so dass wir die Induktionsvoraussetzung
anwenden koénnen. Also sind Z(G) und G/Z(G) auflésbar. Nach Satz (ii) folgt daraus auch die Auflosbarkeit
von G. O




Als weitere Anwendung der Klassengleichung leiten wir die Einfachheit der alternierenden Gruppen ab.

Satz 7.25 Die Gruppe A, ist nicht einfach fiir n = 4, fiir alle {ibrigen n > 2 einfach.

Beweis: Die Gruppe A, ist nicht einfach, denn wie wir bereits im Beweis von Satz gesehen haben, ist die
Kleinsche Vierergruppe V, = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ein nichttrivialer Normalteiler von A,. Die Gruppe
A, besteht nur aus dem Element id und ist somit einfach. Die Gruppe A5 hat die Primzahlordnung 3. Aus dem Satz
von Lagrange folgt, dass A; nur Untergruppen der Ordnung 1 und 3 in A5 gibt. Also sind {id} und A5 die einzigen
Untergruppen von A, somit erst recht die einzigen Normalteiler, und folglich ist A5 einfach.

Der eigentlich interessante Teil des Beweises ist der Nachweis der Einfachheit von A, fiir n > 5. Betrachten wir
zundchst den Fall n = 5. Wir haben in Abschnitt (4) gesehen, dass die Klassengleichung von A durch

60 = 1+20+12+12+15

gegeben ist. Nehmen wir nun an, dass N ein nichttrivialer Normalteiler von G ist. Ist C eine Konjugationsklasse,
dann gilt entweder C NN = @ oder C C N. Ist nimlich n € C NN, dann gilt gng™* € N. Dies zeigt, dass die gesamte
Konjugationsklasse [n] = {gng™' | g € G} von n in N enthalten ist. Dies bedeutet, dass N als disjunkte Vereinigung
von As-Konjugationsklassen dargestellt werden kann, wobei {id} wegen id € N eine dieser Klassen sein muss. Da
jede Konjugationsklasse aufder {id} mindestens 12 Elemente enthélt, muss |[N| > 13 gelten. Andererseits muss die
Ordnung |N| ein Teiler von 60 ungleich 1, 60 sein. Dies ldsst als einzige Moglichkeiten [N | € {15, 20,30} zu.

Auf Grund der Zerlegung von N in As-Konjugationsklassen miisste es nun moglich sein, |[N| als Summe der Form
1+d; +...+d, darzustellen, wobei r € IN und d;, ...,d, € {12, 15, 20} gilt, wobei 12 in der Summe zweimal, 15 und
20 hochstens einmal vorkommen. Wegen d; > 12 geniigt es, Summen mit r > 2 zu betrachten, denn im Fall r > 3
wiére bereits 1 +d; +... +d, > 14+ 12412+ 15 = 40 > 30. Wie man sich leicht {iberzeugt, stimmt aber keine der
Zahlen

1+12 , 1+15 , 1+20 , 1+12+12 , 1+12+15 , 1+12+20 , 1+15+20

mit 15, 20 oder 30 {iberein. Also kann es in A5 keinen Normalteiler N # {id},As geben, und die Gruppe As ist einfach.

Nun beweisen wir die Einfachheit von A, fiir alle n > 5 durch vollstdndige Induktion, wobei der Induktionsanfang
bereits erledigt ist. Wir setzen die Aussage nun fiir ein solche n voraus und beweisen sie fiir n + 1. Nehmen wir an,
dass N ein nichttrivialer Normalteiler von A, ist. Fir 1 <i <n+1sei G, = {0 € S,;; | 0(i) =i}, der Stabilisator
von i in S,,. Wie wir am Anfang des Kapitels (bei der Definition der Stabilisatorgruppen) bemerkt haben, gilt G; =S,
fiir jedes i, und dieser Isomorphismus dndert das Signum der Permutationen nicht, da lediglich ein Fixpunkt aus dem
Definitionsbereich entfernt wird und somit der Zerlegungstyp gleich bleibt. Durch Einschrdnkung des Isomorphismus
auf H; = G; NA,, erhdlt man somit einen Isomorphismus ¢; : H; — A,,.

Wegen N <A, gilt NNH; < H; fiir 1 <i < n+1. Sind ndmlich n € NnH; und h € H; vorgegeben, dann gilt hnh™! € N
auf Grund der Normalteiler-Eigenschaft und hnh™' € H; auf Grund der Untergruppen-Eigenschaft von H;, insgesamt
also hnh™' € N N H;. Wegen H; = A, ist auch H; einfach, es sind also {id} und H; die einzigen Normalteiler. Somit
gilt fiir 1 <i <n+1 jeweils N NH; = {id} oder N NH; = H;.




Nehmen wir zunéchst an, es gilt N N H; = H; fiir ein j. Wie man sich leicht {iberzeugt, ist H; in A,,; zu jeder der
Gruppen Hy, ..., H,,; konjugiert; bezeichnet o; € A, ein beliebiges Element mit 0;(j) = i, dann gilt H; = aiHjai_l.
Auf Grund der Normalteilereigenschaft gilt

NNH; = NnN Ul-Hjai_l = O'iNO'l._l N O'l-HJ-O'i_l = 0N ﬂHj)O'i_l = O'iHjO'i_l = H,.
Aus NNH; =H, folgt N D H;, fiir 1 <i < n+ 1. Jeder 3-Zykel aus A, ist in einer der Untergruppen H; enthalten.
Also enthalt N alle 3-Zykel. Weil Mit Satz (ii) folgt daraus N = A,,,, im Widerspruch zur Annahme von oben.
Also muss N NH; = {id} fiir 1 <i < n+1 gelten. Es gibt in N also kein nichttriviales Element ohne Fixpunkt. Daraus
folgt auch, dass es in N keine zwei verschiedenen Elemente gibt, die auf einem i € M,,,; denselben Wert haben. Denn
wire o(i) = ©(i) fiir 0,7 € N, dann wiirde daraus (t~'c)(i) =i folgen.

Sei nun o € N ein nichttriviales Element, und sei (k4, ..., k) der Zerlegungstyp von o. Nehmen wir an, dass in der
disjunkten Zykelzerlegung von o ein r-Zykel o, mit r > 3 vorkommt, also k; > 3 gilt. Sei 0y = (i iy - i.). Sei
T = (i3 j k) mit j, k # {i},i5,13}; ein solches Element existiert wegen n + 1 > 6. Setzen wir o’ = tot~}, dann ist o’
wegen T €A,,; und N <A, ebenfalls in N enthalten. Die disjunkte Zykelzerlegung von ¢ enthélt dann den k-Zykel
oy =(iyj -+ i,). Wegen 0(iy) = i3 und 0'(i,) = j # i3 gilt dann o # o', andererseits aber o (i;) = i, = 0'(i;).
Aber das zwei verschiedene Elemente aus N an einer Stelle das gleiche Bild haben, wurde oben ausgeschlossen.

Als einzige Moglichkeit bleibt somit, dass jedes nichttriviale Element aus N ein Produkt von disjunkten Transpositio-
nenist. Sei o € N\ {id} und o = 0;...0, eine solche Zerlegung. Sei o; = (i j) und o, = (k £), aufderdem 7 = (£ p q),
wobei p,q € M,,; so gewahlt sind, dass p # q und p,q ¢ {i, j, k,£}. Solche Elemente existieren wiederum wegen
n+1> 6. Setzen wir ¢’ = 707!, dann sind die Transpositionen (i j) und (k p) in der disjunkten Zykelzerlegung
von ¢’ enthalten. Wegen o (k) = £ und ¢’(k) = p # £ sind o und ¢’ zwei verschiedene Elemente aus N. Andererseits
gilt o(i) = j = 0”(i), was erneut unserer Feststellung von oben widerspricht. Also existieren in N kein nichttrivialen
Elemente. Aber den Fall N = {id} haben wir ebenfalls oben ausgeschlossen. Insgesamt hat also die Annahme, dass
A, einen nichttrivialen Normalteiler N besitzt, zu einem Widerspruch gefiihrt. |

Folgerung 7.26 Fiir n > 5 ist A, der einzige nichttriviale Normalteiler von S,,.

Beweis: Dass A, als Kern der Signums-Abbildung ein Normalteiler von S,, ist, wissen wir bereits, und wegen |A, | = %n!
muss dies fiir n > 5 (sogar fiir n > 3) ein nichttrivialer Normalteiler sein. Sei nun umgekehrt N ein nichtrivialer
Normalteiler von S,,. Gilt N € A,,, dann gilt auch N < A,,. Weil A, einfach ist, bleibt in diesem Fall N = A,, als einzige
Moglichkeit.

Betrachten wir nun den Fall, dass N € A, gilt, und definieren wir N; = N NA,,. Durch Einschrankung der Signums-
funktion auf N erhalten wir einen Gruppenhomomorphismus ¢ : N — {£1}, dessen Kern genau N; ist. Wegen N € A,

gibt es in N Elemente o mit ¢(0) = —1, der Homomorphismus ist also surjektiv. Wir kénnen den Homomorphiesatz
anwenden und erhalten einen Isomorphismus N /N; = {*1}. Es folgt % = |N/N;| = [{£1}| =2 und [N| = 2|N;|.

Nun ist N; als Durchschnitt zweier Normalteiler von S,, ebenfalls ein Normalteiler von S,,, und wegen N; C A, somit
auch ein Normalteiler von A,,. AufSerdem gilt N; € A,,. Denn andernfalls wire NNA, =N; =A,, also N 2 A,. Wegen
N ¢ A, wiirde daraus N 2 A, folgen, und dies wiederum wiirde dann (S, : N) < (S, : A,) = 2 bedeuten, also
(S,:N)=1und N =S,,. Dies aber steht im Widerspruch zur Annahme, dass N ein nichttrivialer Normalteiler von S,

— 90 —



ist. Aus N; < A, und N; € A, sowie der Einfachheit von A,, folgt N; = {id}. Dies wiederum bedeutet |N| = 2|N;| =
2.1 = 2. Sei o das einzige nichttriviale Element in N. Wegen ord(c) = |[N| = 2 handelt es sich um ein Produkt r
disjunkter Transpositionen, wobei r > 1 ist.

Weil N ein Normalteiler von S,, ist, liegt jedes zu o in S, konjugierte Element, also jedes Element vom selben Zer-
legungstyp, ebenfalls in N. Dies fiihrt zu einem Widerspruch, sobald wir gezeigt haben, dass es in S,, mehr als zwei
Elemente vom selben Zerlegungstyp wie o gibt. Fiir Transpositionen ist dies unmittelbar klar, wie man z.B. anhand
der Elemente (1 2) und (1 3) sieht. Fiir r > 2 seien 7,7’ € S,, Produkte von r disjunkten Transpositionen, wobei
in der Zykelzerlegung von 7 die Transpositionen (1 2) und (3 4), in der von 7’ die Transpositionen (1 3) und (2 4)
vorkommen. Offenbar sind T und 7’ verschieden, denn es gilt 7(1) = 2 und 7/(1) = 3. Ingesamt ist damit bewiesen,
dass in S, kein nichttrivialer Normalteiler N mit N C A, existiert. |

Aus der Klassengleichung ergibt sich auch eine interessante Anwendung fiir die Gruppe A,.

Satz 7.27 Die Gruppe A, hat keine Untergruppe der Ordnung 6.

Beweis: Auch diese Aussage lésst sich mit Hilfe der Klassengleichung beweisen. Fiir A, lautet sie 12 =1+444+3,
wie wir oben nachgerechnet haben. Nehmen wir nun an, N ist eine Untergruppe der Ordnung 6 von A,. Wegen

(A, :N) = % = % = 2 ist N auch ein Normalteiler. Wie im Beweis von Satz EI begriindet man, dass N eine
disjunkte Vereinigung von A,-Konjugiertenklassen sein muss, wobei eine dieser Klassen gleich {id} ist. Betrachtet
man die Méachtigkeit dieser Klassen, so folgt daraus, dass [N| = 6 als Summe der Zahlen 1, 3 und 4 darstellbar
sein muss, wobei die Zahl 1 genau einmal, die Zahl 3 hochstens einmal und die Zahl 4 héchstens zweimal in der
Darstellung vorkommen muss (letzteres, weil es zwei A,-Konjugiertenklassen mit vier Elementen gibt). Wie man sich
leicht iiberzeugt, existiert eine solche Darstellung nicht, denn es ist 1 +3 = 4, 1+ 4 = 5, und alle andere anderen

Summen dieser Form sind > 8. Also existiert in A, keine Untergruppe der Ordnung 6. |

Wir geben noch einen weiteren Beweis an, der mit der Hilfe der Sylowsétze funktioniert, die wir im folgenden
Kapitel behandeln. Nehmen wir an, dass V eine Untergruppe von G = A, der Ordnung 6 ist. Auf Grund des 0-ten
Sylowsatzes enthélt V eine Untergruppe U der Ordnung 3. Wegen (V : U) = 2 ist U ein Normalteiler von V. Es folgt
daraus V € Ng(U), und daraus wiederum ergibt sich

6l _ 12

(G:Ng(U)) < (G:V) vl o i 2.
Nun sind die Sylowgruppen von G wegen |G| = 22 - 3 genau die Untergruppen der Ordnung 3. Da G nach dem
Zweiten Sylowsatz auf der Menge U dieser Untergruppen transitiv operiert und N;(U) der Stabilisator von U € U
ist, gilt || = |G(U)| = (G : Ng(U)); dies ist ein Spezialfall der Formel (G : G,) = |G(x)| aus Satz[7.6] Auf Grund der
Ungleichung (G : N;(U)) < 2 von oben wiirde dies bedeuten, dass G nur zwei Untergruppen der Ordnung 3 besitzt.
Tatsachlich aber gibt es in G genau acht Elemente der Ordnung drei (die 3-Zykel). Jede Untergruppe der Ordnung 3
enthélt genau zwei dieser Elemente. Es gibt also genau vier Untergruppen der Ordnung 3 in G. Der Widerspruch zu
|Ud| = 2 zeigt, dass die Annahme beziiglich der Existenz von V falsch war.




§ 8. Die Sylowsdtze

Zusammenfassung. In diesem Abschnitt leiten wir als besondere Anwendung aus der Theorie der
Gruppenoperationen die bekannten Sylowsétze her. Diese ermdglichen weitreichende Aussagen iiber die
sog. p-Sylowgruppen einer endlichen Gruppe; dabei handelt es sich um die Untergruppen maximaler p-
Potenzordnung. In einigen Fillen lassen sich auf diese Weise sogar alle Gruppen einer festen Ordnung bis auf
Isomorphie klassifizieren, was wir am Ende des Kapitels anhand zweier konkreter Beispiele demonstrieren.

Die wesentliche Idee beim Beweis der Sylowsidtze besteht darin, die endliche Gruppe auf der Menge ihrer
p-Sylowgruppen operieren zu lassen, wobei nicht nur die Operation der gesamten Gruppen, sondern auch
die Operation der p-Untergruppen dieser Menge beriicksichtigt wird. Die im letzten Abschnitt entwickelten
Grundlagen zum Thema Gruppenoperationen, inbesondere die Bahngleichung, spielen beim Beweis die ent-
scheidende Rolle. Die gewiinschten Ergebnisse erhalten wir durch die detaillierte Untersuchung der Stabilisa-
toren dieser Gruppenoperation.

Wichtige Grundbegriffe Zentrale Sditze
— Operation einer Gruppe auf der Menge ihrer — Satz {iber die Existenz von p-Untergruppen
Untergruppen (Normalisatoren als Stabilisatoren (,,Nullter Sylowsatz*)

dieser Operation) . .
P — Erster, Zweiter und Dritter Sylowsatz

— p-Untergruppen und Sylowgruppen einer endli-

chen Gruppe — Anwendungen der Sylowsétze:

Klassifikation der Gruppen der Ordnung 15 und der
Gruppen der Ordnung 2p fiir eine beliebige Primzah-
len p

Wir beginnen diesen Abschnitt mit einer weiteren Anwendung der Bahngleichung.

Satz 8.1 (,Nullter Sylowsatz*)

Sei G eine endliche Gruppe, p eine Primzahl und k € IN, derart, dass p* ein Teiler der Gruppen-
ordnung |G| ist. Dann gibt es in G eine Untergruppe der Ordnung p*.

Beweis: Wir beweisen die Aussage durch vollstindige Induktion iiber n = |G|. Fiir n = 1 ist 1 die einzige Prim-
zahlpotenz, die n teilt, und daher braucht nichts gezeigt werden. Sei nun n > 1, und setzen wir die Aussage fiir alle
kleineren Gruppenordnungen als giiltig voraus. Sei G eine Gruppe der Ordnung n und p* eine Primzahlpotenz, die
n teilt, wobei wir k > 0 annehmen koénnen. Wir unterscheiden nun zwei Fille.

1. Fall: Es gibt eine Untergruppe H € G mit p } (G : H).
Dann ist p* wegen |G| = (G : H)|H| auch ein Teiler von |H|. Nach Induktionsvoraussetzung gibt es in H eine Unter-
gruppe U der Ordnung p¥, und natiirlich ist U auch eine Untergruppe von G.
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2. Fall: Fiir jede Untergruppe H < G ist p ein Teiler von (G : H).
In diesem Fall stellen wir die Klassengleichung fiir G auf. Bezeichnet R ein Reprédsentantensystem der Konjugations-
klassen mit mehr als einem Element, dann gilt

Gl = 1Z(@)|+).(G:Csg))
g€R
Auf Grund unserer Voraussetzung sind die Zahlen (G : C;(g)) ebenso wie |G| alle durch p teilbar, somit ist auch
|Z(G)| ein Vielfaches von p. Daraus folgt, dass Z(G) ein Element der Ordnung p enthilt. Denn nach Satz [5.10] ist
isomorph zu einem dufleren direkten Produkt zyklischer Gruppen Cj, ..., C,; darunter muss zumindest eine mit p | |C;]|
sein. Ist h € C; ein Erzeuger, dann ist g = h!%!/P nach Satz ein Element der Ordnung p. Damit ist N = (g) eine
Untergruppe der Ordnung p.

Wegen N C Z(G) ist N ein Normalteiler von G. Sind nimlich n € N und g € G beliebig vorgegeben, dann gilt gng™ =
g¢ 'n=n € N. Wir bilden nun die Faktorgruppe G = G/N. Wegen |G| < |G| kénnen wir die Induktionsvoraussetzung
anwenden und erhalten eine Untergruppe U von G der Ordnung p*~!. Sei U = n~!(U) das Urbild von U unter dem
kanonischen Epimorphismus 7 : G — G/N. Wegen U = U/N und nach dem Satz von Lagrange gilt |U| = |U|-|N| =
p*'p =p~. O

In endlichen abelschen Gruppen kann man sogar fiir jeden Teiler d der Gruppenordnung eine Untergruppe der Ord-
nung d finden. Dies kann aus Satz abgeleitet werden, wenn man noch beriicksichtigt, dass nach Satz[3.11]eine
endliche zyklische Gruppe zu jedem Teiler ihrer Gruppenordnung eine (eindeutig bestimmte) Untergruppe dieser
Ordnung besitzt. Fiir nicht-abelsche Gruppen ist die Aussage fiir beliebige Teiler aber falsch. Beispielsweise haben
wir in den Ubungen gezeigt, dass die alternierende Gruppe A, keine Untergruppe der Ordnung 6 besitzt, obwohl 6
ein Teiler von |A,| = 12 ist.

Folgerung 8.2 (Satz von Cauchy)
Ist G eine endliche Gruppe und p ein Primteiler von |G|, dann existiert in G ein Element der
Ordnung p.

Beweis: Nach Satz gibt es in G eine Untergruppe U der Ordnung p. Als Gruppe von Primzahlordnung ist U
nach Folgerung (ii) zyklisch, es gibt also ein g € U mit U = (g). Nach Definition der Elementordnung gilt
ord(g) = [(g)| = [U| = p. m

Nun kommen wir zur letzten wichtigen Anwendung der Bahngleichung in diesem Kapitel, den Sylowsétzen.

Definition 8.3 Sei p eine Primzahl und G eine endliche Gruppe der Ordnung n = p"m, wobei
m und p teilerfremd sind. Eine p-Untergruppe von G ist eine Untergruppe der Ordnung p® mit
0 <s <r.Istr =s, dann sprechen wir von einer p-Sylowgruppe.

Um die Sylowsétze zu beweisen, betrachten wir die bereits in Definition eingefiihrte Operation einer Gruppe G
auf der Menge ihrer Untergruppen. Den Stabilisator eines Elements dieser Menge unter der Operation hatten wir
dort als Normalisator der Untergruppe bezeichnet. Diese Bezeichnung ist durch folgende Eigenschaft gerechtfertigt.
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Proposition 8.4 Sei G eine Gruppe und U eine Untergruppe. Dann ist N;(U) die groRte Un-
tergruppe H von G mit der Eigenschaft, dass U Normalteiler von H ist.

Beweis:  Als Stabilisator beziiglich einer Gruppenoperation ist N;(U) jedenfalls eine Untergruppe von G. Aus Pro-
position [6.1] folgt insbesondere, dass fiir jede Gruppe durch die Konjugation mit einem Gruppenelement jeweils ein
Automorphismus der Gruppe definiert ist. (Man bezeichnet diese Automorphismen als innere Automorphismen der
Gruppe.) Daraus folgt, dass uUu~! = U fiir alle u € U gilt, und U somit in N,;(U) enthalten ist. Also ist U auch eine
Untergruppe von N (U). Fiir jedes g € N;(U) gilt gUg™! = U nach Definition von N (U). Dies zeigt, dass U sogar
ein Normalteiler von N;(U) ist. Sei nun H eine beliebige Untergruppe von G mit der Eigenschaft U < H. Fiir jedes
h € H gilt dann hUh™! = U und somit h € N;(U). Also ist H tatsichlich in N;(U) enthalten. m|

Lemma 8.5 Sei G eine Gruppe mit Untergruppen S, H, und es gelte hSh™' = S fiir alle h € H.
Dann ist das Komplexprodukt HS eine Untergruppe von G, und es gilt S < HS.

Beweis: Wir zeigen zunichst, dass aus der Voraussetzung hSh™! = S fiir alle h € H die Gleichung HS = SH folgt.
Sei a € HS vorgegeben. Dann gibt es Elemente h € H und s € S mit hs = a. Auf Grund der Voraussetzung liegt hsh™
in S und somit hs = (hsh™!)h in SH. Dies beweist die Inklusion HS C SH. Sei nun umgekehrt b € SH vorgegeben,
b =sh mits € S und h € H. Dann liegt h™'sh in h"!Sh = S, und es folgt sh = h(h~'sh) € HS.

Wir konnen nun Lemma iiber Komplexprodukte anwenden. Demzufolge ist HS eine Untergruppe von G. Zum
Beweis von S < HS bestimmen wir den Normalisator von S in HS. Wegen hSh™! = S fiir alle h € H gilt H C Ny4(S),
und wegen sSs™! C S fiir alle s € S ist auch S in Ny4(S) enthalten. Jede Untergruppe von HS, die S und H enthilt,
stimmt offenbar mit HS iiberein. Es gilt also Ny¢(S) = HS, und aus der Eigenschaft S < N,;4(S) des Normalisators,
siehe Proposition[8.4] folgt S < HS. O

Wir kdnnen nun unser Hauptresultat formulieren und beweisen.

Satz 8.6 Sei G eine Gruppe der Ordnung n, p eine Primzahl und n = mp" mit p { m.

(i) Erster Sylowsatz: Jede p-Untergruppe von G ist in einer p-Sylowgruppe enthalten.
(i) Zweiter Sylowsatz: Je zwei p-Sylowgruppen sind zueinander konjugiert.

(iii) Dritter Sylowsatz: Fiir die Anzahl v, der p-Sylowgruppen gilt », =1 mod p und v, | m.

Beweis: Zunéchst definieren wir uns eine geeignete Gruppenoperation und betrachten dazu die Operation durch
Konjugation von G auf der Menge V der Untergruppen von G. Nach Satz gibt es mindestens eine p-Sylowgruppe
P € V. Die Bahn U/ = G(P) eine G-invariante Teilmenge. Fiir jedes Q € G(P) gilt Q = g-P = gPg ™! fiir ein g € G.
Weil nach Proposition[6.1]die Konjugation mit g ein Automorphismus von G ist, sind die Gruppen P und Q isomorph,
und somit besteht ¢/ ausschliel3lich aus p-Sylowgruppen.

Wir zeigen nun, dass p teilerfremd zu || ist. Auf Grund des allgemeinen Zusammenhangs aus Satz zwischen
Bahnlénge und Index des Stabilisators gilt zunéchst |U/| = |G(P)| = (G : Ng(P)). Wegen P € Ng;(P) und auf Grund
der Gleichung aus dem Satz von Lagrange gegeben durch |N;(P)| = |P| - (N;(P) : P) erhalten wir

L el 6l NP _
G:P) = o = mgy el = (G NaPIWG(P):P)
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Somit ist || = (G : Ng(P)) ein Teiler von m = (G : P). Da m teilerfremd zu p ist, gilt dies auch fiir |/|.

zu (i) Sei H eine beliebige p-Untergruppe. Wir betrachten die Operation von H auf &/ durch Konjugation und
zeigen, dass mindestens ein Fixpunkt existiert. Dariiber hinaus zeigen wir, dass jede Untergruppe S, die als Fixpunkt
der Operation auftritt, die Untergruppe H enthilt.

Die Menge U zerfdllt unter der Operation von H disjunkt in eine gewisse Anzahl von Bahnen. Ist 5 eine solche Bahn,
dann ist |B| ein Teiler von |H| und somit eine p-Potenz. Sei F die Menge der Fixpunkte und R ein Représentantensy-
stem der Bahnen mit Lange > 1. Weil |U/| teilerfremd zu p ist, muss es auf Grund der Bahngleichung

ul = IFl+ > (H:Hy)

UeR

aus Satz[/.11|mindestens einen Fixpunkt S € B unter dieser der Operation geben.

Wir beweisen nun die Inklusion H C S. Die Fixpunkt-Eigenschaft bedeutet gerade hSh™! = S fiir alle h € H. Nach
Lemmal(8.5]ist das Komplexprodukt HS jedenfalls eine Untergruppe von G und S ein Normalteiler von HS. Nach dem
Isomorphiesatz, Satz[4.32] gilt H/(HNS) = HS/S und somit

H| _ |HS]
|HNS| S|

_ HIIS|
[HNS|

|HS]|

Mit |S| und |H| ist also auch |HS| eine p-Potenz. Aus HS 2 S und der p-Sylowgruppen-Eigenschaft von S folgt, dass
HS =S und somit H C S gilt.

zu (ii) Sei P’ eine beliebige p-Sylowgruppe in G. Wie wir in (i) gezeigt haben, gibt es ein Element P” € I mit
P’ C P”. Weil P’ und P” dieselbe Ordung haben, gilt P’ = P”. Weil P” in derselben Bahn wie P liegt, gibtesein g € G
mit P’ = P” = gPg™ L.

zu (iii) Aus (ii) folgt, dass U = G(P) bereits die Menge aller p-Sylowgruppen von G ist und somit v, = [U| = (G :
N;(P)) gilt. Bereits am Anfang des Beweises wurde gezeigt, dass dies ein Teiler von m = (G : P) ist. Zum Beweis der
Kongruenz betrachten wir die Operation von P auf ¢/. Nach Teil (i) ist P in jeder p-Sylowgruppe enthalten, die unter
dieser Operation fest bleibt. Da P auf Grund seiner Ordnung in keiner anderen p-Sylowgruppe als P selbst liegen
kann, ist P der einzige Fixpunkt dieser Operation, und der Rest von U zerféllt in Bahnen von p-Potenzldnge > 1.
Bezeichnen wir mit R ein Reprasentantensystem dieser Bahnen, dann gilt auf Grund der Bahngleichung

v, = Ul = H{PH+D.(P:Py).

UeR

Wegen [{P}| = 1, und weil es sich bei den Bahnlangen (P : P;;) = |P(U)| um p-Potenzen > 1 handelt, ist die rechte
Seite der Gleichung kongruent zu 1 modulo p. |

Folgerung 8.7 Sei G eine Gruppe und p eine Primzahl. Eine p-Sylowgruppe P ist genau dann
ein Normalteiler von G, wenn die Anzahl v, der p-Sylowgruppen von G gleich 1 ist.

Beweis: ,=“ Ist P’ eine weitere p-Sylowgruppe, dann ist P’ nach Teil (ii) der Sylowsétze zu P konjugiert. Es gibt
also ein g € G mit P’ = gPg™!. Weil P ein Normalteiler von G ist, folgt P’ = gPg~! = P und somit v,=1. ,&“ Sei
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g € G. Nach Proposition ist die Untergruppe gPg~! isomorph zu P. Insbesondere hat gPg~! dieselbe Ordnung
wie P und ist somit eine p-Sylowgruppe. Wegen v, = 1 muss gPg~! = P gelten. Weil g beliebig gewihlt war, folgt
daraus die Normalteiler-Eigenschaft von P. m|

Als erstes Anwendungsbeispiel fiir die Sylowséatze beweisen wir

Lemma 8.8 Jede Gruppe der Ordnung 15 besitzt einen Normalteiler der Ordnung 3 und einen
Normalteiler der Ordnung 5.

Beweis: Sei G eine Gruppe mit |G| = 15, und fiir jede Primzahl p sei v, die Anzahl der p-Sylowgruppen von G. Wegen
Teil (iii) der Sylowsitze ist v5 ein Teiler von 5, also v5 € {1,5}, und es gilt s =1 mod 3. Da 5 # 1 mod 3 ist, bleibt
als einzige Moglichkeit v; = 1. Die einzige 3-Sylowgruppe ist nach Folgerung [8.7) ein Normalteiler von G. Wenden
wir Teil (iii) der Sylowsétze auf die Anzahl der 5-Sylowgruppen an, dann erhalten wir v;|3, also v5 € {1, 3}, und
Us =1 mod 5. Wegen 3 # 1 mod 5 muss vs = 1 sein, und die einzige 5-Sylowgruppe ist wiederum ein Normalteiler
von G. a

Folgerung 8.9 Jede Gruppe der Ordnung 15 ist zyklisch.

Beweis: Sei G eine Gruppe mit |G| = 15. Nach Lemma 8.8|besitzt G Normalteiler N und U der Ordnungen 3 bzw. 5.
Weil [N| und |U| teilerfremd sind, gilt NNU = {e}. Die Untergruppe NU enthélt U und N, also ist [INU| ein Vielfaches
von 3 und zugleich ein Vielfaches von 5. Also ist [INU| insgesamt ein Vielfaches von 15. Wegen NU € G und |G| = 15
folgt G = NU. Insgesamt haben wir damit gezeigt, dass G ein direktes Produkt von N und U ist. Nach Proposition
[4.24]folgt daraus G = N x U. Als Gruppen von Primzahlordnung sind N und U nach Folgerung [2.22] zyklisch, es gilt
also N 2 Z/37 und U = Z/5Z.. Mit dem Chinesischen Restsatz, Satz[5.8 erhalten wir

G = NxU = Z[3ZxZ/52Z = Z/157Z.
Insbesondere ist G zyklisch. m|

Proposition 8.10 Sein € IN mit n > 3, G eine Gruppe und {g,h} ein Erzeugendensystem von
G, wobei ord(g) = n, ord(h) = 2 und ghgh = e, gilt. Dann ist G isomorph zur Diedergruppe D,,.

Beweis: Aus fritheren Kapitel ist bekannt, dass die Diedergruppe D,, ein zweielementiges Erzeugendensystem {p,,, T}
besitzt mit den Eigenschaften ord(p, ) = n, ord(t) = 2 und p,7p,T = idg:. Aus den Gleichungen hatten wir gefol-
gert, dass D, eine Gruppe der Ordnung D, ist, dessen Elemente durch

D, = NU = {p’|0<a<n,be{0,1}}

gegeben sind. Genauso kann man aus den hier angegebenen Voraussetzungen ableiten, dass |G| = 2n gilt, und dass
die Elemente von G durch
G = (g)n) = {gr’|0<a<nbe{0,1}}

gegeben sind. Offenbar ist die Abbildung v : D, — G definiert durch w(pgrb) = g®h? eine Bijektion. Die Gleichung
ist nicht nur fiir 0 < a < n und b € {0, 1}, sondern fiir beliebige a, b € Z giiltig. Sind nimlich a, b beliebige ganze
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Zahlen und a;, b; die Reste nach Division durch n bzw. 2, dann erhélt man wegen ord(p,) = ord(g) = n und
ord(7) = ord(h) = 2 die Gleichung

Ylpit®) = Plpnzh) = ghhh = g’

Dariiber hinaus handelt es sich bei der Abbildung v einen Isomorphismus. Seien namlich a,c € {0,...,n — 1} und
b,d € {0,1}. Im Fall b =0 gilt

Ylpglopit?) = YPlpgopir!) = Plpitr) = gh? = g%-gh
= g'h’-gh? = Y(pit®)-Y(pit?).

Im Fall b = 1 verwenden wir die Tatsache, dass aus der Gleichung 7p, = p;l’T.' durch vollstdndige Induktion die
Gleichung Tp,; = p,“7 folgt, und dass man ebenso aus hg = g 'h die Gleichung hg¢ = g~h erhilt. Daraus ergibt
sich auch in diesem Fall

Y(pithopst!) = Wlplotopiord) = wlplopforord) = (ol ot
— gafc.hdJrl — ga_gfc.h.hd — ga.h.gc.hd — gahb.gchd — ¢(P§Tb)'1/)(l),cﬂd)-
Damit ist die Homomorphismus-Eigenschaft der Abbildung 1) nachgewiesen. m|

Satz 8.11 Sei p eine ungerade Primzahl und G eine nicht-abelsche Gruppe der Ordnung 2p.
Dann ist G isomorph zur Diedergruppe D,,.

Beweis: In Proposition[8.10]wurde eine Charakterisierung der Diedergruppen bis auf Isomorphie gegeben. Demnach
gilt G = D,, wenn Elemente g,h € G existieren, so dass die Bedingungen G = (g,h), ord(g) = p, ord(h) = 2
und ghgh = e; erfiillt sind. Wir werden dies nun mit Hilfe der Sylowsétze beweisen. Sei v, die Anzahl der p-
Sylowgruppen von G. Nach Teil (iii) der Sylowsétze ist v, ein Teiler von 2, es ist also nur v, € {1,2} mdglich.
Dariiber hinaus gilt v, = 1 mod p. Daraus folgt v, = 1. Sei N die einzige p-Sylowgruppe von G, und sei g € N
ein erzeugendes Element dieser Untergruppe. Aullerdem sei H eine beliebige 2-Sylowgruppe von G und h € H ein
erzeugendes Element von H. Dann gilt ord(g) = p und ord(h) = 2. Dariiber hinaus ist auch G = (g, h) erfiillt.
Denn U = (g,h) ist eine Untergruppe von G, deren Ordnung von ord(g) = p und ord(h) = 2 geteilt wird. Wegen
ggT(2,p) =1 ist insgesamt 2p ein Teiler von |U|, was wegen |G| = 2p nur den Schluss U = G zulésst.

Wegen N < G gilt ANh = N. Das Element hgh liegt also in N, und folglich existiert ein b € Z mit hgh = g°.
Aus g% = (g")? = (hgh)? = hg’h = h2gh® = e;ge; = g und ord(g) = p folgt b> = 1 mod p. Wie wir in der
Zahlentheorie-Vorlesung zeigen werden, hat die Gleichung x? = 1 im Ring Z/pZ nur zwei Losungen, niamlich +1.
Daraus folgt b = £1 mod p.

Betrachten wir zunédchst den Fall b = 1 mod p. Wir zeigen, dass in diesem Fall nicht nur N, sondern auch H ein
Normalteiler von G ist. Es gilt hgh = g, was zu hg = gh™* = gh und ghg™! = h umgeformt werden kann. Der
Normalisator N;(H) von H = (h) in G enthélt damit auf3er h also auch das Element g. Daraus ergibt sich G = (g, h) C
Ng(H). Folglich ist in dieser Situation neben N auch die Untergruppe H nach Proposition|[8.4|ein Normalteiler von G.
Auf Grund der Teilerfremdheit von |H| = 2 und |N| = p gilt H NN = {es}. Auf Grund der Normalteiler-Eigenschaft




von H (oder N) ist NH eine Untergruppe von G. Diese enthélt g und h, also auch G = (g, h), woraus G = NH folgt.
Insgesamt ist damit nachgewiesen, dass G ein inneres direktes Produkt von N und H ist. Nach Proposition |4.24] gilt
also G = N x H. Als dufleres direktes Produkt zweier abelscher Gruppen ist N x H abelsch. Weil aber G nicht-abelsch
ist, haben wir damit gezeigt, dass der Fall b =1 mod p ausgeschlossen ist.

Somit bleibt b = —1 mod p als einzige Moglichkeit. Es folgt hgh = g? = g~!, was zu ghgh = e, umgeformt werden
kann. Damit sind die charakteristischen Eigenschaften der Diedergruppe nachgewiesen, und wir erhalten G = D,
wie gewiinscht. m|




§9. Grundlagen der Ringtheorie

Zusammenfassung. Wie bereits aus der Linearen Algebra bekannt, ist ein Ring eine algebraische Struktur,
in der die arithmetischen Operationen Addition, Subtraktion und Multiplikation zur Verfiigung stehen, im
Allgemeinen aber keine Division. Die Definition basiert auf den Begriffen der Gruppe und des Monoids, die wir
im ersten Kapitel studiert haben. Das Standardbeispiel ist der Ring Z der ganzen Zahlen.

Wichtige spezielle Elementen in Ringen sind Einheiten und Nullteiler. Ein Ring R mit R* =R\ {0z} bezeichnet
man als Korper. Darunter fallen die bekannten Zahlbereiche Q, R und C, aber wir wissen bereits aus der
Linearen Algebra, dass es auf’erdem fiir jede Primzahl p einen Kérper IF, mit p Elementen gibt. In vielen Ringen
(beispielsweise in Z und den Korpern) ist das Nullelement der einzige Nullteiler; solche Ringe bezeichnet man
als Integritdtsbereiche. Die Charakteristik eines Rings R ist die Ordnung des Elements 15 in der Gruppe (R, +),
sofern diese endlich ist; ansonsten ordnet man ihr den Wert null zu.

Das Analogon der Untergruppe in der Ringtheorie ist der Begriff des Teilrings. Im Gegensatz zur Gruppentheorie
steht aber hier der Aspekt der Erweiterung im Vordergrund. Beispielsweise leisten die Ringe der Form Z[+v/d ],
die dadurch entstehen, dass man den Ring Z um eine reelle oder imaginidre Quadratwurzel erweitert, wichtige
Beitrdge zur Losung von Problemen der Elementaren Zahlentheorie.

Wichtige Grundbegriffe Zentrale Siitze

— Ringe und Ringhomomorphismen — Existenz und Eindeutigkeit von Ringhomomor-

hi 7 —R bei R beliebiger Ri
— Einheiten und Nullteiler phismen Z — R (wobei eliebiger Ring)

. . . . — Existenz und Eindeutigkeit des erzeugten Erweite-
— Nullringe, Integrititsbereiche, Kérper .

rungsrings R[A]
— Charakteristik eines Rings — Primzahlcharakteristik von Integritatsbereichen
— Teilring eines Rings R, Erweiterungsring — Injektivitat von Korperhomomorphismen

— Gestalt der quadratischen Zahlringe

Definition 9.1 FEin Ring ist ein Tripel (R, +,-) bestehend aus einer Menge R und zwei Verk-
niipfungen + : R xR - R und - : R x R — R, genannt Addition und Multiplikation, so dass die
folgenden Bedingungen erfiillt sind:

(i) Das Paar (R, +) ist eine abelsche Gruppe.

(ii) Das Paar (R, -) ist ein kommutatives Monoid.

(iii) Es gilt das Distributivgesetz a(b + ¢) = ab + ac fiir alle a, b,c €R.

Das Neutralelement der Gruppe (R, +) bezeichnet man mit O und nennt es das Nullelement des Rings. Ist a € R, dann
schreibt man —a fiir das Inverse von a in der Gruppe (R, +) und nennt es das Negative von a. Das Neutralelement




von (R, -) wird Einselement von R genannt und mit 1; bezeichnet. An Stelle von a + (—b) schreiben wir auch kiirzer
a—b. Die Rechenregeln fiir Inverse aus der Algebra-Vorlesung sind nattirlich auch in der Gruppe (R, +) giiltig, es gilt
also —(a + b) = (—a) + (—b) und —(—a) = a fiir alle a, b € R. Dariiber hinaus gilt auch

Og-a=0; , (—a)b=a(—b)=—(ab) und (—a)(—b)=ab fiiralle a,beR.

Ahnliche Rechenregeln wurden in der Linearen Algebra fiir die Elemente eines Vektorraums bewiesen. Die erste
Gleichung erhdlt man, indem man in der Gleichung O -a = (0g +0g)-a = Og-a+0g - a auf beiden Seiten das Element
—(Og - @) addiert. Die Gleichung (—a)b + ab = ((—a) + a)b = 0 - b = 0 zeigt, dass (—a)b das additive Inverse von
ab ist, also (—a)b = —(ab) gilt, und genauso zeigt man a(—b) = —(ab). Die letzte Gleichung kann schlieRlich durch
(—a)(=b) = —(a(—b)) = —(—ab) = ab auf die bereits bekannten Regeln zuriickgefiihrt werden.

Die Zahlbereiche Z, @, R und C bilden mit ihrer herkdmmlichen Addition und Multiplikation jeweils Ringe. Au-
Rerdem kennen wir bereits die Restklassenringe R[x] und die Polynomringe Z/nZ. Dagegen ist der Zahlbereich IN,
mit der gewohnlichen Addition und Multiplikation kein Ring, weil (IN,,+) keine Gruppe ist. Beispielsweise besitzt
das Element 1 in (INy, 4+) kein Inverses. Ein solches Inverses a € IN; von 1 miisste ndmlich die Gleichunga+1 =0
erfiillen, aber durch Addition von —1 auf beiden Seiten erhélt man a = —1, im Widerspruch zu a € IN,,.

Man beachte, dass Null- und Einselement eines Rings R auch zusammenfallen kénnen, also 0y = 1 gelten kann.
Allerdings kann dies nur passieren, wenn der gesamte Ring nur aus einem einzigen Element besteht, also R = {0z} =
{1z} gilt. Ist ndmlich R ein Ring mit Oy = 1; und a € R beliebig, dann erhilt man a = a - 1z = a - Oy = 0. Ringe mit
nur einem Element bezeichnet man als Nullringe.

Wie in der Kategorie der Gruppen lassen sich aus gegebenen Ringen neue Ringe konstruieren. Sind (R, 45, 'z) und
(S, +g,s) zwei vorgegebene Ringe, und definiert man auf dem kartesischen Produkt R x S eine Addition und eine
Multiplikation durch

(r1,51) + (ry,85) = (1] +g 73,51 +553) und (r1,81) - (ra,85) = (11 R 2,81 °s52)

so ist (R x S,+,-) ein Ring. Denn wie in der Algebra-Vorlesung gezeigt wurde, ist (R x S,+) als dufBeres direktes
Produkt der abelschen Gruppen (R, +) und (S, +) selbst eine abelsche Gruppe, und wie dort zeigt man, dass (Rx S, -)
ein abelsches Monoid ist. Auch das Distributivgesetz kann auf die Distributivgesetze in (R, +g,z) und (S, +s, s)
zuriickgefiihrt werden, denn fiir beliebig vorgegebene Elemente (ry,s;), (ry,52), (r5,53) €R x S gilt

(r1,81) - ((r2,82) +(r3,83)) = (r1,81) - (ra+rr3,85+ss3) = (11 r(r2+r73),81 5 (52 +553))
= (ryrro+rT1RT3:S1 552 ts81°5853) = (71 'rT2,51°552) + (1 R 73,81 "5 S3)
= (r1,51) (r9,82) +(rq,81) - (13,83).

Man bezeichnet R x S als direktes Produkt der Ringe R und S.

Definition 9.2 Seien (R, +3,z) und (S, +5, -s) Ringe. Eine Abbildung ¢ : R — S heil’t Ring-
homomorphismus von (R, +g,z) nach (S,+s,:s), wenn die Gleichung ¢(1z) = 1 gilt und
aullerdem

pla+rb) = ¢(a)+s¢9(b) und  ¢larb) = ¢(a)s¢(b)

fiir alle a, b € R erfiillt ist.
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Sind beispielsweise R und S Ringe, und betrachten wir den oben konstruierten Ring R x S, dann sind die Abbildungen
m; :RxS >R, (r,s)—» rund 7wy, : RxS — S, (r,s) — s beides Ringhomomorphismen. Dies rechnet man durch
Einsetzen unmittelbar nach.

Man beachte, dass die Bedingung ¢ (1z) = 15 fiir Ringhomomorphismen im Allgemeinen nicht redundant ist, sie
ergibt sich also nicht automatisch aus den beiden anderen Eigenschaften der Abbildung ¢. Beispielsweise erfiillt der
Homomorphismus

¢:Z—>7Zx7Z , a—(a0)

die beiden Bedingungen ¢(a + b) = ¢(a) + ¢(b) und ¢(ab) = ¢(a)¢(b) fiir alle a,b € Z. Es gilt aber nicht
¢(1) = 14,4, denn das Einselement von Z x Z ist (1,1) und nicht (1,0).

Aus der Definition folgt unmittelbar, dass ein Ringhomomorphismus ¢ : R — S ein Gruppenhomomorphismus
(R, +g) — (S, +;) ist. Also gelten alle Rechenregeln, die wir in der Algebra fiir diese Homomorphismen bewiesen
haben, insbesondere ¢ (0z) = 05 und ¢ (—a) = —¢(a) fiir alle a €R.

Die Begriffe Mono-, Epi-, Iso-, Endo- und Automorphismus von Ringen sind wie in der Kategorie der Gruppen defi-
niert. (Ein Monomorphismus von Ringen ist also ein injektiver Ringhomomorphismus usw.) Wie dort zeigt man auch
hier, dass die Komposition zweier Ringhomomorphismen ein Ringhomomorphismus und die Umkehrabbildung eines
Isomorphismus von Ringen wiederum ein Isomorphismus ist.

In der Gruppentheorie wurde fiir jedes n € IN, die n-te Potenz eines Monoidelements g definiert. Diese wurde in
additiver Schreibweise mit n - g und in multiplikativer Schreibweise g" bezeichnet. Bei invertierbaren Elementen
wurde die Definition sogar auf alle n € Z ausgedehnt. Wir behalten diese Notation fiir die Gruppe (R,+) und das
Monoid (R, -) bei, falls (R, +, -) einen Ring bezeichnet. Fiir jedes n € IN und jedes a € R gilt also

na = a+..+a und a = a-..-a.
\W—/ N’
n-mal n-mal

AuRerdem gilt 0 - a = Og, a® = 1; sowie (—n)-a =—n-a und a™ = (a") " fiir alle n € IN.

Der folgende Satz zeigt, dass der Ring Z der ganzen Zahlen in der Ringtheorie eine besondere Rolle spielt.

Satz 9.3 Fiir jeden Ring R existiert ein eindeutig bestimmter Ringhomomorphismus Z — R.

Beweis: Zum Nachweis der Existenz bemerken wir zunédchst, dass nach Proposition ein eindeutig bestimmter
Homomorphismus ¢ von der zyklischen Gruppe (Z, +) in die Gruppe (R, +) mit ¢ (1) = 1 existiert. Auf Grund der
Homomorphismus-Eigenschaft erfiillt dieser die Gleichung ¢(n) = ¢p(n-1) =n-¢(1) =n- 1, fir alle n € Z. Um
zu sehen, dass ¢ auch ein Ringhomomorphismus ist, muss noch ¢(mn) = ¢(m)¢(n) fir alle m,n € Z tberpriift
werden. Wir beweisen die Gleichung zunichst fiir m € Z und n € IN,,, durch vollstdndige Induktion iiber n. Fiirn =0
ist die Gleichung wegen

¢(m-0) = ¢(0) = 0 = 01z = (m-1x)-(0-1x) = ¢(m)¢(0)
erfiillt. Setzen wir die Gleichnung nun fiir n voraus, dann erhalten wir

p(m(n+1)) = ¢(mn+m) = ¢(mn)+¢(m) = ¢mMP(M)+¢(m)-1x =
P(m)p(n)+o(m)P(1) = ¢m)(e(M)+¢(1)) = ¢m)p(n+1).
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Schlielflich gilt noch ¢ (m(—n)) = ¢p(—mn) = —¢(mn) = —p(m)p(n) = ¢p(m)(—¢(n)) = ¢ (m)¢p(—n) fir alle m € Z
und n € NN, so dass die Gleichung ¢ (mn) = ¢(m)¢(n) damit fiir alle m,n € Z bewiesen ist. Die Eindeutigkeit von
¢ folgt direkt aus der Eindeutigkeitsaussage in Proposition[4.12|und der Tatsache, dass jeder Ringhomomorphismus
7, — R die Zahl 1 € Z auf das Einselement 1, abbildet. m|

Definition 9.4 SeiR ein Ring.

(i) Ein Element a € R heil3t Einheit, wenn ein b € R mit ab = 1; existiert. Die Menge der
Einheiten von R bezeichnen wir mit R*.

(ii)) Man nennt es Nullteiler, wenn ein Element b € R, b # Oz mit ab = Oy existiert.

Die Einheiten sind genau die invertierbaren Elemente im Monoid (R, -). Das multiplikative Inverse eines Elements a €
R* wird auch der Kehrwert von a genannt und mit a~* bezeichnet. Auch hier gelten die bekannten Rechenregeln fiir
Inverse, also (ab)™ = b~ 'a~' =a'b~" und (¢~)~" = a fiir alle a, b € R*. Nach Satz[1.15|bilden die invertierbaren
Elemente in einem Monoid eine Gruppe. Damit ist auch R* eine Gruppe, die sogenannte Einheitengruppe.

Definition 9.5 Ein Ring R mit Oy als einzigem Nullteiler hei3t Integrititsbereich. Gilt R* =
R\ {0g}, dann ist R ein Korper.

Die Zahlbereiche @, R und C sind Korper, denn jedes Element ungleich Null in diesen Bereichen besitzt ein multipli-
katives Inverses. Im Ring 7 sind die Elemente £1 die einzigen beiden Einheiten. Es gibt also auf3er der Null weitere
Nicht-Einheiten, und damit ist Z kein Korper. Man iiberpriift aber leicht, dass Z ein Integritédtsbereich ist. Denn das
Element O ist ein Nullteiler, denn es gilt 1 # 0 und 0 - 1 = 0. Andererseits ist O der einzige Nullteiler. Sind némlich
a, b # 0, dann ist auch das Produkt ab ungleich Null. Wire ab = 0, dann wiirden wir durch b =a'ab=a"'0=0
einen Widerspruch zur Voraussetzung erhalten. Mit demselben Argument kann gezeigt werden, dass jeder Teilring
(s.u.) eines Korpers ein Integritétsbereich ist.

Im Ring Z x Z gibt es vier Einheiten, die Elemente (+1,+1). Es ist aber kein Integrititsbereich, denn das Element
(1,0) ist wegen (1,0)(0,1) = (0,0) und (0,1) # (0,0) ein Nullteiler des Rings. Nullringe der Form R = {0z} sind
generell keine Integritdtsbereiche, weil das Nullelement Oy nach Definition kein Nullteiler ist.

Lemma 9.6

(i) Ein Element a in einem Ring R kann nicht zugleich Nullteiler und Einheit sein.
(i) Jeder Korper ist ein Integritédtsbereich.

(iii) In jedem Integritatsbereich R gilt die Kiirzungsregel: Sind a, b, c € R mit
¢ # O, dann folgt aus ac = bc die Gleichung a = b.

Beweis: zu (i) Angenommen, a ist zugleich Nullteiler und Einheit. Dann gibt es ein Element b # Ox mit ab = Oy
und ein ¢ € R mit ca = 1. Wir erhalten den Widerspruch b = 13 - b = (ca)b = c(ab) = c0x = 0.
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zu (ii) Nehmen wir an, dass R ein Korper, aber kein Integritdtsbereich ist. Dann ist Oy kein Nullteiler in R, oder es
gibt einen Nullteiler a # Og. Die erste Moglichkeit ist ausgeschlossen, denn 1y ist in jedem Ring stets eine Einheit,
und aus R* = R\ {0z} folgt 1; # Og. Die Gleichung 1 - Oy = O zeigt also, dass O ein Nullteiler ist. Aber auch die
zweite Moglichkeit kann nicht eintreten, denn wegen R* = R\ {0z} wiére a zugleich Nullteiler und Einheit, was zu
(i) im Widerspruch steht.

zu (iii) Aus ac = bc folgt (a — b)c = ac — bc = 0z. Wére a — b # Og, dann wire das Element ein Nullteiler ungleich
Og. Weil R aber ein Integritédtsbereich ist, muss a — b = 0y gelten. m|

Einen Ringhomomorphismus zwischen Kérpern bezeichnet man als Korperhomomorphismus. Wir bemerken
Proposition 9.7 Ein Kérperhomomorphismus ¢ : K — L ist stets injektiv.

Beweis: Sei a € K ein Element im Kern, also ein Element mit ¢»(a) = 0;, und nehmen wir an, dass a # O ist. Dann
folgt 1, = ¢(1x) = p(aa™t) = p(a)p(at) =0, ¢(a!) = 0;. Aber dies ist unméglich, da L kein Nullring ist. O

Definition 9.8 SeiR ein Ring. Die Charakteristik eines Rings R ist definiert durch

n falls n € IN minimal mit n - 1 = Oy ist,

char(R) =
{O falls n - 1 # O fiir alle n € N gilt.

Bei positiver Charakteristik ist char(R) also die Ordnung des Elements 1, in der Gruppe (R, +). Die Charakteristik
kann auch den Wert 1 annehmen. Dies ist genau dann der Fall, wenn Null- und Einselement von R zusammenfallen,
also Oy = 15 gilt. Wir untersuchen nun die Charakteristik von Integritdtsbereichen. Wie allgemein iiblich, bezeichnen
wir eine natiirliche Zahl n als Primzahl, wenn n > 1 ist und keine Zahlen r,s € Nmit 1 < r,s <nund n =rs
existieren.

Proposition 9.9 Sei R ein Integritatsbereich. Dann ist die Charakteristik char(R) entweder
gleich Null oder eine Primzahl.

Beweis: Wire char(R) = 1, dann wére der Ring R (wie oben gezeigt) ein Nullring und damit kein Integrititsbereich.
Nehmen wir nun an, dass n = char(R) > 1, aber keine Primzahl ist. Dann gibt es natiirliche Zahlen r,s mit 1 < r,s <n
und n = rs. Nach Definition der Charakteristik gilt r - 13,5 - 1z # Og, aber n- 1z = 0. Die Gleichung (r - 1z)(s - 1z) =
(rs): 1z = n- 1 = Og zeigt dann, dass die Elemente r; und si des Rings R Nullteiler ungleich Null sind. Aber dies
widerspricht der Voraussetzung, dass es sich bei R um einen Integrititsbereich handelt. |

Nach Proposition[9.9]ist also insbesondere char(K) fiir einen Kérper gleich Null oder eine Primzahl. Es gibt beispiels-
weise keinen Korper der Charakteristik 4; inbesondere ist der Restklassenring 7Z/47 kein Korper, noch nicht einmal
ein Integritatsbereich.
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In der Gruppentheorie haben wir die Untergruppen einer Gruppe G als Teilmengen von G definiert, auf denen in
natiirlicher Weise wiederum eine Gruppenstruktur existiert. Nun fithren wir einen entsprechenden Begriff fiir die
Kategorie der Ringe ein.

Definition 9.10 Sei R ein Ring. Eine Teilmenge S € R wird Teilring von R genannt, wenn
1 € S gilt und mit a, b € S jeweils auch die Elemente a — b und ab in S liegen.

Umgekehrt bezeichnet man einen Ring R als Erweiterungsring eines anderen Rings S, wenn S ein Teilring von R ist.
Das Paar (S, R) bezeichnet man in diesem Fall als Ringerweiterung. Allgemein wird die Schreibweise R|S verwendet,
um ausdriicken, dass durch (S, R) eine Ringerweiterung gegeben ist.

Satz 9.11 Sei (R,+,-) ein Ring und S C R ein Teilring. Dann ist die Menge S unter den Ver-
kniipfungen + und - abgeschlossen. Bezeichnen wir mit +5 und -¢ die auf S eingeschrankten
Verkniipfungen, dann ist (S, +, :5) ein Ring.

Beweis: Als erstes beweisen wir die Abgeschlossenheit. Aus 1; € S folgt zunédchst Oy = 1; — 1; € S, denn auf Grund
der Teilring-Figenschaft liegt Differenz zweier Elemente aus S wieder in S. Wegen —a = Og —a ist mit jedem a € S
auch das Negative —a in S enthalten. Seien nun a, b € S vorgegeben. Dann gilt —b € S und somita+b = a—(—b) € S.
Aus der Teilring-Eigenschaft folgt auch ab € S. Also ist S tatsdchlich unter + und - abgeschlossen.

Nun berpriifen wir die Ringeigenschaften von (S, +g, -g). Wie bereits gezeigt wurde, gilt Oy € S, und mit a,b € S
liegen auch die Elemente a+ b und —a in S. Also ist S eine Untergruppe von (R, +), und wie in der Algebra-Vorlesung
gezeigt wurde, ist (S, +¢) damit eine Gruppe. Wegen

a+sb = a+b = b4+a = b+ga firalle abesS

ist diese auch kommutativ. Ebenso kann das Assoziativ- und Kommutativitdtsgesetz von - auf die Assoziativitdt und
Kommutativitit von - zurlickgefiihrt werden. Wegen a-g1z = a-13 = aund 1z-ga = 1z-a = a ist 1 das Neutralelement
von (S, -5). SchlieBlich leitet man auch das Distributivgesetz fiir +¢ und - aus dem entsprechenden Gesetz fiir +5
und - ab. m|

Beispielsweise ist Z ein Teilring von @, Q ein Teilring von R und R ein Teilring von C. Die Menge Z x {0} ist mit
den Verkniipfungen (a, 0)+(b,0) = (a+b,0) und (a,0)-(b,0) = (ab,0) zwar ein Ring, aber kein Teilring von Z x Z,
denn das Einselement 1, = (1, 1) ist nicht in Z x {0} enthalten.

Der soeben durchgefiihrte Beweis zeigt, dass fiir die Teilring-Eigenschaft a — b € S fiir a,b € S gefordert werden
muss, um die Existenz von Negativen in S sicherzustellen. Wiirde man statt dessen a + b € S fordern, dann wire die
Unterstruktur S im allgemeinen kein Ring. Die Teilmenge IN C Z geniigt beispielsweise den Bedingungen 1 € IN und
a,be N = a+ b,ab € N, ohne dass (IN, +, -) selbst ein Ring ist.
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Lemma 9.12 Sei (R,+,-) ein Ring, und sei (S;);c; eine Familie von Teilringen. Dann ist auch
S =("ie; S ein Teilring von R.

Beweis: Weil S; fiir jedes i € I ein Teilring von R ist, gilt 1z € S; fiir alle i € I und damit 1; € S. Seien nun a,b € S
vorgegeben. Dann folgt a,b € S; fiir alle i € I. Weil jedes S; ein Teilring von R ist, gilt damit auch a — b € S; iund
ab € S, fiir alle i € I. Dies wiederum bedeutet a—b € S und ab € S. Damit ist der Nachweis der Teilring-Eigenschaft
von S abgeschlossen. m|

Das Analogon zum Teilring in der Kategorie der Kdrper ist durch folgende Definition gegeben.

Definition 9.13 SeiK ein Korper. Eine Teilmenge F C K wird Teilkérper von K genannt, wenn
1x € F gilt, fiir alle a,b € F auch die Elemente a — b und ab in F liegen und fiir jedes a € F,
a # 0g auch a™! € F gilt.

Wir haben in Lemma [9.11] gesehen, dass man durch Einschrdnkung von Addition und Multiplikation von K auf die
Teilmenge F einen Ring erhilt. Durch Bedingung, dass fiir jedes a € F \ {Ox} auch a™! in F liegt, wird F dariiber
hinaus zu einem Korper. Die Begriffe , Erweiterungskorper” und , Kérpererweiterung” sind in genauer Analogie zu
den Ringen definiert.

Lemma 9.14 SeiK ein Korper und (F;);¢; eine beliebige Familie von Teilkorpern. Dann ist auch
F =), F; ein Teilkorper von K.

Beweis: Nach Lemma ist F jedenfalls ein Teilring von K. Ist aufferdem a € F*, dann liegt a auch in F* fiir jedes
i € I, und somit liegt auch a™* jeweils in F;. Daraus wiederum folgt a—! € F. Damit ist die Teilkérper-Eigenschaft von
F nachgewiesen. O

Folgerung 9.15 Ist K ein Korper und ist (F;);c; die Familie aller Teilkérper von K, dann nennt
man P = (), F; den Primkérper von K. Es handelt sich um den beziiglich Inklusion kleinsten
Teilkorper von K.

Beispielsweise ist ( der gemeinsame Primkérper von Q, R und C, und fiir jede Primzahl ist I, sein eigener Prim-
korper. Im Korpertheorie-Teil der Vorlesung werden wir sehen, dass der Primkorper jedes Korpers isomorph zu Q
oder zu I, fiir eine Primzahl p ist.

Satz 9.16 Sei R|R eine Ringerweiterung und A C R eine beliebige Teilmenge. Dann gibt es
einen eindeutig bestimmten Teilring R[A] von R mit den folgenden beiden Eigenschaften.

() Es gilt R[A] 2 RUA.
(ii) Ist R’ ein weiterer Teilring von R mit R" 2 RUA, dann folgt R’ 2 R[A].

Damit ist R[A] also der kleinste Teilring von R, der RUA enthilt. Man nennt ihn den von A iiber
R erzeugten Teilring.
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Beweis: Existenz: Sei (S;);c; die Menge aller Teilringe von R mit S; 2 RUA. Nach Lemma ist R[A] = )ie; Si
ein Teilring von R. Wegen RUA C S, fiir alle i € I gilt auch RUA C R[A]. Ist nun R’ ein beliebiger Teilring von
R mit R 2 RUA, dann gilt R = S; fiir ein i € I nach Definition der Familie (S;);c;. Weil R[A] nach Definition der
Durchschnitt aller Ringe in der Familie (S;),c; ist, gilt RLA] € R; =R’.

Eindeutigkeit: Sei S ein weiterer Teilring mit den Eigenschaften (i) und (ii). Dann ist S jedenfalls ein Teilring von R
mit S 2 RUA, und R[A] ist der kleinste Teilring mit dieser Eigenschaft. Daraus folgt R[A] € S. Umgekehrt ist auch R[A]
ein Teilring von R mit RIA] 2 RUA, und S ist der kleinste Teilring mit dieser Eigenschaft. Somit gilt auch S C R[A],
insgesamt R[A] = S. m|

Ist S = {s} einelementig, dann schreibt man an Stelle von R[{s}] auch einfach R[s] fiir den erzeugten Teilring. Auch bei
mehreren Elementen werden die Mengenklammern oft weggelassen, man schreibt also statt R[ {s;,s,}] den Ausdruck
R[sq,8,] usw.

Als wichtiges Beispiel fiir erzeugte Teilringe sehen wir uns die quadratischen Zahlringe an. Dazu verabreden wir
fiir die Bezeichnung von Quadratwurzeln reeller Zahlen die folgende Konvention. Ist d € R positiv, dann sei v/d
ein eindeutig bestimmte positive Quadratwurzel von d. Im Fall d < 0 sei d € C die eindeutig bestimmte komple-
xe Quadratwurzel mit positivem Imaginirteil, also v/'d = i+/|d|. Zu beachten ist, dass bei dieser Schreibweise die

Vab = va-vb

im allgemeinen nicht erfiillt ist, ndmlich dann nicht, wenn a und b beide negativ sind. Zum Beispiel ist 4/(—3)(—5) #
v—3+/=5, denn es gilt vV—3v—5 = (iv/3)(iv/5) = i2¥/15 = —v/15 # +/15 = /(=3)(-5).

Gleichung

Auflerdem verwenden wir im Folgenden die Kongruenzschreibweise. Sind a,b € Z und n € N, so bedeutet der
Ausdruck a = b mod n, dass n ein Teiler von b —a ist. Man sagt ,Die Zahlen a und b sind kongruent modulo n.“
Ausfiihrlicher werden wir uns mit den Kongruenzen in § 5 beschéftigen. Als konkrete Anwendung von Satz
zeigen wir nun

Satz 9.17 Seid € Z und vd € C wie oben definiert.

() Esgilt Z[vd]={a+bvd|a,beZ}.
(i) Istd =1 mod 4, danngiltZ[%(1+«/E)]:{%a+%b\/ala,bEZ,aEbmodz}.

Die Ringe dieser Form bezeichnen wir als quadratische Zahlringe.

Beweis: zu (i) Sei M die Teilmenge auf der rechten Seite der Gleichung. Wir iiberpriifen, dass M ein Teilring von
C ist. Wegen 1 = 1+ 0+/d gilt 1 € M. Seien nun a, 3 € M vorgegeben. Dann gibt es r,s, t,u € Z mit a = r +svd
und B =t +u+vd.Esfolgta—pB =(r—t)+(s—u)vd € M und

af = (r+sx/g)(t+u\/g) = (rt+sud)+(ru+st)\/a € M.

AuBerdem gilt M 2 Z U {V/d}, denn fiir jedesa € Z gilta=a+0-Vd €M und vd =0+1-vd € M.
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Sei nun R’ ein beliebiger Teilring von C mit R’ 2 ZU{+/d}. Zu zeigen ist R’ 2 M. Sei dazu a € M vorgeben, a = r+s+v/d
mit r,s € Z. Aus r,s € Z folgt r,s € R’. Ebenso ist ¥'d nach Voraussetzung in R’ enthalten. Da es sich bei R’ um einen
Teilring von C handelt, der als solcher unter Addition und Multiplikation abgeschlossen ist, folgt daraus zunéchst
sv/d €R und dann r +sv/d €R’.

zu (ii) Zunéchst iiberpriifen wir wieder, dass die Menge M auf der rechten Seite ein Teilring von C ist. Es gilt
=1.2+4 % -0-+/d in M, denn es gilt 2 = 0 mod 2. Seien nun a, f € M vorgegeben. Dann gibt es r,s, t,u € Z mit

a=s5r+ %s«/a, B = %t + %u\/a, wobei r =s mod 2 und ¢t = u mod 2 gilt. Das Element

a—p = (fr+isvd)-(be+iuvd) = Lr-0+ic-wVd

liegt ebenfalls in M, denn aus r =s mod 2 und t = u mod 2 folgt r —t = s —u mod 2. Um zu sehen, dass auch das
Element

af = (%r+%sﬁ)(%t+%u\/g) = %(rt+dsu)+%(st+ru)x/g = %v+%wx/g

mit v = %(rt +dsu) und w = %(st +ru)+v/d in M enthalten ist, miissen wir iiberpriifen, dass 2v + 2w = rt +
dsu + st + ru durch 4 teilbar ist. Denn daraus folgt, dass v + w gerade ist, was wiederum aquivalent dazu ist dass v
und w beide gerade oder ungerade sind, also v = w mod 2 erfiillen. Auf Grund der Voraussetzung d = 1 mod 4 gilt
rt+dsu+st+ru=rt+su+st+ru=(r+s)(t+u) mod 4, und die Zahl (r +s)(t +u) ist durch 4 teilbar, weil r +s und
t+u gerade sind. Insgesamt ist M also tatsichlich ein Teilring von C. AulRerdem gilt M 2 ZU {%(1 ++/d)}. Denn jedes
a € Zistwegena = %(2a)+%-0«/aund 2a = 0 mod 2 in M enthalten, und ebenso gilt %(1+\/H) = %-1+%-1-\/H eM
wegen 1 =1 mod 2.

Sei nun R’ ein weiterer Teilring von € mit R’ 2 Z U {3(1 + v/d)}. Zu zeigen ist R’ 2 M. Sei dazu a € M vorgegeben,
a= %r + %s«/ﬁ mit r,s € Z, r =s mod 2. Dann gilt a —s - %(1 +v/d) = %(r—s). Wegen %(r—s) € Zund Z C R’ folgt
%(r —s)€R. Aus %(1 +4/d) € R’ folgt ebenso s - %(1 ++/d) € R’. Da R’ unter Addition abgeschlossen ist, liegt damit
auch a inR'. O

Zwei Zahlringe spielen in der Zahlentheorie eine besonders wichtige Rolle: der Ring Z[i] der Gauf8’schen Zahlen
und der Ring Z[%(l + +/—3)] der Eisenstein-Zahlen.

Wir betrachten nun allgemeine Ringerweiterungen, die von nur einem Element erzeugt werden. Bereits in der Linea-
ren Algebra haben wir den Polynomring R[ x] iiber einem Ring R eingefiihrt. Im néchsten Kapitel werden wir sehen,
wie man diese Ringe konstruiert. Mit Hilfe der Polynome konnen wir Ringerweiterungen, die von einem einzigen
Element erzeugt werden, explizit beschreiben.

Proposition 9.18 SeiR | R eine Ringerweiterung und ¢ € R. Dann gilt R[c] = {f(c) | fe R[x]}.

Beweis: Sei S die Teilmenge auf der rechten Seite der Gleichung. Wir zeigen, dass S ein Teilring von R ist. Das
Einselement 13 = 1; von R ist in R[c] enthalten, denn betrachten wir 1; als konstantes Polynom, also als Element
von R[x], dann gilt 1; = 1z(c) € S. Seien nun a, B € S vorgegeben. Dann gibt es Polynome f, g € R[x] mit a = f(c)
und = g(c). Esfolgta—f = f(c)—g(c) =(f —g)(c) €S und aff = f(c)g(c) = (fg)(c) € S. Dies zeigt, dass S
tatsichlich ein Teilring von R ist.
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Um zu zeigen, dass S mit R[c] iibereinstimmt, miissen wir noch iiberpriifen, dass S in jedem Teilring R’ von R mit
R’ 2 RU{c} enthalten ist. Sei also R’ ein solcher Teilring und a € S. Zu zeigen ist a € R’. Nach Definition von S gibt
es ein f € R[x] mit a = f(c). Schreiben wir f = ZZ:O a;.x* mit n € Ny und ay, ...,a, €R, dann gilt a = ZZ:O ack.
Weil die Elemente q, ...,a,,c nach Voraussetzung in R’ liegen, gilt auch a,c* € R’ fiir 0 < k < n, auf Grund der
Abgeschlossenheit von R’ unter der Multiplikation von R. Aus der Abgeschlossenheit von R’ unter Addition (und
vollstandiger Induktion iiber n) folgt dann auch, dass a = ZZ:O aick in R’ liegt. |
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§10. Ideale

Zusammenfassung. Ideale sind Teilmengen von Ringen, mit denen in gewissen Grenzen auf dhnliche Weise
gerechnet werden kann wie mit Ringelementen. Urspriinglich eingefiihrt wurden sie in Mathematik, um einen
Ersatz fiir die eindeutige Primfaktorzerlegung zu erhalten, die in vielen Ringen, wie sie z.B. in der Zahlen-
theorie und der Algebraischen Geometrie vorkommen, nicht mehr giiltig ist. Auch in anderen Bereichen der
Mathematik haben sich die Ideale als niitzliches Konzept erwiesen, beispielsweise in Funktionanalysis.

Nach der Definition der Ideale eines Rings, und der Definition der Hauptideale als wichtigen Spezialfall, be-
schiftigen wir uns zundchst mit der Beziehung der Ideale zur Teilerrelation. Wie wir es bereits bei den Unter-
gruppen und den Ringerweiterungen gesehen haben, lassen sich auch Ideale durch die Angabe von Erzeugen-
densystemen definieren. Mit der Summe und dem Produkt von lernen wir die zwei zentrale Rechenoperationen
der Idealtheorie kennen. Als besonders wichtige Idealtypen werden die Primideale und die maximalen Ideale
eingefiihrt. Im néachsten Kapitel werden wir sehen, dass die Ideale das natiirliche Analogon der Normalteiler in
der Gruppentheorie sind, weil auch sie zur Definition von Faktorstrukturen genutzt werden konnen. In diesem
Kontext werden die beiden genannten Idealtypen eine wichtige Rolle spielen.

Wichtige Grundbegriffe Zentrale Siitze
— Ideale, Hauptideal, erzeugtes Ideal — Interpretation der Teilbarkeitsrelation durch Ideale
— Teilbarkeitsrelation, ggT und kgV — Existenz und Eindeutigkeit des von einer Teilmenge

erzeugten Ideals
— Rechenoperationen fiir Ideale (Summen, Produkte) &

.. . — Rechenregeln fiir Ideale und Erzeugendensysteme
— Primideale und maximale Ideale

— Charakterisierung der Primideale

— Verhalten der Ideale unter Ringhomomorphismen

Definition 10.1 SeiR ein Ring. Ein Ideal in R ist eine Teilmenge I C R mit den Eigenschaften
i) 0gel

(i) Firallea,belundreRgilta+belundracl.

Eine wichtige Rolle spielen die Ideale der folgenden Form.

Proposition 10.2 Ist R ein Ring und b € R, dann ist die Menge der Vielfachen {ab | a € R}
von b ein Ideal in R. Man nennt ein solches Ideal ein Hauptideal und bezeichnet es mit (b).
Ein Hauptidealring ist ein Integritdtsbereich, in dem jedes Ideal ein Hauptideal ist. In jedem
Ring R ist das Nullideal (0g) = {0z} das kleinste und das Einheitsideal (1) = R das beziiglich
Inklusion grofite Ideal.
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Beweis: Sei b € R. Wir {liberpriifen, dass die Teilmenge (b) von R die in Definition genannten Eigenschaften
hat. Wegen Oy = Og - b ist Oy in (b) enthalten. Seien nun c¢,d € (b) und r € R vorgegeben. Wegen ¢, d < (b) gibt es
a;,a, € Rmit ¢ =a;b und d = a,b. Es folgt c +d = (a; + a,)b € (b). Ebenso gilt rc = r(a;b) = (ra;)b € (b). Also
ist (b) tatsdchlich ein Ideal.

Fiir alle a € R gilt a - 0y = Oy. Dies zeigt, dass das Nullideal (0g) tatsdchlich als einziges Element Oy enthilt und
damit das beziiglich Inklusion kleinste Ideal ist. Wegen a - 1z = a fiir alle a € R enthalt das Einheitsideal (1) alle
Ringelemente und ist damit das beziiglich Inklusion grof3te Ideal. m|

Ahnlich wie fiir Untergruppen, Normalteiler und Teilringe gilt auch fiir die Ideale

Proposition 10.3 Sei R ein Ring und (I;) <4 eine Familie von Idealen in R. Dann ist [ = ﬂjeAL
ein Ideal in R.

Beweis: Weil jedes I; ein Ideal ist, gilt Oy € I; fiir alle j € Aund somit Og € I. Seien nuna, b € I und r € R vorgegeben.
Dann gilt a, b € I; fiir alle j € A. Aus der Idealeigenschaft folgt a + b € I; und ra € I; fiir alle j € A. Dies wiederum
bedeuteta+ b€l und ra 1. m|

Das Konzept der Erzeugendensysteme ist uns bereits aus der Linearen Algebra und der Gruppentheorie bekannt.
Auch Teilringe, die von einer Menge erzeugt werden, haben wir bereits definiert, siehe dazu Satz

Definition 10.4 SeiR ein Ring und S € R eine Teilmenge. Man sagt, ein Ideal I in R wird von
S erzeugt und schreibt I = (S), wenn folgende Bedingungen erfiillt sind.

@ I>S
(ii) IstJ ein Ideal in R mit J 2 S, dann folgt J 2 I.

Insgesamt ist I also das kleinste Ideal mit der Eigenschaft I 2 S.

Existenz und Eindeutigkeit des Ideals (S) beweist man wie bei den Teilringen. Fiir die Existenz bildet man die Familie
(I;)jea aller Ideale in R, die S enthalten und iiberpriift dann, dass

I = ﬂlj
jeA

die Bedingungen (i) und (ii) aus Definition erfiillt. Nehmen wir nun an, dass J ein weiteres Ideal ist, dass diese
Bedingungen erfiillt. Dann liefert die Anwendung von (ii) sowohl J 2 I als auch I 2 J, insgesamt also I = J. Ist S
endlich, S = {ay,...,a,}, dann verwendet man an Stelle von (S) auch die Schreibweise (a;, ..., a,) fiir das erzeugte
Ideal. Der folgende Satz gibt an, wie die Elemente eines solchen Ideals konkret aussehen.

Proposition 10.5 SeiR ein Ring, und seien a,, ..., a,, € R. Dann gilt

(ar,...a,) = {Zn: ra;

i=1

Tlsees T GR}.
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Beweis: Sei I die Menge auf der rechten Seite der Gleichung. Wir {iberpriifen, dass I die definierenden Eigenschaften
desvon {a,...,a,} erzeugten Ideals besitzt. Zunichst zeigen wir, dass I ein Ideal ist. Das Element O ist in I enthalten,
denn es gilt 0y = Oza; + ... + 0za,. Seien nun a, b € I und r € R vorgegeben. Dann existieren nach Definition von I
Elemente ry,...,7,, 71, ..., T €R, so dass

n

a
Il

n
_ /
r;a; und b= E ria;
i=1

i=1
gilt. Wir erhalten

n n
a+b=Z(rl»+rl.’)ai €l  und ra=Z(rrl»)ai€I.
i=1 i=1

Damit ist die Idealeigenschaft von I bewiesen. Aufferdem enthélt I die Menge S. Ist namlich j € {1,...,n}, dann gilt
a; = Z?:l 6;;a; € I, wobei §;; € {Og, 1z} jeweils das Kronecker-Delta bezeichnet. Sei nun J ein weiteres Ideal mit
J 21.Sind rq,...,1, €R beliebig gewédhlt, dann enthélt J auf Grund der Idealeigenschaft die Elemente ryaq, ..., r,a,,
und durch einen einfachen Induktionsbeweis zeigt man, dass auch die Summe Z?zl r;a; in J enthalten ist. Damit ist
die Inklusion J 2 I nachgewiesen. m|

Die folgende Regel wird haufig beim Rechnen mit Idealen verwendet, die durch Erzeugendensysteme definiert sind.

Lemma 10.6 SeiR ein Ring, und seien S, T C R beliebige Teilmengen. Gilt fiir die erzeugten
Ideale S € (T) und T C (S), dann folgt (S) = (T).

Beweis: Nach Definition ist (S) das kleinste Ideal, das S als Teilmenge enthilt, und wegen S C (T) ist (T) jedenfalls
ein Ideal mit dieser Eigenschaft. Daraus folgt (S) € (T), und ebenso erhélt man (T) C (S). O

Die Ideale stehen in einer engen Beziehung zur Teilerrelation auf den Elementen eines Rings.

Definition 10.7 Seien R ein Ring und a,b € R. Wir sagen, dass a ein Teiler von b ist und
schreiben a|b, wenn ein ¢ € R mit b = ac existiert. Gilt sowohl a|b als auch b|a, dann sagt man,
die Elemente a und b sind assoziiert zueinander.

Es ist leicht zu sehen, dass es sich bei der Relation ,assoziiert* um eine Aquivalenzrelation handelt. In Integrititsbe-
reichen lasst sich die Relation auch folgendermafen beschreiben.

Lemma 10.8 Ist R ein Integritatsbereich, so sind a,b € R genau dann zueinander assoziiert,
wenn ein € € R* mit b = ea existiert.

Beweis: ,<“ Aus b = ea folgt a|b, und wegen a = ¢ 'b gilt auch b|a.

»,= Nach Voraussetzung gilt a|b und b|a, es gibt also Elemente ¢,d € R mit b = ac und a = bd. Es folgt a = acd.
Ist a = 0, dann gibt dasselbe fiir b, und die Gleichung b = ea ist mit der Einheit ¢ = 1 erfiillt. Ansonsten kénnen wir
auf a - 1 = acd die Kiirzungsregel anwenden und erhalten cd = 1. Dies zeigt, dass € = ¢ ein Einheit ist, also ist auch
hier b = ¢a fiir ein geeignetes Element ¢ € R* erfiillt. |
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Definition 10.9 SeiR ein Ring mit a, ..., a, € R. Wir sagen, ein Element d € R ist ein gréfter
gemeinsamer Teiler (kurz ggT) von ay, ..., a,, wenn gilt

i) dla; firl<i<n

(i) Ist b € R mit b|q; fiir 1 <i < n, dann folgt b|d.

Wir nennen die Elemente ay, ..., a, teilerfremd, wenn 1, ein ggT der Elemente ist.

Definition 10.10 Sei R ein Ring mit a;, ..., a,, € R. Ein Element e € R heil’t kleinstes gemein-
sames Vielfaches (kurz kgV) von a, ..., a,, wenn gilt
@) qilefirl1<i<n

(i) Ist b € R mit @;|b fiir 1 <i < n, dann folgt e|b.

Haufig schreibt man der Einfachheit halber d = ggT(ay, ...,a,), um auszudriicken, dass d ein ggT von aq, ..., a, ist.
Dabei handelt es sich aber um keine Gleichung im herkémmlichen Sinn, weil der ggT im Allgemeinen nicht eindeutig
bestimmt ist. Statt dessen gilt

Lemma 10.11 SeiR ein Ring und d € R ein grofdter gemeinsamer Teiler der Ringelemente
day,...,d,. Ein weiteres Element d’ € R ist genau dann ein ggT von ay, ...,a,, wenn d und d’
zueinander assoziiert sind. Dieselbe Aussage gilt auch fiir das kleinste gemeinsame Vielfache.

Beweis: Sei d’ ein weiterer ggT von day, ..., a,. Nach Voraussetzung gilt d’|a; fiir 1 < i < n. Weil nach Voraussetzung
d =ggT(ay,...,a,) ist, folgt daraus d’|d. Genauso zeigt man d|d’, also sind d und d’ assoziiert.

Sind umgekehrt d, d’ zueinander assoziierte Elemente und ist d = ggT(ay, ..., a,), dann folgt aus d’|d und d|a; jeweils
d’la; fiir 1 < i < n. Ist b € R ein Element mit b|q; fiir alle i, dann gilt b|d auf Grund der ggT-Eigenschaft von d.
Aus b|d und d|d’ folgt b|d’. Damit ist insgesamt bewiesen, dass es sich bei d’ um einen ggT der Elemente ay,...,a,
handelt. Fiir das kleinste gemeinsame Vielfache verlduft der Beweis vollig analog. |

Wir haben oben die Hauptideale der Form (b) fiir ein Element b eines Rings R definiert. Es ist leicht zu tiberpriifen,
dass fiir beliebige b, c € R auch Teilmengen der Form (b,c) = {ub + vc | u,v € R} jeweils ein Ideal in R bilden. Es
handelt sich dabei um ein endlich erzeugtes Ideal. Diese werden weiter unten in Proposition in allgemeiner Form
betrachtet.

Satz 10.12 SeiR ein Ring, und seien a, b €R.

(i) Esgilt (a) € (b) genau dann, wenn b ein Teiler von a ist.
(i) Istd € R mit (d) = (a, b), dann ist d ein ggT von a und b.
(iii) Ist e € R mit (e) = (a) N (b), dann ist e ein kgV von a und b.

Ist R ein Hauptidealring, dann gilt auch von (ii) und (iii) die Umkehrung.
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Beweis: zu (i) ,,=“ Aus (a) € (b) folgt insbesondere a € (b). Da das Hauptideal (b) aus den Vielfachen von b
besteht, bedeutet dies, dass ein r € R mit a = rb existiert. Daraus folgt b | a. ,<“ Nach Voraussetzung gibt es ein
r € R mit a = rb, also gilt a € (b). Also ist (b) ein Ideal, dass a enthélt, und nach Definition des von a erzeugten
Ideals folgt (a) € (b).

zu (i) Aus (d) = (a, b) folgt insbesondere a € (d) und b € (d). Es gibt also r,s € R mit a = rd und b = sd. Dies
zeigt, dass d ein gemeinsamer Teiler von a und b ist. Sei nun d’ ein weiteres Ringelement mit d’ | a und d’ | b. Dann
gibt es r’,s’ € R mit a = r’d’ und b = s’'d’. Also enthilt das Hauptideal (d”) die zweielementige Menge {a, b}. Nach
Definition des erzeugten Ideals folgt (a, b) C (d’) und somit (d) C (d’). Nach Teil (i) ist d’ damit ein Teiler von d.
Insgesamt haben wir damit die ggT-Eigenschaft von d nachgerechnet.

zu (i) Aus (e) = (a) N (b) folgt e € (a) und e € (b). Es gibt also Ringelemente r,s € R mit e = ra und e = sb.
Damit ist e ein gemeinsames Vielfaches von a und b. Sei nun e’ € R ein weiteres gemeinsames Vielfaches von a und
b. Dann gibt es r’,s’ € R mit ¢’ = r’a und ¢’ =s’b, und wir erhalten e’ € (a) N (b). Es folgt (') € (a) N (b) = (e) und
somit ¢’ € (e). Dies zeigt, dass e’ ein Vielfaches von e ist. Insgesamt ist e also ein kgV von a und b.

Setzen wir nun voraus, dass R ein Hauptidealring ist, und beweisen wir die Umkehrung von (ii). Sei d ein ggT der
Elemente a und b. Das Ideal (a, b) ist ein Hauptideal, es gibt also ein d’ € R mit (a, b) = (d’). Auf Grund von Teil
(ii) ist d’ ebenfalls ein ggT von a und b, also sind d und d’ assoziiert. Aus d | d’ und d’ | d folgt nach Teil (i), dass

(d)=(d") = (a,b) gilt.

Zum Schluss beweisen wir die Umkehrung von (iii) unter der Voraussetzung, dass R ein Hauptidealring ist. Sei e
ein kgV der Elemente a und b. Weil (a) N (b) ein Hauptideal ist, gilt (a) N (b) = (¢’) fiir ein ¢’ € R. Nach Teil (iii)
ist ¢/ damit ebenfalls ein kgV von a und b, also sind e und e’ assoziiert. Wie im vorherigen Absatz folgt daraus

(e)=(e)=(a)n (D). O

Im Folgenden werden wir nun zwei wichtige Rechenoperationen auf Idealen definieren. Wie die Ringelemente
konnen auch Ideale addiert und multipliziert werden.

Proposition 10.13 Sei ein Ring, und seien I, J Ideale in R. Dann ist auch die Teilmenge [ +J =
{a+blaecl,beJ }vonR einIdeal inR.

Beweis: Aus Oz € I und Oy € J folgt Og =0z + 0z €I +J. Seien nun a,b € [ +J und r € R vorgegeben. Dann gibt
es Elemente a/,b’ € I und a”,b” € J mita =a’+a” und b = b’ + b”. Weil I und J Ideale sind, gilt a’ + b’ € I und
a’+b"” €J.Esfolgta+b=(a’+b)+(a”+b")€I+J.Die Idealeigenschaft von I und J liefert auch ra’ € I und
ra”eJ.Bsfolgtra=ra’ +ra” €I +J. O

Leider ist die Definition des Produkts zweier Ideale I und J nicht ganz so einfach. Man ist versucht, dass Produkt durch
IJ={ab|ae€l,beJ} zu definieren, aber leider ist eine solche Menge im Allgemeinen kein Ideal mehr. (Weiter
unten werden wir dies durch ein Gegenbeispiel belegen.) Statt dessen miissen wir das von dieser Produktmenge
erzeugte Ideal betrachten.

Definition 10.14 SeiR ein Ring, und seien I,J Ideale in R. Dann ist das Produktideal IJ das
von der Menge {ab |a €I,b € J} erzeugte Ideal in R.

— 113 —



Die folgende Proposition ist fiir die Berechnung von Produktidealen hilfreich.

Proposition 10.15 SeiR ein Ring, und seien I, J von endlichen vielen Ringelementen erzeugte
Ideale, I = (ay,...,ay,) und J = (by,...,b,) mit m,n € N, a;,b; ERflir 1 <i<m,1<j<n
Dann wird IJ von der Menge

S = {abjl1<i<m1<j<n}

erzeugt, es gilt also IJ = (S).

Beweis: Nach Definition des Produktideals gilt IJ = (T) mit T ={ ab |a € I,b € J }. Nach Lemma[10.6| geniigt es
also, S € (T) und T C (S) nachzuweisen. Die Inklusion S C (T) ist offenbar erfiillt, weil fiir alle i,j mit 1 <i <m
und 1 < j < n jeweils q; €I, b; € J und damit a;b; € T gilt. Zum Beweis von T C (S) sei ¢ € T vorgegeben. Dann
gibt es a € I und b =J mit ¢ = ab. Wegen I = (aq, ..., a,,) gibt es Ringelemente rl, ..., 'y €R, so dass a in der Form

Zl 1 :a; geschrieben werden kann. Ebenso finden wir s;, ...,s, € R mit b = S . Es gilt also

]1]

C - ow - (Z)(Z ) 378 s ah,

i=1 j=1 i=1 j=1
Die Gleichung zeigt, dass c¢ in (S) enthalten ist. O

Wir zeigen nun anhand eines Gegenbeispiels, dass das elementweise Produkt zweier Ideale im allgemeinen kein Ideal
ist. Sei R = Z[x], und seien die Ideale I und J definiert durch I = (2,x) und J = (3, x). Nach Proposition[10.5|sind
die Elemente aus I = (2, x) die Polynome der Form 2u + xv mit u,v € Z[x]. Wie man sich leicht iiberlegt, sind es
genau die Polynome f € Z[x] mit durch 2 teilbarem konstanten Term f (0), die auf diese Weise zu Stande kommen,
zum Beispiel x? + 5x — 10 = 2(—5) + x(x + 5) mit dem konstanten Term —10. Ebenso besteht J genau aus den
Polynomen g € Z[x] mit der Eigenschaft, dass g(0) durch 3 teilbar ist.

Wegen —2,x € I und 3,x € J sind 3x und (—2)x in M enthalten. Nehmen wir nun an, dass die Menge gegeben
durch M = {fg | f € I,g € J} ein Ideal in Z[x] ist, dann wire auch x = 3x + (—2)x € M. Aber andererseits
kann x nicht in der Form x = fg mit f € [ und g € J geschrieben werden. Wére dies so, dann wiirde wegen
grad(f) + grad(g) = grad(f g) = grad(x) = 1 jeweils grad(f), grad(g) < 1 folgen. Es gébe also a, b,c,d € Z mit
f =ax+bund g = cx +d. Wir wiirden dann

x = fg = (ax+b)ecx+d) = acx®+(bc+ad)x+bd

erhalten, also insbesondere ac = 0. Ist nun a = 0, dann folgt x = bcx + bd und somit bc = 1. Wie oben bemerkt, ist
b = f(0) aber durch 2 teilbar,was zu bc = 1 im Widerspruch steht. Ebenso fiihrt ¢ = 0 auf die Gleichung x = adx+bd,
und wir erhalten ad = 1 im Widerspruch zu 3 | g(0) < 3| d.

Die Annahme, dass M ein Ideal in Z[x] ist, war also falsch. Nach Proposition [10.15]ist das Produktideal IJ gegeben
durch IJ = (6,2x,3x,x2). Mit Lemma lasst sich dies zu IJ = (6, x) vereinfachen, denn einerseits sind die
Elemente 6, 2x, 3x, x2 offenbar alle in (6, x) enthalten, andererseits liegen 6 und x wegen x = (—1)(2x) + 3x auch
in (6, 2x, 3x, x2).
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Im Hinblick auf spatere Anwendungen zeigen wir noch

Lemma 10.16 Fiir Ideale I,J,K in einem Ring R gilt das Distributivgesetz I(J + K) = IJ + IK,
aulerdem gilt IJ C I und IJ C J.

Beweis: ,C“ Die Elemente der Form ab mit a € I und b € J + K bilden ein Erzeugendensystem von I(J + K). Es
geniigt also zu zeigen, dass alle Elemente dieser Bauart in IJ + IK enthalten sind. Das Element b kann in der Form
b=c+d mitc €J und d € K geschrieben werden. Es gilt ab = a(c + d) = ac + ad, mit ac € IJ und ad € IK. Also
ist ab in IJ + IK enthalten.

,2“ Hier geniigt es zu zeigen, dass IJ C I(J + K) und IK C I(J + K) gilt. Das Ideal IJ wird erzeugt von den
Elementen der Form ab mit a € I und b € J, und es reicht zu zeigen, dass diese Produkte in I(J + K) enthalten sind.
Aus b € J folgt b € J +K, also ist ab € I(J + K) erfiillt. Die Inklusion IK C I(J + K) beweist man genauso. Auch fiir
die Inklusion IJ C I brauchen wir nur zu zeigen, dass {ab | a € I, b € J} eine Teilmenge von I ist. Dies ist auf Grund
der Idealeigenschaft offensichtlich. Die Inklusion IJ C J ist damit auch klar. O

Definition 10.17 FEin Ideal p in einem Ring R wird Primideal genannt, wenn p # (1) gilt und
fiir alle a, b € R die Implikation

abep = aecpoderbeyp erfiilt ist.

Man nennt p ein maximales Ideal, wenn p # (1) ist und kein Ideal I mit der Eigenschaftp C I &
(1) existiert, das Ideal also abgesehen vom Einheitsideal beziiglich Inklusion maximal ist.

Gelegentlich wird die Primideal-Bedingung nicht mit Elementen, sondern mit Idealen formuliert.

Proposition 10.18 Ein Ideal p in einem Ring R ist genau dann ein Primideal in R, wenn p # (1)
ist und fiir beliebige Ideale I,J mit IJ C p eine der Bedingungen I C p oder J C p erfiillt ist.

Beweis: ,<“ Nehmen wir an, dass die Idealbedingung fiir R erfiillt ist, und seien a, b € R mit ab € p vorgegeben.
Dann betrachten wir die Ideale I = (a) und J = (b). Das Produktideal IJ wird auf Grund der Bemerkung von oben
durch das Element ab erzeugt, und mit ab ist auch das Ideal IJ in p enthalten. Auf Grund unserer Voraussetzung
folgt (a) =1 C p oder (b) =J C p, insbesondere a € I oder b € J. Da aulderdem p # (1) gilt, handelt es sich bei p
tatsachlich um ein Primideal.

,2=“ Sei p ein Primideal. Dann ist p # (1). Seien nun I und J Ideale in R, und nehmen wir an, dass zwar IJ C p,
aber weder I C p noch J C p erfiillt ist. Dann gibt es Elemente a € I \ p und b € J \ p. Weiter gilt ab € IJ € p. Wir
haben also Elemente a, b € R mit ab € p und a, b ¢ p gefunden, im Widerspruch zur Primidealeigenschaft. m|

An dieser Stelle kommen wir auf die zu Anfang erwdhnte Beziehung zwischen Idealen und Teilbarkeitslehre zuriick.
Fiir viele wichtige zahlentheoretische Problem (etwa Fermats letzten Satz oder Verallgemeinerungen des quadrati-
schen Reziprozitatsgesetzes, das wir spater noch kennenlernen werden) hat es sich als niitzlich herausgestellt, Fragen
der Teilbarkeit in allgemeinen Ringen wie z.B. dem Ring Z[ v/—5] zu studieren. Insbesondere lassen sich in solchen
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Ringen Elemente definieren, die dhnlich wie die bekannten Primzahlen nicht weiter zerlegt werden kénnen. Wir wer-
den fiir solche Elemente spiter die Bezeichnung irreduzibel einfiihren. Im Ring Z[ +/—5] ist zum Beispiel 1—2+/—5 ein
irreduzibles Element, ebenso die Primzahl 3. Es kann aber auch vorkommen, dass eine Primzahl p im Ring Z[ v—5]
zerlegbar wird, zum Beispiel 41 = (6 + v/—5)(6 — v/=5).

Der Mathematiker Eduard Kummer beschiftigte sich im 19. Jahrhundert mit dem Problem, dass die Zerlegung von
Zahlen in irreduzible Elemente in Ringen wie Z[+—5] im Allgemeinen nicht mehr eindeutig ist. Zum Beispiel gilt

21 = 3.7 = (14+2V-5)(1-2v=5). )

Kummer gelang es, die Eindeutigkeit der Zerlegung wieder herzustellen, indem er an Stelle der Zerlegung der Zahl
21 die Zerlegung des Hauptideals (21) in Primideale betrachtete. So kann man zum Beispiel zeigen, dass die Ideale
in Z[ v/—5] gegeben durch

pp=(3,1+2vV=5) , p,=(3,1—2v=5) , p3=(7,1+2v=5) und p,=(7,1—2v-5)

Primideale sind. Obwohl die Faktoren in der Produktdarstellung (*) irreduzibel sind, lassen sich die entsprechenden
Hauptideale weiter zerlegen Mit Hilfe von Lemma und Proposition [10.15|berechnet man zum Beispiel

pips = (3,1+2vV=5)(7,1+2v=5) = (3-7,(1+2v=5)-7,3-(1+2V=5),(1+2vV—=5)(1 +2v—=5))
= (21,7+14v—=5,3+6vV—5,-194+4v/—5) = (21,1+2v—5,3+6v—5,-194+4/—5) =
(21,1 +2v=5,3+6vV/—5,24+4/—5) = (21,1+2/=5) = (1+2vV/-5).

Dabei gilt die Gleichung im vierten Schritt wegenund 7+144/—5 = (14+2+4/=5)+2(3+6+/—5), im fiinften wegen
—19 +4+/—5+ 21 = 2+ 44/—5. Im vorletzten Schritt wurde verwendet, dass die Elemente 3 + 64/—5 und 2 + 44/—5
beides Vielfache von 1 + 2+/—5 sind und im letzten die Gleichung 21 = (1 + 2+/—5)(1 — 24/=5). Die Rechnung zeigt
also, dass das Hauptideal (1 + 2+/=5) in die Faktoren p; und p; zerfllt.

Durch dhnliche Rechnungen erhélt man die Gleichungen p;p, = (3), pops = (1 —2+/—=5) und p3p,4 = (7). Insgesamt
gilt also

(21)=(3)-(7) = (p1p2)(psps) .  ebenso (21)=(1+2v=5)(1—2v=5) = (p1p3)(paps)-

Bis auf die Reihenfolge der ,Primfaktoren” p; stimmen die Zerlegungen also iiberein.

Definition 10.19 Sei ¢ : R — S Ringhomomorphismus. Dann nennt man ker(¢) = ¢ ({0s})
den Kern und im(¢) = ¢ (R) das Bild von ¢.

Teil (i) der folgenden Proposition zeigt, dass Kerne von Ringhomomorphismen stets Ideale sind, in Analogie zur Aus-
sage aus der Gruppentheorie, dass es sich bei Kernen von Gruppenhomomorphismen stets um Normalteiler handelt.

Proposition 10.20 Seien R, S Ringe und ¢ : R — S ein Ringhomomorphismus.

(i) IstJ einIdeal in S, dann ist ¢ ~!(J) ein Ideal in R.
(ii) IstI ein Ideal in R und ¢ surjektiv, dann ist ¢ (I) ein Ideal in S.
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Beweis: zu (i) Wegen ¢(0z) = O und Og € J ist O € ¢ !(J) enthalten. Seien nun a,b € ¢ *(J) und r € R
vorgegeben. Dann gilt ¢ (a), ¢ (b) € J, somit auch ¢p(a+b) €J und a+b € ¢ 1(J). Ebensoist ¢ (ra) = ¢p(r)p(a) €J
und folglich ra € ¢~1(J).

zu (ii) Wegen Oz €1 gilt Og = ¢(0z) € ¢p(I). Seien nun a, b € ¢(I) und s € S vorgegeben. Wegen a, b € ¢ (I) gibt es
a’,b’ €I mita=¢(a’)und b= ¢p(b’).Esfolgta’+b' €I und a+b = ¢(a’)+d(b') = ¢p(a’+b’) € p(I). Wegen der
Surjektivitit gibt es ein r € R mit ¢(r) =s, und mit a’ ist auch ra’ in I enthalten. Es folgt sa = ¢ (r)¢p(a’) € ¢(I). O

Ohne die Voraussetzung der Surjektivitat ist Teil (ii) der Proposition im allgemeinen falsch. Betrachtet man z.B. die
Inklusionsabbildung ¢ : Z — @, a — a, dann ist (2) = {2a | a € Z} ein Ideal in Z, aber die Menge M = {2a | a € Z}
ist kein Ideal in Q: Es gilt % €Q, 2€ M, aber % -2¢ M.

Man {iberpriift leicht, dass das Bild im(¢) eines Ringhomomorphismus ¢ : R — S zwar im allgemeinen kein Ideal,
aber immer ein Teilring von S ist. Wie bei den Gruppen oder den linearen Abbildungen zeigt man, dass ein Homo-
morphismus ¢ : R — S genau dann injektiv ist, wenn ker(¢) = {0z} gilt.
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§11. Faktorringe und die Konstruktion von Ringerweiterungen

Zusammenfassung. In §4 haben wir aus einer Gruppe G und einem Normalteiler N < G eine neue Gruppe
G/N konstruiert, die sog. Faktorgruppe von G modulo N. Mit dem gleichen Ansatz werden wir in diesem
Abschnitt einem Ring R und einem Ideal I den Faktorring R/I zuordnen. Auf diesem Weg erhilt man zum
Beispiel fiir jedes n € IN den bereits aus der Linearen Algebra bekannten Restklassenring Z/nZ. Dort haben
wir auch schon festgestellt, dass Z/pZ fiir jede Primzahl p ein Korper ist. Diese Beobachtung wird hier auf
geeignete Weise verallgemeinert. Aul’erdem werden wir den aus §4 bekannten Korrespondenzsatz auf die
Ringe iibertragen.

Ein weiteres Thema dieses Kapitels ist die Konstruktion von Ringerweiterungen. Von zentraler Bedeutung ist
hier die Beobachtung, dass man fiir jeden Monomorphismus ¢ : R — S von Ringen einen zu S isomorphen
Erweiterungsring erhélt. Unter Hinzunahme des Konzepts der Faktorringe werden wir auf diese Weise sehen,
wie der Korper R der reellen zum Korper C der komplexen Zahlen erweitert werden kann. Dieses Prinzip
werden wir im Korpertheorie-Teil der Vorlesung weiter vertiefen. AufBerdem verwenden wir diesen Ansatz,
um jedem Integrititsbereich R einen Quotientenkorper (den ,,Korper der Briiche von R“) und jedem Ring R
den Polynomring R[x] zuzuordnen (dessen Existenz wir in der Linearen Algebra nur postuliert, aber nicht
bewiesen hatten).

Wichtige Grundbegriffe Zentrale Scitze

— Nebenklasse eines Ideals, Faktorring — Homomorphiesatz fiir Ringe

— kanonischer Epimorphismus (fiir Ringe) — Korrespondenzsatz fiir Ringe

— Kongruenz modulo eines Ideals — Faktorringe von Primidealen sind Integrititsbereiche

. i . - . Faktorringe von maximalen Idealen sind Korper
— Quotientenkorper eines Integrititsbereichs

— Konstruktion von Ringerweiterungen durch
Monomorphismen

— universelle Eigenschaft des Quotientenkérpers und
des Polynomrings

In der Gruppentheorie haben wir gesehen, wie die Normalteiler einer Gruppe zur Definition von neuen Gruppen
genutzt werden konnen. Eine dhnliche Rolle spielen die Ideale in der Ringtheorie.

Definition 11.1 SeiR ein Ring, I ein Ideal und a € R. Dann nennen wir die Menge
a+l = {a+iliel}

die Nebenklasse von a modulo I. Die Menge {a + I | a € R} aller Nebenklassen von Elementen
aus R bezeichnen wir mit R/I.
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Proposition 11.2 SeiR ein Ring und I ein Ideal. Dann ist die Relation auf R gegeben durch
a=bmodl] & b—a€l

eine Aquivalenzrelation, und die Elemente von R/I sind genau die Aquivalenzklassen dieser
Relation. Man spricht in diesem Zusammenhang von einer Kongruenzrelation und bezeichnet
zwei Elemente a, b in derselben Aquivalenzklasse als kongruent modulo I.

Beweis: Fiir alle a € R gilt a—a = 0z € I und somit a = a mod I. Also ist die Relation reflexiv. Fiir alle a, b € R gilt
die Implikation

a=bmodl = b—a€l = (-1)(b—a)el = a—bel = b=amodl |,

also ist die Relation symmetrisch. Zum Nachweis der Transitivitét seien a, b,c € Rmita = b mod I und b = ¢ mod I
vorgegeben. Dann gilt b—a €I und c—b €1. Es folgt c—a = (c—b)+(b—a) €I und damit a =c mod I.

Nun zeigen wir noch, dass fiir ein beliebig vorgegebenes a € R die Nebenklasse a + I mit der Aquivalenzklasse von
a iibereinstimmt. Nach Definition liegt b € I genau dann in der Aquivalenzklasse von a, wenn a = b mod I gilt, was
nach Definition b —a € I bedeutet. Dies wiederum ist gleichbedeutend mit b=a+ (b—a)€a+1. O

Nach Definition sind zwei Elemente a,b € R also genau dann kongruent modulo I, wenn ihre Kongruenzklassen
{ibereinstimmen. Da je zwei Aquivalenzklassen entweder disjunkt oder gleich sind, erhalten wir die Aquivalenz

a=bmodl] & b—a€l & a+I=b+] & bea+l. (11.1)

Ein wichtiger Speziallfall ist der Ring R = Z mit den Idealen der Form I = (n) = nZ, wobei n € IN ist. Hier wird die
Nebenklasse a+nZ einer Zahl a € Z héufig nur mit a bezeichnet. Ein Problem bei dieser Notation besteht darin, dass
sie die natiirliche Zahl n nicht beinhaltet; so kann 1 fiir 1+ 27, 1+3Z oder fiir 1+nZ mit irgendeinem anderen n ste-
hen. Bei Verwendung der Notation muss also darauf geachtet werden, dass sich das n aus dem Kontext heraus ergibt.
Die Notation a = b mod n bedeutet, dass zwei Elemente a, b € Z modulo dem Hauptideal (n) tibereinstimmen.

Proposition 11.3 Die Menge Z/nZ der Kongruenzklassen ist n-elementig, es gilt

Z/nZ = {ala€Z,0<a<n}.

Beweis: Nach Definition gilt Z/nZ = {b | b € Z}. Ist nun b € Z beliebig vorgegeben, dann erhilt man nach Division
mit Rest Elemente q,a € Z mit b =gn+a und 0 < a < n. Es gilt also b—a = nq € (n), und auf Grund der Aquivalenz
(11.1) folgt @ = b. Dies zeigt, dass Z/nZ aus den angegebenen Klassen besteht.

Um zu sehen, dass die Klassen @ mit 0 < a < n verschieden sind, seien a;,a, € Z mit 0 < a;,a, < n und a,; = a,
vorgegeben. Nach (11.1) gilt dann a; — a, € (n), es existiert also ein q € Z mit a; —a, = qn. Wegen |a; —a,| < n ist
dies nur fiir ¢ = 0 moglich. Es gilt somit a; = a,. m|
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In der Algebra hatten wir den Begriff des Reprisentantensystems fiir eine Menge von Aquivalenzklassen eingefiihrt.
Dieser Begriff lasst sich auch hier verwenden. Dem Beweis von Proposition[11.3]l4sst sich entnehmen, dass fiir jedes
n € IN die Menge {a € Z | 0 < a < n} ein Reprisentantensystem von Z/nZ ist. Das entscheidende Argument dabei
war, dass fiir jedes n € IN auf dem Ring Z eine Division mit Rest durch n definiert ist. Ein solches Konzept existiert auch
fiir Polynomringe iiber Korpern, und zwar auf der Basis der aus der Schulmathematik bekannten Polynomdivision.
Wir werden spater auf die Division mit Rest noch in einem allgemeineren Kontext eingehen.

Proposition 11.4 SeiK ein Kérper, R = K[x] und f € K[x] ein Polynom vom Grad n > 1. Dann
ist die Teilmenge S = {g € K[x] | g # 0, grad(g) < n} U{0} von K[x] ein Reprasentantensystem
von R/(f).

Beweis: Sei ¢ : S — K[x]/(f) gegeben durch g — g+ (f). Ein Reprisentantensystem liegt vor, wenn die Abbildung
¢ bijektiv ist. Zunichst beweisen wir die Surjektivitdt von ¢. Sei § € K[x]/(f) vorgegeben und g € K[x] mit
g = g+ (f). Durch Division mit Rest erhalten wir Polynome q,r € K[x] mit g = qf + r mit r = 0 oder grad(f) < n.
Nach Definition ist r in S enthalten. Aullerdem gilt g —r € (f) und somit ¢(r)=r+(f)=g+(f)=g.

Seien nun g, g, € S mit ¢(g;) = ¢(g,) vorgegeben. Dann folgt g; + (f) = g, + (f), also g; — g, € (f ). Es gibt also
ein g € K[x] mit g; — g, =qf . Im Fall g # 0 wére g, — g, = qf vom Grad > n. Wegen g; = 0 oder grad(g;) < n fir
i =1, 2 ist das jedoch ausgeschlossen. Also muss g; = g, gelten. |

Proposition 11.5 Sei R ein Ring und I ein Ideal. Dann gibt es (eindeutig bestimmte) Verk-
niipfungen + und - auf R/I mit der Eigenschaft

(a+D+B+D)=(a+b)+I und (a+I)-(b+I)=ab+1I fir alle a,b €R.

Beweis: Nach Satz (ii) geniigt es zu zeigen, dass fiir alle a,,a, by, b € I aus ay = a mod I und by, = b mod I
jeweils (ag + by) +I = (a+ b) +I und ayby + I = ab + I folgt. Auf Grund der Voraussetzung gilt i = a —a, € I und
j=b—byel. Esfolgt (a+b)—(ayg+by)=(a—ay)+(b—by)=i+jel,also(a+b) < (ay+ by)+I und somit
(a+b)+1=(ay+ by)+I. Auf Grund der Rechnung

ab_aobo = ab_ab0+ab0_a0b0 = a(b_b0)+(a_a0)b0 = a]+bol

gilt ebenso ab —ayb, € I, also ab € agby + I und somit ab + I =ayb, +I. O

Satz 11.6 SeiR ein Ring und I € R ein Ideal. Dann ist R/I mit den beiden soeben definierten
Verkniipfungen ein Ring, den man als Faktorring bezeichnet. Die Abbildung 7; : R — R/I gege-
ben a — a + I ist ein Epimorphismus von Ringen, der sog. kanonische Epimorphismus.

Beweis: Wir verwenden die fiir alle a, b € R geltenden Gleichungen (a+1)+(b+1) = (a+b)+Iund (a+1)-(b+I) =
(ab) + 1, um die Giiltigkeit der Ringaxiome in R/I auf die Ringeigenschaften von R zuriickzufiihren. Beginnen wir
mit den Axiomen der Addition. Sind a, b, ¢ € R vorgegeben, dann gilt

((a+DH+B+D)+(c+I) = ((a+b)+D+(c+I) = ((a+b)+c)+I =
(a+(b+c))+I = (a+D+(b+c)+I) = (a+D+((b+D)+(c+1)).

— 120 —



Also ist das Assoziativgesetz in R/ erfiillt. Ferner gilt (a+1)+(0+I) = ((a+0)+I) = a+I und ebenso (0+1)+(a+I) =
(0+a)+1I = a+1, somit besitzt 0 + I in R/I die Eigenschaften des Nullelements. Aus (a + I) + ((—a) + I) =
(a+(—=a))+I=0+Tund ((—a)+I)+(a+1I)=((—a)+a)+I=0+I folgt, dass die Nebenklasse (—a) + I beziiglich
der Addition ein zu a + I inverses Element ist. Also hat jedes Element in R/I ein Negatives. Schlieflich gilt wegen
(a+D)+(b+I)=(a+b)+I=(b+a)+I =(b+I)+(a+I) auch das Kommutativgesetz. Die Axiome der Multiplikation
und das Distributivgesetz verifiziert man nach dem gleichen Schema. Die Nebenklasse 1 + I iibernimmt in R/I die
Rolle des Einselements.

Zum Schluss tiberpriifen wir die Homomorphismus-Eigenschaft der Abbildung 7t;. Sind a, b € R, dann gilt 7t;(a+b) =
(a+b)+I = (a+I1)+(b+I) = w;(a)+7;(b), ebenso 7t;(ab) = (ab)+I = (a+I1)(b+I) = n;(a)m;(b) und 7, (1) = 1+1.
Offenbar ist 7; surjektiv, denn jedes Element in R/I hat die Form a +I fiir ein a € R, es liegt also wegen 7;(a) = a+1

im Bild von r;. m|

Als Beispiel betrachten wir den Ring Z/4Z. Es sei noch einmal daran erinnert, dass 0, 1,2, 3 Kurzschreibweisen fiir
die Elemente 0 + 47,1 + 47,2 + 47,3 + 47 sind. Die Addition und Multiplikation des Rings Z/47Z. sind durch die
folgenden Verkniipfungstafeln gegeben.

[+jojtj2js) [-Jlojij2]s]
ojjof112|3 o|ffofofofo
T[T(Z[3(0] [1]0]1|2]3
s1z(3(0(1] [Z]0]2]0]2
SIE(i(i2] [3]0(3[2]1

Beispielsweise gilt 2+ 3 =5 = 1, wobei die Gleichung 5 + 47 = 1 + 47 durch 5—1 = 4 € 47 zu Stande kommt. Auf
dieselbe Weise {iberpriift man 2-3 = 6 = 2, denn es ist 6 + 47 = 2 + 47 wegen 6 — 2 = 4 € 4Z.. Man beachte, dass
7./47 kein Integrititsbereich ist: Es gilt 2- 2 = 4 = 0, obwohl 2 # 0 ist.

Neben {0, 1,2, 3} ist auch {1,2,3,4} ein Reprisentantensystem von Z/4Z. Es gilt also auch Z/47Z = {1,2, 3,4}. Mit

dieser Darstellung der Elemente sehen die Verkniipfungstabellen folgendermaf3en aus.

(+lrj2)sfa) [-1]2]3]4]
12(3[4(1 111(2]3]|4
s5(a(1(2| [Z]2|3(32]a
slali|3(3] [3]3|2[1]a
i|1|32(3(3] [3|3|4]4]a

Auch hier iiberpriifen in jeder Tabelle exemplarisch je einen Eintrag. Es gilt 4+3 = 7 = 3, denn wegen 7—3 = 4 € 47
ist 7+ 47 = 3 + 47Z. Ebenso findet man 3-4 = 12 = 4, denn wegen 12 —4 = 8 € 47 ist 12 + 4Z = 4 + 4Z. Man
beachten, dass 4 das Null- und 1 das Einselement von Z/4Z = {1, 2, 3,4} ist.

Satz 11.7 Sein € IN. Genau dann ist Z/nZ ein Korper, wenn n eine Primzahl ist.

Beweis: ,=*“ ImFall n = 1ist Z/nZ ein Nullring und damit kein Korper. Ist n > 1 keine Primzahl, dann gibtes r,s € IN

mit 1 < r,s < nund n = rs. Es folgt dann 7,5 # 0 und 7§ = i1 = 0. Dies zeigt, dass Z/nZ kein Integritatsbereich ist.
Nach Lemma 9.6 ist Z/nZ damit auch kein Korper.
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,<=“ Sei p = n eine Primzahl. Dann enthélt Z/pZ jedenfalls mehr als ein Element und ist damit kein Nullring. Sei
nun a € Z/pZ ein Element ungleich Null und a € Z mit @ = a + pZ. Wegen a + pZ # 0 ist a kein Vielfaches von p,
und weil p eine Primzahl ist, muss der grof3te gemeinsame Teiler von a und p gleich 1 sein. Nach dem Lemma von
Bézout gibt es x,y € Z mit xa+ yp = 1. Es folgt xa = xa+pZ = (xa+pZ)+(0+pZ) = (xa+pZ)+ (yp+pZ) =
(xa+yp)+pZ =1+pZ=1. Also ist @ in Z/pZ invertierbar. Somit haben wir gezeigt, dass jedes Element @ # 0 in
7./ pZ. ein Inverses besitzt, und folglich ist Z/pZ ein Korper. |

Ist p eine Primzahl, dann verwendet man fiir den Korper Z/pZ auch die Bezeichung I ,.(Dabei steht der Buchstabe
F fir field“, engl. , Korper“.)

Der euklidische Algorithmus kann verwendet werden, um die multiplikativen Inversen von Elementen der Korper I,
zu bestimmen. Sei beispielsweise p = 43 und @ = 37 € FF,;. Der euklidische Algorithmus liefert fiir die Gleichung
37x +43y =1 die Losung x = 7, y = —6. In 5 gilt also 377 =1 und 37 =7

Als weiteres Beispiel betrachten wir den Korper ;5. Mit dem soeben beschriebenen Verfahren findet man hier fiir
die Elemente # 0 die folgenden multiplikativen Inversen.

1|12
6 |12

N1
[O%]]
(@21}
~J!
(0]
O
[t

o

=
-
=] =
3
o]
5|~
ool

6
11

[\S]}
9311
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Auch mit Polynomringen lassen sich Restklassenringe bilden. Sei zum Beispiel R = R[x]und I = (f) mit f = x2+1.
Definieren wir i = x + I, dann gilt im Ring C = R/I die Gleichung

2 = ii = (x+D-(x+I) = x*+I = (P+EEDH+I = D+ = —1¢

wobei im vierten Schritt verwendet wurde, dass (—1)f im Hauptideal I = (f) liegt. Es handelt sich bei C also um
einen Ring mit einem Element i, dessen Quadrat gleich —1 ist. Wir werden weiter unten sehen, wie man mit Hilfe
dieses Rings die komplexen Zahlen C konstruieren kann.

Wie in der Gruppen- gibt es auch in der Ringtheorie induzierte Homomorphismen und einen Homomorphiesatz.

Proposition 11.8 Sei ¢ : R — R’ ein Ringhomomorphismus und I € R ein Ideal mit I C ker(¢).
Dann gibt es einen eindeutig bestimmten Homomorphismus

¢ :R/I—FR mit ¢(a+1)=¢(a) fiiralle aeR.

Man bezeichnet ihn als den von ¢ induzierten Homomorphismus.

Beweis:  Fiir die Existenz der Abbildung ¢ geniigt es nach Satz (i) zu zeigen, dass fiir alle ay,a € I aus
ay = a mod I jeweils ¢ (a) = ¢ (ay) folgt. Auf Grund der Voraussetung gilt a—a, € I und damit auch a—a, € ker(¢).

Es folgt ¢ (a) = p(a—ag +ag) = p(a—ag) + p(ag) = O0r + ¢(ag) = ¢(ay).

Dass ¢ ein Homomorphismus von Ringen ist, folgt unmittelbar aus der bewiesenen Gleichung und der Homomor-
phismus-Eigenschaft von ¢. Zunichst gilt ¢(1 + 1) = ¢(1) = 1. Seien @, b € R/I vorgegeben und a,b € R mit
d=a+I,b=b+I.Danngilt p(@a+b)=d((a++(b+1D)=¢¢((a+b)+1I)=¢p(a+b) = ¢p(a)+ ¢$(b) =
Ppla+D)+¢(b+1)=p(a)+ ¢(b). Der Beweis der Gleichung ¢ (ab) = ¢(a)¢(b) lauft analog. ]
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Satz 11.9 (Homomorphiesatz fiir Ringe)

Sei ¢ : R = R’ ein Homomorphismus von Ringen und I = ker(¢). Dann induziert ¢ einen
Isomorphismus ¢ : R/I = im(¢) von Ringen.

Beweis: Auf Grund der Proposition existiert ein Homomorphismus ¢ : R/I — R’ mit ¢ (a +1I) = ¢(a) fiir alle a €R.
Insbesondere gilt im(¢) = im(¢), so dass durch ¢ ein surjektiver Homomorphismus auf im(¢) gegeben ist. Zum
Nachweis der Injektivitit sei a € ker(¢) vorgegeben. Ist a € R mit a + I = &, dann gilt ¢(a) = ¢(a) = Oz und somit
a€l.Esfolgta=a+1=0+]I.Der Kern von ¢ ist somit gleich {0+ I}, und folglich ist ¢ injektiv. O

Satz 11.10 (Korrespondengzsatz fiir Ideale)

Sei R ein Ring, I ein Ideal und 7 : R — R/I der kanonische Epimorphismus. Sei Z die Menge der
Ideale von R/I und Z; die Menge der Ideale J von R mit J 2 I.

(i) Die Zuordnungen ¢ : Z; = Z,J — n(J) und ¢ : T — Z;, J — 7 '(J) sind bijektiv und
zueinander invers.

(ii) Fir alle Ideale J,K € Z; gilt J €K & n(J) € nn(K).

Beweis: Weil jedes Ideal von R insbesondere eine Untergruppe der Gruppe (R, +) ist, und jedes Ideal von R/I eine
Untergruppe von (R/I, +), folgen die Aussagen (i) und (ii) unmittelbar aus Satz[4.31] dem Korrespondenzsatz fiir
Gruppen. O

Wir werden den Korrespondenzsatz unten zur Charakterisierung der maximalen Ideale eines Rings anhand ihrer
Restklassenringe verwenden.

Lemma 11.11 Ein Ring ist genau dann ein Koérper, wenn (0) und (1) die einzigen Ideale des
Rings sind und (0) # (1) gilt.

Beweis: ,=“ SeiR ein Korper und I C R ein Ideal. Im Fall I # (0) sei a € I ein Element ungleich Null. Dann liegt
auch 1 =a'a in I, und es folgt I = (1). Auf Grund der Kérpereigenschaft gilt auch 0 # 1 und somit (0) # (1).

»<="“ SeiR ein Ring mit der Eigenschaft, dass (0) # (1) die einzigen Ideale in R sind. Ist a € R ein beliebiges Element,
dann gilt entweder (a) = (0) oder (a) = (1). Im ersten Fall ist a = 0, im zweiten liegt 1 in (a), und es gibt somit ein
r € Rmit ra = 1. Also ist a in diesem Fall eine Einheit. Wir haben somit gezeigt, dass jedes Element ungleich Null in
R invertierbar ist. Dies zeigt, dass R entweder ein Nullring oder ein Korper ist. Aber wegen (0) # (1) gilt 0 # 1, und
folglich ist R kein Nullring. m|
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Satz 11.12 SeiR ein Ring, p C R ein Ideal und R =R/p.

(i) Genau dann ist p ein Primideal, wenn R ein Integritétsbereich ist.

(ii) Genau dann ist p ein maximales Ideal, wenn R ein Korper ist.

Beweis: ,,=“ Wegen p # (1) besteht R aus mehr als einem Element, ist also kein Nullring. Seien nun a, b € R mit
ab = 0+ p vorgegeben. Sind a,b € Rmita =a+p und b = b +p, dann gilt (ab)+p=(a+p)(b+p)=ab=0+p
und folglich ab € p. Aus der Primideal-Eigenschaft erhalten wir a € p oder b € p und somit @ = 0+ p oder b = 0+ p.

,&<“ Ist R ein Integrititsbereich, dann ist R insbesondere kein Nullring. Deshalb muss p # (1) gelten. Seien nun
a,b € R mit ab € p vorgegeben. Dann gilt (a + p)(b +p) = (ab) + p = 0 + p. Weil R ein Integrititsbereich ist, folgt
darausa+p=0+poder b+p=0+p, alsoa €p oder b € p.

zu (ii) Auf Grund des Korrespondenzsatzes gibt es eine Bijektion zwischen den Idealen J von R mit p € J C (1) und
den Idealen von R. Ist p ein maximales Ideal, dann ist p S (1), und fiir jedes Ideal J mit p CJ C (1) gilt p = J oder
J = (1). Dies bedeutet, dass der Faktorring R/p genau zwei Ideale besitzt, ndmlich (0) oder (1). Also ist R/p ein
Korper. Setzen wir dies umgekehrt voraus, dann sind (0) # (1) die einzigen beiden Ideale im Faktorring. Es gilt dann
p € (1) in R, denn ansonsten gébe es im Faktorring nur ein einziges Ideal. Zugleich ist p maximal, denn jedes Ideal
J mit p € J < (1) wiirde ein Ideal J mit (0) $J < (1) im Faktorring liefern. O

Folgerung 11.13 Jedes maximale Ideal ist ein Primideal.

Beweis: Dies folgt direkt aus Satz[11.12] da jeder Korper ein Integritédtsbereich ist. m|

Aus den Satzen und folgt zum Beispiel, dass im Ring Z die Hauptideale (p) von Primzahlen p alles
maximale Ideale sind. Nach Folgerung[11.13|sind dies auch alles Primideale. Dass umgekehrt nicht jedes Primideal
ein maximales Ideal ist, sieht man am Nullideal (0) von Z. Wie man an Hand der Definition unmittelbar {iberpriift,
ist (0) ein Primideal. Andererseits ist es z.B. wegen (0) € (2) € (1) kein maximales Ideal.

Ein wesentliches Hilfmittel bei der Konstruktion von Ringen ist die Ubertragung von Verkniipfungen auf andere
Mengen mittels Bijektionen.

Lemma 11.14 Seien X und Y Mengen, ¢ : Y — X eine Bijektion und - eine Verkniipfung auf
X. Wir definieren auf Y eine Verniipfung ®, indem wira®b = ¢ (¢ (a)- ¢ (b)) fiiralle a,b € Y
definieren. Die neue Verkniipfung ® héngt dann mit - auf folgende Weise zusammen.

(i) Ist die Verkniipfung - auf X assoziativ bzw. kommutativ, dann gilt dasselbe jeweils fiir die
Verkniipfung © auf Y.

(ii) Ist ey € X ein Neutralelement in X beziiglich -, dann ist e;, = ¢ ~!(ex) ein Neutralelement
in Y beziiglich ®.

(iii) Seien ey und e, wie in (ii) und a, b € X. Ist b ein Inverses von a beziiglich -, dann ist
¢ (D) ein Inverses von ¢ ~*(a) beziiglich ®.

Man sagt, dass die Verkniipfung - durch die Bijektion ¢ von X auf Y iibertragen wird.
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Beweis: zu (i) Seien a,b,c € Y vorgegeben. Zunéchst bemerken wir, dass auf Grund der Definition von ¢ jeweils
¢(a©b)=¢(a)- ¢(b) gilt. Setzen wir nun voraus, dass die Verkniipfung - assoziativ ist. Dann gilt

p((@aeb)oc) = ¢aob)-¢(c) = (P(a)- o) -P(c) = ¢(a)-(¢(b)-P(c))
= ¢(a)-¢(boc) = ¢lao(boo)).

Auf Grund der Bijektivitéit von ¢ folgt daraus (a ® b) ® ¢ = a ® (b ® ¢). Nehmen wir nun an, dass - kommuativ ist.
Dann gilt $(a ®@ b) = ¢p(a)- p(b) = ¢(b) - ¢p(a) =¢p(b®a),und es folgta® b =b @ a.

zu (ii) Seia €Y vorgegeben. Dann gilt ¢p(ey ® a) = ¢(ey) - p(a) = ex - p(a) = ¢p(a), weil ey ein Neutralelement
beziiglich - ist. Auf Grund der Bijektivitdt von ¢ folgt e, ® a = a. Ebenso beweist man die Gleichung a ® ey = a.

zu (iii) Sei a € X und b € X beziiglich der Verkniipfung - ein Inverses von a. Sei ¢ = ¢ !(a) und d = ¢ *(b); zu
zeigenistc@d =d ®c =ey. Nun gilt p(c ©d) = ¢(c)- $(d) = a- b =ex = ¢p(ey), und durch Anwendung von ¢!
auf beide Seiten der Gleichung erhalten wir ¢ ® d = ey. Genauso zeigt man d ® ¢ = ey. |

Aus dem Lemma ergibt sich unmittelbar, dass ¢ auch zur Ubertragung einer kompletten algebraischen Struktur von
X auf die Menge Y genutzt werden kann. In dieser Vorlesung sind wir vor allem an Ringstrukturen interessiert.

Satz 11.15 Sei (R, +,) ein Ring, S eine Menge und ¢ : S — R eine bijektive Abbildung. Seien
die Verkntipfungen @ und ® auf S definiert durch

a®b=¢"(p(@)+¢(b) und a0b=¢(¢(a) ¢(b)).

Dann ist (S, ®, ®) ein Ring, und ¢ ist ein Isomorphismus von Ringen.

Beweis: Es geniigt, mit Hilfe von Lemma [11.14] die einzelnen Ringaxiome fiir (S, ®, ®) durchzugehen. Zunichst ist
zu iiberpriifen, dass (S, @) eine abelsche Gruppe ist. Weil die Verkniipfung + auf R assoziativ und kommutativ ist, gilt
nach Lemma dasselbe fiir die Verkniipfung @ auf S. Weil Oy in der Halbgruppe (R, +) ein Neutralelement ist,
handelt es sich bei 0g = ¢ ~1(0z) nach Lemma (ii) um ein Neutralelement in (S, ®). SchlieRlich besitzt jedes
Element a € S beziiglich & ein Inverses, ndmlich nach Lemma (iii) das Element ¢ '(—¢(a)). Insgesamt ist
(S, ®) also tatséchlich eine abelsche Gruppe.

Nach dem gleichen Muster zeigt man, dass (S, ®) ein abelsches Monoid ist. Das Distributivgesetz kann direkt nach-
gerechnet werden. Seien dazu a,b,c € S vorgegeben. Nach Definition der Verkniipfungen @ und © auf S gilt
P(rods)=¢(r)+ ¢(s)und ¢(r ®s) = ¢p(r) - ¢p(s) fir alle r,s € S. Damit erhalten wir

ae(bec) = ¢ (Pa)-¢p(b@c) = ¢ (P -(PD)+ () = ¢ (p(a) - d(b)+P(a)- P(c)
= ¢ Hp@aeb)+Pp(avc) = ¢ Hp(aeb®acc) = (a@b)@(ado). O

Das Prinzip der Ubertragung von Verkniipfungen kann nun auch fiir die Konstruktion von Ringerweiterungen
genutzt werden.

Satz 11.16 Sei ¢ : R — S ein Monomorphismus von Ringen. Dann gibt es einen Erweiterungs-
ring R 2 R und einen Isomorphismus ¢; :R — S mit ¢; g = ¢.

— 125 —



Beweis: Allgemein gilt: Sind A,B,C,D Mengen mit ANB =CND =, und ¢; : A — C, ¢, : B — D bijektive
Abbildungen, dann gibt es eine eindeutig bestimmte Abbildung ¢ : AUB — CUD mit ¢|, = ¢; und ¢ |z = ¢,
und diese Abbildung ist bijektiv (Beweis als Ubung). Setzen wir R = RU (S \ ¢(R)), und wenden wir die soeben
formulierte Aussage auf A=R, C = ¢(R) und B =D = S\ ¢(R) an, so existiert dementsprechend eine eindeutig
bestimmte bijektive Abbildung ¢ : R — S mit ¢ | = ¢ und q9|5\¢(R) = idg\¢(r)-

Wir nutzen diese bijektive Abbildung zur Definition von Verkniipfungen & und ® auf R, indem wir a®b = (;l;_l (¢p(a)+
¢(b))undae b = $‘1(¢(a)¢(b)) fiir alle a, b € R setzen. Nach Satz ist (R, ®,®) dann ein Ring, und 43 ist
ein Isomorphismus von Ringen. Nach Definition gilt q[; I = ¢, es bleibt also nur zu zeigen, dass R ein Teilring von R
ist. Nach Lemma ist wegen ¢ (1z) = 15 das Element 1z = ¢ ~'(15) das Einselement von R, und dieses ist in R
enthalten. Fiir alle a, b € R gilt nach Definition a® b = ¢ (¢ (a)+ ¢ (b)) = ¢ H(p(a+b)) = ¢ (H(a+b))=a+b,
also insbesondere a®b € R fiir alle a, b € R. Genauso sieht man, dass R auch unter der Multiplikation ® abgeschlossen
ist. O

Als erste Anwendung dieses Satzes zeigen wir, wie man die komplexe Zahlen als Erweiterungskorper der reellen
Zahlen konstruieren kann. Wir haben oben basierend auf dem Polynom f = x%2+1 € R[x] den Ring C = R[x]/I mit
I = (f) definiert. Die Abbildung ¢ : R — C, a — a + I ist ein offenbar ein Homomorphismus von Ringen. Dieser ist
injektiv, denn jedes a € ker(¢) mit a +1 = ¢(a) = 0 in I = (f) enthalten, also ein Vielfaches von f = x2 + 1, was
wegen a € R nur fiir a = 0 maglich ist.

Wir kéonnen nun Satz auf diesen Monomorphismus anwenden und erhalten einen Erweiterungsring C 2 R
zusammen mit einem Ringisomorphismus d; : C — C, der die Bedingung d3| r = ¢ erfiillt. Setzen wir i = qg’l ()=
¢~ (x +1), dann gilt $(i?) = (i) = i2 = —1c = —$(1) = —$(1), woraus auf Grund der Bijektivitit i2 = —1 folgt.
Jedes Element z € C hat dariiber hinaus eine eindeutige Darstellung der Form g = a + ib mit a, b € R. Denn wegen
Proposition besitzt die Nebenklasse <;l3(z) € R[x]/(f) einen eindeutig bestimmten Reprisentanten vom Grad
< 1. Es gibt also eindeutig bestimmte a, b € R mit qg(z) =a+bx+(f)=(a+I)+(b+1I)-i, und durch Anwendung
von ¢! erhalten wir z = a + ib.

Wir kommen nun zu einer weiteren wichtige Konstruktion, der Bildung der Quotientenkorper.

Definition 11.17 Sei R ein Integritédtsbereich. Ein Erweiterungsring K 2 R wird Quotienten-
kérper von R genannt, wenn K ein Korper ist und K = {ab™' |a,b €R, b # 0g} gilt.

Beispielsweise ist der Kérper Q) der rationalen Zahlen ein Quotientenkorper von Z. Wir werden nun mit Hilfe von
Satz [11.16| beweisen, dass jeder Integritdtsbereich R einen Quotientenkorper besitzt. Dazu definieren wir auf der
Menge Xz =R x (R\ {0g}) eine Relation ~ durch die Festlegung (a, b) ~ (¢,d) & ad = bc fiir alle (a, b), (c,d) € Xp.

Lemma 11.18 Die Relation ~ ist eine Aquivalenzrelation auf R x (R \ {0z}).

Beweis: Fiir jedes Paar (a,b) € Xy gilt ab = ab und somit (a, b) ~ (a, b). Deshalb ist die Relation reflexiv. Die
Aquivalenz
(a,b)~(c,d) & ad=bc < cb=da & (c,d)~(a,b)
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fiir beliebige Paare (a, b),(c,d) € Xy zeigt, dass die Relation auch symmetrisch ist. Zum Nachweis der Transitivitit
seien (a, b), (c,d) und (e, f ) aus Xz mit (a, b) ~ (c,d) und (c,d) ~ (e, f ) vorgegeben. Dann gilt ad = bc und cf = de.
Es folgt adf = bcf = bde, und mit der Kiirzungsregel fiir Integritdtsbereiche folgt af = be, also (a, b) ~ (e, f). Dies
zeigt, dass die Relation auch transitiv ist. |

Fiir jedes Paar (a, b) € Xy bezeichnen wir mit [a, b] die zugehorige Aquivalenzklasse, und die Menge der Aquiva-
lenzklassen mit X /~. Bei der Konstruktion des Quotientenkorpers orientieren wir uns nun an den herkémmlichen

Regeln

=ad+bc und

< a c_a
d bd b d bd

+

a
b
fiir das Bruchrechnen.

Proposition 11.19 Auf der Menge R = X/~ der Aquivalenzklassen der Relation ~ auf Xj gibt
es eindeutig bestimmte Verkniipfungen & und ® mit

[a,b]®[c,d]=[ad + bc, bd] und [a,b]®[c,d] = [ac, bd]
fiir alle (a, b), (c,d) € Xg, und R bildet mit diesen Verkniipfungen einen Korper.

Beweis: Die Existenz und Eindeutigkeit der Verkniipfungen wird durch Anwendung von Teil (ii) des Satzes
nachgewiesen. Demnach geniigt es zu {iberpriifen, dass fiir alls (a, b), (a’,b’), (c,d) und (¢’,d’) aus (a, b) ~ (a’, b’)
und (c,d) ~ (c’,d’) jeweils [ad + bc, bd] = [a’d’ + b’c’, b’d’] und [ac, bd] = [d’c’, b’d’] folgt. Beides ist erfiillt, denn
wegen (a, b) ~ (a’,b’) und (c,d) ~ (¢/,d’) gilt ab’ = a’b und cd’ = ¢’d, und somit auch

(ad + bc)(b'd’) = ab'dd’+bb'cd = d'bdd’+bb'c’d = (a’'d +b'c’)(bd)
und (ac)(b’d’) = ab’cd’ = a’bc’d = (a’c’)(bd), was zu [ad + bc, bd] =[a’d’ + b’c’,b’d’] und [ac, bd] =[d’c’, b’d’]
Aquivalent ist. Im nichsten Schritt zeigen wir, dass (R, ®, ®) ein Ring ist, mit 0z =[O, 1z] als Null- und 1; = [1, 1z]
als Einselement. Wir beginnen mit dem Nachweis, dass (R, ®) eine abelsche Gruppe ist. Seien dazu [a, b],[c,d] und

[e, f] in R vorgegeben. Wegen [a,b] ® [¢,d] = [ad + bc,bd] = [cb + da,db] = [c,d] ® [a, b] ist die Verkniipfung
kommutativ, und wegen

la,b]®([c,d]®[e,f]) = [a,b]l®[cf+de,df] = [adf +bcf +bde,bdf] =
[ad + be,bd]®[e,f] = ([a,b]l®[c,d])®e,f].

ist sie auch assoziativ. Die Rechnung [a,b] ® 0y = [a,b] ® [0g,1z] = [a- 1z + b - 0g, b - 13] = [a, b] zeigt, dass
0p = [0g, 1z] tatséchlich ein Neutralelement von (R, ®) ist. SchlieRlich gilt noch [a, b]®[—a, b] = [ab+ b(—a), b*] =
[Og, b] = [0y, 1] = Og, wobei im vorletzten Schritt verwendet wurde, dass (Og, b) ~ (0, 1z) gilt. Also ist [—a, b] in
(R, ®) jeweils das Inverse von [a, b].

Nun zeigen wir, dass (R, ®) ein Monoid ist. Wegen [a, b] ® [c,d] = [ac,bd] = [ca,db] = [c,d] ® [a, b] ist die
Verknilipfung ® kommutativ, und die Assoziativitét ergibt sich aus der Rechnung [a, b] ® ([c,d]®[e,f]) =[a,b] ®
[ce,df]=T[a(ce),b(df)]=[(ac)e,(bd)f]=[ac,bd]@[e,f]=([a,b]@[c,d]) @ [e, f]. Dass 13 = [1z,15] in (R, ®)
ein Neutralelement ist, ergibt sich aus der Rechnung [a, b] - [1z,1z] = [a - 1, b - 1g] = [a, b]. Es fehlt noch der
Nachweis des Distributivgesetzes. Dieses erhilt man durch

la,b]o([c,d]®[e,f]) = [a,ble[cf+de,df] = [acf +ade,bdf] =
[acbf + bdae,b?*df] = [ac,bd]®[ae,bf] = [a,b]®[c,d]®[a,b]®[e,f].
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Damit ist der Beweis der Ringeigenschaften abgeschlossen. Dariiber hinaus ist (R, ®, ®) sogar ein Korper. Ist nimlich
a = [a, b] ein Element von R mit [a, b] # [Og, 1z], dann ist [b,a] wegen by # O ein Kehrwert von a, denn wegen
(ab,ab) ~ (1g,1g) gilt[a, b]O[b,a] = [ab, ba] = [1g, 1z]. Also sind sdmtliche Elemente der Menge ﬁ\{OR} Einheiten.
AuRerdem ist R kein Nullring. Denn andernfalls wiirde [Og, 1] = 04 = 15 = [1g, 1z] gelten, woraus (0, 1z) ~ (1, 1g)
und Oy - 1z = 13 - 1, also Oy = 1, folgen wiirde, im Widerspruch dazu, dass der Ring R als Integritatsbereich kein
Nullring ist. |

Nach diesen Vorbereitungen kénnen wir nun zeigen

Satz 11.20 Zu jedem Integritatsbereich existiert ein Quotientenkorper.

Beweis: Sei (R, ®,®) der in Propositiondeﬁnierte Korper. Durch die Abbildung ¢ : R — R, a — [a, 1z] ist ein
Monomorphismus von Ringen definiert. Denn es gilt ¢pz(1z) = [1g,1z] = 13, und fiir alle a,b € R ist ¢pgr(a + b) =
[a+Db,1x] =[a,1z]@[b,1z] = ¢r(a) ® ¢r(b) und ¢g(ab) = [ab,1z] = [a,1z] ®[b, 1] = Ppr(a) © px(D). AuBerdem
ist ¢ injektiv. Ist ndmlich a € R mit ¢z(a) = 03, dann folgt [a, 1z] = ¢pr(a) = [0z, 1z] und somit a - 1z = O - 13, also
a = Og. Nach Satz existiert nun ein Erweiterungsring K von R und ein Isomorphismus (ﬁR : K — R von Ringen
mit quI r = ¢r- Um zu zeigen, dass K nun ein Quotientenkorper von R ist, miissen wir fiir ein beliebig vorgegebenes
Element a € K zeigen, dass ein Paar (a, b) € Xz mit a = ab™! existiert. Wegen qu(a) € R gibt es ein Paar (a, b) in X
mit $p(a) = [a, b]. Auf Grund der Eigenschaft ¢g|z = ¢ von ¢ erhalten wir

$r@) = [a,b] = [a,1]0[b L] = ¢p@Pr(®)™ = ¢p@p(d)? = Pglab™)

wobei das Element ab™! im letzten Schritt im Korper K gebildet wird. Auf Grund der Injektivitit von ¢;R folgt a =
ab™!, wie gewiinscht. O

Durch den folgenden Satz wird prazisiert, in welchem Sinn der Quotientenkorper eines Integrititsbereichs eindeutig
bestimmt ist.

Satz 11.21 Sei R ein Integritdtsbereich, und seien K und L beides Quotientenkoérper von R.
Dann existiert ein Isomorphismus 1 : K — L von Korper mit ¢ |z = idg.

Beweis: Sei R = X/~ der in Proposition konstruierte Korper. Wir zeigen zunichst, dass ein Korperisomor-
phismus 1), : R — K existiert, der jeweils die Aquivalenzklasse [a,b] € R auf ab™! abbildet. Dazu betrachten wir
die Abbildung 1ﬁ : Xp — K gegeben durch 1Zv(a, b) = ab™!. Sind zwei Paare (a, b),(c,d) € Xz mit (a,b) ~ (c,d)
vorgegeben, dann gilt ad = bc nach Definition der Relation ~, was wegen b,d # 0 zu ab™! = cd~! umgeformt
werden kann. Es folgt Y)(a, b) = ab™! = cd™! =)(c, d).

Teil (i) von Satz liefert nun eine Abbildung v, : R — K gegeben durch v;([a, b]) = 1,[)(a, b) = ab™! fiir
alle (a, b) € Xz. Wir {liberpriifen, dass es sich bei 1/; um einen Korperisomorphismus handelt. Wie wir im Beweis
von Proposition [11.19| festgestellt haben, ist [1,,1z] das Einselement von R, und es ist 4 ([1z,1z]) = 1 - 1;1 =
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1z = 1. Die Abbildung v, ist vertraglich mit der Addition und der Multiplikation, denn fiir beliebig vorgegebene
[a,b],[c,d] €R gilt sowohl

YP,([a,b]+[c,d]) = ;({ad+bc,bd]) = (ad+bc)(bd)™!
= ab'+cd = Pi([a,bD+¢([c,d])

als auch v;([a, b] - [c,d]) = v;([ac, bd]) = (ac)(bd)™ = (ab " )(cd™!) = ¢;([a, b]) - ¢;([c,d]). Dies zeigt, dass
), jedenfalls ein Kdrperhomomorphismus ist, und als solcher nach Proposition auch injektiv. Dariiber hinaus
ist v, auch surjektiv. Ist nimlich @ € K vorgegeben, dann existieren a,b € R mit b # 0z und a = ab™!, da K ein
Quotientenkorper von R ist. Es folgt dann [a, b] € R und v;([a,b]) = ab™! = a.

Genauso sieht man nun, dass auch ein Kérperisomorphismus v, : R — L existiert. Folglich ist durch ) = v, o 7"
ein Isomorphismus K — L definiert. Dieser erfiillt auch die Bedingung 1|z = idg, denn fiir alle a € R ist ¢(a) =

(oo TN @)= (o )(a 1) =,([a, 1x]) =a 1" =a=idp. O

Kommen wir nun zum zweiten Thema dieses Kapitels, den Polynomringen. Die folgende Definition ist bereits aus der
Linearen Algebra bekannt.

Definition 11.22  Sei R ein Ring. Ein Erweiterungsring S von R wird Polynomring iiber R
genannt, wenn es ein ausgezeichnetes Element x € S gibt mit der Eigenschaft, dass fiir jedes
Element f € R[x]\ {0z} ein eindeutig bestimmtes n € IN, und eindeutig bestimmte ay, ...,a, € R
existieren, so dass a, # 0 ist und f in der Form

f = ax"+a,x" 1 +..+a;x+ag dargestellt werden kann.

Das ausgezeichnete Elemente x nennt man die Variable (oder Unbestimmte) des Polynomrings. Fiir einen Polynom-
ring S {iber einem Ring R mit der Variablen x wird in der Regel die Bezeichnung R[x] verwendet. Die Elemente
von R[x] heilen Polynome {ibe dem Ring R. Man bezeichnet die Zahl n in der Definition als den Grad grad(f) des
Polynoms f. Das Polynom a,x" ist der Leitterm, das Element a,, € R der Leitkoeffizient von f .

Es sei ausdriicklich darauf hingewiesen, dass das Element x im Polynomring R[x] kein Element von R ist, sofern
es sich bei R nicht um einen Nullring handelt. Wére x = Oy, dann wiirde 1 = x + 1 gelten, was im Widerspruch
dazu steht, dass jedes Element von R[x ] ungleich Null genau eine Darstellung als Polynomausdruck besitzt. Im Fall
x € R\ {Og} erhalten wir ebenfalls einen Widerspruch zu dieser Eindeutigkeit, denn dann kénnte x sowohl als
Polynom vom Grad O (mit ay = x) als auch als Polynom vom Grad 1 aufgefasst werden (in der Form 1 - x 4 O, also
mit ay = 0 und a; = 1p).

Fiir die folgenden Ausfithrungen ist es wichtig, sich noch einmal ins Gedachtnis zu rufen, wie Polynome addiert und
multipliziert werden. Seien f,g € R[x] mit f = ZZ:O a;x¥und g = ZZ:O b,x!. Bei der Addition bietet es sich an, die
Koeffizienten a; und b, auch fiir k > m und £ > n zu definieren, indem man a;, = 0 und b, = 0 setzt. Die Polynome

f= Z a;xk und g= Z b,x*

ke, (e,

konnen dann in der Form
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dargestellt werden, und die Summe hat dann die Form

f+g = Dl(a +b)x".

relNg

Das Produkt von f und g erhélt man durch die Rechnung

fg = (iakxk)(zn:nge) = izn:akngk“ = ’i’f Z agb | x" = %(Zr:ar_gbg>xr.
k=0 (=0 k=0 (=0 r=0| k(>0 r=0 \(=0

k+l=r

Wie bei den Quotientenkoérpern beschéftigen wir uns zunéchst mit der Frage der Eindeutigkeit.

Satz 11.23 (universelle Eigenschaft des Polynomrings)

Fiir jeden Ringhomomorphismus ¢ : R — S und jedes a € S gibt es einen eindeutig bestimmten
Ringhomomorphismus ¢ : R[x] — S mit ¢ |z = ¢ und ¢(x) = a.

Beweis: Zundchst beweisen wir die Existenz des Homomorphismus cj; Jedes Element Oy # f € R[x] besitzt eine
Darstellung der Form

n
f = Zakxk mit nelN,, aq,...,a,€R und a,#0z ,
k=0

und diese ist eindeutig bestimmt. Wir definieren eine Abbildung ¢ : R[x] — S, indem wir q’;(OR) = 0y und d(f) =
ZZ:O ¢ (a;)ak setzen. Zu zeigen ist, dass wir auf diese Weise einen Ringhomomorphismus definiert haben. Da das
Element 1; als Polynom in R[x] vom Grad Null aufgefasst werden kann, gilt zunéchst qg(lR) = ¢(1z) = 15 nach
Definition von ¢A> Seien nun f, g € R[x] vorgegeben. Ist eines dieser Elemente gleich Null, dann sind die Gleichungen

S(f+8)=d(f)+d(g) und ¢(fg) = $(f)P(g) wegen ¢ (0g) = O offensichtlich erfiillt. Wir kénnen also f, g # Og
annehmen und damit voraussetzen, dass f und g Darstellungen der Form

m n
f =Zakxk und g =Zng€
k=0 (=0

besitzen, mit m,n € Wy, ai, b, € R und a,,, b, # 0z. Wie oben setzen wir a; = Oy fiir k > m und b, = 0 fiir £ > n. Auf
Grund der Rechenregeln fiir die Addition und Multiplikation von Polynomen gilt dann

Pf+g) = qS(Z(ambr)xf) = > dlg,+bla = D (¢la)+¢b))a

relNg relN, relNg

= > ¢@)d + > p(b)a’ = é(Zakxk)wS(Z b@x‘) = N+

kelNg LeN, kelN, {elN,
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sowie

b(fe) = ¢ (Z (Zarebz)xr) =>. (Z ¢>(are)¢(b4))af = (Z ¢(ak)a’<) (Z ¢(be)ae) = $(f)e(g).
(=0 k=0 (=0

r=0 \{=0

Fiir den Beweis der Eindeutigkeit nehmen wir an, dass neben (ﬁ durch ¢ ein weiterer Ringhomomorphismus R[x] — S
mit ¢ (x) = a und Y|z = ¢ gegeben ist. Auf Grund der Homomorphismus-Eigenschaft gilt cj;(OR) = 05 = Y(0g). Sei
nun f € R[x] ein Element mit f # Og,q, also f = >/_, axx* mit ay, ...,a, € R und a, # O. Es gilt dann

m m

$(f)=¢ (Zakxk) = > lax®) = D pla)d" = D plax’) = (Z akxk) = Y(f).
k=0 k=0 k=0

k=0 k=0

Damit ist die Eindeutigkeit von q§ bewiesen. m|

Ist S = R oder ein Erweiterungsring von R, dann bezeichnet man den eindeutig bestimmten Homorphismus qg aus
Satz(11.23|als den Auswertungshomomorphismus an der Stelle a.

Folgerung 11.24 Je zwei Polynomringe {iber einem Ring R sind isomorph.

Beweis: Nehmen wir an, dass R[x] 2 R und R[y] 2 R beides Polynomringe iiber R sind. Nach Satz gibt es
eindeutig bestimmte Homomorphismen ¢ : R[x] — R[y]und v : R[y] — R[x] mit ¢ | = 1|z = idg sowie ¢(x) =y
und Y (y) = x. Damit ist 1 o ¢ ein Ringhomomorphismus R[x] — R[x] mit (3 0 ¢ )|z = idg und (3 o ¢p)(x) = x. Aber
auch der Homomorphismus idg;,; besitzt diese Eigenschaft. Auf Grund der Eindeutigkeit muss also 1 o ¢ = idg(,]
gelten. Genauso beweist man die Gleichung ¢ o) = idg,. Also ist ¢ ein Isomorphismus von Ringen. |

Kommen wir nun zum Beweis der Existenz eines Polynomrings iiber jedem Ring R. Ein Polynom der Form a,+a;x +
...ta,x" ist bestimmt durch die Folge a, ay, ..., a, seiner Koeffizienten, also durch die Abbildung k — a; (wobei k fiir
k > n auf Oy abgebildet wird). Diese Beobachtung fiihrt uns auf die Idee, Polynome durch Abbildungen darzustellen.

Es sei Py die Menge aller Abbildungen f : IN, — R mit der Eigenschaft, dass f (k) = O fiir alle bis auf endlich viele
k € N, gilt. Zur Definition geeigneter Verkniipfungen orientieren wir uns an den Rechenregeln zur Addition und
Multiplikation von Polynomen. Dementsprechend definieren wir auf Py zwei Verkniipfungen & und ® durch

(fegdm)=f(n)+gn) und (Fogdm)=) fln—kgk)= > F)gk).
k=0

k+€=n

Fiir jedes a € R sei @ € P das Element gegeben durch @(0) = a und d(n) = O fiir alle n > 1. Diese Elemente sollen
den konstanten Polynomen a € R entsprechen. Aulerdem definieren wir ein Element ¥ € Py durch %(1) = 1z und
X(n) = Og fir n # 1. Dieses Element iibernimmt die Rolle der Variablen x im Polynomring R[x].

Lemma 11.25 Das Tripel (Py, ®, ®) ist ein Ring, mit 0 als Null- und 1 als Einselement.

Beweis: Zunéchst tiberpriifen wir, dass (Pg, ®) eine abelsche Gruppe ist. Seien f, g, h € P, vorgegeben. Es gilt
(feglen(n) = (fegm)+h(n) = (FM+gh)+h(n) = f()+(gn)+h(n) =
fmM+@eh)n) = (fe(geh)(n)
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fiir jedes n € INy und somit (f ® g)®h = f & (g ®h) fiir alle f, g,h € Pr. Ebenso gilt (f ® g)(n) = f(n) + g(n) =
gn)+f(n)=(g® f)(n)firalleneIN, und somit f g =g f.

Fiir jedes n € IN,, gilt (f ®0)(n) = f (n)+0(n) = f (n)+0x = f(n), also f ®0 = f. Sei nun die Abbildung (—f) : N, — R
definiert durch (—f)(n) = —f(n) fiir alle n € IN,. Dann gilt —f € Py, und fiir alle n € N, ist (f & (—f))(n) =
f(n) + (—=f)(n) = f, + (—f (n)) = 0z = 0(n). Wir erhalten f & (—f) = 0. Insgesamt ist (P, ®) also tatsichlich eine
abelsche Gruppe.

Als néchstes beweisen wir fiir die Verkniipfung ©® das Assoziativgesetz. Seien dazu f, g,h € Py vorgegeben. Fiir alle
ne N, gilt

(feg)onm) = > (fodhl) = > (Z f(i)g(j)) h(e)

k+{=n k+l=n \i+j=k
DD Fgne) = > fDg(h).
k+l=ni+j=k i+j+{=n

Ebenso erhalten wir

(folgom)n) = > flgohik = Y, f(i)( >, g(j)h(e))

i+k=n i+k=n jHi=k
>0 DL Fhe) = > fDZ()ACW).
i+k=n j+{=k i+j+k=n

Insgesamt gilt also (f ® g) ®h = f ® (g ® h). Nun iiberpriifen wir, dass 1 in (Pg, ®) das Neutralelement ist. Wegen
1(k) = 0 fiir k > 0 gilt fiir alle n € N, jeweils

Fohm) = D f-Rik) = f(n—0)-1 = f(n)

k=0

und somit f ® 1 = f. Zum Schluss miissen wir noch das Distributivgesetz iiberpriifen. Wieder seien f,g,h € Py
vorgegeben. Fiir jedes n € IN;) gilt

(fo(geh)n) = Y fin—k(geh)k) = Y fln—k)(gk)+h(k) =
k=0 k=0

S fn-kgl)+ > fn—bh(k) = (Fogm+(Ffonmn) = ((feog)ef o) n)
k=0 k=0
also tatsdchlich f @ (g@®h)=(f @ g)® (f ®h). |

Lemma 11.26 Seia € R und m € IN,. Dann gilt (@ ® ¥™)(m) = a, und (@ © ¥™)(n) = Oy fiir
alle n € INy \ {m}.

Beweis: Wir beweisen durch vollstdndige Induktion iiber m € IN, dass x™(m) = 1 und fiir alle n # IN, \ {m} jeweils
%™(n) = O gilt. Fiir m = 0ist ¥° = 1, und es gilt 1(0) = 1; und 1(n) = O fiir alle n > 0. Sei nun m € IN, vorgegeben,
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und setzen wir die Aussage fiir dieses m voraus. Zunéchst gilt

m+1
™ (m+1) = (F"ex)(m+1) = Z(im)(m+1—k)5c(k) = X"(m+1-1)x(1)
k=0
= x"(m)x(1) = 1z-lz = 1z ,

wobei wir im dritten und fiinften Schritt die definierende Eigenschaft von X und im fiinften Schritt auf3erdem die
Induktionsvoraussetzung angewendet haben. Fiir jedes n € IN; \ {m + 1} gilt dagegen n — 1 # m und somit

m+1

Fm) = @F"ex(n) = D .En-KIk) = "(-1DF1) = 0l = O
k=0

Damit ist der Induktionsbeweis abgeschlossen. Fiir jedes m € IN gilt nun auerdem

n

(@Gox™)(n) = Zd(n—k)x’"(k) = d0)x™n) = a-x™(n) ,

k=0

also (@@ x™)(n)=a-1x =aimFall n =m und (@ ® x™)(n) = a - 0 = Og im Fall n # m. |

Lemma 11.27 Fiir jedes f € Py \ {0} gibt es ein eindeutig bestimmtes n € IN, und eindeutig
bestimmte a,, a;, ..., a, €R, so dass a,, # 0z und

f = (Gg,08M)e ..e(q,0x)ed gl

Beweis: Zum Nachweis der Existenz sei f € Py \ {0} vorgegeben und n € IN, maximal mit der Eigenschaft f (n) # O.
Seiap=f(k)fir0O<k<nund g=(d,®X")®..®(d; ®X)® d,. Dann gilt fiir 0 < k < n jeweils

n
gk) = Y>(@oex )k = a = fk) ,
=0
wobei im zweiten Schritt Lemma [11.26|angewendet wurde. Fiir k > n gilt g(k) = Oy = f(k), insgesamt also f = g.
Fiir den Nachweis der Eindeutigkeit seien m € N, und by, ..., b,, €R, so dass b,, # 0 und

f = (hpei™e ..e(h,ox)eb, erfilltist.

Wie im letzten Absatz {iberpriift man, dass f(k) = by fiir 0 < k < m und f (k) = Oy fiir k > m gilt. Somit ist m die
maximale Zahl mit der Eigenschaft f (m) # Oy, und es folgt m = n. AuRerdem gilt b, = f(k) =q; fir0<k <n. O

Satz 11.28 Zu jedem Ring R existiert ein Polynomring iiber R.

Beweis: Sei ¢ : R — Py definiert durch ¢(a) = d fiir alle a € R. Diese Abbildung ist ein Homomorphismus von Ringen.
Denn ¢ bildet 1; auf das Einselement 1 von Py ab. Fiir beliebige a, b € R gilt auBerdem ¢(a+b) = ¢(a) ® ¢(b) und
¢(ab) = ¢(a) ® ¢(b). Denn es gilt ¢(a + b)(0) = a+ b = $(a)(0) + ¢(b)(0) = (¢(a) ® ¢(b))(0) und $(ab)(0) =
ab = ¢(a)(0)¢p(b)(0) = (¢ (a) © ¢(b))(0), und fiir jedes n € IN gilt ¢p(a + b)(n) = 0 = (¢p(a) & ¢(b))(n) sowie
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$(ab)(n) = ¢p(a)(n)-¢(b)(n) = (¢(a)® P (b))(n). Aukerdem ist ¢ injektiv. Ist namlich ¢ (a) = O fiir ein a € R, dann
folgt a = d(0) = ¢(a)(0) = 0(0) = 0.

Wir kénnen nun Satz[11.16|auf den Monomorphismus ¢ anwenden. Wir erhalten einen Erweiterungsring von R, den
wir mit R[x] bezeichnen, und einen Isomorphismus q§ :R[x] — Py mit <;l;| r = ¢. Aullerdem setzen wir x = (ﬁ_l(ic).
Wegen qglR = ¢ gilt (;t;(a) = ¢(a) = a fiir alle a € R. Sei nun f € R[x] \ {0} beliebig vorgeben und f= (f)(f). Nach
Lemma|[11.27] gibt es ein eindeutig bestimmtes n € IN; und eindeutig bestimmte ay, ..., a, € R mit a, # O, so dass

f = (@oxVe ..eGox)ed  gilt

Durch Anwendung von (ﬁ_l auf beide Seiten der Gleichung erhalten wir auf Grund der Homomorphismus-Eigen-
schaft die Gleichung f = a,x"+...+a, x +a,. Aus der Eindeutigkeit von n und a, ..., a, fiir das Element f folgt auch
die Eindeutigkeit fiir das Element f. Nehmen wir ndmlich an, dass auch f = b,,x™ + ... + byx + b, erfiillt ist, mit
m € N, und by, by, ..., b,,,. Dann folgt

(G, 056 .. (3 ox)ed = f = ¢f) = (b,0xMe ..e(b,0%)eb, ,

und die Eindeutigkeitsaussage in Lemma [11.27, angewendet auf das Element fe Pg \ {0}, liefert die Gleichungen
m=nund aq =b, flr0 <k <n. m|

Zum Abschluss des Kapitels befassen wir uns noch mit den algebraischen Eigenschaften der Polynomringe.

Proposition 11.29 SeiR ein Ring und R[x] ein Polynomring {iber R.
(i) Sind Oy # f, g € R[x] und gilt auch f + g # Oz und f g # Og, dann folgt

grad(f +g) < max{grad(f),grad(g)} und grad(fg) < grad(f) + grad(g).

(ii) Ist R ein Integritatsbereich, dann gilt dasselbe auch fiir den Ring R[x]. In diesem Fall gilt
sogar grad(f g) = grad(f) + grad(g) fiir alle f, g € R[x] mit f, g # Og.

Beweis: zu (i) Sei m = grad(f) und n = grad(g). Dann kénnen wir f und g in der Form f = kazo a;x™ und
g= ZZZO b,x! darstellen, mit geeigneten a;, b, € R. Wie zuvor definieren wir die Koeffizienten von a, und b, auch
fiir k > m und £ > n, indem wir sie auf Null setzen. Wie wir oben festgestellt haben, gilt f + g = Zremo(ar +b.)x".
Dabei ist a, + b, # Og nur moglich, wenn a, # Og oder b, # Oy gilt, also wenn r < m oder r < n ist, was mit

r < max{m, n} gleichbedeutend ist. Daraus folgt grad(f + g) < max{m,n} = max{grad(f), grad(g)}. Ebenso zeigt
die Gleichung f g = ZT:;(ZZzO a,_¢by)x", dass grad(f g) < m+n = grad(f) + grad(g) gilt.

zu (ii) Der Koeffizient von x™*" des Polynoms f g ist gegeben durch Z;":OH Amin—eby = a,b,, denn fiir £ > n ist
by = Og, und fiir £ < n ist m+ n —£ > m und somit a,,,,_, = Og. Ist R ein Integrititsbereich, dann folgt aus a,, # Oy
und b, # Og auch a,, b, # Og. Inbesondere ist das Produkt zweier Polynome ungleich Null wiederum ungleich Null;
auBBerdem ist mit R auch der Polynomring R[x] kein Nullring. Dies zeigt, dass auch R[x] ein Integrititsbereich ist. O

Folgerung 11.30 Sei R ein Integritdtsbereich. Dann gilt R[x]* = R*, d.h. die Einheitengruppe
des Polynomrings R[ x ] stimmt mit der Einheitengruppe des Grundrings R {iberein.
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Beweis: Sei a € R*. Dann gibt es ein b € R mit ab = 1z = 1g(,. Dies zeigt, dass jede Einheit in R auch eine Einheit
in R[x] ist. Sei nun umgekehrt f eine Einheit in R[x]. Dann gibt es ein Element g € R[x ] mit f g = 1) = 1z. Mit
Proposition (ii) erhalten wir grad(f) + grad(g) = grad(f g) = grad(1z) = 0, und wegen grad(f ), grad(g) =0
folgt daraus grad(f) = grad(g) = 0. Also sind f und g beides Elemente des Grundrings R. Aus der Gleichung fg =1
folgt nun, dass f in R* enthalten ist. m|

Man beachte, dass die Folgerung fiir Nicht-Integrititsbereiche im Allgemeinen falsch ist. Hier kann es in R[x]* auch
Elemente mit Polynomgrad > 1 geben. Im Restklassenring Z /47 gilt beispielsweise 2 - 2 = 0, das Element 2 ist also
ein Nullteiler. Daraus folgt, dass das Polynom f = 2x + 1 im Polynomring Z/4Z[x] eine Einheit ist, denn es gilt
ff=@x+D2x+1)=(2-2)x2+2+2)x+1=0-x>+0-x+1=1.
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§12. Euklidische Ringe, Hauptidealringe und faktorielle Ringe

Zusammenfassung. Beim euklidischen Algorithmus handelt es sich um ein Verfahren, das in endlich vielen
Schritten den ggT zweier Ringelemente ermittelt. Die Ringe, fiir die ein solches Verfahren existiert, bezeichnet
man als euklidische Ringe. Wir werden zeigen, dass jeder euklidische Ring auch ein Hauptidealring ist.

Fir den Begriff der Primzahl gibt es in beliebigen Integrititsbereichen zwei naheliegende Verallgemeinerun-
gen, ndmlich den Begriff des Primelements und den des irreduziblen Elements. In den faktoriellen Ringen, zu
denen die Hauptidealringe zdhlen, fallen beide Begriffe zusammen. Dariiber hinaus sind diese Ringe dadurch
ausgezeichnet, dass fiir deren Elemente eine ,im Wesentlichen eindeutige“ Primfaktorzerlegung existiert.

Wichtige Grundbegriffe Zentrale Sdtze

— Normfunktion auf C — Euklidische Ringe sind Hauptidealringe.

— euklidischer Ring, Hohenfunktion — Hauptidealringe sind faktorielle Ringe.

— irreduzibles Element, Primelement — Korrektheit des Euklidischen Algorithmus

— Reprasentantensystem der Primelemente — Nachweis von irreduziblen Elementen mit der Normfuktion

— faktorieller Ring — Beschreibung der Primideale und der maximalen Ideale in
Hauptidealringen

— Charakterisierung der faktoriellen Ringe

In Satz haben wir fiir jedes d € Z den quadratischen Zahlring Z[+v/d] und im Fall d = 1 mod 4 auch den Ring
Z[%(l + v/d)] eingefithrt. Um die Teilerrelation und auch die Idealstruktur dieser Ringe zu untersuchen, wird sich
die folgende Funktion als wichtiges Hilfsmittel erweisen.

Definition 12.1 Die Normfunktion N : C — R, ist definiert durch

N(iz) = 2z = |z* firalle z€C.

Wie der komplexe Absolutbetrag ist auch die Normfunktion N multiplikativ. Das bedeutet, dass fiir alle z,w € C die
Gleichung N(zw) = N(z)N (w) erfiillt ist.

Lemma 12.2 Seid € NN.

() Ista € Z[V—d], a =a+ bv/—d mit a,b € Z, dann ist N(a) = a® + db? € IN,,.

(i) Gilt (—~d) =1mod4, R =Z[3(1+v—d)]und ist a = a+ 3bv—d mita,b € Z, a =
b mod 2, dann ist N(a) = 7a* + 7db* € N,

Sind a, 8 im Fall (i) oder (ii) jeweils Elemente des Rings R und gilt a | 8, dann ist N(a) ein Teiler
von N(f) im Ring Z.
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Beweis: Istz =u+iv € C mit u,v € R, dann gilt jeweils N(z) = 2z = (u + iv)(u —iv) = u® + v2. Wendet man dies
unter (i) auf u = a und v = bv/—d an, dann erhilt man N(a) = a® + db%. Aus a, b € Z folgt offenbar N(a) € IN,,.
Ebenso erhélt man mit u = %a und v = %b\/—_d die Gleichung in Teil (ii). Man tiberpriift unmittelbar, dass im Fall
a = b =0 mod 2 die Zahlen a® und b? durch 4 teilbar sind. Deshalb ist auch a® + db? ein Vielfaches von 4, und es
folgt N(a) € IN,. Im Fall a = b = 1 mod 2 gilt a> = b?> = 1 mod 4. Wegen d = 3 mod 4 ist dann a? + db? = 0 mod 4
und somit N(a) € IN, in dieser Situation ebenfalls erfiillt.

Sei nun entweder R = Z[v—d] oder R = Z[%(l + +/—d)], letzteres nur unter der Voraussetzung im —d = 1 mod 4.
Seien a, 8 € R mit a | 3. Dann existiert ein y € R mit § = ya. Auf Grund der Multiplikativitdt von N folgt N(f) =
N(y)N(a). Also ist N(a) ein Teiler von N(f) im Ring Z. |

Wir fithren einen neuen Ringtyp ein, der dadurch gekennzeichnet ist, dass in ihm eine ,Division mit Rest* ausgefiihrt
werden kann (und sinnvoll definiert ist). Wie wir sehen werden, hat dies unter anderem zur Folge, dass je zwei
Ringelemente a, b einen ggT besitzen, sofern sie nicht beide Null sind.

Definition 12.3 Eine Hohenfunktion auf einem Integritdtsbereich R ist eine Abbildung h :
R\ {0z} — IN mit der folgenden Eigenschaft: Sind a,b € R, b # 0g, dann gibt es Elemente
g,r € R, so dass die Gleichung a = gb + r erfiillt ist und aullerdem entweder r = Oy oder
h(r) < h(b) gilt. Ein euklidischer Ring ist ein Integritatsbereich, auf dem eine Héhenfunktion
existiert.

Gelegentlich bietet es sich an, fiir die Hohenfunktion eine Abbildung R \ {0z} — IN,, also mit Wertebereich IN, statt
IN zu verwenden. Der Begriff des euklidischen Rings @ndert sich dadurch nicht. Ist ndmlich h eine Héhenfunktion
mit Wertebereich IN,,, dann ist durch h(a) = h(a) + 1 eine Héhenfunktion mit Wertebereich IN definiert.

Wir werden nun drei konkrete Beispiele fiir euklidische Ringe angeben. Im Hinblick auf das erste Beispiel erinnern
wir an die Definition der untern GaufSklammer: Nach Definition ist | x | fiir x € R jeweils die grofSte ganze Zahl a mit
a < x. Es ist also beispielsweise [g] =1 und [—%J =-2.

Proposition 12.4

(i) Der Ring Z der ganzen Zahlen ist ein euklidischer Ring, denn die Abbildung h : Z\ {0} —
IN gegeben durch h(a) = |a| ist eine Hohenfunktion auf diesem Ring.

(ii) Sei K ein Korper. Dann ist der Polynomring K[x] ein euklidischer Ring mit der Héhen-
funktion gegeben durch die Gradabbildung, also h(f) = grad(f) fiir alle f € K[x]\ {Ok}.

(iii) Der Ring Z[i] ist ein euklidischer Ring, wobei eine Hohenfunktion durch die auf Z[i]\ {0}
eingeschrankte Normfunktion gegeben ist.

Beweis: zu (i) Als Teilring des Korpers @ ist Z auf jeden Fall ein Integritédtsbereich. Um zu zeigen, dass h tatsachlich
eine Hohenfunktion ist, seien a, b € Z mit b # 0 vorgegeben. Wir betrachten zunichst den Fall b > 0. Setzen wir
q = |5] und r = a—qb, dann ist die Gleichung a = gb + r nach Definition erfiillt. Auf Grund der Definition der
unteren Gaufklammer gilt ¢ < < g + 1. Multiplikation mit b liefert ¢b < a < (q + 1)b, und durch Subtraktion von
gb erhalten wir schlief3lich 0 < r < b. Also gilt entweder r = 0 oder h(r) < h(b).
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Betrachten wir nun den Fall b < 0. Dann ist b; = —b > 0, und wie wir bereits gezeigt haben, gibt es q;,r; € R mit
a =q;b; +r; und r; = 0 oder h(r;) < h(b;). Setzen wir ¢ = —q; und r = ry, dann gilt a = qb + r und entweder
r =0 oder h(r) = h(r;) < h(b;) = h(b).

zu (ii) Nach Proposition[11.29]ist mit K auch der Ring K[x] ein Integritdtsbereich. Sei nun 0 # g € K[x] vorgegeben,
mit m = grad(g) und

g = Y.bx' , by..,by€R, b, #0.
i=0

Durch vollstindige Induktion {iber n € IN, zeigen wir: Ist f € K[x] mit n = grad(f), dann gibt es ein g € K[x], so
dass fiir r = f —qg entweder r = 0 oder grad(r) < m gilt. Im Fall n < m kdnnen wir einfach ¢ = 0, r = f setzen,
und es ist nichts zu zeigen. Sei nun n € INy, n > m, und setzen wir die Aussage fiir die Polynomgrade < n als giiltig
voraus. Sei f ein Polynom vom Grad n, also

n
f = Zaixi mit ag,...,a, €K, a, #0.
i=0

Setzen wir q, = g—;x”_m, dann ist f = f —q,g ein Polynom vom Grad < n, und wir kénnen die Induktionsvoraus-
setzung auf f, anwenden. Wir erhalten ein q; € K[x], so dass r = f, — q; g entweder gleich Null oder grad(r) < m
erfiillt ist. Wegen r = f —(qy + q,)g erhalten wir durch q = g, + g, ein Element mit den gewiinschten Eigenschaften.
Insgesamt haben wir damit gezeigt: Sind f,g € K[x] mit g # 0, dann gibt es q,r € K[x] mit f =qg+rundr =0
oder grad(r) < grad(g).

zu (iii) Als Teilring des Korper C ist Z[i] jedenfalls ein Integritétsbereich. Fiir den Nachweis, dass h eine Hohen-
funktion ist, seien a, 8 € Z[i] vorgegeben, wobei wir § # 0 voraussetzen. Wir miissen zeigen, dass ein q € Z[i]
mit a —qf = 0 oder h(a —qfB) < h(pB) existiert. Sei @ = a+ib und = ¢ +id mit a, b,c,d € Z. Wegen f8 # O ist
(c,d) # (0,0). Es gilt

a a+ib  (a+ib)(c—id) _ ac+bd  .bc—ad

= = = -
B c+id (c+id)(c—id) 2rd> l2ta

r+is ,

wenn wir die Zahlen r,s € Q durch

_ac+bd und S_bc—ad
2442 T 2442

definieren. Seien nun ry,s, € Z so gewdhlt, dass |r —ry| < % und |s —sg| < % gilt, und setzen wir q = r + isy. Dann
folgt

h(%—q) = (r=ro)+(s—s0)? < %+% = < 1.

N

Es gilt dann a — g3 = 0 oder zumindest h(a —qf3) = h(% —q)h(p) < %h(ﬁ) < h(p). |

Schon an dieser Stelle sei darauf hingewiesen, dass Z[+v/d] keineswegs fiir jedes d € Z ein euklidischer Ring ist,
ebensowenig der Ring Z[%(l + +/d)] im Fall d = 1 mod 4. Weiter unten werden wir sehen, dass beispielsweise die
Ringe Z[+v—3] und Z[ v—5] keine euklidischen Ringe sind.
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Die folgenden Regeln fiir die Nullstellen von Polynomen iiber Kérpern sind im Prinzip bereits aus der Schulmathe-
matik bekannt. Thre Giiltigkeit beruht aber letztlich darauf, dass es sich bei den Polynomringen iiber Kérpern um
euklidische Ringe handelt.

Folgerung 12.5 SeiK ein Korper und 0 # f € K[x].

(i) Ist a € K eine Nullstelle von f, dann gilt f = (x —a)g fiir ein Polynom g € K[x].
(i) Ist grad(f) = n mit n € IN,, dann hat f hochstens n Nullstellen in K.

Beweis: zu (i) Da K[x] ein euklidischer Ring ist, gibt es Polynome g,r € K[x] mit f = (x —a)g + r mit r =0 oder
grad(r) < grad(x —a) = 1. Es gilt also r € K. Daraus folgt r = r(a) = f(a) —(a —a)g(a) = 0—0 = 0 und somit
f=x—ag.

zu (ii) Diese Aussage beweisen wir durch vollstindige Induktion {iber n. Ist n = 0, dann handelt es sich bei f um
eine Konstante in K, und f besitzt dann offensichtlich keine Nullstellen. Setzen wir nun die Aussage fiir n voraus,
und sei f ein Polynom vom Grad n + 1. Seien ay, ..., a, die verschiedenen Nullstellen von f, wobei r € IN; ist. Im
Fall r = O ist die Aussage r < grad(f) offenbar erfiillt. Andernfalls gibt es nach (i) ein Polynom g € K[x] mit
f =(x—ay)g, und fir 2 <i < r ist aq; wegen (a; —a;)g(a;) = f(a;) = 0 und a; —a; # 0 eine Nullstelle von g. Die
Gleichung f = (x —a;)g zeigt, dass grad(g) = n ist. Wir konnen also die Induktionsvoraussetzung auf g anwenden
und erhalten die Abschitzung r — 1 < n. Daraus folgt r < n + 1 wie gewiinscht. m|

In einem euklidischen Ring R kann durch wiederholte Division mit Rest ein groRter gemeinsamer Teiler d zweier
Ringelemente a, b €R in endlich vielen Schritten ermittelt werden. Dieses Verfahren, das wir nun prézise ausformu-
lieren werden, und dessen Korrektheit im Folgenden nachgewiesen werden soll, bezeichnet man als euklidischen
Algorithmus. Neben dem grof3ten gemeinsamen Teiler dieses Verfahren Elemente x, y € R mit der Eigenschaft

d = xa+yb.

Aus der Existenz des Algorithmus wird sich also ergeben, dass das Lemma von Bézout aus § 7 nicht nur in Z, sondern
in beliebigen euklidischen Ringen giiltig ist.

Lemma 12.6 Sei R ein Ring, und seien a,b,q € R mit b # 0. Dann gilt die Gleichung
ggT(a, b) = ggT(a —gqb, b). Genauer ausformuliert bedeutet das: Ein Ringelement d ist genau
dann ein grof3ter gemeinsamer Teiler von a und b, wenn d ein gro3ter gemeinsamer Teiler von
a—qgb und b ist.

Beweis: ,=“ Seid ein grofter gemeinsamer Teiler von a und b. Dann gibt es ¢;,¢c, € R mit a = ¢;d und b = c,d.
Es folgt a —qb = c;d —qc,d, also ist d ein gemeinsamer Teiler von a —qb und b. Ist e € R ein weiterer gemeinsamer
Teiler dieser beiden Zahlen, dann gibt es c5,c4 € R mit a —qb = cge und b = c4e. Man erhélt a = (a —qb) +¢b =
cse + c4e = (c5 + c4)e. Also ist e ein gemeinsamer Teiler von a und b, und aus d = ggT(a, b) folgt e|d. Damit ist
gezeigt, dass d ein groldter gemeinsamer Teiler von a —qb und b ist. Die Beweisrichtung ,,<*“ 1duft analog. |
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EUKLIDISCHER ALGORITHMUS

Eingabe: ein euklidischer Ring R mit Hohenfunktion h
Elemente a, b € R mit b # 0

Ausgabe: Elemente d,x,y € Rmitd = ggT(a,b) und d = xa+ yb

Ablauf: (1) definiere (aq, x1,y;) = (a,1,0) und (a,, x5, y5) = (b,0,1)
(2) Sei das Tupel (a,, x,, ¥,) bereits definiert.

Wenn a,, =0 ist,
dannsetzed =a,_;, X =X,_1, Yy =Y, und gibd, x,y
als Ergebnis aus. (STOP)

Ansonsten
bestimme g, r € R mit
a,_1 =qa, +rund r =0 oder h(r) < h(a,).
Definere (@41, X415 Ynr1) = (1 X1 — qXn, Yno1 — q¥n)-
Wiederhole Schritt 2.

Satz 12.7 SeiR ein euklidischer Ring mit Hohenfunktion h. Der euklidische Algorithmus hélt
fiir jedes Paar (a, b) mit a,b € R und b # 0 nach einer endlichen Zahl von Wiederholungen. Er
liefert als Ausgabe tatsichlich d = ggT(a, b) und Ringelemente x,y € R mit d = xa + yb.

Beweis: Gehen wir zunichst davon aus, dass der zweite Schritt unendlich oft wiederholt wird. Dann ist das Tupel
(a,,x,, yn) fiir alle n € IN definiert. Nach Definition gilt fiir jedes n € IN aber jeweils r = a,,; und h(a,,;) = h(r) <
h(a,), wobei q,r € Z die in Schritt 2 definierten Elemente in der Gleichung a,_; = qa, + r sind. Wir erhalten also
eine unendliche absteigende Folge

h(a,) > h(as) > h(a,) > h(as) > ... von Zahlen in IN,,.

Aber eine solche Folge existiert nicht: Eine absteigende Folge in IN, die bei einer Zahl b € IN; beginnt, kann hochstens
b+1 Schritte lang sein. Damit ist gezeigt, dass der euklidische Algorithmus nach einer endlichen Anzahl von Schritten
abbricht.

Sei nun (a,, x,,y,) = (0, x,,y,) das letzte Tupel, das vom euklidischen Algorithmus berechnet wird. Wir beweisen
durch vollstdndige Induktion iiber k, dass fiir 2 < k < n die Gleichung

ggT(ay_1,a,) = ggT(a,b)

erfiillt ist. Fiir k = 2 haben wir nach Definition a; = a und a, = b, also ist die Gleichung ggT(a;,a,) = ggT(a, b)
offensichtlich erfiillt. Nehmen wir nun an, dass die Gleichung fiir k bereits bewiesen ist. Nach Definition gibt es ein
q € Z mit a;_, = qa; + a1, und es folgt

geT(ar, ars1) = g8T(ap, a1 —qax) = g8T(a, 1) = gegl(a—r,a) = ggT(a,b),
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wobei wir im zweiten Schritt und im letzten Schritt die Induktionsvoraussetzung angwendet haben. Nun be-
weisen wir noch durch vollstdndige Induktion die Gleichung

xxa+yib=ay fir 1<k<n.

Esgiltx;a+y;b=1-a+0-b=a =a; und x,a+y,b =0-a+1-b = b = a,. Nehmen wir nun an, dass die Gleichung
fiir k bereits bewiesen ist. Nach Definition existiert ein g, fiir das die Gleichungen a;,; = a;_; —qax, Xx11 = Xx—1 —qXk
und Y1 = Yx_1 — qY; erfiillt sind. Es folgt

Xe1a@+t Yemb = (go—gqxda+ (e —qyidb = (geqa+ v b) —q(xea + yib)

= Q179 = Qg41-

Der Algorithmus liefert d = a,_;, x = x,,_; und y = y,_; als Ergebnis. Nun gilt allgemein ggT(c,0) = c fiir jedes
Ringelement ¢ ungleich Null. Aus dem bereits Bewiesenen folgt ggT(a, b) = ggT(a,_;,a,) = ggT(a,_1,0) =a,_; =d
und xa+yb=x,_ja+y,_1b=d. O

Als Anwendungbeispiel berechnen wir den ggT der Zahlen a = 16170 und b = 1326.

la] a | x | » |
— | 16170 1 0
— | 1326 0 1
12| 258 1 —12
5| 36 -5 61
6 36 | —439
6 0 | (=221) | (2695)

Wir erhalten ggT(a, b) = 6 = 36a+(—439)b. (Die Zahlen in Klammern werden fiir das Ergebnis nicht mehr benétigt.)

Wie wir gesehen haben, sind auch Polynomringe iiber Kérpern Beispiele fiir euklidische Ringe. Folglich kann der
euklidische Algorithmus auch auf diese Ring angewendet werden. Als Beispiel berechnen wir den ggT der beiden
Polynome f = x*—3x®> —x? +5x —6 und g = x> —3x2 + x —3 in Q[x].

q an x” yn

— x*—=3x3—x%2+5x—6 1 0

- x3—3x24+x-3 0 1

x —2x2+8x—6 1 —x
—3X—3 2x—6 X+ —Ix?—2x+1
! 0 D[ (3 +3x—1)

Als Ergebnis erhalten wir

ggT(f,g) = 2x—6 = (Gx—3)f +(—3x*—31x+1)g.
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Als weiteres Beispiel berechnen wir den ggT der Elemente @ = 12+ 14i und 8 = 32—6i im Ring Z[i] der Gauf’schen
Zahlen. Um den Teiler g in jedem Schritt zu bestimmen, gehen wir folgendermalien vor. Zunéchst berechnen wir den

Quotienten a(“l‘l in der Form r + si mit r,s € Q. Anschlie@end wéhlen wir ry,s, € Z mit [r —ry| < % und [s —sg| < %
und sezten g = ry + Spi.
| an—l/an | q | an | Xn | Yn |
— — 12+ 14i 1 0
- — 32—6i 0 1
15 , 26 .
By%i| o |12+14i| 1 0
15 26 . . .
Tl | 1—20 | 8+44i | —1+2i 1
—2-2i|—1-2i | —4+2i | —4 1+ 2i
2 2 0 (7+2i) | (—=1—4i)

Also ist ggT(a,B) = —4+2i = (—4)a + (1 + 2i)B.

Satz 12.8 Jeder euklidische Ring R ist ein Hauptidealring.

Beweis: Seil einIdeal in R. Zu zeigen ist, dass es sich bei I um ein Hauptideal handelt, wozu wir I # (0) voraussetzen
konnen. Sei nun h eine Héhenfunktion auf R und a € I \ {0} ein Element mit h(a) < h(b) fiir alle b € I. Wir zeigen,
dass dann I = (a) gilt.

Ist b € I beliebig vorgegeben, dann liefert Division mit Rest Elemente q,7 € R mit b = qa + r, wobei r = 0 oder
h(r) < h(a) gilt. Im ersten Fall ist b in (a) enthalten. Ansonsten ist mit a,b € I auch r = b —qa ein Element aus
I. Aber die Ungleichung h(r) < h(a) widerspricht der Bedingung, die wir an das Element a gestellt haben. Es folgt
I € (a), und zusammen mit a € I erhalten wir I = (a). O

Aus dem Satz folgt, dass der Ring Z der ganzen Zahlen ein Hauptidealring ist. Dasselbe gilt fiir die Polynomringe
K[x] tiber beliebigen Koérpern K und fiir den Ring Z[i] der GauRschen Zahlen. Das folgende Beispiel zeigt, dass nicht
jeder quadratische Zahlring ein Hauptidealring ist, und damit auch kein euklidischer Ring sein kann.

Proposition 12.9 Der Ring R = Z[+—5] kein Hauptidealring, denn beispielsweise ist das
Ideal p = (3,1 + 24/—5) kein Hauptideal.

Beweis: Um zu sehen, dass p kein Hauptideal ist, verwenden wir die oben eingefiihrte Normfunktion N. Nehmen wir
an, dass p ein Hauptideal ist. Dann gibt es ein a € R mit p = (a). Da die Elemente 3 und 1 + 2+/=5 in p liegen, gibt
es B,y € Rmit 3 = aff und 1+ 2v/—5 = ay. Die Multiplikativitit der Normfunktion liefert 9 = N(3) = N(a)N(j3)
und 21 = N(1+2+/=5) = N(a)N(y). Also ist N(a) ein gemeinsamer Teiler von 9 und 21, damit auch ein Teiler vom
ggT(9,21) = 3. Es folgt N(a) € {1, 3}.

Betrachten wir zunéchst den Fall N(a) = 3. Schreiben wir @ = a+b+/—5 mit a, b € Z, dann gilt a>+5b% = N(a) = 3.
Aber die Gleichung a? + 5b% = 3 besitzt keine Lésung mit a, b € Z, also ist dieser Fall ausgeschlossen.
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Also gilt N(a) = 1. Aus a® + 5b% = 1 folgt b = 0 und a € {£1}, damit a € {£1}. Es folgt p = (a) = (1). Wir zeigen
nun, dass auch dies unmoglich ist. Ein beliebiges Element p in p = (3,1 + 2+/—5) hat die Form 3 + (1 + 2v/—=5)y
mit 3,y €R. Schreiben wir § =a+ bv—5und y =c+d+/—5 mita, b,c,d € Z, dann folgt

p = 3(a+bvV=5)+(1+2vV-=-5)c+dv—=5) = 3a+3bvV—5+(c—10d)+ (2c+d)v—5
= (3a+c—10d)+(3b+2c+d)vV—5.

Addiert man die beiden Koeffizienten, dann erhélt man den Wert 3a+3b+3c—9d, ein Vielfaches von 3. Ist also p € p,
p =m+n+ =5, dann ist m + n stets durch 3 teilbar. Dies zeigt, dass beispielsweise das Element 1 = 1 4+ 0+/—5 nicht
in p liegt, weshalb p # (1) gilt. Die Annahme, dass p ein Hauptideal ist, hat also insgesamt zu einem Widerspruch
gefiihrt. m|

Definition 12.10 Sei R ein Ring. Ein Element p € R wird irreduzibel genannt, wenn p weder
eine Einheit noch Null ist und die Implikation

p=ab = a€&€R” oderbeR”

fiir alle a, b € R erfiillt ist. Nichteinheiten ungleich Null, die nicht irreduzibel sind, bezeichnen
wir als reduzible Ringelemente.

Definition 12.11 Sei R ein Ring. Ein Element p € R heilst Primelement, wenn p weder eine
Einheit noch Null ist und auf3erdem die Implikation

pl(ab) = pla oder p|b fur alle a, b € R erfiillt ist.

Der folgende Satz stellt einen Zusammenhang zwischen den beiden neuen Begriffen her.

Satz 12.12 In einem Integritdtsbereich ist jedes Primelement irreduzibel.

Beweis: Sei p ein Primelement. Dann ist p jedenfalls ungleich Null und keine Einheit. Seien nun a, b € R mit p = ab
vorgegeben. Dann gilt insbesondere p | (ab), und auf Grund der Primelement-Eigenschaft gilt p | a oder p | b. Setzen
wir 0.B.d.A. voraus, dass p | a der Fall ist. Dann gibt es ein ¢ € R mit a = cp, und wir erhalten p = ab = cpb. Die
Kiirzungsregel liefert cb = 1, also ist b eine Einheit. Damit ist die Irreduzibilitat von p nachgewiesen. m|

In § 10 haben wir die Assoziiertheits-Relation auf den Elementen eines Rings R eingefiihrt: Zwei Elemente a,b € R
sind assoziiert zueinander, wenn a | b und b | a gilt. Man {iberpriift leicht, dass es sich dabei um eine Aquiva-
lenzrelation handelt, fiir die wir im weiteren Verlauf das Symbol ~ verwenden. Wir erinnern daran, dass in einem
Integritétsbereich R fiir zwei Elemente a, b nach Lemma|[10.8]die Feststellung a ~ b gleichbedeutend damit ist, dass
b = ¢a fiir ein € € R erfiillt ist.
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Proposition 12.13 Sei R ein Integrititsbereich, und seien p,q € R mit p ~ q.

(i) Ist p irreduzibel, dann gilt dasselbe fiir g.

(ii) Ist p ein Primelement, dann ist auch g ein Primelement.

Beweis: Nach Voraussetzung gibt es ein € € R* mit q = ep.

zu (i) Sei p irreduzibel. Wire q eine Einheit, dann wiirde p = £ 'q als Produkt zweier Einheiten ebenfalls in R*
liegen. Wire q = 0, dann wiirde auch p = ¢~10 = 0 folgen. Seien nun a, b € R Ringelemente mit g = ab. Dann folgt
p = ¢ 'q = (¢ 'a)b. Weil p irreduzibel ist, erhalten wir e 'a € R* oder b € R*. Es folgt a = (¢ 'a) € R* oder
b eR”.

zu (ii) Sei p ein Primelement. Wie unter (i) folgt daraus zunéchst, dass ¢ dann weder eine Einheit noch Null ist.
Seien nun a, b € R mit q | (ab) vorgegeben. Dann gibt es ein ¢ € R mit ab = cq. Es folgt ab = cep, also p | (ab). Weil
p ein Primelement ist, gilt p | a oder p | b. Ohne Beschréankung der Allgemeinheit konnen wir p | a annehmen. Dies
bedeutet, dass ein ¢’ € R mit a = ¢’p = ¢’¢q existiert. Daraus wiederum folgt q | a. Die Implikation q | (ab) = q | a
oder q | b ist damit bewiesen. m|

Proposition 12.14 Im Ring Z der ganzen Zahlen sind die irreduziblen Elemente genau die
Zahlen der Form +p, wobei p die Primzahlen durchlauft.

Beweis: ,=“ Sei p eine Primzahl. Dann gilt nach Definition p # 0. Aufferdem ist p keine Einheit, denn die beiden
Einheiten +1 im Ring Z sind keine Primzahlen. Wére p nicht irreduzibel, dann gébe es nach Definition Zahlen r,s € Z
mit p = rs, wobei r und s beides keine Einheiten, also ungleich +1 sind. Indem wir gegebenenfalls r durch —r und s
durch —s ersetzen, konnen wir r,s € IN annehmen. Aus r,s > 1 folgt dann 1 < r,s < p. Aber dies zusammen mit der
Gleichung p = rs widerspricht der definierenden Eigenschaft der Primzahlen. Da sich die Eigenschaft eines Elements,
irreduzibel zu sein, durch Multiplikation mit Einheiten nicht &ndert, ist auch —p fiir jede Primzahl p ein irreduzibles
Element in Z.

»2&=* Sei umgekehrt n € Z ein irreduzibles Element, und nehmen wir an, dass £n beides keine Primzahlen sind.
Da Multiplikation mit Einheiten an der Irreduzibilitats-Eigenschaft nichts d&ndert, konnen wir n > 0 annehmen. Da n
keine Primzahl ist, gilt entweder n = 1, oder es gibt r,s € N mit n = rs und 1 < r,s < n. Im ersten Fall wére n eine
Einheit, was aber der Voraussetzung an n, ein irreduzibles Element zu sein, widerspricht. Im zweiten Fall haben wir
n als Produkt von Nicht-Einheiten dargestellt, was ebenfalls einen Widerspruch zur Voraussetzung bedeutet. |

Wir werden im néchsten Abschnitt zeigen, dass in einer allgemeinen Klasse von Ringen, welche die Hauptideal-
ringe umfasst, die irreduziblen Elemente genau mit den Primelementen zusammenfallen. Also sind in Z auch die
Primelemente genau die Zahlen +p, wobei p die Primzahlen durchlauft.

In beliebigen Integritatsbereichen sind irreduzible Elemente dagegen im allgemeinen nicht prim. Um dies zu sehen,
formulieren wir ein Kriterium, mit dem sich leicht feststellen lisst, ob Elemente in Ringen der Form Z[+v—d] (mit
d € IN) irreduzibel sind. Wieder verwenden wir dazu die multiplikative Funktion N : C — R,, die auf Z[v/—d]
wegen N(a + bv/—d) = a® + db? fiir a, b € Z nur die natiirlichen Zahlen und Null als Werte annimmt.
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Proposition 12.15 Seid € N, R=7Z[+v—d] und a € R beliebig.

(i) Das Element a ist genau dann eine Einheit in R, wenn N(a) = 1 ist.
(ii) Ist N(«a) eine Primzahl, dann ist a in R irreduzibel.

(iii) Gilt N(a) = p? mit einer Primzahl p, und besitzt die Gleichung a?+db? = p keine Lésung
mit a, b € Z, dann ist a ebenfalls ein irreduzibles Element.

Beweis: zu (i) ,=“ Ist a eine Einheit, dann gibt es ein # € R mit aff = 1. Auf Grund der Multiplikativitdt von N
gilt N(a)N(B) = N(af) = N(1) = 1. Weil N(a) und N(f3) beides natiirliche Zahlen sind, muss N(a) = N(8) =1
gelten. ,<“ Sei a =a+ bv—d mit a, b € Z. Nach Voraussetzung gilt

a?+db®> = N(a) = 1.
Da a? und b2 natiirliche Zahlen sind, muss a = 0 oder b = 0 gelten, dariiber hinaus a = +1 oder d = —1, b = £1. Es
folgt @ = £1 oder @ = £+ —1, wobei letzteres nur im Fall d = —1 auftreten kann. Alle vier Elemente sind Einheiten

inR,dennesgilt1-1=1,(—-1)(—1)=1und v—1-(—v—1)=1.

zu (ii) Sei a@ € R und p = N(a) eine Primzahl. Dann kann a keine Einheit sein, denn nach (i) ist dafiir N(a) = 1
erforderlich. Sei nun a = By eine Zerlegung von a mit 3,y € R. Dann folgt p = N(a) = N(B)N(y). Da N(f),N(y)
natiirliche Zahlen und p eine Primzahl ist, folgt N(f8) = 1 oder N(y) = 1. Nach (i) ist damit 3 oder 7y eine Einheit.
Damit ist die Irreduzibilitdt von a bewiesen.

zu (iii) Nehmen wir an, dass a € R die angegebenen Voraussetzungen erfiillt, aber nicht irreduzibel ist. Wegen
N(a) = p? kann a keine Einheit sein. Ist @ = By mit B,y € R, und sind 3,y beides keine Einheiten, dann ist
wegen N(B)N(y) = p? nur N(B) = N(y) = p moglich. Schreiben wir B = a + bv/—d mit a,b € Z, dann gilt
p = N(f) = a® + db>. Aber dies ist unméglich, da die Gleichung nach Voraussetzung mit a, b € Z nicht 16sbar ist.
Also ist a irreduzibel. O

Folgerung 12.16 Seid € IN. Fiir die Einheitengruppe von R = Z[v—d] gilt R* = {£1, £+/—1},
falls d = 1 ist, ansonsten R* = {+1}.

Beweis: Dies ist ein Nebenergebnis des Beweises von Proposition|12.15 |

Als Anwendung der bisherigen Ergebnisse zeigen wir, dass die Elemente 2 und 1+ +/—3 im Ring R = Z[v—3]
irreduzibel, aber keine Primelemente sind. Beide Elemente sind nach Proposition [12.15| (iii) irreduzibel, denn es gilt

N(2) = NQOQ++vV-3) = 4 = 22 |

aber die Gleichung a? +3b% = 2 ist mit a, b € Z nicht 16sbar. Um zu zeigen, dass 2 und 1+ +/—3 keine Primelemente
sind, betrachten wir in R die Gleichung

4 = 2.2 = (1+v=3)1-vV-3).

Die Zahl 2 ist ein Teiler des Produkts (1 + +/—3)(1 — +v—3). Andererseits teilt 2 keine der beiden Elemente 1+ +/—3.
Wire dies der Fall, dann gébe es ein y € R mit 1+ +/—3 = 2y, und diese y wire eines der beiden Elemente % + %1/ —3.
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Insbesondere lage eine dieser beiden Zahlen in R. Dies wiirde bedeuten, dass a, b € Z existieren, so dass eine der
beiden Gleichungen

1+1vV=3 = a+bv/-3

erfiillt ist. Vergleichen wir aber den Realteil auf beiden Seiten, dann erhalten wir a = % im Widerspruch zu a € Z.
Also ist 2 in R tatsdchlich kein Primelement. Genauso zeigt man, dass auch das Element 1 + +/—3 nicht prim ist.

Die Primelemente hédngen mit den bereits in § 11 definierten Primidealen eng zusammen. Es gilt ndmlich

Proposition 12.17 Sei R ein Integritédtsbereich und p € R, p # 0i. Genau dann ist p ein
Primelement in R, wenn das Hauptideal (p) ein Primideal ist.

Beweis: ,=“ Wire (p) = (1), dann wére die 1 in (p) enthalten, und folglich gibe es ein r € R mit rp = 1. Dies wiirde
bedeuten, dass p eine Einheit ist, was aber nach Voraussetzung nicht der Fall ist. Seien nun a,b € R mit ab € (p).
Dann gibt es ein r € R mit ab = rp, also ist p ein Teiler von ab. Weil p ein Primelement ist, folgt p|a oder p|b. Im
ersten Fall gilt a € (p), im zweiten b € (p).

»<=“ Wire p eine Einheit, dann gébe es ein r € R mit rp = 1. Daraus wiirde dann 1 € (p) und (p) = (1) folgen,
was aber der Voraussetzung widerspricht. Seien nun a, b € R, so dass p|(ab) gilt. Dann folgt ab € (p), und aus der
Primidealeigenschaft von (p) folgt a € (p) oder b € (p). Im ersten Fall wére p|a, im zweiten p|b erfiillt. |

Satz 12.18 Sei R ein Hauptidealring, aber kein Korper, und p € R. Dann sind die folgenden
Aussagen dquvialent.
(i) Das Element p ist prim.
(ii) Das Element p ist irreduzibel.
(iii) Das Ideal (p) ist maximal.

(iv) Das Ideal (p) ist ein Primideal, und es gilt p # Og.

Beweis: (i) = (ii)“ Nach Satz[12.12]ist jedes Primelment in einem Integritatsbereich irreduzibel.

,(i1) = (iii)“ Zunichst ist (p) = (1) unmoglich, denn sonst wére p eine Einheit und damit kein irreduzibles Element.
Sei nun m ein Ideal mit (p) € m € (1) und a € R mit m = (a). Wegen (p) < (a) gilt a|p, es gibt also ein b € R mit
p = ab. Weil p irreduzibel ist, muss a oder b eine Einheit sein. Im ersten Fall ist m = (a) = (1), im zweiten m = (p).
Also ist (p) in der Tat ein maximales Ideal.

“(iii) = @v)“ Nach Folgerung ist jedes maximale Ideal in einem Ring ein Primideal. Nehmen wir nun an, es
gilt (p) = (0g). Auf Grund der Maximalitat von (p) sind dann (0g) und (1) die einzigen, voneinander verschiedenen,
Ideale in R. Wegen Oy # 1 ist R kein Nullring. Fiir jedes ¢ € R mit ¢ # O gilt aber (¢) = (1), somit 1 € (c), und
daraus folgt, dass rc = 1y fiir ein r € R erfiillt ist. Jedes Element in R ungleich null wére also invertierbar und R
somit ein Korper. Aber das ist laut Voraussetzung ausgeschlossen.

“(iv) = (i)“ Das folgt aus Proposition|12.17 O
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Definition 12.19 Ein faktorieller Ring ist ein Integritétsbereich R mit der Eigenschaft, dass
jedes Element r € R, das weder gleich Null noch eine Einheit ist, als Produkt von Primelementen
dargestellt werden kann. Dies bedeutet: Es gibt ein n € IN und Primelemente p,,...,p, € R, so
dass

r = Ppi:Dg:--'Dn gilt.

Lemma 12.20 Sei R ein Integrititsbereich.
(i) Seiena,a’,b,b’ €R, wobeia ~ a’, b ~ b’ und a|b gilt. Dann gilt auch a’|b’.
(ii) Jedes Element in R, das eine Einheit teilt, ist selbst eine Einheit.

(iii) Ein Element, das von einem Primelement geteilt wird, ist keine Einheit.

Beweis: zu (i) Wegen a ~ a’ und b ~ b’ gibt es Einheiten ¢, u in R mit a’ = ea und b’ = ub. Aus a|b folgt, dass ein
¢ € R mit b = ac existiert. Wir erhalten b’ = uac = ue 'a’c und somit a’|b’.

zu (ii) Sei € € R* und a € R mit ale. Weil die Elemente ¢ und 1 assoziiert sind, gilt a|1z nach Teil (i). Umgekehrt
ist 1 das Einselement ein Teiler von a, denn es gilt a = 15 - a. Also sind a und 1; assoziiert. Dies bedeutet, dass ein
W ER mit a = - 1z = u existiert.

zu (iii) Wire € € R* und p ein Primelement mit p|e, dann wére p nach (ii) eine Einheit. Ein Ringelement kann nach
Definition aber nicht zugleich Einheit und Primelement sein. m|

Proposition 12.21 In einem faktoriellen Ring R ist jedes irreduzible Element ein Primelement.

Beweis: Sei p € R irreduzibel. Da R faktoriell und p weder gleich Null noch eine Einheit ist, gibt es eine Darstellung
p =Dp;*...- P, von p als Produkt von Primlementen. Im Fall n > 1 kénnten wir p damit als Produkt p = p; - (p5-...*P,)
schreiben. Dabei ist p, eine Nicht-Einheit, ebenso das Produkt p, - ... - p, nach Teil (iii) von Lemma[12.20] Aber dies
widerspricht der Irreduzibilitdt von p. Also ist n = 1 und p = p; ein Primelement. m|

Satz 12.22 SeiR ein Integritédtsbereich. Dann sind dquivalent

(i) R ist ein faktorieller Ring.

(ii) Jedes Element r € R, dass weder gleich Null noch eine Einheit ist, kann als Produkt von
irreduziblen Elementen dargestellt werden, und diese Darstellung ist im wesentlichen
eindeutig. Dies bedeutet genau: Sind m,n € N und p; * ... p,, =T = q; * ... * q,, ZWEi
Darstellungen von r als Produkt irreduzibler Elemente p;,q;, dann ist m = n, und nach
eventueller Umnummerierung der Elemente ist p; assoziiert zu q; fiir 1 <i < m.

Beweis: ,(ii) = (1)“ Hier geniigt es zu zeigen, dass unter der gegebenen Voraussetzung jedes irreduzible Element
in R ein Primelement ist. Sei p € R irreduzibel. Dann ist p weder gleich Null noch eine Einheit. Seien nun a,b € R
mit p|(ab) vorgegeben. Zu zeigen ist, dass p ein Teiler von a oder ein Teiler von b ist.
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Nehmen wir zunédchst an, dass a = 0y oder b = Oy gilt. Weil das Nullelement Oz von jedem Ringelement geteilt
wird, folgt daraus sofort p|a oder p|b. Nehmen wir nun an, dass eines der Elemente a, b eine Einheit ist, 0.B.d.A. das
Element b. Dann wéren a und ab assoziiert, und aus p|(ab) wiirde nach Teil (i) von Lemma pla folgen. Also
konnen wir auch a, b ¢ R* annehmen. Wegen p|(ab) gibt es ein ¢ € R mit ab = pc. Ware ¢ = Og, dann wiirde daraus
ab = 0z und somit a = Oy oder b = Oy folgen. Aber dies haben wir bereits ausgeschlossen.

Weil a und b beide weder gleich Null noch Einheiten sind, besitzen sie jeweils eine Darstellung als Produkt von
irreduziblen Elementen. Seien also p;,q; € R irreduzible Elemente, so dass a = p; -...-p,, und b = q; -...-q,, erfiillt ist.
Das Element ¢ kann keine Einheit sein, denn sonst hétten wir eine Gleichung der Form (p; - ... p,,)(q7 * --- * 9,) = PC,
wobei rechts ein einziges irreduzibles Element, auf der linken Seite aber ein Produkt von mindestens zwei irreduziblen
Elementen steht. Dies widerspricht der vorausgesetzten Eindeutigkeit. Weil also auch ¢ weder gleich Null noch eine
Einheit ist, besitzt auch c eine Zerlegung der Form r; - ... - r, mit irreduziblen Elementen r;. Wir erhalten also eine
Gleichung der Form

(Pr-Pm) (@1°6n) = (rp-eomi)-p.
Auf Grund der Eindeutigkeit der Produktzerlegung ist p zu einem Faktor auf der linken Seite der Gleichung assoziiert.

Gilt p ~ p; fireini € {1,...,m}, dann ist p ein Teiler von a. Gilt p ~ g; fiir ein j € {1,...,n}, dann ist p ein Teiler von
b.

“(i) = (iD)“ Nach Voraussetzung besitzt jede Nicht-Einheit r € R, r # O eine Darstellung als Produkt von Primele-
menten, damit insbesondere als Produkt von irreduziblen Elementen. Zu zeigen bleibt, dass diese Produktdarstellung
im Wesentlichen eindeutig ist. Seien also

pr P = T = (41" Qy

zwei Darstellungen von r also Produkt von irreduziblen Elementen p;, q;. Wie wir bereits gezeigt haben, sind die p;
und q; zugleich Primelemente. Wir beweisen nun durch vollstandige Induktion tiber n, dass n = m gilt und nach
Umnummerierung p; zu q; assoziiert ist, fiir 1 <i <n.Im Fall n =1 gilt

Pir*--"Pm = (41

Weil g, irreduzibel ist, muss auch das Element auf der linken Seite der Gleichung irreduzibel sein. Dies ist nur dann
der Fall, wenn m = 1 gilt, denn ansonsten wire das Element links ein Produkt der beiden Nicht-Einheiten p; und

p2 S e ‘pm.

Setzen wir nun die Aussage fiir n als giiltig voraus, und nehmen wir an, dass eine Gleichung der Form

Pir~-"Pm = dq1°--"Adn-qns1

mit m € IN und irreduziblen Elementen p;, q; besteht (wobei diese Elemente wiederum zugleich auch prim sind). Weil
das Element auf der rechten Seite der Gleichung nicht irreduzibel ist, kann auch das Element links nicht irreduzibel
sein, es muss also m > 2 gelten. Wiederum teilt g, als Primelement einen der Faktoren p;, zum Beispiel p;. Es gilt
also wiederum q; = p, ¢ fiir ein ¢ € R*, und wir erhalten

P1° P2 P = (P18)° Q2+ e quyr-

Durch Kiirzung erhalten wir p, ... p,, = (€495) * ... - @01 - Nach Induktionsvoraussetzung gilt m—1=n<m=n+1.
Auflerdem ist nach Umnummerierung das Element p, assoziiert zu €q, (also auch zu g,), und es gilt p; ~ g; fiir
3<i<m. m|
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Definition 12.23 Sei R ein Integritatsbereich und P C R eine Teilmenge bestehend aus Prim-
elementen. Wir nennen P ein Représentantensystem der Primelemente in R, wenn jedes Prim-
element q € R zu genau einem p € P assoziiert ist.

Beispielsweise bilden die Primzahlen p € IN ein Reprédsentantensystem der Primelmente in Z. Ist K ein Korper,
dann bilden die normierten irreduziblen Polynome (also die irreduziblen Polynome mit dem Leitkoeffizienten 1) ein
Reprisentantensystem in K[x].

Folgerung 12.24 SeiR ein faktorieller Ring und P C R ein Reprisentantensystem der Primele-
mente. Dann gibt es fiir jedes Element Og # f € R eine eindeutig bestimmte Familie (v,(f)),ep
von Zahlen v,(f) € N, und eine eindeutig bestimmte Einheit ¢ € R*, so dass

f = el_[ p») erfillt ist.
pEP

Dabei gilt v,(f) = O fiir alle bis auf endlich viele Elemente p € P.

Beweis: Da R ein faktorieller Ring ist, besitzt f eine Darstellung f = q; - ... - q,, als Produkt von Primelementen.
Fiir jedes i gibt es ein p; € P und eine Einheit ¢; € R*, so dass q; = ¢;p; gilt. Setzen wir ¢ = ¢; - ... - &, dann
ist also die Gleichung f = ¢ - p; - ... - py, erfiillt. Definieren wir nun fiir jedes p € P die Zahl v,(f) € IN, durch

v, (f)= |{i e{l,..,m} { pi =DP}|, dann ist die Gleichung f = ¢ l_[peppvp(f) erfiillt, und fiir alle bis auf endlich viele
p € P gilt v,(f) = 0. Die Eindeutigkeit der Zahlen v,(f) folgt direkt aus der Eindeutigkeit der Zerlegung von f als
Produkt irreduzibler Elemente, und mit den Zahlen v,(f) ist auch die Einheit ¢ eindeutig bestimmt. O

Fiir alle a, b € R\ {0} gilt offenbar v,(ab) = v,(a) + v,(b). Seien ndmlich

a=c¢ l_[pVP(“) und b=¢ l_[pvp(b)

pEP pEP

die Darstellungen von a, b € R wie im Satz angegeben. Dann gilt ab = ¢’ ]_[p cp p"@+%(®) ynd aus der Eindeutigkeit
der Exponenten v, (ab) folgt v,(ab) = v,(a) +v,(b). Die Teilbarkeitsrelation lésst sich mit Hilfe der Zahlen v, (a) also
folgendermafen umformulieren.

Lemma 12.25 SeiR ein faktorieller Ring, P C R ein Représentantensystem der Primelemente,
und seien f, g € R mit f, g # 0. Dann gilt f|g genau dann, wenn v,(f) < v,(g) fiir alle p € P
erfiillt ist.

Beweis: Ist f ein Teiler von g, dann gibteseinh € R, h # 0 mit g = fh. Es folgt v,(g) = v,(fh) = v,(f )+v,(h) = v,(f)

fiir alle p € P. Gilt umgekehrt
f= El_[pvp(f) und g= g l_[pvp(g)

pEP pEP

mit ¢, &’ € R* und v, (f) < v,(g) fiir alle p € P, dann erhalten wir durch h = ge! ]_[pep p"»®=() ein Element h € R
mit g = fh. Es folgt f|g. O
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Folgerung 12.26 SeiR ein faktorieller Ring, und seien a, b € R\ {0z} teilerfremd. Ist Oz # c €RR
ein Element mit a|(bc), dann folgt ac.

Beweis: Nehmen wir an, dass a t ¢ gilt. Dann gibt es ein Primelement p € P mit v,(a) > v,(c). Andererseits
gilt v,(a) < v,(bc) = v,(b) + v,(c) und somit v,(b) > 0. Damit wére dann p ein Primteiler von b, was aber der
Teilerfremdheit von a und b widerspricht. m|

Satz 12.27 Sei R ein faktorieller Ring, und sei P C R ein Reprdsentantensystem der Primele-
mente in R. Seien fi, ..., f,, € R beliebige Elemente ungleich Null. Fiir jedes p € P definieren wir

u, =min{v,(f;) |1 <i<m} und w, =max{v,(f;) | 1 <i<m}.

p p

Dann ist f = l_[pep p“ ein ggT und g = l_lpep p"» ein kgV der Elemente fi, ..., f,,. Dies zeigt
also insbesondere, dass in einem faktoriellen Ring fiir beliebige endliche Mengen von Elementen
jeweils ein kgV und ein ggT existiert.

Beweis: Wegen v,(f) =u, <v,(f;) firallep € Pund 1 <i < mist f nach Lemm ein gemeinsamer Teiler von
f1s e fm- Ist h € R ein weiteres Element mit h|f; fiir 1 < i < m, dann folgt ebenfalls auf Grund des Lemmas jeweils
vp(h) < v,(f;) fiir alle p € P und 1 < i < m. Damit gilt v,(h) < u, = v,(f) fiir alle p € P, und folglich ist h ein Teiler
von f. Der entsprechende Beweis fiir das kgV lduft analog. O

Wir beenden den Abschnitt mit einem Satz, der die faktoriellen Ringe in die bisher definierten Ringtypen einordnet.

Satz 12.28 Jeder Hauptidealring R ist faktoriell.

Beweis: Wir wissen bereits, dass jedes irreduzible Element in einem Hauptidealring R auch ein Primelement ist, nach
Proposition[12.18] Daher geniigt es zu zeigen, dass fiir jede Nichteinheit a € R, a # 0y eine Zerlegung in irreduzible
Elemente existiert. Nehmen wir nun an, dass a € R wiére eine Nichteinheit ungleich Null, die keine solche Zerlegung
besitzt. Wir zeigen, dass dann eine Folge (a,),c von Ringelementen existiert, so dass folgende Bedingungen erfiillt
sind.

(1) a, # 0z und a, ¢ R*
(i) Das Element a,, ist nicht als Produkt irreduzibler Elemente darstellbar.

(ifl) apeila, und @yt ap;

Nach Voraussetzung besitzt das Element a; = a die Eigenschaften (i) und (ii). Zu zeigen ist nun, dass fiir ein vorge-
gebenes a, mit den Eigenschaften (i) und (ii) ein Element a,,,; existiert, so dass (iii) gilt und die Bedingungen (i), (ii)
auch fiir a,,,, erfiillt sind. Das Element a,, ist nicht irreduzibel, weil die Irreduzibilitat der Bedingung (ii) widerspre-
chen wiirde. Sei a,, = rs eine Darstellung von a, als Produkt von Nicht-Einheiten. Dann ist eines der Elemente r,s
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nicht als Produkt von irreduziblen Elementen darstellbar, denn ansonsten wiirde sich erneut ein Widerspruch zu (ii)
ergeben. Wir kénnen annehmen, dass das Element a,,; = r keine solche Darstellung besitzt. Ware a,,; = Og, dann
wiirde a, = Oy folgen, im Widerspruch zu (i). So aber sind die Bedingungen (i) und (ii) fiir a,, erfiillt. Offenbar
gilt auch a,¢|a,. Wiirde a,|a,.; gelten, dann gébe es ein ¢ € R mit a, ., = €a,, und aus a,; = €4, = €rs = €4S
wiirde mit der Kiirzungsregel s = 15 folgen, im Widerspruch dazu, dass s keine Einheit ist. So aber ist die Bedingung
(iii) fiir a, und a,, erfiillt.

Sei nun (a, ), eine Folge mit den Eigenschaften (i), (ii) und (iii). Aus der Bedingung (iii) folgt fiir die Hauptideale

(a,) nach Satz (i) die Beziehung
(@) & (@) & (a3) & (a) &

Wir zeigen, dass auch die Vereinigung I = U;:l(an) ein Ideal im Ring R ist. Wegen Oy € (a) liegt Oy auch in I.
Seien nun a, b € I und r € R vorgegeben. Dann gibt es m,n € IN mit a € (a,,) und b € (a,). Setzen wir 0.B.d.A. die
Ungleichung m < n voraus, dann liegen a und b wegen (a,,) € (a,) also beide in (a,). Weil (a,,) ein Ideal ist, folgt
a+be<(a,) und ra, € (a,), damitaucha+belundrael.

Da R nun ein Hauptidealring ist, gibt es ein b € R mit I = (b). Insbesondere gilt dann (a,,) € (b) fiir alle n € IN. Nach
Definition von I gibt es andererseits ein m € IN mit b € (a,,), also b € (a,,) fiir alle n > m. Es folgt (b) C (a,) und
damit (a,) = (b) fiir alle n > m. Aber dies widerspricht der vorherigen Feststellung (a,,) & (a,,41)- Die Annahme,
dass es ein Element gibt, das sich nicht in irreduzible Elemente zerlegen lasst, hat also zu einem Widerspruch gefiihrt.
O

Die Umkehrung dieses Satzes ist falsch: Es gibt faktorielle Ringe, die keine Hauptidealringe sind. Im néchsten Kapitel
werden wir sehen, dass fiir jeden faktoriellen Ring R auch der Polynomring R[x] faktoriell ist. Daraus folgt unter
anderem, dass Z[x] ein faktorieller Ring ist. Aber R ist kein Hauptidealring, denn das Ideal I = (2, x) ist kein
Hauptideal.

Zum Beweis nehmen wir an, es gibt ein f € Z[x] mit (f) =1, f = a,x" + ... + a;x + ay mit ay, ...,a, € Z. Wegen
f €(2,x) gibt es Polynome g,h € Z[x] mit f = 2g + xh. Dies zeigt, dass der konstante Term q eine gerade ganze
Zahl sein muss. Aber aus (f) = (2, x) folgt auch 2 € (f), also 2 = uf fiir ein weiteres Polynom u € Z[x]. Dies ist
nur moglich, wenn f eine Konstante ist. Wegen x € (f), also x = vf fiir ein v € Z[x] muss diese Konstante gleich 1
sein. Aber dies steht im Widerspruch dazu, dass a, gerade ist.

Anhang: Beispiel fiir einen Hauptidealring, der kein euklidischer Ring ist

Die naheliegende Frage, ob solche Ringe existieren, wird in der aktuellen Lehrbuchliteratur iibergangen, so dass
unklar bleibt, ob die Hauptidealringe iiberhaupt eine echte Verallgemeinerung der euklidischen Ringe darstellen.
Wir zeigen, dass der Ring R = Z[%(l + +/—19)] zwar ein Hauptidealring, aber kein euklidischer Ring ist. Dabei
folgen wir im Wesentlichen der Darstellung von [Wi], der einen zuvor erbrachten Beweis in der Veroffentlichung
[Ca] weiter vereinfachen konnte.

Satz 12.29 Der RingR = Z[%(l + +/—19)] ist ein Hauptidealring.

— 151 —



Beweis: In Satz wurde gezeigt, dass die Elemente von R durch R = {%a + %b\/—_19 |a,b€Z , a=bmod 2}
gegeben sind. Sei nun I ein Ideal in R ungleich (0). Zu zeigen ist, dass es sich bei I um ein Hauptideal handelt. Die
Normfunktion N(z) = |z|?> nimmt auf R \ {0} nur Werte aus IN an, denn fiir alle a,b € Z mit (a,b) # (0,0) und
a = b mod 2 ist

N(ia+31bv=19) = 1(a®+19b?)

positiv und ganzzahlig. Sind namlich a und b beide gerade, dann sind die Zahlen a® und 19b? beide durch vier
teilbar. Sind a und b beide ungerade, dann gilt a> = b?> = 1 mod 4, und wegen 19 = 3 mod 4 folgt a® + 19b2 =
1+3-1=4=0mod 4.

Auf Grund dieser Eigenschaft der Normfunktion gibt es ein a € I \ {0}, so dass |a| minimal ist. Nehmen wir nun an,
I ist kein Hauptideal. Dann gibt es ein f €I\ (a). Sei p = g In einem ersten Schritt zeigen wir, dass 3 so gewahlt
werden kann, dass |[Im(p)| < %«/1_9 erfiillt ist. Dazu setzen wir r = ‘/%Im(p) und wihlen s € Z so, dass |2r —s| < %
erfiillt ist. Definieren wir dann ' = 8 — %s(l + +/—19)a, dann folgt

E = B_l0++/-19) = Re(p)+ilm(p)—is—i-1s4/19 = Re(p)+i-rv/19—1is—i-1sv/19

und somit Im(%/) = V19(r — %s) und |Im(%/)| < %«/19. Ersetzen wir also 8 durch 8/, dann ist die Ungleichung
|Im(p)| < %\/ 19 erfiillt. AuRerdem gilt weiterhin 3 € I \ (o), wenn wir 8 durch 3’ ersetzen. Denn mit 3 liegt auch
B =p— %s(l ++/—19)a in I, und wire 8’ ein Element des Hauptideals (a), dann wiirde dies auch fiir 8 gelten.

In einem zweiten Schritt zeigen wir, dass ein y € I \ {0} mit |y| < |a| existiert und fithren damit die Minimalitét von
a zum Widerspruch. Zunéchst betrachten wir den Fall, dass sogar |Im(p)| < %1/5 erfiillt ist. Wahlen wir a € Z so,
das |Re(p)—a| < % gilt, dann folgt |p —a|? < (%)2 + (%1/5)2 =1. Seinun y = f# —aa. Dann liegt y in I, das Element
ist wegen f ¢ (a) ungleich Null, und es gilt |3 —aa| = |a||p —a| < |a|, wie gewiinscht.

Nun betrachten wir noch den Fall %1/5 < |Im(p)| < %\/ 19.Sei 6 = 2ﬁ—%(1+\/—19)a. Dann gilt % = 2p—%(1+\/ 19).
Ersetzen wir nétigenfalls 3 durch —f und p durch —p, dann kénnen wir %\/§ <Im(p) < %\/ 19 annehmen. Es folgt
dann v/3 <Im(2p) < %1/19 und V3 — %1/ 19 < Im(2p — %(1 +4/-19)) = Im(g) < 0. Wir wihlen nun a € Z so, dass
|[Re(2p — %(1 ++v/—19))—al < % erfiillt ist und definieren y = § — aa. Dann gilt

ILP = |2-d" = ReC-+im2)P = [Re(@-a)P+m2)P < 1+(3-1VI9)%
Wir zeigen, dass (v3 — %«/ 19)? < % ist. Daraus folgt dann |§|2 < 1 und |y| < |a|, so dass wir auch in diesem Fall
am Ziel sind. Aus v19 < +/27 = 3v/3 folgt 3 v/I9 < 3 /3. Durch Subtraktion von +/3 auf beiden Seiten erhalten wir

%1@ > %1/ 19 — /3, und %«/ 19 — /3 ist positiv wegen 3 < 17? & 12 < 19. Durch Quadrieren erhalten wir nun die
gewiinschte Abschitzung (v/3 — %«/ 19)? < %. |

Satz 12.30 Der Ring R = Z[3(1 + v—19)] ist kein euklidischer Ring.

Beweis: Mit dhnlichen Argumenten wie in Prop. zeigen wir zunéchst, dass die Einheitengruppe von R durch
R* = {£1} gegeben ist, und dass die Elemente 2 und 3 in R irreduzibel sind. Wegen 1-1 =1 und (—1)(—1) = 1 sind
+1 jedenfalls Einheiten. Ist umgekehrt £ € R*, dann gilt N(¢)N(¢ ™) = N(ee™) =N(1) = 1. Aus N(¢),N(e ) e N
und N(e)N(e™') = 1 folgt N(¢) = 1. Schreiben wir ¢ = %a + %b«/—_19 mit a,b € Z und a = b mod 2, dann folgt
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1a*+2b? = N(¢) = 1 und a®+19b? = 4. Die einzigen ganzzahligen Losungen dieser Gleichung sind (a, b) = (+2,0).

Es folgt ¢ € {£1}. Die Einheitengruppe von R also gegeben durch R* = {1} und besteht genau aus den Elementen
mit Norm 1.

Wegen N(2) =4 > 1 und N(3) =9 > 1 sind 2 und 3 jedenfalls keine Einheiten. Wire 2 reduzibel, dann gébe es
Elemente a, 3 € R, die keine Einheiten in R sind und af3 = 2 erfiillen. Es wire dann N(a)N(f) = N(af) =N(2) =4.
Wegen a, f ¢ R* gilt aulerdem N(a),N(f) > 1. Damit bleibt N(a) = N() = 2 als einzige Moglichkeit. Schreiben
wir a = 2a+3bv/=19mita,b € Z und a = b mod 2, dann ist N(a) = 2 dquivalent zu 2a®+2b%? =2 < a?+19b% =
8. Aber diese Gleichung besitzt offenbar keine Lésung mit (a, b) € Z2. Ebenso zeigt die Unlésbarkeit der Gleichung
a? +19b = 12, dass 3 im Ring R irreduzibel ist.

Nach diesen Vorbereitungen nehmen wir nun an, dass R euklidisch und h : R\ {0} — IN eine Hohenfunktion auf R ist.
Weiter sei 7 € R eine Nichteinheit mit der Eigenschaft, dass h(rt) fiir alle Nicht-Einheiten aus R \ {0} ein minimaler
Wert ist. Wir zeigen, dass © dann in der Menge {£2, =3} enthalten sein muss. Durch Division mit Rest erhalten wir
Elemente y, p € R mit 2 = y7+ p, wobei p = 0 oder p # 0 und h(p) < h(7) gelten muss. Auf Grund der Minimalitat
von h(7t) gibt es nur die beiden Méglichkeiten, dass p = 0 oder eine Einheit ist. Es gilt also p € {—1,0,1}. Im Fall
p = 0 wire 1 ein Teiler von 2. Auf Grund der Irreduzibilitdt von 2 sind 2 und 7 dann assoziiert, und daraus folgt
T € {£2}.

Betrachten wir nun den Fall p = 1. Die Gleichung 2 = ym + 1 liefert dann yn = 1. Aber dies steht im Widerspruch
dazu, dass 7 keine Einheit ist. Als letzte Moglichkeit betrachten wir den Fall p = —1. Dann gilt 2 =y —1. Dann gilt
ym = 3. Weil 3 irreduzibel ist, sind 7 und 3 assoziiert, also © € {£3}. Damit haben wir insgesamt gezeigt, dass in
jedem moglichen Fall 7w € {£2, £3} gilt.

Seinun 6 = %(1 ++/—19). Wiederum wenden wir Division mit Rest an und erhalten Elemente y, p € Rmit 8 = ym+p,
wobei p = 0 oder p # 0 und h(p) < h(r) gilt. Wie zuvor schliefen wir daraus p € {—1,0,1}. Im Fall p = 0 gilt
60 =ynm.ImFallp =1ist 0—1=ym, und im Fall p = —1ist 8 +1 = y7. Also ist eines der Elemente 6 —1,60,0 +1 auf
jeden Fall durch r teilbar. Es gilt aber 7 € {+2, £3}, und wie man sich leicht iberzeugt, ist keines der sechs Elemente

in R enthalten. Die Annahme, dass eine Hohenfunktion h auf R existiert, hat also insgesamt zu einem Widerspruch
gefiihrt. Also ist R kein euklidischer Ring. m|

Zum Schluss sei noch erwihnt, dass Z[ v/d] in einzelnen Fillen auch fiir positives d euklidisch ist. Beispielsweise sind
Z[+/2] und Z[+/3] euklidische Ringe, mit h(a + b+/2) = |a® — 2b?| bzw. h(a + b+/3) = |a® — 3b?| als Héhenfunktion.
Dies lasst sich auf dhnliche Weise wie beim Ring Z[i] der Gauf¥’schen Zahlen zeigen. Es gibt aber auch Fille, in denen
der Ring Z[+v/d] euklidisch ist, die Hohenfunktion aber eine andere Gestalt besitzt. In [Ha] wird dies zum Beispiel
fiir den Ring Z[+/14] nachgewiesen.
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§13. Irredugibilitdtskriterien und Gauf3’sches Lemma

Zusammenfassung. Wie wir insbesondere in der Korpertheorie noch sehen werden, ist es fiir verschiedene
Anwendungen notwendig, die Irreduzibilitdt von Polynomen iiber Kérpern nachzuweisen. In diesem Abschnitt
werden wir mehrere solche Kriterien zur Verfiigung stellen, wobei wir fiir die Herleitung insbesondere auf die
Theorie des letzten Kapitels zuriickgreifen werden. Von besonderem Interesse ist fiir uns die Situtation, in der
K Quotientenkorper eines faktoriellen Rings R ist, wie sie z.B. fiir K = Q und R = Z vorliegt. Hier werden
wir unter anderem zeigen, dass fiir die Irreduzibilitét eines Polynoms f € R[x] tiber dem Kérper K bereits die
Irreduzibilitat in R[x ] hinreichend ist.

Wichtige Grundbegriffe Zentrale Sditze

— primitives Polynom — Kriterium fiir Nullstellen ganzzahliger Polynome
— Gauf¥’sches Lemma
— Polynomringe iiber faktoriellen Ringen sind faktoriell.
— Eisenstein-Kriterium

— Reduktionskriterium

Wir beginnen mit einigen elementaren Feststellungen zur Irreduzibilitdt von Polynomen iiber Korpern.

Proposition 13.1 Sei K ein Korper und f € K[x] nicht konstant, also f ¢ K.
(i) Ist grad(f)=1, dann ist f im Ring K[x] irreduzibel.
(i) Im Fall grad(f) € {2, 3} ist f genau dann irreduzibel, wenn f in K keine Nullstelle besitzt.

(iii) Im Fall grad(f) € {4,5} ist f genau dann irreduzibel, wenn f in K keine Nullstelle besitzt
und durch kein normiertes, irreduzibles Polynom vom Grad 2 teilbar ist.

Beweis: zu (i) Sei f € K[x] mit grad(f) = 1. Dann ist f ungleich null und als nicht-konstantes Polynom nach
Folgerung auch keine Einheit. Seien nun g,h € K[x] mit f = gh. Nach Teil (ii) von Proposition gilt
grad(g)+grad(h) = grad(gh) = grad(f) = 1. Wegen grad(g), grad(h) > 0 folgt daraus grad(g) = 0 oder grad(h) = 0.
Nach Folgerung [11.30]ist also eines der beiden Polynome g, h eine Einheit in K[x].

zu (ii) ,=“ Nehmen wir an, dass f irreduzibel ist, aber eine Nullstelle a € K besitzt. Nach Folgerungexistiert
dann ein g € K[x] mit f = (x —a)g. Wegen grad(x —a) = 1 ist x —a in K[x] keine Einheit. Aus grad(f) =
grad(x—a)+grad(g) = 1+grad(g) folgt grad(g) = grad(f )—1 > 1, und somit ist auch g keine Einheit in K[x]. Aber
nun folgt aus der Gleichung f = (x —a)g, dass f in K[x] nicht irreduzibel ist, im Widerspruch zur Voraussetzung.

,<=“ Nach Voraussetzung besitzt f in K keine Nullstelle. Nehmen wir an, dass f in K[x ] nicht irreduzibel ist. Wegen
f ¢ K ist f in K[x] auch keine Einheit und somit ein reduzibles Element. Sei f = gh eine Zerlegung von f in
Nicht-Einheiten g,h € K[x]. Dann sind g und h ungleich null, und auBerdem nicht-konstant, denn andernfalls wére
eines der Elemente g,h in K* enthalten und somit auch eine Einheit in K[x]. Es gilt also grad(g), grad(h) > 1. Da
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zugleich grad(g) + grad(h) = grad(f) < 3 gilt, muss eines der Polynom g,h vom Grad 1 sein. Aber dies bedeutet,
dass eines dieser beiden Polynome, und damit auch das Polynom f, in K eine Nullstelle besitzt, im Widerspruch zur
Voraussetzung. Denn ist beispielsweise g = cx +d mit c € K* und d € K, dann gilt fiir a = —% offenbar g(a) = O.

zu (iii) ,,=“ Wie in Teil (ii) iiberpriift man unmittelbar, dass aus der Existenz einer Nullstelle in K die Reduzibilitét
f in K[x] folgt. Ebenso ist f in K[x] reduzibel, wenn ein normierter Teiler g € K[x] vom Grad 2 existiert. Denn dann
existiert ein h € K[x] mit f = gh, und wegen grad(g) = 2 und grad(h) = grad(f )—grad(g) = grad(f)—2=>4—2=2
sind g und h keine Einheiten in K[x].

,<=“ Nehmen wir an, dass f in K[x] kein irreduzibles Element und f = gh eine Zerlegung von f in Nicht-Einheiten
g,h € K[x] ist. Wir zeigen, dass f dann eine Nullstelle in K oder einen irreduziblen, normierten Teiler vom Grad 2
besitzt. Wenn wir davon ausgehen, dass f in K keine Nullstelle besitzt, dann miissen g und h beide vom Grad > 2
sein. Denn wegen g,h ¢ K gilt auf jeden Fall grad(g), grad(h) > 1, und wiére eines dieser Polynome vom Grad 1,
dann wiirde daraus die Existenz einer Nullstelle von f in K folgen, wie wir bereits unter (ii) festgestellt haben. Aber
aus grad(g), grad(h) > 2 und grad(g) + grad(h) = grad(f) < 4 folgt grad(g) = 2 oder grad(h) = 2. Nach eventueller
Vertauschung von g und h kénnen wir grad(g) = 2 annehmen. Bezeichnet ¢ € K* den Leitkoeffizienten von g, dann
ist § = ¢c"'g ein normiertes Polynom vom Grad 2. Auflerdem ist § in K[x] irreduzibel, dann andernfalls hitte § nach
Teil (ii) in K eine Nullstelle, und dies ware auch eine Nullstelle von f, im Widerspruch zu unserer Annahme. Dari{iber
hinaus ist § weiterhin ein Teiler von f in K[x], denn es gilt f = g - (ch). |

Aus Teil (ii) von Proposition folgt beispielsweise die Irreduzibilitit des Polynom f = x2>—2 in Q[x]. Denn andern-
falls wiire eine der beiden reellen Nullstellen £+/2 in @ enthalten, im Widerspruch zu Irrationalitét von /2. Das Bei-
spiel zeigt auch, dass die Irreduzibilitit eines Polynoms im Allgemeinen davon abhéngt, iber welchem Grundkérper

man das Polynom betrachtet. Im Polynomring R[x] ist f ein reduzibles Element, wie man anhand der Zerlegung
f = (x — V2)(x + +/2) erkennen kann.

Mit Hilfe von Teil (iii) kann man beispielsweise zeigen, dass g = x> + x? + 1 im Polynomring IF,[x] irreduzibel ist.
Dafiir iiberpriift man zunichst, dass g wegen g(0) = g(1) = 1 in I, keine Nullstelle besitzt. Das Polynom kann also
nur dann reduzibel sein, wenn ein normierter Teiler vom Grad 2 existiert. Die normierten Polynome von Grad 2 in
F,[x] sind x2, x2 + 1, x% + x und x? + x + 1, und wie man unmittelbar nachrechnet, ist h = x> + x + 1 als einziges
dieser vier Polynome nullstellenfrei und somit irreduzibel. Aber andererseits ist h kein Teiler von g. Denn wire dies
der Fall, dann miisste h auch ein Teiler von g —x®-h = x*+ x>+ x?+ 1 und von g —x3-h—x?-h =1 sein.

Um die soeben formulierte Proposition anwenden zu kénnen, benétigen wir einfach zu handhabende Kriterien fiir
die Existenz von Nullstellen. Fiir Quotientenkorper faktorieller Ringe erweist sich der folgende Satz als hilfreich.

Satz 13.2 SeiR ein faktorieller Ring, K sein Quotientenkorper und f € R[x] ein Polynom vom
Gradn>1. Sei f =a,x" + ...+ a;x + ay mit ag, ...,a, €ER.

(i) Ist a € K eine Nulstelle von f, a = 7 mit p,q € R und q # 0, wobei p und q teilerfremd
sind, dann gilt g | a, und p | a,.

(ii) Ist insbesondere f normiert, also a, = 1, dann liegt a in R und ist ein Teiler von a,.
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Beweis: Offenbar ist die Aussage (ii) eine direkte Folgerung von (i). Zum Beweis von (i) sei a = q Wwie angegeben.
Es gilt

n—1 n—1 n—1
fla)=0 < ana”+Zakak=0 & ananz—Zakak = an(%’)"z—Zak(%)k
k=0 k=0 k=0
n—1 n—1
e ap'=-> apit=gq (—Zakp"q"“‘) :
k=0 k=0
Dies zeigt, dass a,p™ durch g teilbar ist. Weil mit p und g auch p™ und q teilerfremd sind, muss q | a, gelten. Nun gilt
ebenso
n n n
fla)=0 < Zakak+a0=0 = aoz—Zakak & aoz—Zak(fI—’)k
k=1 k=1 k=1
S aq"=—> aqptg=p (—Z akp"‘lq”‘k) :
k=1 k=1
Dies zeigt, dass a,q™ von p geteilt wird. Weil p und q" teilerfremd sind, folgt daraus p | a,. m|

Mit Hilfe dieses Kriteriums kann beispielsweise leicht gezeigt werden, dass Polynom f = x3—x+2 in Q[x ] irreduzibel
ist. Ware es reduzibel, dann hitte es wegen grad(f) = 3 eine rationale Nullstelle. Weil aber Z faktoriell und Q
der Quotientenkorper von Z ist, und weil f in Z[x] liegt und normiert ist, muss jede rationale Nullstelle von f
ein ganzzahliger Teiler von 2 sein. Die einzigen moéglichen Nullstellen von f in Q sind damit £1,+2. Es gilt aber
fF()=f(-1)=2, f(2) =4 und f(—2) = —4. Somit besitzt f in Q keine Nullstelle.

Unser néchstes Ziel ist die Formulierung und der Beweis des Gauldschen Lemmas, dass einen Zusammenhang zwi-
schen der Irreduzibilitét iiber einem faktoriellen Ring R und iiber dessen Quotientenkorper K herstellt. In den An-
wendungen ist man meistens am Spezialfall R = Z und K = (@) interessiert.

Lemma 13.3 Sei R ein faktorieller Ring und K sein Quotientenkérper. Sind ag,...,a, € K*
beliebig vorgegeben, dann gibt ein a € K*, so dass die Elemente a = aq; in R liegen und

ggT(al,...,a;) =1 gilt.

Beweis: Nach Definition des Quotientenkorpers gibt es Elemente r;,s; € K mits; #0,so dassa; =r;/s; flir 1 <i<n
gilt. Setzen wir a = s;...s,, dann liegt a in K*, und es gilt

wmn(fis)(115) <

k=1 k=i+1

Wir kénnen also 0.B.d.A. voraussetzen, das a; €R fiir 1 <i < n gilt Sei nun d = ggT(ay, ...,q,), a =d ' und a; = aa;
fir 1 <i < n. Angenommen, die Elemente a;, ..., a, sind nicht teilerfremd. Dann gibt es ein Primelement p mit p|a;
fiir 1 <i < n. Es folgt pd|q; fiir 1 <i < n und somit pd|d nach Definition des ggT. Dies bedeutet, dass ein a € R mit
pda = d existiert, und die Kiirzungsregel liefert pa = 1. Aber dies ist unmdglich, denn ein Primelement kann nicht
zugleich Einheit sein. Also ist ggT(a},...,a;) = 1 erfiillt. ]

Definition 13.4 Sei R ein faktorieller Ring und f = ZZ:O a,x* € R[x]. Wir nennen das Poly-
nom f primitiv, wenn f # 0 ist und die Koeffizienten ay, ..., a,, keinen gemeinsamen Primteiler
besitzen.
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Wir betrachten einige Beispiele.

(i) Normierte Polynome in R[x], also Polynome der Form x"+a,_;x" " +...+a; x +a, mit héchstem Koeffizienten
1 und ansonsten beliebigen Koeffizienten a, ...,a,_; € R, sind immer primitiv.

(i) Das Polynom 2x2 + 4x + 6 ist nicht primitiv, denn es gilt ggT(2,4,6) = 2.

(iii) IstR ein Integritidtsbereich und f € R[x] ein irreduzibles Element vom Grad > 1, dann ist f primitiv. Ansonsten
hitten die Koeffizienten von f einen gemeinsamen Primteiler p € R, und es wiirde ein Polynom f € R[x] mit
f = pf existieren. Dies aber bedeutet, dass f als Produkt von Nichteinheiten dargestellt werden kann und
somit reduzibel ist.

Folgerung 13.5 SeiR ein faktorieller Ring, K sein Quotientenkorper und f € K[x] ein Polynom
mit f # 0. Dann gibt es ein @ € K*, so dass af in R[x] liegt und primitiv ist.

Beweis: Das folgt unmittelbar aus Lemma[13.3] angewendet auf die Koeffizienten des Polynoms f. |

Sei nun R ein Integritiitsbereich, p C R ein Primideal und R = R/p der zugehdérige Restklassenring, mit dem kanoni-
schen Epimorphismus 7 : R — R. Wir bezeichnen mit p[x] = pR[x] die Menge aller Polynome, deren Koeffizienten
im Primideal p enthalten sind. Es handelt sich um das von der Teilmenge p in R[x] erzeugte Ideal.

Lemma 13.6 Der Homomorphismus ¢ : R[x] — R[x] gegeben durch Z?:o a;xt -

Z?:o m(a;)x; induziert einen Isomorphismus R[x]/p[x] = R[x] von Ringen.
Beweis: Weil der kanonische Epimorphismus 7 : R — R surjektiv ist, gilt dasselbe offenbar auch fiir ¢. AuBerdem
ist p[x] ist der Kern von ¢. Also folgt die Aussage aus dem Homomorphiesatz. m|

Folgerung 13.7 Das Ideal p[x] ist ein Primideal in R[x].

Beweis: Weil p in R ein Primideal ist, handelt es sich beim Faktorring R nach Satz [11.12| um einen Integritéitsbe-
reich. Damit ist auch der Polynomring R[x] ein Integrititsbereich, auf Grund der Isomorphie also auch R[x]/p[x].
Wiederum nach Satz[11.12|folgt daraus, dass p[x] ein Primideal ist. m|

Satz 13.8 (Lemma von Gaufs)
Sei R ein faktorieller Ring, und seien f, g € R[x] primitive Polynome. Dann ist auch f g primitiv.

Beweis: Angenommen, das Produkt f g ist nicht primitiv und das Primelement p € R ein gemeinsamer Teiler der
Koeffizienten. Nach Proposition[12.17]ist (p) in R ein Primideal, und nach Folgerung[13.7|erzeugt p auch ein Primideal
in R[x], das wir ebenfalls mit (p) bezeichnen. Nun sind f g nach Voraussetzung in (p) enthalten, es folgt f € (p)
oder g € (p). Setzen wir 0.B.d.A. den ersten Fall voraus, dann ist p ein gemeinsamer Teiler der Koeffizienten von f,
im Widerspruch dazu, dass f primitiv ist. |
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Satz 13.9 SeiR ein faktorieller Ring, K sein Quotientenkérper und f € R[x] ein Polynom mit
grad(f) > 1.

(i) Ist g € R[x] ein primitives Polynom mit der Eigenschaft, dass g ein Teiler von f in K[x]
ist, so ist g bereits ein Teiler von f in R[x].

(ii) Ist f irreduzibel in R[x], dann auch in K[x].

Beweis: zu (i) Nach Voraussetzung gibt es ein h € K[x] mit f = gh, und Folgerung liefert uns ein Element
a € K*, so dass h = ah in R[x] liegt und primitiv ist. Nach dem Lemma von GauR ist gh primitiv, und es gilt
f=glah).

Sei a = a/b eine Darstellung von « als gekiirzter Bruch, also mita, b € R, b # 0 und ggT(a, b) = 1. Dann erhalten wir
aus f = g(a~'h) Gleichung af = bgh. Angenommen, p ist ein Primteiler von a. Dann wire p auch ein gemeinsamer
Primteiler der Koeffizienten von gh. Aber das ist unméglich, weil gh primitiv ist. Es folgt a~* = b/a € R, und die
Gleichung f = g(a'h) zeigt, dass g auch in R[x] ein Teiler von f ist.

zu (ii) Sei f = gh mit g,h € K[x]. Ferner sei a € K* ein Element mit der Eigenschaft, dass § = ag in R[x] liegt und
primitiv ist. Wegen f = g(a 'h) ist auch & ein Teiler von f in K[x]. Weil aber § auRerdem primitiv ist, ist § nach
Teil (i) sogar ein Teiler von f in R[x]. Es gibt also ein h € R[x] mit f = §h. Wegen gh = f = §(a 'h) gilt h = a'h.
Weil f nach Voraussetzung in R[x] irreduzibel ist, ist § oder h eine Einheit in R[x], also ein Element aus R*. Wegen
& = ag und h = a~'h folgt daraus g € K* oder h € K*. Also ist g oder h eine Einheit in K*, und folglich ist f auch
in K[x] irreduzibel. O

Um also beispielsweise zu zeigen, dass ein normiertes Polynom f € Z[x] im Polynomring Q[x] irreduzibel ist,
geniigt es, die Irreduzibilitit in Z[x] nachzuweisen. In vielen Fillen ist dies bedeutend einfacher. Uberpriifen wir
beispielsweise die Irreduzibilitit des Polynoms f = x* + 1 in Z[x], indem wir davon ausgehen, dass eine Zerlegung
f = gh in Nicht-Einheiten g,h € Z[x] gegeben ist und dies zum Widerspruch fithren. Da f normiert ist, diirfen
wir annehmen, dass auch g und h beide normiert sind. Denn die einzige weitere Moglichkeit besteht darin, dass g
und h beide —1 als Leitkoeffizient besitzen, und in diesem Fall ist dann f = (—g)(—h) eine Zerlegung in normierte,
ganzzahlige Faktoren. Die Zerlegung f = gh zeigt auch, dass das Produkt der konstanten Terme von g und h gleich
1 ist. Die konstanten Terme von g und h sind also entweder beide gleich 1 oder beide gleich —1.

Da f als normiertes Polynom primitiv ist, muss grad(g), grad(h) > 1 gelten. Denn ansonsten wéren g und h Nicht-
Einheiten in Z, wiirden also einen Primteiler p besitzen, und dieses p wire dann auch ein gemeinsamer Teiler der
Koeffizienten von f, im Widerspruch zu p 1. Aber auch grad(g) = 1 oder grad(h) = 1 ist ausgeschlossen. Denn in
diesem Fall wire eines der beiden Polynome gleich x — 1 oder x + 1. Aber wegen f = gh wire dann 1 oder —1 eine
Nullstelle von f, im Widerspruch dazu, dass f nullstellenfrei ist. Wegen grad(g) + grad(h) = grad(f ) = 4 miissten g
und h also beide vom Grad 2 sein.

Insgesamt kommen wir zu dem Ergebnis, dass a, b € Z existieren, so dass entweder g = x?+ax+1und h = x2+bx+1
oder g = x2+ax —1und h = x? + bx — 1 erfiillt ist. Die Berechnung der beiden Produkte ergibt

(2 +ax+1D)02+bx+1) = x*+(a+b)x+(ab+2)x*+(a+b)x+1

und
(P+ax—1)(x%+bx—1) = x*+(a+b)x3+(ab—2)x>—(a+b)x+1.
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Aber der Vergleich mit dem Term vom Grad 3 in x* + 1 zeigt, dass dann b = —a gelten muss. Der quadratische Term
(ab + 2)x? wire dann entweder gleich (2 — a?)x? oder gleich —(2 + a?)x2, auf jeden Fall ungleich null. Dies zeigt,
dass in Z[x] auch keine Zerlegung von f in zwei Faktoren vom Grad 2 existiert. Insgesamt ist damit nachgewiesen,
dass f in Z[x] und damit auch in Q[ x] irreduzibel ist.

Aus dem Gauf¥’schen Lemma kann ein weiteres wichtiges Ergebnis abgeleitet werden.

Satz 13.10 Ist R ein faktorieller Ring, dann ist auch R[x] faktoriell.

Beweis: Sei f € R[x] ungleich O und keine Einheit in R[x]. Wir zeigen zunéchst, dass f in R[x] eine Zerlegung
in irreduzible Elemente besitzt. Sei ¢ ein ggT der Koeffizienten von f im Ring R. Dann kdnnen wir f in der Form
f = cg schreiben, mit einem primitiven Polynom g. Weil R faktoriell ist, kann ¢ in R als Produkt irreduzibler Elemente
dargestellt werden.

Wir zeigen nun durch vollstidndige Induktion tiber m = grad(g), dass auch g ein Produkt irreduzibler Elemente ist.
Im Fall m = O ist g in R[x] eine Einheit und nichts zu zeigen. Setzen wir nun m > 1 voraus. Besitzt g keine Zerlegung
in Nicht-Einheiten, so ist g nach Definition irreduzibel. Nehmen wir nun an, es gilt g = h;h,, wobei h; und h, in
R[x] keine Einheiten sind. Wére grad(h;) = 0 oder grad(h,) = 0, dann wére h; oder h, eine Nicht-Einheit in R und
wiirde somit von einem Primelement p des Rings R geteilt. Somit wére dann p ein Teiler von g, im Widerspruch dazu,
dass g primitiv ist. So aber gilt 0 < grad(g;), grad(g,) < m. Wir kénnen auf g; und g, die Induktionsvoraussetzung
anwenden und erhalten Darstellungen beider Polynome als Produkte irreduzibler Elemente von R[x]. Daraus ergibt
sich eine ebensolche Darstellung fiir g, womit der Induktionsschritt abgeschlossen ist.

Nun miissen wir noch zeigen, dass die Darstellung von unserem Polynom f im Wesentlichen eindeutig ist. Wieder
stellen wir f als Produkt cg mit einem Element ¢ € R und einem primitiven Polynom g € R[x] dar. In jeder Darstellung
von f als Produkt irreduzibler Elemente bilden die Faktoren vom Grad O (bis auf Einheiten) eine Zerlegung von c,
und die iibrigen Faktoren eine Zerlegung von g. Da die Eindeutigkeit der Faktorzerlegung in R bereits bekannt ist,
kénnen wir uns auf den Fall f = g beschrédnken. Nehmen wir nun an, dass durch

g8 = f = hy-..-k

zwei Zerlegungen des primitiven Polynoms f € R[x] in irreduzible Elemente g;,h; des Rings R[x] gegeben sind,
alle von positivem Grad. Nach Satz (i) sind die Elemente gi,hj auch alle irreduzibel in K[x], wobei K den
Quotientenkorper von R bezeichnet. Auf Grund der Eindeutigkeit der Primfaktorzerlegung in K[x] muss r = s gelten,
und nach eventueller Umnummerierung ist g; in K[x] assoziiert zu h;, fiir 1 <i < r. Wegen Satz[13.9] (i) g; auch in
R[x] jeweils assoziiert zu h;. Damit ist die Eindeutigkeit der Zerlegung nachgewiesen. O
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Wir formulieren noch zwei Kriterien fiir die Irreduzibilitdt von Polynomen iiber Ringen.

Satz 13.11 (Eisenstein-Kriterium)

Sei R ein faktorieller Ring, p € R ein Primelement und f € R[x] ein primitives Polynom vom
Grad n > 0. Es sei f = a,x" + a,_;x" ! +... + a;x + ay mit ay, ..., a,, € R, und wir setzen voraus,
dass die Koeffizienten von f folgende Bedingungen erfiillen.

1) plg; fir0<i<n (i) pta, (i) p%ta,

Dann ist f in R[x] irreduzibel.

Beweis: Angenommen, es gibt Polynome g,h € R[x] mit f = gh. Wir schreiben

S

.
g = Zbixi und h = chxk mit b;,c, €R, b,,c, #0.
i=0 k=0

Dann gilt a, = b,c,, und wegen Bedingung (iii) gilt p|a,, p? { ao. Nach eventueller Vertauschung von g und h kénnen
wir annehmen, dass p|b, und p ¢t ¢, gilt. Wére p ein Teiler sdmtlicher Koeffizienten von g, dann wére p auch ein
Teiler von a,, = b,.c,, im Widerspruch zur Bedingung (ii). Es gibt also ein minimales u € {1, ...,r} mit p } b,. Nun gilt

u
ay = 2 bu—ici >
i=0

und p ist ein Teiler von b,_;¢; fiir 1 < i < u, aber kein Teiler von b,c,. Folglich ist p auch kein Teiler von q,, und
wegen Bedingung (i) muss u = n gelten. Damit ist grad(g) = n = grad(f) und grad(h) = 0. Weil f primitiv ist, muss
h in R* liegen. Damit ist die Irreduzibilitdt von f in R[x] bewiesen. m|

Beispielsweise sind die Polynome x2 —5 und x> + 2x + 6 beide primitiv, weil sie normiert sind. Beim ersten Polynom
kann das Eisenstein-Kriterium auf die Primzahl p = 5, beim zweiten auf p = 2 angewendet werden. Also sind beide
Polynome in Z[x] und nach Satz auch in Q[x] irreduzibel.

Satz 13.12 (Reduktionskriterium)

Sei R ein faktorieller Ring, p € R ein Primelement und R = R/(p). Es sei f = > a;x" € R[x]
ein primitives Polynom mit a,, ¢ (p) und f das Bild von f in R[x]. Ist f in R[x] irreduzibel, dann
auch das Polynom f in R[x].

Beweis: Nehmen wir an, es gibt eine Zerlegung f = gh von f mit g,h € R[x], wobei wir annehmen, dass weder g
noch h eine Einheit in R[x] ist. Weil f primitiv ist, sind dann g und h auch keine konstanten Polynome. Es gilt dann
f = ghinR[x], wobei g, h die Bilder von g, h in R[x] bezeichnen. Wegen a,, ¢ (p) gilt grad(f) = grad(f), und damit
muss auch grad(g) = grad(g) und grad(h) = grad(h) gelten.

Insbesondere sind g und h nicht konstant. Nun ist (p) wegen Proposition|12.17|ein Primideal in R und R = R/(p) damit
nach Satz[11.12[(i) ein Integrititsbereich. Daraus folgt, dass die Einheiten im Polynomring R[x] genau die Einheiten
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in R sind, siehe Folgerung|11.30| Somit sind g und h keine Einheiten in R[x]. Aber dann zeigt die Gleichung f = gh,
dass f in R[x] nicht irreduzibel ist. 0

Als Anwendung des Reduktionskriteriums zeigen wir, dass f = x> + x + 1 in Q[x] irreduzibel ist. Offenbar ist f in
Z[x] ein primitives Polynom. Setzen wir p = (2), dann ist R/p = IF,. Der Leitkoeffizient von f ist gleich 1 und liegt
somit nicht in p. Das Bildpolynom

f = xX*+x+1elF,x]

hat in T, keine Nullstelle (es gilt f(0) = f(1) = 1), wegen grad(f) = 3 ist es also irreduzibel. Auf Grund des
Reduktionskriteriums ist f also in Z[x] irreduzibel, und mit Satz[13.9]erhalten wir die Irreduzibilitit in Q[x].
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§14. Kongruenzrechnung und Chinesischer Restsatz

Zusammenfassung. Der Chinesische Restsatz ermoglicht unter gewissen Voraussetzungen die Darstellung von
Faktorringen R/I als direktes Produkt von Ringen. Eine zahlentheoretische Anwendung dieses Satzes ist die
Bestimmung der Losungsmengen von Systemen von Kongruenzen. Hierbei spielt der bereits in § 11 themati-
sierte Zusammenhang zwischen Kongruenzen und Faktorringen eine wichtige Rolle. Als weitere Anwendungen
untersuchen wir die Nullstellen von Polynomen in Restklassenringen. Auf3erdem bestimmen wir die Struktur
der primen Restklassengruppen (Z/nZ)* als direktes Produkt zyklischer Gruppen.

Wichtige Grundbegriffe Zentrale Sditze

— Teilerfremdheit von Idealen — Chinesischer Restsatz fiir beliebige Ringe

— Exponent einer Gruppe — Folgerung: simultane Losbarkeit von Kongruenzen
— Primitivwurzel modulo einer Primzahl p — Folgerung: (Z/(mn)Z2)* = (Z/mZ)* x (Z/nZ)*

fiir m,n € IN mit ggT(m,n) =1
— Nullstellen von Polynomen in Restklassenringen
— Einheitengruppen endlicher Korper sind zyklisch.

— Struktur von (Z/p"Z)* (p Primzahl, r € IN)

Bereits in der Linearen Algebra haben wir fiir jede natiirliche Zahl n € IN auf Z die Kongruenzrelation modulo n
definiert. In § 11 haben wir dann die Kongruenzrelation fiir Ideale in beliebigen Ringen eingefiihrt. In erster Linie
fiir die Kongruenzen modulo n, teilweise aber auch fiir die allgemeinen Kongruenzen, werden wir in diesem Kapitel
einige Ergebnisse zusammentragen. Wir beginnen mit dem Beweis einiger elementarer Rechenregeln fiir Kongruenz-
relationen.

Proposition 14.1 Seien m,n € IN, aullerdem a, b,c,d € Z und p eine Primzahl.

(i) Ausa=cmod nund b=d mod n folgta+ b =c+d mod n und ab = cd mod n.
(i) Gilt a = b mod n und ist m ein Teiler von n, dann folgt a = b mod m.
(iii) Es gilt a = b mod n genau dann, wenn ma = mb mod mn erfiillt ist.
(iv) Es gilt a’? = a mod p. Unter der zusétzlichen Voraussetzung p + a gilt dariiber hinaus

a’ =1 mod p.

Die Aussage (iv) ist auch als Kleiner Satz von Fermat bekannt.

Beweis: zu (i) Aus den Voraussetzungen folgt a + nZ = ¢ + nZ und b + nZ = d + nZ. Damit erhalten wir im
Restklassenring Z./nZ. die Gleichungen (a + b) + nZ = (a + nZ) + (b + nZ) = (c + nZ)+ (d + nZ) = (c + d) + nZ
und ebenso ab +nZ = (a + nZ)(b +nZ) = (c + nZ)(d + nZ) = cd + nZ. Aus diesen Gleichungen wiederum ergeben
sich die Kongruenzen a + b = c+d mod n und ab = cd mod n.
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zu (ii) Nach Definition ist a = b mod n dquivalent dazu, dass n|(b—a) gilt. Es existiert also ein k € Z mit b—a = nk.
Wegen m | n gilt auferdem n = dm fiir ein d € IN. Es folgt b = a + nk = a + dmk = a mod m.

zu (iii) Fiir jedes a € Z gilt die Aquivalenz

a=bmodn & n|(b—a) & 3dke€Z:nk=b—a & 3JkeZ:mnk=mb—ma

< (mn)|(mb—ma) < ma=mb=mn.

zu (iv) Sei a € Z, und setzen wir zunéchst p + a voraus. Dann ist @ = a + pZ im Restklassenring Z/pZ ein Element
ungleich null. Weil p eine Primzahl ist, ist dieser Restklassenring nach Satz[11.7]ein Kérper und a somit in (Z/pZ)*
enthalten. Die Einheitengruppe (Z/pZ)* = Z./pZ \ {0} besteht aus p — 1 Elementen. Nach dem Satz von Lagrange
ist die Ordnung der Untergruppe (a) von (Z/pZ.)*, also die Elementordnung ord(a), ein Teiler von p — 1. Es folgt
aP ' +pZ=(a+pZ)Pt =a'=1=1+pZ und somit auch a’! =1 mod p.

Mit Teil (i) erhalten wir auch die Kongruenz a? = aP!-a = 1-a = a mod p. Ist p ein Teiler von a, dann gilt auch
p | a?, und es folgt a? = 0 = a mod p. Insgesamt ist die Kongruenz a? = a mod p also fiir alle a € Z erfiillt. O

Das Hauptziel dieses Kapitels ist die Herleitung des Chinesischen Restsatzes, eines wichtigen Hilfsmittels bei der
Losung von Kongruenzen. Zur Vorbereitung wird das Konzept der Teilerfremdheit von Ringelementen auf Ideale
ausgedehnt.

Definition 14.2 SeiR ein Ring. ZweiIdeale I,J in R werden teilerfremd genannt, wenn I +J =
(1) gilt, wobei (1) wie tiblich das Einheitsideal in R bezeichnet.

Diese Bezeichnung wird durch das folgende Lemma gerechtfertigt.

Lemma 14.3 SeiR = Z, und seien m,n € IN. Genau dann sind die Ideale I = (m) und J = (n)
teilerfremd, wenn m, n als natiirliche Zahlen teilerfremd sind.

Beweis: Sind m und n teilerfremd, dann gibt es nach dem Lemma von Bézout a, b € Z mit am + bn = 1. Es folgt
le(m)+(n)=1I1+J,alsoI+J = (1). Setzen wir umgekehrt I +J = (1) voraus. Dann liegt 1 in I +J, es gibt also
a,b € Z mit 1 = am + bn. Ist d ein gemeinsamer Teiler von m und n, dann teilt d auf Grund der Gleichung auch 1.
Dies zeigt, dass m und n teilerfremd sind. m|

Lemma 14.4 SeiReinRing, undseienly,...,I,,,J Idealein R, wobei I, ..., I, jeweils teilerfremd
zu J sind. Dann ist auch das Produkt I, - ... - I,,, teilerfremd zu J.

Beweis: Wir beweisen die Aussage durch vollstdndige Induktion {iber m. Sei zundchst m = 2. Dann ist die Gleichung
LI, 4+J = (1) zu zeigen. Nun gilt

und somit I;I, +J = (1). Sei nun die Behauptung fiir m bereits bewiesen, und seien I, ...,[,,,1,J Ideale, welche
die Voraussetzung des Lemmas erfiillen. Nach Induktionsannahme sind die Ideale I = I, - ... - I, und I,,,; beide
teilerfremd zu J. Auf Grund des bereits bewiesenen Falls m = 2 ist auch I1,,,,; =I; ... - I, - [ ,,,4; teilerfremd zu J. O
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Lemma 14.5 SeiR ein Ring, und seien I, ..., I, Ideale in R, die paarweise teilerfremd sind.
Danngiltl;-...- I, =1;N...N1I,.

Beweis: Wir beweisen die Aussage durch vollstdndige Induktion tiber R und beginnen mit dem Fall m = 2. Nach
Lemma gilt I,I, € I, und I;I, C I,, insgesamt also I,I, C I; N I,. Sei nun umgekehrt r € I; N I, vorgegeben.
Wegen I; + I, = (1) gibt es Elemente a; € I; und a, € I, mit a; + a, = 1. Es folgt

r = r-1 = rlag+a) = ra;+ra,.

Die Elemente ra; und ra, liegen beide in I;I,, also gilt dasselbe auch fiir die Summe. Sei nun die Behauptung fiir
m bereits bewiesen, und seien I, ..., [,,,; paarweise teilerfremde Ideale. SeiJ =1, ... I,,,. Nach Lemma sind J
und I, teierfremd. Die Induktionsvoraussetzung liefert also

Lhn.n)Nlyy = JNlpy = Jlhy = Liewo Ly I O

Man beachte, dass die paarweise Teilerfremdheit eine wesentliche Voraussetzung fiir die Giiltigkeit des Lemmas ist.
Ist beispielweise R = Z, [ = (2) und J = (6), dann gilt IJ = (12), aber aus Satz|10.12| (iii) folgt I NJ = (6), wegen
kgV(2,6) = 6.

Satz 14.6 (Chinesischer Restsatz)

SeiR ein Ring, I, ..., I,, paarweise teilerfremde Ideale in R und I =1, - ... - I,,, Dann gibt es einen
Isomorphismus von Ringen

¢ :R/I —> (R/I}) % ... x (R/I,,) mit ¢(a+I1)=(a+1,,...,a+1,) firalle a€cR.

Beweis: Sei¢ :R— (R/I;)x...x(R/I,,) gegeben durch ¢ (a) = (a+I4,...,a+I,,). Nach Lemmal[14.5|gilt I = I;N...NI,,,.
Ein Element a € R liegt genau dann im Kern von ¢, wenn a+ I, = I, & a € I fiir 1 < k < m gilt. Dies wiederum ist
dquivalent zu a € I. Es gilt also I = ker(¢ ). Nach Proposition gibt es einen Homomorphismus

¢ :R/T— (R/I}) x ... x (R/Ty,)

mit ¢(a+1)=(a+1Iy,...,a+1,), und auf Grund des Homomorphiesatzes fiir Ringe ist ¢ ein Isomorphismus, wenn
¢ surjektiv ist. Dies beweisen wir nun durch vollstdndige Induktion iiber m.

Sei zunédchst m = 2 und (a, +1;, a,+1I,) € (R/I;) x(R/I,) vorgegeben. Weil I, und I, teilerfremd sind, gibt es Elemente
31 EIl, 32612 mitsl +32 = 1. Es gilt dannsl +Il :IIJ 51 +IZ :(1_32)+12 == 1+Iz, 82+Il =(1_51)+11 = 1+Il
und s, + I, = I,. Bilden wir nun das Element a = s,a; +s;a,, dann folgt

at+l; = (sp+I)(ay+L)+(s;+)(ax+1,) = (A+L)a;+1)+O0+L)ay+) = a;+1
und ebenso
at+l, = (sp+L)a;+L)+(sy+L)ay+1,) = (O0+L)a;+L)+(1+L)ay+1) = ay+I,
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insgesamt also ¢(a) = (a +1;,a +1I,) = (a; +I;,a, + I,). Sei nun m € IN, und setzen wir die Aussage fiir dieses m
voraus. Seien Iy, ..., I, teilerfremde Ideale und das Element

(a1 +1y,ean+ 1, a0 ) € R/ X .o x(R/L,) X (R i)

vorgegeben. Nach Induktionsvoraussetzung finden wir ein Element a’ € R mit a’ + I, = a; + I fiir 1 < k < m. Die
Ideale J =1 -...- I, und I,,,; sind nach Lemma|[14.4|teilerfremd. Wiederum auf Grund der Induktionsvoraussetzung
finden wir eina € Rmita+J = a’+J und a + I,,,1 = @41 + I,y41. Die Gleichung a +J = a’ + J ist dquivalent zu
a—da' €J,undausJ C [ firl <k <mfolgta—a’ €I, also a+1I, =a’+ I, = a, + I fiir 1 < k < m. Insgesamt gilt
alsoa+ L =aq+ firl<k<m+1und ¢(a)=(a; + 11, .., Q1 + Ipps1)- O

Fiir die Kongruenzrechnung ergibt sich das dem Chinesischen Restsatz das folgende Resultat.

Satz 14.7 Seien r € IN mit r > 2, aufBerdem n,,...,n, € IN paarweise teilerfremde natiirliche

Zahlen und n = l_[;.z1 n;. Seien cy, ..., ¢, € Z. Dann ist die Losungsmenge £ € Z des Kongruenz-
systems

x=c¢;modn, , x=c¢ymodn, , .. , Xx=c,modn,

nicht leer. Ist a € £ beliebig gewéhlt, dann gilt £ = a + nZ.

Beweis: Auf Grund des Chinesischen Restsatzes existiert ein Isomorphismus ¢ : Z/nZ — Z/n,Z x ... x Z./n,Z. von
Ringen mit ¢(c + nZ) = (¢ + yZ, ...,c + n, Z) fiir alle ¢ € Z. Fiir jedes ¢ € Z gilt die Aquivalenz

celL & c=qgmodnfirl<k<r & c+mZ=cg+nZfirl<k<r &

(c+mZ,...c+n,2)=(c; +MZ,...c, +n,2) < ¢(c+nZ)=(c;+nZ,....c, +n,7).

Weil ¢ surjektiv ist, besitzt insbesondere das Element (¢; + n,7Z, ...,c, + n,7Z) der Menge Z/n,Z x ... x Z./n,Z ein
Urbild. Die Aquivalenz zeigt somit, dass die Lésungsmenge £ nicht leer ist. Sei nun a € £ beliebig gewéhlt. Dann gilt
fiir alle ¢ € Z auf Grund der Bijektivitit von ¢ die Aquivalenz

cel & ¢lc+nZ)=(c;+mZ,...c,+nZ)=¢(a+nZ) & c+nZ=a+nZ < ce€a+nl.

Damit ist die Gleichung £ = a + n’Z bewiesen. m|

Die Bestimmung einer Losungsmenge £ eines Kongruenzsystems wie im Satz reduziert sich also auf die Bestim-
mung einer einzelnen Losung. Ist das Produkt n klein, dann I&sst sich eine solche Losung am einfachsten dadurch
bestimmen, dass man sie aus der Menge {0, 1,...,n — 1} durch sukzessive Anwendung der einzelnen Kongruenzen
yherausfiltert“. Als konkretes Beispiel betrachten wir das System

x=0mod2 , x=2mod3 , x=4mod>5.

Da es sich bei 2, 3 und 5 um verschiedene Primzahlen handelt, sind die Zahlen insbesondere paarweise teilfremd, und
ihr Produkt ist n = 2 - 3 - 5 = 30. Die einzigen Zahlen in der Menge {0, 1, ..., 29}, die die letzte der drei Kongruenzen
erfiillen, sind 4,9, 14,19, 24, 29. Unter diese Zahlen erfiillen nur 14 und 29 auch die zweite Kongruenz, und nur 14
auch die erste. Auf Grund des Satzes ist die Losungsmenge des Systems also durch £ = 14 4+ 307 gegeben.
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Ist das Produkt n dagegen grof3, dann kommt man durch Anwendung des Euklidischen Algorithmus schneller ans
Ziel. Zunéchst bemerken wir, dass die Bestimmung einer Losung fiir ein System aus r Kongruenzen mit r > 2 leicht
auf den Fall r = 2 zuriickgefiihrt werden kann. Dazu betrachtet man die teilerfremden Zahlen n; und m=ny-...-n,.
Wir setzen voraus, dass b eine Losung des Systems bestehend aus den r—1 Kongruenzen x =¢; mod n; mit2 < j <r
ist. AuBerdem sei a eine Losung des Systems

x=c¢ymodn; , x=bmodm.

Dann ist a auch eine Losung des urspriinglichen, r-elementigen Systems. Denn nach Definition ist a zunéchst eine
Losung der ersten Kongruenz. Wegen a = b mod m gilt aulerdem m | (b —a), und wegen n; | m auch n; | (b —a),

fiir 2 < j < r. Dies wiederum ist dquivalent zua =b =c¢; mod n; flir 2< j <r.

Wir kdnnen uns also auf die Bestimmung einer Losung im Fall r = 2 konzentrieren. Seien m,n € IN teilerfremd
und c,d € Z. Gesucht wird eine Losung des Systems x = ¢ mod m, x = d mod n. Hierzu fiihrt man die folgenden
Einzelschritte aus.

(1) Bestimme mit Hilfe des Euklidischen Algorithmus Zahlen u,v € Z mit um + vn = ggT(m,n) = 1.

(2) Berechne a; =1 —um und a, = 1—aq;. (Dann gilt offenbar a; =1—0 =1 mod m, a; = vn = 0 mod n und
ebensoa, =1—(1—um)=um=0modmunda, =1—(1—um)=1—vn=1mod n.)

(3) Setze a=ca, +da,. (Dann erhaltenwira=c-1+d-0=cmodmund b=c-0+d-1=d mod n. Also ist a
eine Losung des Systems.)

Als konkretes Beispiel betrachten wir das System
x=15mod59 , x =20 mod 73.

Da 59 und 73 Primzahlen sind, gilt ggT(59,73) = 1, aullerdem ist 59 - 73 = 4307. Mit Hilfe des Euklidischen
Algorithmus finden wir fiir die Gleichung 59u + 73v = 1 die Losung (u, v) = (26,—21). Gemal Schritt (2) berechnen
wira; =1—5% =1—-59:26 = —1533 und a, = 1 —a; = 1534. Wie in Schritt (3) erhalten wir durch a =
15a, +20a, = 7685 eine Losung des Systems. Die Losungsmenge des Systems ist also nach Satz[14.7|gegeben durch
L = 7685+43077. Der eindeutig bestimmte Reprasentant der Nebenklasse 7685+43077 in {0, 1, ...,4306} ist 3378.
Also kann die Losungsmenge auch in der Form £ = 3378 + 43077 angeschrieben werden.

Als Erganzung bemerken wir noch, dass der Fall, dass die Zahlen n,, ..., n, € IN nicht paarweise teilerfremd sind, auf
den teilerfremden Fall zuriickgefiihrt werden kann. Der Einfachheit halber formulieren wir die allgemeine Aussage
nur fiir den Fall r = 2.

Satz 14.8 Seien m,n € IN und a, b € Z. Wir betrachten die Losungsmenge £ C Z des Kongru-
enzsystems
x=amodm , x=bmodn.

(i) Es gilt £ # @ genau dann, wenn a = b mod d erfiillt ist, mit d = ggT(m, n).

(i) Seil € Z mit b =a+{d, auBerdem m’ = & und n’ = 3. Sei ¢ eine Lésung des Systems
x = 0mod m’, x = { mod n’. Dann ist die Losungsmenge des urspriinglichen Systems
gegeben durch £ = a + dc + kgV(m, n)Z.
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Beweis: Zur Vorbereitung bemerken wir: Ist u € Z eine Losung des Kongruenzsystems, dann ist die Losungsmenge des
gesamten Systems gegeben durch u+kgV(m,n)Z. Ist ndmlich v € Z eine weitere Losung, dann gilt u = a = v mod m
und u = b = v mod n. Die Differenz v—u ist also eine gemeinsames Vielfaches von m und n, und somit ein Vielfaches
von kgV(m, n). Daraus folgt v € u+kgV(m, n)Z. Setzen wir umgekehrt v € u+kgV(m, n)Z voraus, dann ist v—u ein
gemeinsames Vielfaches von m und n. Es folgt v =u = a mod m und v =u = b mod n, und somit v € L.

zu (ii) Auf Grund der Vorbereitung geniigt es zu iiberpriifen, dass a + dc eine Losung des Systems ist. Nach Vor-
aussetzung gilt m’ | ¢ und ¢ = ¢ mod n’. Es existieren also u,v € Z mit ¢ = um’ und ¢ —{ = vn’. Zu zeigen ist, dass
a+dc in £ enthalten ist, also eine Losung des urspriinglichen Kongruenzsystems darstellt. Tatsachlich gilt

a+dc = a+dum’ = a+um = amodm
und ebenso
a+dc = a+d{l+vn) = (a+€d)+dvn’ = b+vn = b mod n.

zu (i) ,,=“ Seic € L beliebig gewahlt. Dann folgt ¢ = a mod m und ¢ = b mod n, wegen d | m und d | n also auch
a=c=bmodd. ,&“ Dies folgt direkt aus Teil (ii), denn auf Grund der Voraussetzung a = b mod d existiert
ein £ € Z mit b = a + {d, und offenbar ist a + dc + kgV(m, n)Z mit dem in (ii) beschriebenen ¢ € Z eine nichtleere
Menge. O

Bei Teil (ii) von Satz beachte man, dass die Zahlen m’,n’ € IN teilerfremd sind und somit die Bestimmung einer
Losung dieses Systems mit dem zuvor behandelten Rechenverfahren méglich ist.

Eine weitere Anwendung des Chinesischen Restsatzes besteht in der Losung von Polynomgleichungen in Restklas-
senringen.

Satz 14.9 Seien m,n € NN teilerfremd und f € Z[x]. Es bezeichne N die Menge der Nullstellen
von f in Z/(mn)Z, und N,, bzw. A, die Menge der Nullstellen von f in Z/mZ bzw. Z/nZ. Dann
existiert eine Bijektion v : N' — N, x N;, mit Y(a + mnZ) = (a + mZ, a + nZ) fiir alle a € Z mit
a+mnZ e N.

Beweis: Weil es sich bei ¢ um einen Ringhomomorphismus handelt, gilt f (¢ (a)) = ¢ (f (@) fiir alle @ € Z/(mn)Z.
Stellen wir ndmlich f in der Form f = ZZ:O a,x* mit d € N und q; € Z fiir 0 < k < d dar, dann gilt auf Grund der
Homomorphismus-Eigenschaft jeweils

d d
F@@) = Ylap@ = Y dla-a) = é(Zakak) = ¢(f(a).
k=0

d
k=0 k=0

Dies zeigt, dass durch die eingeschriankte Abbildung 1) = ¢ |, jedenfalls eine Abbildung A" — N, x ,, gegeben ist,
denn fiir alle @ € V" und (b, ¢) = ¢(a) gilt jeweils

(fd)f(E) = f(b,O = f@@) = f@@) = ¢(f(@) = ¢0 = (0,0

und somit (b, &) € N, x N,,. Nach Definition gilt auferdem v)(a + mnZ) = ¢(a + mnZ) = (a + mZ, a + nZ) fiir alle
a€Zmita+mnZeN.
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Als Einschrinkung einer injektiven Abbildung ist auch 1) injektiv. Zum Nachweis der Surjektivitit sei (b, ) € N, x N,
vorgegeben. Sei @ € Z/(mn)Z das eindeutig bestimmte Element mit ¢ (a) = (b,¢). Wegen ¢(f(a)) = f(¢(a)) =
f(b,8) = (f(b), f()) = (0,0) und der Injektivitit folgt f(a) = 0, also @ € N und ¥(a) = $(a) = (b, ). Damit ist
die Surjektivitit von 1) nachgewiesen. O

Als konkretes Beispiel fiir die Aussage des Satzes bestimmen wir die Nullstellen des Polynoms f = x? — x € Z[x]
im Restklassenring Z/35%. Sei ¢ : Z,/35Z — 7./57. x 7./ 77 der Isomorphismus aus dem Chinesischen Restsatz. Da
5 und 7 Primzahlen sind, handelt es sich bei Z /57 und Z./77Z. nach Satz um Korper. In beiden Kérpern sind 0
und 1 offenbar Nullstellen von f, und da ein Polynom vom Grad 2 {iber einem Korper nach Folgerung (ii) nicht
mehr als zwei Nullstellen besitzt, sind es die einzigen. Somit ist

Ngx N, = {(0+5Z,0+7Z), (0+52,1+77Z), (1+52,0+7Z), (1+5Z,1+77Z)}.

Nach Satz sind die Nullstellen von f in Z/35Z genau die Urbilder von A5 x N, unter dem Isomorphismus ¢.
Offenbar ist 0 = 0 + 35Z das Urbild von (0 + 57,0 + 7Z), und 1 = 1 + 35Z ist das Urbild von (1 + 57,1 + 7Z). Die
eindeutig bestimmte Losung des Kongruenzsystems x =0 mod 5, x =1 mod 7 in {0, 1, ..., 34} ist 15. Also ist 15 das
Urbild von (0+ 57,1+ 77Z). Genauso findet man das Urbild 21 von (14 57,0+ 7Z). Insgesamt ist N = {0, 1, 15,21}
also die Nullstellenmenge von f in Z/35Z.

Als weitere Anwendung des Chinesischen Restsatzes bestimmen wir die Struktur der in §4 eingefiihrten primen
Restklassengruppen (Z/nZ)*. Dabei handelt es sich um endliche abelsche Gruppen. Aus § 8 wissen wir bereits, dass
solche Gruppen also direkte Produkte endlicher zyklischer Gruppen darstellbar sind. Unser Ziel besteht darin, eine
solche Darstellung von (Z/nZ)* fiir jedes n € IN explizit anzugeben.

Lemma 14.10 Seien R und S Ringe. Dann gilt
@ (RxS)*=R*xS8*

(ii) Ist ¢ : R — S ein Isomorphismus von Ringen, dann gilt ¢(R*) = S*. Insbesondere sind
die Einheitengruppen R* und S* also isomorph.

Beweis: zu (i) ,.C“ Das Einselement des Rings R x S ist (1, 15). Ist (a, b) € (R x S)*, dann gibt es nach Definition
ein Paar (c¢,d) € R x S mit (ac, bd) = (a, b)(c,d) = (1, 15). Es gilt also ac = 1z, bd = 15 und damit a € R*, b € S*.
,2“ Sei(a,b) € R* x S*. Dann gibt es Elememte ¢ € R und d € S mit ac = 1z und bd = 14. Insgesamt erhalten wir
(a,b)(c,d) = (ac,bd) = (15, 1g) = 1z.s, also (a, b) € (R x S)*.

zu (ii) Wir beweisen zunéchst die Inklusion ¢(R*) C S*. Sei a € ¢(R*). Dann gibt es ein b € R* mit ¢(b) = a. Weil
b eine Einheit ist, existiert ein ¢ € R* mit bc = 1g, und es folgt a¢(c) = ¢ (b)p(c) = ¢ (bc) = ¢(1g) = 1. Dies zeigt,
dass a eine Einheit in S ist. Wir kénnen nun dasselbe Argument auf den Ringhomomorphismus ¢! anwenden und
erhalten ¢ ~(S*) C R*. Anwendung von ¢ auf beide Seiten liefert S* C ¢(R*). Insgesamt gilt also ¢p(R*) =S*. O

Wir erinnern daran, dass die Ordnung der Gruppe (Z/nZ)* gleich ¢(n) ist, wobei ¢ die in § 3 definierte Eulersche
p-Funktion bezeichnet. Dort hatten wir bereits (ohne Begriindung) die Rechenregeln ¢(mn) = ¢(m)p(n) fiir teiler-
fremde m,n € IN und ¢(p") = p"'(p — 1) fiir r € IN und Primzahlen p angegeben. Die zweite Gleichung kommt
folgendermafRen zu Stande: Nach Definition ist ¢(p") die Anzahl der ganzen Zahlen a mit 0 < a < p” — 1. Die ein-
zigen Zahlen in diesem Bereich, die nicht teilerfremd zu p” sind, sind die Vielfachen von p, und die Anzahl dieser
Vielfachen betrégt p" L. Es bleiben also genau p"*(p — 1) = p” — p"~! Zahlen iibrig.
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Die erste Gleichung kann man einfacher beweisen, indem man die Ringtheorie zur Hilfe nimmt.

Proposition 14.11 Sind m, n teilerfremd und m, n > 2. Dann gilt fiir die Eulersche ¢-Funktion
die Rechenregel ¢ (mn) = ¢ (m)p(n).

Beweis: Auf Grund des Chinesischen Restsatzes und Lemma [14.10| gilt
(Z/mnZ)* = (Z/mZ xZ/nZ) = (Z/mZ)* x(Z/nZ)".
Die Menge links enthélt ¢(mn), die Menge rechts ¢ (m)¢(n) Elemente. O

Fiir die weiteren Ausfiihrungen benétigen wir einen neuen Begriff aus der Gruppentheorie. Der Exponent exp(G)
einer Gruppe G ist die kleinste Zahl n € IN mit der Eigenschaft g" = e fiir alle g € G. Existiert keine natiirliche Zahl
mit dieser Eigenschaft, dann setzt man exp(G) = +00. Ist G eine endliche Gruppe, dann nimmt der Exponent stets
einen endlichen Wert an.

Man iiberzeugt sich leicht davon, dass die Exponenten der symmetrischen Gruppen S; und S, durch exp(S3) = 6 und
exp(S,) = 12 gegeben sind. In S gibt es aber kein Element der Ordnung 6, und ebensowenig in S, ein Element der
Ordnung 12. Fiir endliche abelsche Gruppen gilt dagegen

Proposition 14.12 Sei G eine endliche abelsche Gruppe vom Exponenten m. Dann existiert in
G ein Element der Ordnung m.

Beweis: Nach §8 ist G als endliche abelsche Gruppe isomorph zu einem direkten Produkt endlicher zyklischer
Gruppen ist. Es gibt also my, ...,m, € N mit G = Z/m,Z % ... x Z./m, Z.. Der Einfachheit halber kénnen wir annehmen,
dass G zu dem Produkt auf der rechten Seite nicht nur isomorph ist, sondern damit {ibereinstimmt. Sei nun m der
Exponent von G. Wir zeigen, dass m mit £ = kgV(m,,...,m,) libereinstimmt. Nach Definition des Exponenten gilt
mg = O fiir g € G. Insbesondere gilt

m(l+mZ,..,1+m,2)=0, < m+mZ,...m+m.2)=(m7Z,..m7) &
m+mZ=mZfirl<k<r & mmfirl<k<r
Also ist m jedenfalls ein gemeinsames Vielfaches von m,,...,m, und damit auch ein Vielfaches von ¢. Weil { ein

Vielfaches von my, ..., m, ist, gilt andererseits fiir alle a;, ...,a, € Z und 1 < k < r jeweils my|(£ay), also Lay + mZ =
m;Z und somit

L(ay +mZ,...;a, +m,2) = (({Lay+mZ,...La,+m.2Z) = (mZ,...,m.Z) = Og.

Nach Definition des Exponenten folgt daraus £ > m. Aus £|m und ¢ > m folgt £ = m. Die Rechung von oben zeigt
dartiber hinaus, dass (1 +m;%Z,...,1 + m,Z) ein Element der maximalen Ordnung m ist. O

Satz 14.13 SeiK ein Korper und U eine endliche Untergruppe der multiplikativen Gruppe K*.
Dann ist U zyklisch. Insbesondere ist die multiplikative Gruppe eines endlichen Korpers immer
eine zyklische Gruppe.
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Beweis: Sein = |U| und d der Exponent von U. Nach dem Satz von Lagrange ist ord(a) fiir jedes a € U jeweils
ein Teiler von n, also gilt a" = 1 fiir alle a € U. Dies zeigt, dass d < n gilt. Andererseits gilt nach Definition des
Exponenten auch a? = 1 fiir alle a € U. Damit sind alle Elemente aus U Nullstellen des Polynoms f = x¢—1 € K[x].
Aber ein Polynom vom Grad d tiber einem Korper kann nach Folgerung[12.5/hchstens d Nullstellen besitzen. Daraus
folgt n < d, insgesamt n = d. Nach Proposition [14.12|gibt es in U ein Element der Ordnung n. Also ist U zyklisch. O

Folgerung 14.14 Ist p eine Primzahl, dann gilt (Z/pZ)* = Z/(p — 1)Z.

Beweis: Wie wir bereits festgestellt haben, gilt |(Z/pZ)*| = ¢(p) = p — 1. AuBBerdem ist (Z/pZ)* nach Satz|14.13
zyklisch, damit isomorph zu Z/(p — 1)Z. O

Mit den bisherigen Ergebnissen konnen wir die Struktur der primen Restklassengruppe (Z/nZ)* bereits in vielen
Fillen bestimmen. Beispielsweise gilt
(Z/1572) = 7/27 x 7.]47Z

und somit insbesondere p(15) = 8. Denn nach dem Chinesischen Restsatz und Lemma |14.10)| existiert ein Isomor-
phismus (Z/157)* = (Z/37)* x (Z/57)*. Aullerdem gilt (Z/37Z)* = Z./27 und (Z./57))* = 7./4Z nach Folgerung
14.14

Eine Zahl a € Z mit der Eigenschaft (Z/pZ)* = (a+ pZ) wird Primitivwurzel modulo p genannt. Es ist zwar keine
Formel bekannt, mit der sich ein solches a bestimmen l&sst, aber man kann folgenden Satz aus der Gruppentheorie
zur Hilfe nehmen, um es zu finden: Ist G eine zyklische Gruppe der Ordnung n und gilt gg # e fiir alle Primteiler
p von n, dann ist g ein erzeugendes Element, es gilt also G = (g).

Beispiel: 'Wir bestimmen eine Primitiviwurzel modulo 43. Die Gruppenordnung von (Z./437.)* ist 42=2-3-7, ein
Element a € (Z/437)* ist also genau dann eine Primitivwurzel, wenn a™ # 1 fiir alle m € {%, %, %} ={21,14,6}
gilt. Wegen 2'* = 1 ist 2 keine Primitivwurzel. Es gilt aber 3! = 42, 3'* = 36 und 3° = 41, also haben wir mit @ = 3
eine Primitivwurzel modulo 43 gefunden. Tatsichlich erhilt man, wenn man die Potenzen a', a2, a°, ... der Reihe

nach aufschreibt, die Elemente

und somit die gesamte Gruppe (7Z/437.)*.

Das Rechenbeispiel wirft die Frage auf, wie hohe Potenzen von Elementen a € Z/nZ effizient ausgerechnet werden
kénnen. Es gibt hierzu das Verfahren der schnellen Exponentiation, dass wir hier kurz am Beispiel der Potenz 32! im
Restklassenring 7,/437 erlautern wollen. Zunéchst schreibt man den Exponenten als Summe von Zweierpotenzen,
in unserem Fall also 21 = 16 + 4 + 1. AnschlieRend berechnet man die Elemente 32" fiir hinreichend grofSes d. In
unserem Fall ist

3'=3 , =5 , 3=(37=9"=81=38 , 3*=(3"’=(38)’=(-57=25 ,

316 =(38)2 = (25)* = 625 = 195 = 23

weiter 38 - 23 = 874 = 14 und schlieRlich 32! =316.34.31=23.38.3=14-3 =42.
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Lemma 14.15

(i) Sei p eine ungerade Primzahl und m € IN. Dann gilt (1 + p)an =1 mod p™ und
(14p)*"" #1 mod p™*.

(i) FirallemelN, m> 2 gilt 52" =1 mod 2™ und 5*" % 1 mod 2™*!.

Beweis: zu (i) Wir beweisen die Aussage durch vollstindige Induktion iiber m. Fiir m = 1 lautet die Aussage
1+p=1modpund 1+ p # 1 mod p?, und sie ist offenbar erfiillt. Sei nun m € IN, und setzen wir die Assuage
fiir m voraus. Dann gilt (1 + p)pm_1 = 1mod p™. Es gilt also (1 + p)pm_1 = 1+ kp™ fiir ein k € Z, aber wegen
1+ p)pm_1 # 1 mod p™*! ist p kein Teiler von k. Durch Anwendung des Binomischen Lehrsatzes erhalten wir

A+pP" = (A+pP" Y = Q+kp")P =
(P - 1 NPy
myj _ m+ J o jm

;(j)(kp Y = 1+kp +;(j)kp :

Fiir2<j<p—1ist (’]’) = ﬁ durch p teilbar. Also ist der j-te Summand (?)kj p’™ durch p™*! teilbar, und es
gilt mj+1>2m+ 1> m+ 2. Der letzte Summand (i)kppmp ist durch p™ teilbar, und es gilt mp > 3m > m + 2.
Insgesamt ist >, (’;)ki p™ also durch p™*? teilbar, und wir erhalten (1 + p)*" = 1 + kp™"! mod p™*2. Es folgt
(14 p)P" =1 mod p™! und (1 + p)*" # 1 mod p™*2.

zu (ii) Auch hier beweisen wir die Aussage durch vollstdndige Induktion {iber m. Fiir den Startwert m = 2 ist die
Aussage wegen 5 = 1 mod 4 und 5 # 1 mod 8 erfiillt. Sei nun m > 2 und die Aussage fiir dieses m vorausgesetzt.
Dann gilt 52" = 1 mod 2™ und 52" # 1 mod 2™*!. Es gibt also ein ungerades k € Z mit 52" = 1+ k2™. Durch
Einsetzen erhalten wir

527 = (5272 = (1+k2™)? = 1+k2mH4k222m,

Wegen 2m > m + 2 folgt 52" =1+ k2™ mod 2™*2. Wir erhalten 52" =1 mod 2™*! und 5" # 1 mod 2™*2. O

Satz 14.16

(i) Fiir jede ungerade Primzahl p und jedes m € IN ist (Z/p™Z)* eine zyklische Gruppe der
Ordnung p™!(p —1).

(i) Esgilt (Z/27)* = {1}, (Z/AZ)* = Z./27Z. Fiir alle m > 3 existiert jeweils ein Isomorphis-
mus (Z/2m7)* = 7./27. x 7.] 2™ 7.

Beweis: zu (i) Wegen Folgerung[14.14kénnen wir m > 2 voraussetzen; auBerdem gibt es auf Grund dieses Satzes
ein a € Z mit {a + pZ) = (Z/pZ)*. Setzen wir @ = a + p™Z und r = ord(a), dann gilt a" = 1 in (Z/p™Z)*, also
a" =1 mod p™ und erst recht a” = 1 mod p. Weil a + pZ in der Gruppe (Z/pZ)* die Ordnung p — 1 hat, folgt aus
(a+pZ)" =1+ pZ, dass p—1 ein Teiler von r ist. Sei k € IN mit k(p — 1) = r. Auf Grund der Rechenregeln fiir
Elementordnungen aus der Gruppentheorie ist b = a* in (Z/p™Z)* ein Element der Ordnung p — 1.

Sei nun aulerdem ¢ = (1 + p) + p™Z. Nach Lemma [14.15| (i) gilt A # 1 und "' =1in¢in (Z./p™Z)*. Dies
zeigt, dass ¢ in (Z/p™Z)* ein Element der Ordnung p™ ! ist. Sei nun die Untergruppen U und V von G = (Z/p™Z)*
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gegeben durch U = (b) und V = (¢). Als Untergruppen einer abelschen Gruppe sind U und V Normalteiler von
G. Weil die Ordnungen |U| = p—1 und |V| = p™! der zyklischen Gruppen U = Z/(p —1)Z und V = Z/p™ ' Z
teilerfremd sind, gilt auBerdem U NV = {1}. Insgesamt ist das Komplexprodukt UV ein inneres direktes Produkt
von U und V. Nach Proposition aus der Gruppentheorie und dem Chinesischen Restsatz (der auf Grund der
Teilerfremdheit von p™! und p — 1 angewendet werden kann) folgt

Uv = UxV =2 Z/(p—-1ZxZ/p™'7Z = Z/p™p—-1)Z.

Wegen |G| = p(p™) = p™ }(p—1) folgt G = UV = Z/p™ }(p —1)Z, also ist G = (Z/p™Z)* eine zyklische Gruppe
der Ordnung p™'(p —1).

zu (ii) Die ersten beiden Aussagen sind unmittelbar klar, denn nach Definition gilt (Z/2Z)* = {1 + 27} und
(Z/47)* = {1+4Z,3+47Z} = (3+47Z). Seinun m € IN mit m > 3. Nach Lemma(ii) gilt52" " =1und 52" #1
in (Z/2™Z7)*. Daraus folgt ord(5) = 2™ 2. AuRerdem ist —1 ein Element der Ordnung 2 in (Z/2™Z)*, denn es gilt
—1# 1 und (1) = 1. AuRerdem gilt —1 ¢ (5). Denn andernfalls wiirde —1 = 5% und damit —1 = 5 mod 2™ fiir ein
k € Z gelten. Daraus wiederum wiirde wegen 5 = 1 mod 4 dann —1 = 5 = 1¥ = 1 mod 4 folgen, im Widerspruch
zu —1 # 1 mod 4. Wegen —1 ¢ (5) gilt (5) N (—1) = {1}, also bilden die Untergruppen U = (5) und V = (—1) ein
inneres direktes Produkt UV. Wie in Teil (i) liefert der Satz iiber innere direkte Produkte aus der Gruppentheorie
einen Isomorphismus UV = U xV X Z /2" 27 x 7,/27. Aus |UV| = |[Ux V| =2""2.2 = 2" = p(2™) = |(Z/2™Z)*|
gilt aullerdem (Z/2™7Z)* = UV. |

Beispiel:  Das Element @ = 2 ein Erzeuger der 18-elementigen Gruppe (Z/277)*. Dies iiberpriift man mit dem
oben angegebenen Kriterium aus der Gruppentheorie durch die Rechung 2° = 26 # 1 und 2° = 10 # 1. Die Potenzen
al,a%,as,... sind der Reihe nach gegeben durch

2,4,8,16,5,10, 20, 13, 26, 25,23, 19, 11,22,17,7, 14,1 ,

also genau die Elemente der 18-elementigen Gruppe (Z/277Z.)*.
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§15. Endliche und algebraische Korpererweiterungen

Zusammenfassung. In diesem Kapitel untersuchen wir die Korpererweiterungen genauer. Der Begriff des
Erzeugendensystems, den wir bereits in der Gruppen- und Ringtheorie kennengelernt haben, besitzt auch hier
eine niitzliche Funktion. Ist L|K eine Korpererweiterung, dann besitzt L die Struktur eines K-Vektorraums. Die
Dimension dieses K-Vektorraums wird der Grad [L : K] der Erweiterung genannt. Ist die Dimension endlich,
dann spricht man von einer endlichen Erweiterung. Beispielsweise ist [C : R] = 2, und damit endlich, weil C
als R-Vektorraum zweidimensional ist.

Ein Element a € L wird algebraisch iiber K genannt, wenn es Nullstelle eines Polynoms f € K[x] mit f # O
ist. Trifft dies auf alle Elemente von L zu, dann wird auch die Erweiterung L|K als algebraisch bezeichnet.
Ist f normiert, und besitzt es unter allen Polynomen ungleich null mit a als Nullstelle einen minimalen Grad,
dann nennt man f das Minimalpolynom von « iiber K. Der Grad der Erweiterung ist dann durch [K(a) : K] =
grad(f) gegeben. Die Elemente von K(a) besitzen eine einfache, eindeutige Darstellung, und mit Hilfe dieser
Darstellung lassen sich auch die vier Rechenoperationen auf dem Korper K(a), also Addition, Subtraktion,
Multiplikation und Division, auf einfache Weise beschreiben.

Wichtige Grundbegriffe Zentrale Sdtze
— Zwischenkorper einer Korpererweiterung — Vektorraumstruktur eines Erweiterungskorpers
— von einer Teilmenge S {iber einem Grundkérper K  — Gradformel

ter Teilko K(S
erzeugter Teilkorper K(5) — Erweiterungsgrad [K(a) : K] = Grad des

— Grad einer Korpererweiterung Minimalpolynoms (falls a iiber K algebraisch ist)
— endliche Korpererweiterung — Rechenregeln fiir Elemente in algebraischen Erwei-
terungen

— algebraisches Element in einer Kérpererweiterung
— Klassifikation der quadratischen Erweiterungen des

— algebraische Korpererweiterung Kérpers @ der rationalen Zahlen

— Minimalpolynom eines Elements

Bereits in § 9 haben wir die Begriffe , Teilkorper, ,, Erweiterungskorper” und ,,Korpererweiterung” eingefiihrt. In der

Korpertheorie spielt dariiber hinaus der folgende Begriff eine wichtige Rolle.

Definition 15.1 Sei L|K eine Korpererweiterung. Ein Zwischenkérper von L|K ein Teilkorper
von L, der zugleich Erweiterungskorper von K ist.

Beispielsweise ist C|(Q eine Korpererweiterung, und R, Q und C sind Zwischenkorper dieser Erweiterung. Bereits bei

den Untergruppen, den Idealen und den Teilringen ist uns das Konzept des Erzeugendensystems begegnet. Auch bei

den Teilkdrpern erweist sich dieses Konzept als sinnvoll.
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Satz 15.2 Sei L|K eine Korpererweiterung und S C L eine Teilmenge. Dann gibt es einen
eindeutig bestimmten Zwischenkoérper L von L|K mit den Eigenschaften

@» L2S

(ii) Fiir jeden weiteren Zwischenkorper L’ von L|K mit L’ 2 S gilt L' D L.

Insgesamt ist L also der kleinste Zwischenkorper von L|K mit der Eigenschaft L D S.

Beweis: Zunichst beweisen wir die Existenz. Sei (L;);c; die Familie aller Zwischenkoérper von L|K mit L; 2 S. Wie
bei den Teilringen sieht man, dass dann auch L =), L; ein Teilkérper von L ist. Dariiber hinaus gilt L 2 L; fiir alle
i € I und somit L D K, insgesamt ist L also ein Zwischenkorper von L|K. Aus L; 2 S fiir alle i € I folgt auch L 2 S.
Da L nach Definition in jedem Zwischenkorper L; von L|K enthalten ist, ist auch die Bedingung (ii) fiir den Korper

L erfullt.

Seinun L’ ein weiterer Zwischenkérper von L|K mit den Eigenschaften (i) und (ii). Weil L und L’ beide die Bedingung
(ii) erfiillen, gilt L’ 2 L und L 2 L', insgesamt also L = L’. O

Wir bezeichnen den nach Satz eindeutig bestimmten Korper mit K(S) und nennen ihn den von der Teilmenge S
iiber K erzeugten Teilkorper von L. Ist S eine endliche Menge, S = {ay, ..., a,,}, dann schreibt man statt K({a, ...,a,})
auch

K(aq,...,a,) ,

man lisst also die Mengenklammern weg. Beispielsweise bezeichnet Q(+/3, +/5) den kleinsten Zwischenkérper von
R|Q, der {+/3, v/5} als Teilmenge enthilt. Wir bemerken bereits hier, dass auf Grund der Teilkorper-Eigenschaft von
Q(+/3, v/5) mit +/3 und +/5 auch z.B. die Elemente

V3+vE . V3B . VE/S=vi5 . 247v5 345

V3+45
in Q(+/3, V/5) enthalten sind. Insgesamt enthilt dieser Korper alle Elemente, die mit Hilfe der vier Grundrechenarten
+, —, - und + aus v/3, +/5 und beliebigen rationalen Zahlen gebildet werden kénnen.

Proposition 15.3 Sei L|K eine Korpererweiterung, und seien S und T beliebige Teilmengen
von L. Dann gilt
K(SuT) = K(S)T).

Beweis: Wir miissen iiberpriifen, dass K(S)(T) ein Zwischenkoérper von L|K ist, der die Bedingungen (i) und (ii) aus
Satz fiir die Menge S U T erfiillt. Nach Definition ist K(S) ein Zwischenkérper von L|K, und K(S)(T) ist ein Zwi-
schenkorper von LIK(S). Aus K(S)(T) 2 K(S) und K(S) 2 K folgt K(S)(T) 2 K, also ist K(S)(T) ein Zwischenkorper
von L|K.

Weiter gilt nach Definition K(S) 2 S, und K(S)(T) enthalt sowohl K(S) als auch T als Teilmengen. Insgesamt gilt
damit K(S)(T) 2 SU T. Damit ist Bedingung (i) erfiillt. Zum Nachweis von (ii) sei L’ ein beliebiger Zwischenkérper
von L|K mit L’ 2 SUT. Dann ist L’ insbesondere ein Zwischenkérper von L|K mit L’ 2 S. Auf Grund der Eigenschaft
(ii) des Korpers K (S) folgt daraus L’ 2 K(S), somit ist L’ ein Zwischenkoérper von L|K(S). Zusammen mit L’ 2 T folgt
L’ 2 K(S)(T). Damit ist insgesamt die Bedingung (ii) fiir den Korper K(S)(T) nachgewiesen. O
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Als néchstes schauen wir uns auch hier Erweiterungen an, die von einem einzelnen Element erzeugt werden.

Proposition 15.4 Sei L|K eine Kérpererweiterung und a € L. Dann gilt

a

K@) = {LL”fgeKhlﬂw#O}
g(a)

Dabei sei K[ x] der Polynomring {iber dem Korper K, und f (a), g(a) bezeichnen die Elemente in

L, die durch Einsetzen von a in f, g zu Stande kommen.

Beweis: Sei T C L die Teilmenge auf der rechten Seite der Gleichung. Wir {iberpriifen zunichst, dass T ein Zwischen-
korper von L|K ist. Zum Nachweis der Teilkorper-Eigenschaft stellen wir zunéchst fest, dass 1 € T gilt, denn setzen
wir f = g =1, dann gilt 1 = f(a)/g(a). Seien nun a, € T vorgegeben. Dann gibt es Polynome f, f;, g, g7 € K[x]
mit g(a) # 0, g;(a) # 0 und

f(a) fi(a)
o M P @
Es folgt
a—p = flagi(a)~fila)gla) _  (fgi—fig)la)
g(a)g:(a) (881)(a)
und
af = fwhl@ _ (FAH)a)
g(a)g:(a) (gg1)(a)
Somit sind auch die Elemente o — 8 und af8 in T enthalten. Ist a # 0, dann gilt f (a) # 0, und wir erhalten
-1 _ g(a)
¢ f(a)

Damit ist gezeigt, dass T ein Teilkérper von L ist. Jedes b € K entsteht durch Einsetzen von a in das konstante
Polynom b € K[x]. Dies zeigt T 2 K, d.h. T ist tatsichlich ein Zwischenkorper der Erweiterung L|K. Dieser enthilt
auch a, denn dieses Element entsteht durch Einsetzen von a in das Polynom x € K[x].

Sei nun L’ ein beliebiger Zwischenkérper von L|K mit a € L’. Wegen K C L und a € L, und weil L’ abgeschlossen
unter Addition und Multiplikation ist, liegt f (a) fiir jedes Polynom f € K[x]in L’. Ferner ist L’ auch abgeschlossen
unter Inversenbildung. Ist g € K[x] und g(a) # 0, dann gilt g(a) € L’ und somit auch g(a)™! € L’. Ingesamt sind
also samtliche Elemente der Form f (a)/g(a) mit f,g € K[x] und g(a) # 0 in L’ enthalten. Damit haben wir T C L’
und insgesamt T = K(a) nachgewiesen. O

Im weiteren Verlauf werden wir nun die KOrpererweiterungen genauer untersuchen. Wir beginnen mit einem Merk-
mal, das es ermoglicht, die Grofle solcher Erweiterungen miteinander zu vergleichen.

Definition 15.5 Ist L|K eine Korpererweiterung, dann definieren die beiden Abbildungen

+:LxL—>L, (e,f)—»a+pf und -:KxL—>L, (a,a)—aa

eine K-Vektorraumstruktur auf L. Dabei bezeichnet man [L : K] = dimg L als den Grad der
Korpererweiterung; auch [L : K] = oo ist als Wert zugelassen. Ist [L : K] endlich, dann nennt
man L|K eine endliche Korpererweiterung.
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Beispielsweise gilt [C : R] = 2, denn jedes Element a € C kann auf eindeutige Weise in der Form a = a + ib mit
a, b € R dargestellt werden. Somit ist {1,i} eine Basis von C als R-Vektorraum.

Satz 15.6 (Gradformel)

Seien L|K und M|L endliche Korpererweiterungen. Dann ist auch die Korpererweiterung M |K
endlich, und es gilt
[M:K] = [M:L]-[L:K].

Beweis: Seim=[L:K],n=[M:L], {ai,...,a,} eine Basis von L als K-Vektorraum und {f, ..., 5, } eine Basis von
M als L-Vektorraum. Wir zeigen, dass dann durch

{aiﬁjHSiSm,ISjgn}

eine mn-elementige Basis von M als K-Vektorraum ist. Daraus folgt dann die gewiinschte Gleichung [M : K] =mn =
[L : K][M : L]. Zunéchst rechnen wir nach, dass die Elemente ein Erzeugendensystem bilden. Sei y € M beliebig
vorgegeben. Weil M als L-Vektorraum von 4, ..., 8, aufgespannt wird, gibtes y4, ...,y, € L mity = 25‘1:1 v;B;. Weiter

finden wir a;; €K mity; = >,

a;;a; fiir 1 < j < n. Einsetzen liefert
n m m n
Yy = Z(Zaijai)ﬂj = Z a;;a;f;.
i=1

j=1 \i=1 =1 j=1

Nun beweisen wir noch die lineare Unabhéngigkeit. Seien a;; € K mit Z:"Zl Z?:1 a;;ja;f3; = 0 vorgegeben. Dann gilt

$(Soa)s - o

j=1 \i=1

Die lineare Unabhéngigkeit von £, ..., 8, im L-Vektorraum M liefert Z:n:l a;ja; =0 fiir 1 < j < n. Da die Elemente
ay, ..., &, im K-Vektorraum L linear unabhéngig sind, folgt daraus wiederum q;; =0flr 1<i<mund1<j<n. O

Umgekehrt gilt: Ist M|K eine endliche Erweiterung, dann sind auch M|L und L|K endlich. Wire M|L unendlich, dann
gibe es fiir jedes n € N ein System a;, ..., @, von Elementen aus M, die iiber L linear unabhéngig sind. Diese sind
dann erst recht linear unabhéngig tiber K. Wire L|K unendlich, dann gibe es beliebig groe, endliche Systeme von
Elementen in L, die iiber K linear unabhéngig sind. Diese sind dann erst recht in M enthalten.

Fiir jede Korpererweiterung L|K gilt offenbar [L : K] = 1 genau dann, wenn L = K ist. Denn einerseits ist K ein
eindimensionaler K-Vektorraum, mit {1} als Basis, und folglich gilt [K : K] = 1. Setzen wir andererseits [L : K] =1
voraus, dann ist jede einelementige Teilmenge von L \ {0;} eine Basis von L als K-Vektorraum, insbesondere also
{1x}. Jedes a € L kann also in der Form @ = a - 1, = a mit a € K dargestellt werden; daraus folgt L =K.

Mit Hilfe der Gradformel kann zum Beispiel gezeigt werden, dass die Erweiterung C|IR keinen echten Zwischenkorper,
also keine Zwischenkorper K mit R € K & C besitzt. Sei ndmlich K ein beliebiger Zwischenkorper von C|R. Dann
erhalten wir durch die Gradformel

2 = [C:R] = [C:K]-[K:R]
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Da die Erweiterungsgrade nattirliche Zahlen sind, folgt [C : K] = 1 oder [K : R] = 1. Auf Grund der Gradformel
folgt daraus wiederum C =K oder K = R.

Kommen wir nun zu einem wichtigen Merkmal der Elemente einer Korpererweiterung.

Definition 15.7 Sei L|K eine Korpererweiterung. Ein Element a € L heit algebraisch tiber
K, wenn ein Polynom f # 0 in K[x] mit der Eigenschaft existiert, dass a eine Nullstelle von f
ist. Gibt es ein solches Polynom nicht, dann nennt man a transzendent iiber K.

Wir betrachten einige Beispiele fiir algebraische und transzendente Korpererelemente.

(i) Das Element /2 ist algebraisch iiber Q, denn es ist Nullstelle des Polynoms x%2—2 € Q[x]. Weil dieses Polynom
auch in R[x] liegt, ist +/2 auch algebraisch iiber R. Alternativ kann zum Nachweis dieser Eigenschaft aber
auch das Polynom x — v2 € R[x] verwendet werden.

(ii) Allgemein gilt: Ist K ein Korper und a € K, dann ist a als Nullstelle von x —a € K[x] algebraisch iiber K.
(iii) Die imaginire Einheit i € C ist algebraisch iiber R, sogar iiber Q, als Nullstelle des Polynoms x? + 1 € Q[x].

(iv) Man kann zeigen, dass die Kreiszahl 7 und die Eulersche Zahl e transzendent iiber ) sind. Der Beweis ist leider
so aufwandig, dass wir ihn hier nicht durchfithren kénnen. Nach (ii) sind beide Elemente aber algebraisch {iber
R und C.

Definition 15.8 Sei L|K eine Korpererweiterung, und sei a € L algebraisch iiber K. Dann
gibt es ein eindeutig bestimmtes, normiertes Polynom f € K[x], f # O minimalen Grades mit
f(a)=0. Man nennt f das Minimalpolynom von a iiber K. Wir bezeichnen es mit u, k.

Beweis: Weil a iiber K algebraisch ist, gibt es jedenfalls ein Polynom 0 # g € K[x] mit der Eigenschaft g(a) = 0.
Bezeichnet a, € K* den Leitkoeffizienten von g, dann ist § = a;lg ein normiertes Polynom mit g(a) = 0. Aus der
Menge aller normierten Polynome f € K[x] mit f (a) = 0 kénnen wir eines mit minimalem Grad wéhlen.

Zum Beweis der Eindeutigkeit seien f, g € K[x] zwei normierte Polynome minimalen Grades mit f(a) = g(a) = 0.
Ist f # g, dann hat das Polynom h = g — f die Eigenschaft h(a) = g(a) — f (a) = 0—0 = 0 und grad(h) < grad(f).
Durch Normierung von h erhalten wir also ein normiertes Polynom mit a als Nullstelle, das einen echt kleineren Grad
als f hat. Dies aber widerspricht der Minimalitdt. Somit ist nur f = g moglich. |

Wir betrachten die Krpererweiterung R|Q. Das Minimalpolynom u /5 ¢, des Elements V2 eRiiber Qist f = x2—2.
Denn einerseits gilt f(+/2) = 0. Gibe es andererseits ein normiertes Polynom g € Q[x] kleineren Grades, also
g = x +a mit g(+/2) = 0, dann wiirde a = —+/2 folgen, und +2 wire rational.
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Proposition 15.9 Sei L|K eine Korpererweiterung, a € L algebraisch iiber K und f € K[x]
sein Minimalpolynom, also f = u, x. Dann gilt

(i) Das Polynom f ist irreduzibel.
(i) Ist g € K[x] mit g(a) =0, dann folgt f | g.

(iii) Ist g € K[x] ebenfalls normiert, irreduzibel, mit g(a) = O, dann folgt f = g.

Beweis: zu (i) Zunichst kann f wegen f # 0 und f (a) = 0 nicht konstant sein. Nehmen wir nun an, f ist reduzibel,
und g, h sind nicht-konstante Polynome mit f = gh. Wegen grad(g) > 0, grad(h) > 0 und grad(f) = grad(g)+grad(h)
gilt grad(g) < grad(f) und grad(h) < grad(f). Aus g(a)h(a) = f(a) = 0 folgt aullerdem g(a) = 0 oder h(a) = 0.
Nehmen wir nun 0.B.d.A. an, dass g(a) = 0 gilt, und sei § das Polynom, das man durch Normierung von g erhalt.
Dann ist g ein normiertes Polynom mit a als Nullstelle, dass einen echt kleineren Grad als f hat. Dies widerspricht
der Voraussetzung f = U, k-

zu (ii) Durch Division mit Rest erhalten wir Polynome g, r € K[x] mit g = qf +r und r = 0 oder grad(r) < grad(f).
Es gilt r(a) = g(a) — q(a)f (a) = 0—g(a) - 0 = 0. Damit ist der Fall r # 0 ausgeschlossen, denn ansonsten wére die
Normierung von r ein Polynom mit echt kleinerem Grad als f und a als Nullstelle. Somit gilt g = qf, d.h. f ist ein
Teiler von g.

zu (iii) Sei g ein Polynom mit der angegebenen Eigenschaft. Nach Teil (ii) gilt f|g. Es gibt also ein h € K[x] mit
g = fh. Weil g irreduzibel ist, muss h konstant sein. Weil f und g beide normiert sind, folgth=1und g =f. m|

Mit Hilfe des Minimalpolynoms kénnen wir nun genauer angeben, wie eine Korpererweiterung aussieht, die von
einem einzigen algebraischen Element erzeugt wird.

Satz 15.10 Sei L|K eine Korpererweiterung, a € L algebraisch tiber K, f = u,x und
n = grad(f). Dann bilden die Elemente 1, a,a?,...,a" ! eine Basis von K(a) als K-Vektorraum.
Insbesondere gilt [K(a) : K] =n.

Beweis: Sei U der Untervektorraum von L, der durch {1, a, ..., a" '} aufgespannt wird, also

u = {“il: a,ak

k=0

ao,...,an_leK} = {g(a)

g<€K[x], grad(g) <n oder g = O}.

Wir zeigen, dass U ein Teilkorper von L ist. Durch Einsetzen von « in das konstante Polynom 1 € K[x] sieht man,
dass 1 in U liegt. Seien nun f3,y € U vorgegeben. Dann gibt es Polynome g,h € K[x] mit f = g(a), ¥y = h(a), wobei
g und h entweder Null sind oder jedenfalls einen Grad kleiner als n haben. Mit g und h ist auch g —h ein Polynom
mit g —h = 0 oder grad(g —h) < n; daraus folgt f —y = g(a)—h(a) = (g —h)(a) € U.

Der Nachweis von 3y € U ist etwas aufwandiger, weil der Grad des Polynoms gh auch grof3er als n — 1 sein kann.
Durch Division von gh durch f mit Rest erhalten wir aber Polynome ¢,r € K[x] mit gh = qf + r und r = 0 oder
grad(r) < n. Es folgt

By = glh(a) = (qf +r)(a) = qlaf(@+r(a) = q(a)-0+r(a) = r(a)
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Nach Definition der Menge U ist r(a) in U enthalten. Es bleibt zu zeigen, dass im Fall 3 # 0 auch ™! in U liegt. Aus
P # 0 folgt zundchst g # 0. Weil f irreduzibel ist, sind die Polynome f und g teilerfremd. Nach dem Lemma von
Bézout aus der Ringtheorie gibt es Polynome a,b € K[x] mit af + bg = 1. Es folgt

1 = (af+bg)a) = a(a)f(a)+b(a)g(a) = a(a)-0+b(a)gla) = bla)g(a)

und somit 37! = g(a)~! = b(a). Division von b durch f mit Rest liefert weiter Polynome q,r € K[x] mit b=qf +r
und grad(r) < n. Es folgt

B = bl@) = q@f(@+r@ = qa)0+r(a) = r(a)eU.

Damit haben wir insgesamt nachgewiesen, dass U tatsichlich ein Teilkérper von L ist. Dariiber hinaus gilt a € U. Ist
namlich n = 1, dann gilt K = U, aullerdem f = x —a € K[x] und damit a € K. Im Fall n > 1 ist g = x ein Polynom
vom Grad < n, und es gilt a = g(a) € U.

Sei nun L ein beliebiger Zwischenkorper von L mit a € L. Auf Grund der Teilkérpereigenschaft ist L abgeschlossen
unter Addition und Multiplikation. Damit enthélt L sdmtliche Elemente der Form g(a) mit g € K[x] in L, es gilt also
L D U. Somit ist U der kleinste Zwischenkérper von L|K mit a € U. Nach Definition des erzeugten Zwischenkorpers
folgt U = K(a).

"1 aufgespannt

Aus der Definition von U folgt unmittelbar, dass K(a) als K-Vektorraum von den Elementen 1, a, ..., a
wird. Nehmen wir nun an, dass diese Elemente {iber K linear abhéngig sind. Dann gibt es Koeffizienten aq, ...,a,_; €

K, nicht alle gleich Null, mit

n—1

Z akak = 0.

k=0

Setzen wir g = ZZ;(l) a;x*, dann ist g € K[x] ein Polynom ungleich Null mit den Eigenschaften g(a) = 0 und
grad(g) < n. Durch Normierung von g erhalten wir ein normiertes Polynom mit kleinerem Grad als f und mit a als
Nullstelle. Aber dies ist unméglich, weil f das Minimalpolynom von « ist. Also sind die Elemente 1, a, ..., 2" ! linear
unabhéngig und bilden eine Basis von K(a) als K-Vektorraum. m|

Dem Beweis von Satz[I5.10/kann entnommen werden, wie die arithmetischen Operationen (Addition, Multiplikation,
Berechnung von Negativen und Kehrwerten) in einem algebraischen Erweiterungskoérper K(a) von K ausgefiihrt
werden konnen. Sei f € K[x] das Minimalpolynom von a und n = grad(f). Auf Grund des Satzes kann jedes
Element aus K(a) auf eindeutige Weise in der Form g(a) geschrieben werden, wobei g € K[x] entweder Null oder
vom Grad < n ist. Seien 8,7 € K(a) und g,h € K[x] Polynome passenden Grades mit f = g(a), v = h(a). Unser
Ziel besteht darin, die Elemente 8 +y, —f3, By und (im Fall 8 # 0) auch ! wiederum in dieser eindeutigen Form
darzustellen.

(i) Addition:
Es gilt B +v = (g + h)(a), aullerdem g +h = 0 oder grad(g + h) < n.

(i) Negative:
Es gilt — = (—g)(a) und —g = 0 oder grad(—g) < n.

(iii) Multiplikation:
Durch Division mit Rest bestimmen wir Polynome q,r € K[x] mit gh = qf + r und r = 0 oder grad(r) < n.
Wie im Beweis von Satz|15.10| gezeigt wurde, gilt By = r(a).
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(iv) Kehrwerte:
Hier sei 3 # 0 vorausgesetzt. Wie im Beweis des Satzes gezeigt wurde, gilt ggT(f, g) = 1. Mit dem Euklidischen
Algorithmus konnen Polynome a, g € K[x] mit af + bg = 1 berechnet werden. Weiter finden wir Polynome
q,r € K[x]mit b = qf +r und grad(r) < n. Im Beweis haben wir bereits nachgerechnet, dass dann ! = r(a)
erfiillt ist.

Wir betrachten ein konkretes Anwendungsbeispiel. Sei L ein Erweiterungskorper von I, und a € L ein Element mit
a® + 1 = 0. Dabei bezeichnen die Elemente 0,1 € IF; Null- und Einselement des Korpers IF; und damit zugleich
diejenigen des Kérpers L. Nach Definition ist a eine Nullstelle des Polynoms f = x% +1 € IF3[x]. Weil f in IF; keine
Nullstellen besitzt, ist es irreduzibel und somit das Minimalpolynom von a. Jedes 8 € IF5(a) kann auf eindeutige
Weise in der Form

p=ay+a;a mit aqya; €y

dargestellt werden. Weil es fiir a, und a; jeweils |IF5| = 3 Auswahlméglichkeiten gibt, handelt es sich bei F5(a) um
einen Korper mit 9 Elementen. Wegen dimp, IF3(a) = grad(f) = 2 ist IF3(a) ein 2-dimensionaler IF;-Vektorraum.

Sei nun konkret f = a+1und y = a— 1. Dann ist 8 = g(a) und y = h(a) mit g = x + 1 und h = x — 1. Es folgt
g+h=2x, g—h=2und somit

B+r=(g+h)(a)=2a und P-r=(g-—M(a)=2
Natiirlich kann man auch direkt mit den Elementen rechnen: Es gilt
B+y = (a+D+(a—1) = a+a = 2a

und ebenso

B—y = (a+1)—(a—1) = 1+1 = 2.
Um nach By nach der angegebenen Methode zu berechnen, teilen wir das Polynom gh = x2? — 1 mit Rest durch f
und erhalten x2—1 =1-(x2+1)+1. Es folgt By = 1, also ist y im Korper IF5(a) der Kehrwert von f3. Auch hier hitte
man statt mit den Polynomen direkte mit den Kérperelementen rechnen kénnen. Aus f(a) =a’—1=0< a? =—1
folgt

=1

(a+D(a=1) = a?*-1 = -1-1 =

Um den Kehrwert es Elements a auszurechnen, bestimmen wir mit dem Euklidischen Algorithmus Polynome a, b €
K[x] mit ax + bf = 1. Wir erhalten a = 2x und b = 1. Der Kehrwert von a ist also durch a™! = a(a) = 2a gegeben.
Tatséchlich gilt (2a)a =2a%? =2(-1)=-2=1.

Die vollstandige Tabelle der Kehrwerte sdmtlicher Elemente in IF5(a)* sieht folgendermafen aus.

N1

=il N1

o+
a+

N[ =1
N1

a3+ 1 [3a+7]
(e [2a+23a+1]

Jeder einzelne Eintrag kann durch Multiplikation von 8 und ! unmittelbar verifiziert werden.
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Aus den bisherigen Ausfiihren folgt noch nicht, dass zum Polynom x2+1 € IF;[x] iiberhaupt eine Kérpererweiterung
L|IF; und ein Element a € . mit a + 1 = 0 existieren. Dem Problem der Konstruktion und der Eindeutigkeit solcher
Korpererweiterungen wenden wir uns nun als néchstes zu.

Satz 15.11 Sei L|K eine Kérpererweiterung, a € L algebraisch tiber K und f = u, x. Dann gibt
es einen Isomorphismus

¢ :K[x1/(f)—K(a) mit ¢(g+(f))=g(a) firalle g € K[x].

Dabei bezeichnet K(a) den von a erzeugten Zwischenkorper der Erweiterung L|K.

Beweis: Sei ¢ : K[x] — L der auf Grund der universellen Eigenschaft von Polynomringen eindeutig bestimmte
Homomorphismus von Ringen mit ¢(x) = a und ¢|x = idg. Weil ¢ als Ringhomomorphismus vertraglich mit
Addition und Multiplikation vertraglich ist, gilt ¢(g) = g(a) fiir alle g € K[x]. Weil der Korper K(a) das Element
g(a) fiir jedes g € K[x] enthilt, ist durch ¢ ein Homomorphismus K[x] — K(a) gegeben. Nach Satz [15.10] hat
jedes Element aus K(a) die Form g(a) mit g € K[x] und grad(g) < n. Dies zeigt, dass ¢ als Ringhomomorphismus
K[x] — K(a) auch surjektiv ist.

Wir zeigen nun, dass ker(¢) = (f) gilt, wobei (f) das vom Element f erzeugte Hauptideal in K[x] bezeichnet. Ist
g € (f), dann gibt es nach Definition ein h € K[x] mit g = hf. Es folgt ¢(g) = g(a) = h(a)f(a) = h(a) -0 =
0, also ¢ € ker(¢). Sei umgekehrt g € ker(¢). Dann gilt g(a) = 0. Nach Proposition ist g ein Vielfaches
des Minimalpolynoms f, also g € (f). Der Homomorphiesatz fiir Ringe, Teil (ii) von Satz liefert nun den
angegebenen Isomorphismus. O

Satz 15.12 (Existenz algebraischer Erweiterungen)

Sei K ein Korper und f € K[x] ein irreduzibles Polynom. Dann gibt es eine Kérpererweiterung
L|K und ein Element a € L mit f(a) = 0.

Beweis:  Zunichst bilden wir den Restklassenring I = K[x]/(f). Weil f irreduzibel ist und es sich bei K[x] um
einen Hauptidealring handelt, ist das Ideal (f) nach Satz ein maximales Ideal, und daraus wiederum folgt,
dass der Faktorring I ein Korper ist. Wir {iberpriifen nun, dass durch die Abbildung ¢ : K — L, a — a + (f) ein
Koérperhomomorphismus definiert ist. Zundchst gilt ¢(1x) = 1x + (f) = 1;. Seien nun a, b € K beliebig vorgegeben.
Dann gilt p(a+b)=(a+b)+(f)=(a+(f))+(b+(f)) = ¢(a)+ ¢(b) und ebenso

¢(ab) = ab+(f) = (@+(NOB+F) = ¢(a)e(d).

Nach Satz gilt: Ist ¢ : R — S ein Monomorphismus von Ringen, dann gibt es einen Erweiterungsring $ 2 R
und einen Isomorphismus (ﬁ : § — S von Ringen mit q§| r = ¢. Die Anwendung dieses Satzes auf unseren Kérperho-
momorphismus ¢ liefert uns nun einen Erweiterungsring L 2 K und einen Isomorphismus qg : L — L von Ringen
mit ¢3 lx = ¢. Weil L ein Kérper und ¢§ ein Isomorphismus ist, ist auch L ein Korper, und somit ist L|K eine Korperer-
weiterung. Wir zeigen nun, dass das Element o = qg_l(x +(f)) eine Nullstelle von f ist. Dazu schreiben wir f in der
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Form f =Y. a;x' mitn € N und ay, ...,a, €K. Es gilt

$(f(a)) = qﬁ(Zaiaf) = > ¢@)d@) = Dlg+UNx+) =
i=0

i=0 i=0

Daxi+(f) = (Zaixl)ﬂf) = f+(f) = 0+(f) = 0 ,

i=0 i=0

und somit f(a) = ¢1(0;) = 0. |

Definition 15.13 Eine Korpererweiterung L|K wird algebraisch genannt, wenn jedes Element
a € L algebraisch tiber K ist.

Die Eigenschaften ,endlich“ und ,algebraisch“ hangen folgendermafien miteinander zusammen.

Proposition 15.14 Sei L|K eine Kérpererweiterung.

(i) Ist L|K endlich, dann auch algebraisch.

(i) Sind a,...,a, € L algebraisch iiber K und gilt L = K(ay, ..., a,), dann ist die Erweiterung
L|K endlich (also insbesondere algebraisch).

Beweis: zu (i) Wir fithren den Beweis durch Kontraposition. Ist L|K nicht algebraisch, dann gibt es ein Element
a € L, das transzendent iiber K ist. Dies bedeutet, dass fiir jedes n € IN die Elemente 1, a,...,a" iiber K linear
unabhéngig sind. Denn andernfalls gébe es Elemente aq, ..., a, € K, nicht alle gleich Null, mit Z?:o a;a' = 0, und
folglich wére f = Z?:o a;x' € K[x] ein Polynom ungleich Null mit f (&) = 0. Daraus wiirde folgen, dass a algebraisch
iiber K ist, im Widerspruch zur Voraussetzung. Aus der linearen Unabhéngigkeit der n + 1 Elemente 1, a, ..., a" folgt
[L:K]=dimg L = n+ 1. Da n beliebig gewahlt war, erhalten wir [L : K] = oo.

zu (ii) Wir beweisen die Aussage durch vollstdndige Induktion {iber n. Fiir n = 0 gilt L = K und somit [L : K] = 1.
Sei nun n € IN vorgegeben, und setzen wir die Aussage fiir alle m € IN mit m < n voraus. Seien a,...,a, € L
mit L = K(ay, ..., @,). Nach Induktionsvoraussetzung ist die Erweiterung Ly|K mit L, = K(a;, ..., a,_;) endlich, und
nach Proposition gilt L = Ly(a,). Weil a,, iiber K algebraisch ist, besitzt @, ein Minimalpolynom {iber K, erst
recht ein Minimalpolynom f € Ly[x] iiber L,. Nach Satz[15.10|gilt [L : L] = grad(f ). Weil Ly|K und L|L, endliche
Erweiterungen sind, ist nach Satz[15.6|auch L|K endlich. m|

Satz 15.15

(i) Sei L|K eine Korpererweiterung und T C L die Teilmenge bestehend aus den Elementen,
die algebraisch iiber K sind. Dann ist T ein Teilkérper von L.

(ii) Seien L|K und M|L Korpererweiterungen. Genau dann ist die Erweiterung M |K algebra-
isch, wenn die Erweiterungen L|K und M|L beide algebraisch sind.
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Beweis: zu (i) Zum Nachweis der Teilkorper-Eigenschaft miissen wir zeigen, dass 1; in T liegt, und mit a,3 € T
auch die Elemente a — 3 und af3, im Fall a # 0; auch das Element a'. Wegen 1, = 1, € K ist 1; algebraisch
iiber K, also in T enthalten. Seien nun a, 8 € T vorgegeben. Weil a und 3 algebraisch tiber T sind, ist K(a, f)|K
nach Proposition (ii) eine endliche Erweiterung. Nach Teil (i) ist K(a, 8)|K damit auch algebraisch, es gilt also
K(a,B) C T. Als Teilkorper enthélt K(a, ) mit a und 8 auch die Elemente a — 8 und af, im Fall a # 0; auch das
Element a!. Damit sind all diese Elemente auch in T enthalten.

zu (ii) ,=“ Setzen wir voraus, dass M|K algebraisch ist. Dann ist jedes a € M Nullstelle eines Polynoms f € K[x]
ungleich Null. Dieses Polynom ist auch in L[x] enthalten, folglich ist a auch algebraisch iiber L. Weil a € M beliebig
gewahlt war, folgt daraus, dass die Erweiterung M|L algebraisch ist. Wenn jedes a € M algebraisch iiber K ist, dann
gilt dies insbesondere fiir jedes Element aus L. Folglich ist auch L|K algebraisch.

,<=*“ Seien nun L|K und M|L algebraische Erweiterungen und a € M ein beliebig vorgegebenes Element. Wir miissen
zeigen, dass a algebraisch iiber K ist. Nach Voraussetzung ist a jedenfalls algebraisch tiber L. Sei f = u; , € L[x],
und seien ay, ..., a, € L die Koeffizienten von f. Jedes a; ist laut Voraussetzung algebraisch iiber K. Nach Proposition
(ii) ist Ly|K mit Ly = K(ay, ..., a,) damit eine endliche Erweiterung. Weil das Polynom f in Ly[x] liegt, ist a
algebraisch iiber L. Damit ist auch Ly(a)|L, endlich. Mit Satz konnen wir schlie3en, dass Ly(a)|K endlich ist.
Aber dies bedeutet nach Proposition (i) wiederum, dass Ly(a)|K algebraisch und insbesondere a algebraisch
iiber K ist. m|

Folgerung 15.16 Ist L|K eine Korpererweiterung und S C L eine Teilmenge mit der Eigen-
schaft, dass jedes a € S algebraisch tiber K ist, dann ist K(S)|K eine algebraische Erweiterung.

Beweis: Sei T C L die Teilmenge der {iber K algebraischen Elemente von L. Nach Teil (i) von Satz[15.15]ist T ein
Zwischenkorper von L|K, und es gilt S € T, nach Definition von S und T. Weil T ein Zwischenkorper von L|K ist,
folgt K(S) C T. Daraus folgt, dass jedes a € K(S) iiber K algebraisch ist. Dies wiederum bedeutet, dass K(S)|K eine
algebraische Erweiterung ist. O

Anhang: Die quadratischen Erweiterungen von Q

Eine Korpererweiterung L|K vom Grad [L : K] = 2 wird auch quadratische Erweiterung genannt. Weil solche Er-
weiterungen in Beispielen (bzw. Ubungsaufgaben) besonders hiufig vorkommen, beweisen wir einige allgemeine
Eigenschaften. Hierbei konzentrieren wir uns besonders auf den Fall des Grundkorpers K = Q.

Proposition 15.17 Sei K ein Korper mit char(K) # 2 und L|K eine Erweiterung mit [L : K] = 2.
Dann existiert ein y € L mit L = K(y) und y? € K. (Man sagt dazu auch, dass L aus K durch
Adjunktion einer Quadratwurzel entsteht.)

Beweis: Sei a ein beliebiges Element aus L \ K. Dann ist K(a) ein Zwischenkorper von L|K, und auf Grund der
Gradformel gilt [L : K(a)]-[K(a) : K] =[L : K] = 2. Wegen a ¢ K ist K(a) # K und somit [K(a) : K] > 1. Weil
[K(a) : K] zugleich ein Teiler von 2 ist, muss [K(a) : K] =2 und [L : K(a)] =1, also L = K(a) gelten. Sei f = u,
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das Minimalpolynom von a iiber K. Wegen grad(f) = [K(a) : K] = 2 gibt es p,q € K mit f = x? + px + q. Wegen
char(K) # 2 existiert das multiplikative Inverse von 2y = 1y + 1, das wir der Einfachheit halber mit % bezeichnen.
Ebenso schreiben wir % fiir % . % Es gilt nun

fla)=0 < a2+pa+q:O = a2+pa+%p2:%p2—q = (a+%p)2:%6

wobei § = p?—4q die Diskriminante des Polynoms f bezeichnet. Setzen wir nun y = a+ % p, dann gilt K(a) = K(y),
denn offenbar ist y = a + %p eK(a)und a=y— %p € K(y). Daraus folgt L = K(y). AuRerdem gilt y? = %5 €K. O

Eine ganze Zahl a € Z wird quadratfrei genannt, wenn keine Primzahl p mit p? | a existiert.

Folgerung 15.18 Sei K|Q eine Erweiterung mit [K : Q] = 2. Dann gibt es eine quadratfreie
Zahl m € 7Z \ {0, 1} mit K = Q(+/m).

Beweis: Nach Proposition gibt es ein a € K mit K = Q(a) und r = a® € Q. Sei n € N so gewihlt, dass nr € Z
gilt. Dann ist auch K = Q(na), und auBerdem n?r = (na)? € Z. Wir kénnen also a durch na ersetzen und direkt
davon ausgehen, dass r € Z gilt. Dabei ist r # 0, denn andernfalls wire auch a = 0, somit K = Q(0) = Q und
schlieBlich [K : Q] =[Q : Q] = 1, im Widerspruch zur Voraussetzung. Sei nun ]_[f:1 pf" die Primfaktorzerlegung
von |r|, mit t € N, eq,...,e, € IN und den verschiedenen Primteilern p,...,p, von r. Sei ¢ € {1} das Vorzeichen
von r, es gelte also r = ¢|r|. Wir definieren e = 0, falls e; gerade, und e/ = 1, falls e; ungerade ist. Setzen wir

m=e ]_[f=1 pf‘{, dann ist m offenbar quadratfrei. Auerdem unterscheiden sich r und m nur um ein Quadrat, es gibt
also ein n € IN mit r = n?m. Aus (@) = (£)*r = m folgt 2a € {+/m} und somit K = Q(a) = Q(1a) = Q(vm).
Dabei ist m = O bereits ausgeschlossen. Wiare m = 1, dann wiirde K = Q(1) = Q folgen, was wir weiter oben auch
schon ausgeschlossen hatten. |

Satz 15.19 Seien m,n € 7\ {0,1} zwei verschiedene quadratfreie Zahlen. Dann gilt +/n ¢
Q(v/m), v/m ¢ Q(+/n), also insbesondere Q(v/m) # Q(+/n).

Beweis: Offenbar geniigt es v/n ¢ Q(+/m) zu beweisen, denn der Beweis der anderen Aussage l4uft vollig analog.
Zunichst zeigen wir, dass f = x? —m das Minimalpolynom von 4/m iiber Q ist. Offenbar ist f normiert und erfiillt
f(¥/m) = 0. Wire f reduzibel, dann gibe es a,b € Q mit x> —m = (x —a)(x — b) = x> —(a + b)x + ab, woraus sich
b = —a und m = —ab = a? ergeben wiirde. Mit m = a? miisste auch a ganzzahlig sein (denn eine Primzahl p, die
den Nenner, aber nicht den Zihler von a teilt, wiirde auch im Nenner einer Darstellung von a? als gekiirzter Bruch
auftreten). Dann aber steht m = a? im Widerspruch dazu, dass m eine quadratfreie Zahl ungleich 1 ist. Es gilt also
tatséchlich ug m=f.

Nach Satz gilt [Q(v/m) : Q] = grad(f) = 2, und {1, /m} ist eine Basis von Q(4/m) als Q-Vektorraum. Nehmen
wir nun an, es gilt /n € Q(4/m). Dann existieren also (eindeutig bestimmte) r,s € Q mit 4/n = r + s4/m. Durch
Quadrieren erhalten wir n = (r +s4/m)? = (r2 +s2m) + 2rs4/m. Weil die Menge {1, v/m} im Q-Vektorraum Q(/m)
linear unabhingig ist, diirfen wir in

(r?+2m)-1+@2rs)-vm = n-14+0-vm
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einen Koeffizientenvergleich durchfithren. Wir erhalten r? + s2m = n und 2rs = 0, also r = 0 oder s = 0. Betrachten
wir zunéchst den Fall s = 0. Dann ist r? = n, was aber im Widerspruch dazu steht, dass n eine quadratfreie ganze
Zahl ist, siehe oben. Im Fall r = 0 ist s?m = n. Schreiben wir s = % mit a, b € Z und ggT(a, b) = 1, so erhalten wir
(%)Zm =n < a’m = b?n. Nehmen wir an, die Zahl a besitzt einen Primteiler p. Wegen ggT(a, b) = 1 und p? | (a®>m)
muss dann p? | n gelten. Aber dies widerspricht der Quadratfreiheit. Also muss a> = 1 gelten. Ebenso zeigt man
b2 =1, so dass sich m = n ergibt. Aber auch dies widerspricht unseren Voraussetzungen. Die Annahme /1 € Q(4/m)
wurde also insgesamt zu einem Widerspruch gefiihrt. m|
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§16. Fortsetzung von Korperhomomorphismen

Zusammenfassung. In diesem Abschnitt beschiftigen wir uns mit der Frage, unter welchen Bedingungen ein
Homomorphismus ¢ : K — M von Korpern auf eine algebraische Erweiterung L 2 K fortgesetzt werden kann,
und falls ja, wieviele solcher Fortsetzungen existieren. Fiir den Fall, dass L von einem Element erzeugt wird,
also L = K(a) fiir ein {iber K algebraisches Element a gilt, gibt eine einfache Antwort: Die Anzahl ist gleich
der Anzahl der Nullstellen des Minimalpolynoms u, ; im Korper M.

Wie im weiteren Verlauf deutlich werden wird, spielen Kérperhomomorphismen und ihre Fortsetzung beim
Studium algebraischer Erweiterungen eine wichtige Rolle. Im folgenden Abschnitt werden wir mit ihrer Hilfe
zeigen, dass der algebraische Abschluss eines Korpers und (allgemeiner) Zerfallungskorper beliebiger Poly-
nommengen bis auf Isomorphie eindeutig bestimmt sind. Die normalen und separablen Erweiterungen, die uns
spater begegnen werden, lassen sich durch Eigenschaften der Kérperhomomorphismen charakterisieren. In
der Galoistheorie, dem Hauptgegenstand der Vorlesung im nachsten Semester, bildet man Gruppen bestehend
aus Kérperhomomorphismen, mit deren Hilfe man Informationen iiber Struktur algebraischer Erweiterungen
gewinnen kann.

Wichtige Grundbegriffe Zentrale Sdtze

— K-Homomorphismus — eindeutige Festlegung einer Fortsetzung durch die Bil-

. der der Erzeuger
— K-Automorphismus

— Existenz von Fortsetzungen auf endliche und algebrai-

— Fortsetzung eines Kérperhomomorphismus sche Erweiterungen

— Festlegung der Anzahl der Fortsetzungen durch die
Nullstellen des Bildpolynoms in der Erweiterung

Zu Beginn des Kapitels legen wir folgende Notation fest.

(i) Sind L und M Korper, dann bezeichnen wir mit Hom(L, M) die Menge der Kérperhomomorphismen L — M.
(Wir erinnern daran, dass nach Proposition [9.7] Kérperhomomorphismen stets injektiv sind.)

(ii) Ist K ein gemeinsamer Teilkérper von L und M, dann bezeichnet Homg (L, M) die Menge der Kérperhomo-
morphismen ¢ : L — M mit ¢(a) = a fiir alle a € K. Solche Kérperhomomorphismen werden auch K-Homo-
morphismen genannt.

(iii) Fiir jeden Korper L sei Aut(L) die Menge der Automorphismen von L, also die Menge der bijektiven Homo-
morphismen L — L. Es ist leicht zu sehen, dass auf Aut(L) durch die Komposition (¢,y) — ¢ o eine
Gruppenstruktur definiert ist.

(iv) IstK ein Teilkorper L, dann bezeichnet Auty (L) die Teilmenge von Aut(L) bestehend aus den Automorphismen
von L, die zugleich K-Homomorphismen sind. Man spricht in diesem Zusammenhang von K -Automorphismen.
Offenbar handelt es sich bei Autg (L) um eine Untergruppe von Aut(L).
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Sei L|K eine Korpererweiterung und ¢ : K — K ein Homomorphismus von K in einen weiteren Korper K. Ein
Homomorphismus v : L — K wird Fortsetzung von ¢ genannt, wenn )|, = ¢ erfiillt ist. Zunichst formulieren wir
die zentrale Aussage zur Eindeutigkeit von Fortsetzungen

Satz 16.1 Sei L|K eine Korpererweiterung, S C L eine Teilmenge mit L = K(S) und ¢ : K —» K
ein Homomorphismus in einen weiteren Korper K. Sind dann ), v, : L — K zwei Fortsetzungen

von ¢ mit Y |g = ,|s, dann gilt 1p; = 1p,.

Beweis: Wir iiberpriifen, dass die Teilmenge M = {a € L | ¢;(a) = Y,(a)} ein Zwischenkorper von L|K ist, der
S als Teilmenge enthélt. Zunéchst zeigen wir, dass M ein Teilring von L ist. Da ¢; und v, Ringhomomorphismen
sind, gilt 1,(1;) = 13 =,(1;) und somit 1, € M. Seien nun a, 3 € M vorgegeben. Dann gilt ¥;(a) = ¢5(a) und
Y1(B) = 2(B). Es folgt yp, (a—pB) = 1 () =41 (B) = () —42(B) = yp5(a—f) und somit a—f € M. Durch eine
analoge Rechnung erhilt man a8 € M. Damit ist die Teilring-Eigenschaft von M nachgewiesen. Ist a # 0,, dann gilt
dariiber hinaus v, (a™!) =Y, (a)™ = y,(a)™! = y,(a™!) und somit a~! € M. Also ist M sogar ein Teilkérper von
L. Fiir alle a € K gilt wegen der Fortsetzungs-Eigenschaft ¢, |y = Y|y = ¢ die Gleichung ¢;(a) = ¢(a) = ¢,(a)
und somit a € M. Somit ist K in M enthalten, und folglich ist M ein Zwischenkorper von L|K. Aus der Voraussetzung
YP1|g = 1P, |s folgt schlieBlich noch S € M. Insgesamt ist M also ein Zwischenkorper von L|K mit S € M. Wir erhalten
L =K(S) € M, also M = L. Dies zeigt, dass v; und v, auf ganz L iibereinstimmen. |

Wir formulieren einen wichtigen Spezialfall dieser Aussage: Gilt L = K(a) fiir ein a € L und ist 3 € K, dann gibt es
fiir jeden Homomorphismus ¢ : K — K und jedes § € K héchstens eine Fortsetzung 1 : K(a) — K von ¢ mit der
Eigenschaft ¢ g(a) = f8.

Nun befassen wir uns mit der Existenz von Fortsetzungen auf algebraische Erweiterungen. Auf Grund der universel-
len Eigenschaft der Polynomringe gibt es zu jedem Isomorphismus ¢ : K — K von Kérpern einen eindeutig bestimmen
Homomorphismus K[x] — K[x] zwischen den Polynomringen gegeben durch Z;n:o a;xt — 2?1:0 ¢ (a;)x". Offenbar
handelt es sich dabei um einen Isomorphismus zwischen K[x] und K[x], den wir ebenfalls mit ¢ bezeichnen.

Satz 16.2 (Fortsetzungssatz)

Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auferdem L|K und L|K Korpererweite-
rungen und a € L ein liber K algebraisches Element mit Minimalpolynom f € K[x]. Ist dann
@ € L eine Nullstelle von f = ¢(f) € K[x], dann gibt es eine eindeutig bestimmte Fortsetzung
1) von ¢ auf K(a) mit ¢(a) = @. Dieser Homomorphismus 1 definiert einen Isomorphismus
zwischen den beiden Kérpern K(a) und K(&).

Beweis: Die Eindeutigkeit von 4 ist nach Satz klar. Zum Nachweis der Existenz verwenden wir Satz [15.11
Dieser liefert uns Isomorphismen

¢1:K[x)/(f)—K(a) und ¢, :K[x]/(f) - K(@&)

mit ¢;(x + (f)) = a und ¢p,(x + (f)) = @ sowie ¢1(a+(f)) =aund ¢2(&+(f)) =dfirae K und d € K. Wir
betrachten nun zusitzlich den Ringhomomorphismus p : K[x] — K[x]/(f) gegeben durch g — ¢(g) + (f). Weil
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die Abbildungen ¢ : K[x] — K[x] und K[x] — K[x]/(f), h — h + (f) surjektiv sind, ist auch p ein surjektiver
Ringhomomorphismus. Aullerdem ist ker(p) = (f ), denn fiir alle g € K[x] gilt

geker(p) & p(@=0+() & ¢@e(f) & ge(f) ,

wobei wir im letzten Schritt verwendet haben, dass auf Grund der Isomorphismus-Eigenschaft von ¢ die Vielfachen
des Polynoms genau auf die Vielfachen von f = ¢ (f) abgebildet werden. Wir kénnen also den Homomorphiesatz
fiir Ringe anwenden und erhalten einen Isomorphismus 5 : K[x1/(f) = K[x1/(f) mit 5(x + (f)) = x + (f).

Definieren wir nun den Isomorphismus v durch ¢ = ¢,0p oqbl_l, dann gilt Y(a) = (¢p,00)(x+(f)) = P, (x+(f)) =
a. Andererseits gilt fiir alle a € K auch y(a) = (¢, 0 p)a+ (f)) = ¢py(¢p(a) + (f)) = ¢(a), also Y|y = ¢. Als
Isomorphismus K (a) — K(a) ist ¢ auch ein Homomorphismus K(a) — L von Kérpern. |

Haufig benétigt man auch die folgende Umkehrung des soeben bewiesenen Satzes.

Satz 16.3 Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auRerdem L|K und L|K
Korpererweiterungen, a € L und f € K[x] ein Polynom mit f(a) = 0. Ist dann v : K(a) — L
ein Kérperhomomorphismus mit 1| = ¢, dann ist @ = 1(a) eine Nullstelle von f = ¢ (f).

Beweis: Sein =grad(f) und f = Z?:o a;x' mit ag, ...,a, €K. Es gilt f = Z?:o ¢(a;)x, und daraus folgt

f@ = D¢ = D ¢a@ = D plapa)
i=0 i=0

i=0

w(zaiai) = Y(f(a) = 0 = o

i=0
Dabei wurde im vierten Schritt die Homomorphismus-Eigenschaft von v verwendet. m|

Insbesondere gilt also: Sind L, I Erweiterungskérper von K, f € K[x], a € L eine Nullstelle von f und ) : L — L
ein K-Homomorphismus, dann ist auch v(a) eine Nullstelle von f. Beispielsweisemuss jeder Q-Homomorphismus
Q(v2) — Q(+2) das Element +/2 auf +/2 oder —+/2 abbilden, denn dies sind die einzigen Nullstellen des Polynoms
f=x*-2€eQ[x].

Folgerung 16.4 Sei ¢ : K — K ein Isomorphismus von Kérpern. Seien auferdem L|K, L|K
Korpererweiterungen, a € L algebraisch liber K und f = ug ,. Dann stimmt die Anzahl der
Fortsetzungen v : K(a) — L von ¢ (also die Anzahl der Homomorphismen mit Y|, = ¢)
{iberein mit der Anzahl der Nullstellen von f = ¢(f) in L.

Beweis: Seiens € IN und f,, ..., B, die verschiedenen Nullstellen von f in L. Auf Grund des Fortsetzungssatzes gibt
es fiir jedes i € {1,...,s} eine eindeutig bestimmte Fortsetzung 1); : K(a) — L von ¢ mit v;(a) = ;. Ist umgekehrt
1) : K(a) — L eine beliebige Fortsetzung von ¢, dann ist 1(a) nach Satzeine Nullstelle von f, also gilt 1) () = f;
fiir ein i. Auf Grund der Eindeutigkeitsaussage im Fortsetzungssatz folgt daraus vy = ;. |
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Folgerung 16.5 Fiir jede algebraische Erweiterung L|K gilt Homg (L, L) = Autg(L).

Beweis: Die Inklusion Autg (L) € Homg (L, L) ist auf Grund der Definitionen trivial. Zum Beweis der umgekehrten In-
klusion sei ¢ € Homg (L, L) vorgegeben. Als Korperhomomorphismus ist ¢ injektiv; zu zeigen bleibt die Surjektivitat.
Fiir vorgegebenes § € L miissen wir zeigen, dass ein a € L mit ¢(a) = f8 existiert. Sei f = ug g das Minimalpo-
lynom von 3 iiber K und N C L die Menge der Nullstellen von f in L. Nach Folgerung handelt es sich bei N
um eine endliche Menge; genauer gilt [N| < grad(f). Wir betrachten nun die eingeschrankte Abbildung ¢ |y. Als
Einschrénkung einer injektiven Abbildung ist auch ¢ |y injektiv. Nach Satz ist fiir jedes @ € N auch ¢(a) eine
Nullstelle von f, also ¢(a) € N und somit ¢(N) € N. Weil ¢|y : N — N injektiv und die Menge N endlich ist, ist
¢ |y auch surjektiv. Es gibt also ein a € N mit ¢(a) = (¢ |y)(a) = B. Damit ist die Surjektivitdt nachgewiesen. |

Im Fall einer endlichen Erweiterung L|K kann man die Gleichung Homy (L, L) = Auty (L) auch einfacher beweisen:
Jeder K-Homomorphismus ¢ : L — L ist vertraglich mit der Addition und erfiillt fiir alle a € K und y € L jeweils
¢(ay) = ¢p(a)p(y) = ap(y), ist also ein Endomorphismus des endlich-dimensionalen K-Vektorraums L. AufSerdem
wissen wir bereits, dass Kérperhomomorphismen stets injektiv sind. Aus der Linearen Algebra ist nun bekannt, dass
jeder injektive Endomorphismus eines endlich-dimensionalen Vektorraums bijektiv ist; dies war eine Folgerung aus
dem Dimensionssatz fiir lineare Abbildungen. Also ist ¢ in Autg (L) enthalten.

Als Anwendungsbeispiel der bisherigen Sitze zeigen wir, dass es genau drei Q-Homomorphismen Q(v/2) — C, aber
nur einen einzigen Q-Homomorphismus Q(+/2) — R gibt. Nach dem Eisenstein-Kriterium (Satz ist das Poly-
nom f = x®—2 in Q[x] irreduzibel. AuRerdem gilt f (+/2) = 0, also ist f nach Propositiondas Minimalpolynom
von /2 iiber Q.

Um die beiden nicht-reellen Nullstellen von x3—2 darzustellen, benétigt man die Zahl { = —% + % vV—=3.Wegen 3 =1
und ¢ # 1 bezeichnet man diese Zahl als primitive dritte Einheitswurzel;, wir werden solche Zahlen zusammen mit
ihren Minimalpolynomen iiber @, den sogenannten Kreisteilungspolynomen, spéter systematisch untersuchen. Um
die Gleichung {3 = 1 zu verifizieren, bemerken wir zunéchst

CH+C+1 = 3(-1+V=3—3+3vV-3+1 = (-1+iv3)*—1+31ivV3+1
= 1(1-2iv3-3)—3+3iv3+1 = —1-1iv3—-1+1iv3+1 = o.

Daraus folgt dann {3 —1 = ({ —1)({*+ ¢ +1) = ({ —1)-0 = 0. Mit Hilfe der Gleichung {3 = 1 lisst sich nun
leicht iiberpriifen, dass ¢ ¥/2 und ¢?+/2 die beiden nicht-reellen Nullstellen von f sind: Es gilt f({V2) = ({¥/2)° =
(V2 —2=1-2—2=0und f(£?V2) = ({®¥/2)> —2 = (£®)?(¥/2)? —2 = 12-2—2 = 0. Dies zeigt, dass ¥'2, { /2
und ¢?%/2 die drei komplexen Nullstellen von f sind.

Die drei Nullstellen entsprechen nun nach Folgerung drei verschiedenen Fortsetzungen 1 : Q(¥/2) — C von
idg, also drei verschiedenen Q-Homomorphismen. Wegen ¢ ¢ R ist { V2 keine reelle Zahl, und wegen {2 = —% —
%\/—_3 ¢ R ist auch ¢2+/2 nicht reell. Dies bedeutet, dass ¥/2 die einzige Nullstelle von f in R ist. Folglich gibt
es, wiederum nach Folgerung nur einen einzigen Q-Homomorphismus Q(+2) — R. Es handelt sich um die
identische Abbildung Q(¥/2) = R, a — a.
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Als Erginzung bemerken wir noch, dass kein Q-Homomorphismus Q(+/2) — @ existiert, denn das Minimalpolynom
x% — 2 von ¥2 besitzt keine Nullstelle in Q. Alternativ kann man das auch damit begriinden, dass Q(+/2) als Q-
Vektorraum dreidimensional ist und somit keine injektive lineare Abbildung in den eindimensionalen Q-Vektorraum
Q existiert.

Zum Schluss beweisen wir noch eine elementare Aussage zum Verhalten von Erzeugendensystemen unter Kérperho-
momorphismen, die wir im nachfolgenden Kapitel benétigen werden.

Lemma 16.6 Sei ¢ : K — K ein Isomorphismus von Kérpern und L|K und L|K Kérperer-
weiterungen. Sei S C L eine Teilmenge und v : L — L eine Fortsetzung von ¢. Dann gilt

YK () = K((S)).

Beweis: Sei M =)(K(S)). Nach Definition des erzeugten Teilkorpers K(1)(S)) ist zu zeigen:

(i) M ist ein Zwischenkérper von L|K, der v)(S) enthilt.

(i) Ist L; ein weiterer Zwischenkérper von L|K mit L; 2 v(S), dann folgt L; 2 M.

zu (i) Als Bild von K(S) € L unter einem Kérperhomomorphismus nach L ist v(K(S)) auf jeden Fall ein Teilkorper
von L. Dieser enthilt K = ¢(K) = (K), also ¢(K(S)) ein Zwischenkorper von L|K. AuRerdem ist wegen S C K(S)
auch ¢ (S) in (K (S)) enthalten.

zu (ii) Es geniigt zu zeigen, dass K(S) in ¢ ~!(L,) enthalten ist, denn die Anwendung von v auf beide Seiten dieser
Gleichung liefert M = 4(K(S)) € v (yp*(L;)) € L,. Dazu reicht es zu iiberpriifen, dass y~'(L) ein Zwischenkdrper
von L|K ist, der S als Teilmenge enthlt.

Zunichst zeigen wir, dass y)~!(L;) ein Teilkérper von L ist. Weil L, ein Teilkérper von L ist, gilt y(1;) = 1; € L,
und somit 1; € 1p~1(L;). Seien nun a, 8 € ¢ "*(L,) vorgegeben. Dann gilt v(a),)(B) € L;. Weil L, ein Teilkdrper
von [ ist, liegen auch v(a — B) = 2(a) —(B) und Y (apf) = Y (a)y(B) in L,. Daraus folgt a — € 1p~*(L;) und
af € ¢Y~(L,). Ist auRerdem a # 0;, dann gilt wegen v (a)y(a™) = y(aa™) = (1;) = 1; und der Teilkdrper-
Eigenschaft von L; auch v(a™!) = (a)"! € L; und damit o™ € ¢ "1(L,).

Also ist yp~1(L,) tatsichlich ein Teilkorper von L. Wegen v(K) = ¢(K) =K C L, gilt K C v~ (L,). Also ist yp~'(L;)
ein Zwischenkorper von L|K. Wegen v(S) C L; enthilt p~*(L;) auch die Menge S. |
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§17. Zerfillungskorper und normale Erweiterungen

Zusammenfassung. Ist f € K[x] ein nicht-konstantes Polynom, dann bezeichnet man einen minimalen
Erweiterungskorper L von K, iiber dem f in Linearfaktoren zerféllt, als Zerfdllungskérper von f iiber K. Ebenso
kann jeder beliebigen Menge von nicht-konstanten Polynomen ein Zerfallungskorper zugeordnet werden. Wir
zeigen, dass umgekehrt auch fiir jede Polynommenge ein entsprechender Zerfallungskorper existiert. Auf diese
Weise konnen wir fiir jeden Korper K einen algebraischen Abschluss konstruieren. Dabei handelt es sich um eine
Erweiterung K 2 K mit der Eigenschaft, dass jedes nicht-konstante Polynom aus K[x] iiber K in Linearfaktoren
zerféllt.

Erweiterungskorper von K, die als Zerfallungskorper zustande kommen, werden auch als normale Erweite-
rungen bezeichnet. Diese Erweiterungen L|K kénnen auch ohne Bezug auf ein bestimmtes Polynom oder eine
Polynommenge charakterisiert werden, unter anderem durch die Automorphismengruppe Autg(L). Die nor-
malen Erweiterungen werden sowohl in der Theorie der endlichen Korper als auch in der Galoistheorie eine
wichtige Rolle spielen.

Wichtige Grundbegriffe Zentrale Sdtze

— Zerféllungskorper eines nicht-konstanten Poly- - Existenz und Eindeutigkeit des Zerfallungskorpers

noms f € K[x], einer Menge von Polynomen
f [x] & i — Existenz und Eindeutigkeit des algebraischen

— algebraische Abgeschlossenheit Abschlusses

— algebraischer Abschluss eines Korpers — Fortsetzbarkeit von Kérperhomomorphismen auf al-

. . gebraische Erweiterungen
- normale Kérpererweiterungen

— Charakterisierung normaler Erweiterungen als Zer-

— Konjugierte eines Elements fallungskorper, durch die Automorphismengruppe

Wir beginnen mit der Definition des Zerfallungskorpers eines Polynoms.

Definition 17.1 Sei L|K eine Korpererweiterung und f € K[x] ein nicht-konstantes Polynom.
Zerféllt f tiber L in Linearfaktoren, und bezeichnen aj, ..., a, die Nullstellen von f in L, dann
nennt man K(a, ...,a,) den Zerfidllungskérper von f in L iiber dem Grundkorper K.

Satz 17.2 Sei K ein Korper. Dann existiert zu jedem nicht-konstanten Polynom f € K[x] ein
Zerfallungskorper von f {iber K.

Beweis: Wir beweisen die Aussage durch vollstdndige Induktion iiber n = grad(f). Dabei konnen wir voraussetzen,
dass f normiert ist, weil sich an den Nullstellen nichts dndert, wenn wir f mit einem Element a € K™ multiplizieren.
Im Fall n =1 gilt dann f = x — a fiir ein a € K. Also ist L = K(a) = K der gesuchte Korper.
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Sei nun n € IN und setzen wir die Aussage fiir Polynomgrade m < n als giiltig voraus. Sei f vom Grad n und
f1 € K[x] ein irreduzibler Faktor von f. Nach Satz iiber die Existenz algebraischer Erweiterungen gibt es
einen Erweiterungskorper M, von K und ein Element a; € M, mit f(a;) = fi(a;) = 0. Sei M = K(a;) und g €
M[x] mit f = (x —a;)g. Wegen grad(g) < grad(f) = n kénnen wir die Induktionsvoraussetzung auf g € M[x]
anwenden. Wir erhalten einen Erweiterungskorper L von M, so dass das Polynom g iiber L in Linearfaktoren zerfallt,
g=(x—a;) ...-(x—a,),und L = M(a,,...,a,) gilt. Es folgt

f=kx—a))lx—ay) ...-(x—a,) und L=M(ay,..,a.)=K(a,a,,...,a,). O

Nach Satz[15.14]ist jeder Zerfallungskorper eines Polynoms f € K[x] algebraisch iiber K, weil er von endlich vielen
algebraischen Elementen erzeugt wird.

Betrachten wir das bereits in der Einleitung angekiindigte Beispiel mit dem Grundkérpers K = Q und dem Poly-
nom f = x3—2 € Q[x]. Offenbar ist ¥/2 eine Nullstelle von f in R. Allerdings zerfillt f iiber Q(+/2) nicht in
Linearfaktoren. Statt dessen besitzt f iiber diesem Korper die Zerlegung

f = (x- V2)(x? + V2x + V4).

Der quadratische Faktor mit den Koeffizienten p = ¥/2 und q = /4 besitzt die negative Diskriminante p? — 4q =
(V/2)? —4+/3 = /4— 443 = (—3) V3, hat also keine reellen Nullstellen. Wegen Q(+¥/2) C R ist somit gezeigt, dass
der quadratische Faktor in Q(#/2) tatsichlich nicht in Linearfaktoren zerlegt werden kann. Dies kann man auch
anhand der drei komplexen Nullstellen von x* — 2 {iberpriifen: Wie wir in § 12 gesehen haben, sind dies neben +/2
die beiden nicht-reellen Zahlen {2 und {?%/2. Letztere miissen zugleich auch die Nullstellen des quadratischen
Faktors sein, was auch direkt nachrechnen kann: Wegen 1+ ¢ + {2 = 0 gilt

(x—=¢V2)(x—*V2) = xX*—(+P)V2x+3V4 = x*+V2x+ V4

Insgesamt gilt also x> —2 = (x— ¥/2)(x—{ ¥/2)(x—{?¥2). Dies zeigt, dass der Zerfallungskorper von f iiber Q durch
Q(¥2,L32,82¥2) = Q(V2,) gegeben ist. Fiir die letzte Gleichung geniigt es, die Inklusionen {+/2, V2, {%+/2} C
Q(¥2,0)und {V2,¢} € Q(+¥/2,{2,¢?%/2) zu iiberpriifen; bei der zweiten Inklusion verwendet man { = {V/2/ /2.

Man beachte, dass das Polynom f in Satz auch reduzibel {iber dem Grundkdorper Q) sein darf. Ist beispielsweise
f=(x*=2)(x?—-3)(x —5) € Q[x] und K = Q(v2, +/3), dann ist K einZerfillungskérper von f iiber Q, denn die
Nullstellen von f sind £+/2, £+4/3 und 5, und es gilt

K = QW2,—v2,v/3,—v3,5).

Wir erweitern nun die Definition des Zerfallungskorpers nun von einem Polynom auf eine beliebige Menge von Poly-
nomen.

Definition 17.3 Sei L|K eine Korpererweiterung, und S € K[x] eine (moglicherweise unendli-
che) Menge von nicht-konstanten Polynomen, die iiber L alle in Linearfaktoren zerfallen. Weiter
sei N C L die Menge aller Nullstellen sdmtlicher Polynome aus S in L, also

N = {aecl|f(a)=0firein f €S}.

Dann wird K(N) als Zerfédllungskorper von S {iber dem Grundkorper K bezeichnet.
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Auch hier kann man zeigen

Satz 17.4 IstK ein Koérper und S C K[x] eine Menge nicht-konstanter Polynome, dann existiert
ein Zerfallungskorper von S iiber K.

Ist die Teilmenge S € K[x] endlich, dann folgt die Aussage direkt aus Satz Bezeichnet ndmlich g € K[x] das
Produkt aller Polynome aus S, dann ist jeder Zerfallungskorper von g, wie man unmittelbar tiberpriift, auch ein Zer-
fallungskorper von S. Fiir den Beweis im allgemeinen Fall benétigt man nichttriviale Hilfsmittel aus der Mengenlehre,
unter anderem das sog. Zornsche Lemma. Aus algebraischer Sicht bietet der Beweis aber wenig Neues, weshalb wir
ihn in einen Anhang zu diesem Kapitel verschieben.

Proposition 17.5  Sei K ein Korper und S € K[x] eine beliebige Menge nicht-konstanter
Polynome. Dann ist jeder Zerfallungskorper von S iiber K eine algebraische Erweiterung von K.

Beweis: Dies ergibt sich direkt aus Folgerung|15.16} weil jeder Zerfallungskorper durch Adjunktion von Nullstellen
von Polynomen iiber K entsteht, also durch Adjunktion von Elementen, die {iber K algbraisch sind. m|

Wir wenden uns nun einem besonders wichtigen Typ von Zerfallungskorpern zu, dem algebraischen Abschluss eines
Korpers K. Zunichst definieren wir

Definition 17.6 Ein Korper K heil3t algebraisch abgeschlossen, wenn jedes nicht-konstante
Polynom f € K[x] in K eine Nullstelle besitzt.

Durch vollstindige Induktion iber den Polynomgrad grad(f) zeigt man leicht, dass jedes nicht-konstante Polynom
f € K[x] iiber K in Linearfaktoren zerfallt, wenn K algebraisch abgeschlossen ist. Wie bereits oben bemerkt, besitzt
der Korper C der komplexen Zahlen die Eigenschaft der algebraischen Abgeschlossenheit.

Definition 17.7 Sei K ein Korper. Ein Erweiterungskorper L von K wird algebraischer Ab-
schluss von K genannt, wenn L|K algebraisch und L algebraisch abgeschlossen ist.

Unser néchstes Ziel besteht in dem Nachweis, dass jeder Korper K einen algebraischen Abschluss besitzt, und dass
dieser ,im Wesentlichen“ eindeutig bestimmt ist. Auch fiir den Zerfallungskorper eines Polynoms f € K[x] werden
wir einen entsprechende Eindeutigkeitsaussage beweisen.

Proposition 17.8 Fiir jede Erweiterung L|K sind die folgende Aussagen dquivalent.

(i) Der Korper L ist ein algebraischer Abschluss von K.

(ii) Die Erweiterung L|K ist algebraisch, und jedes nicht-konstante Polynom f € K[x] zerféllt
iiber L in Linearfaktoren.

(iii) Die Erweiterung L|K ist minimal mit der Eigenschaft, dass jedes nicht-konstante Polynom
f € K[x] iiber L in Linearfaktoren zerfallt. Es gibt also abgesehen von L selbst keinen
Zwischenkorper von L|K mit dieser Eigenschaft.
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Beweis: Die Implikation ,,(i) = (ii)“ ist auf Grund der Definitionen trivial. Zum Beweis von ,,(ii) = (iii)“ setzen wir
voraus, dass L|K algebraisch ist, und dass jedes nicht-konstante Polynom f € K[x] iiber L in Linearfaktoren zerfallt.
Sei L, ein beliebiger Zwischenkorper von L|K mit derselben Eigenschaft; zu zeigen ist L; = L. Die Inklusion L; € L
ist offenbar erfiillt. Fiir den Beweis der umgekehrten Inklusion sei a € L vorgegeben. Das Minimalpolynom f = u, x
ist nicht-konstant, zerfillt also iiber L, in Linearfaktoren. Weil a eine Nullstelle von f ist, muss a in L; liegen.

Nun zeigen wir noch die Implikation ,(iii) = (i)“. Setzen wir voraus, dass L|K die unter (iii) angegebene Mini-
malititseigenschaft besitzt. Zunécht zeigen wir, dass L|K algebraisch ist. Sei dazu T € L die Menge der iiber K
algebraischen Elemente; zu zeigen ist T = L. Sei dazu Sy € K[x] die Menge aller nicht-konstanten Polynome und
N={aeL|f(a)=0fiirein f € S }. Jedes Polynom aus Sy zerfallt nicht nur {iber L, sondern bereits iiber K(N) in
Linearfaktoren. Auf Grund der Minimalitétseigenschaft gilt also L = K(N). Nach Satz[15.15]ist T ein Zwischenkérper
von L|K, der offenbar N enthélt. Es folgt L =K(N) € T C L und somit T = L.

Es bleibt zu zeigen, dass L|K algebraisch abgeschlossen ist. Fiir ein beliebig vorgegebenes nicht-konstantes Polynom
f € L[x] ist die Existenz einer Nullstelle von f in L nachzuweisen. Sei I D L ein Zerfillungskorper von f iiber
L und a € L eine beliebige Nullstelle von f. Mit L(a)|L und L|K ist nach Satz auch die Erweiterung L(a)|K
algebraisch. Sei h € K[x] das Minimalpolynom von a tiber K. Nach Voraussetzung zerfallt h tiber L in Linearfaktoren.
Aus h(a) =0 folgt a € L. O

Folgerung 17.9 Sei L|K eine Korpererweiterung und Sy € K[x] die Menge aller nicht-
konstanten Polynome iiber K. Genau dann ist L ein algebraischer Abschluss von K, wenn L
ein Zerfallungskorper von Sy ist.

Beweis: Als Zerfallungskorper von Sy ist L jedenfalls algebraisch iiber K. AuBerdem zerféllt jedes nicht-konstante
Polynom aus K[x] tiber L in Linearfaktoren. Auf Grund der Richtung ,,(ii) = (i)“ in Satzist L damit ein algebrai-
scher Abschluss von K. Setzen wir umgekehrt voraus, dass L ein algebraischer Abschluss von K ist. Dann zerféllt jedes
Polynom aus Sk iiber L in Linearfaktoren. Auflerdem wird L iiber K durch die Menge der Nullstellen der Polynome
f € Sk erzeugt, da jedes a € L jeweils Nullstelle von u, i € Sk ist. Also ist L ein Zerféllungskorper von Sy {iber K. O

Wegen Satz ergibt sich aus Folgerung([17.9] dass jeder Korper K einen algebraischen Abschluss besitzt. Auflerdem
stellen wir fest: Ist K ein Kérper und L ein algebraisch abgeschlossener Erweiterungskorper von K, dann ist

K = {ael|aalgebraisch iiber K}

der eindeutig bestimmte algebraische Abschluss von K in L. Denn offenbar ist K der Zerfallungskorper der Menge
Sk € K[x] aller nicht-konstanten Polynome. Die Behauptung folgt ist somit eine Konsequenz von Folgerung
Es ist also gerechtfertigt, von dem algebraischen Abschluss eines Korpers K in einem algebraisch abgeschlossenen
Erweiterungskorper L 2 K zu sprechen.

Ist insbesondere K ein Zwischenkorper C|Q, dann ist K = {a € C | a algebraisch iiber K} der eindeutig bestimmte
algebraische Abschluss von K in C. Man beachte, dass C selbst kein algebraischer Abschluss von @ ist, denn dies
wiirde bedeuten, dass C|Q eine algebraische Erweiterung ist. Wie wir in § 11 bemerkt haben, gibt es in C aber
Elemente, die iiber Q) transzendent sind, zum Beispiel e und 7.
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Unser néchstes Ziel ist der Beweis der Eindeutigkeit des algebraischen Abschlusses eines Korpers K bis auf K-Iso-
morphie. Dies soll bedeuten: Sind K; und K, zwei algebraische Abschliisse von K, dann gibt es einen K-Isomorphis-
mus kl — IN<2.

Proposition 17.10 Sei L|K eine algebraische Erweiterung, K ein algebraisch abgeschlossener
Korper und ¢ : K — K ein Homomorphismus von Kérpern. Dann gibt es eine Fortsetzung 1 von
¢ auf den Korper L, also einen Homomorphismus v : L — K mit 1 |x = ¢.

Beweis: Wir beschrinken uns auf den Fall, dass die Erweiterung L|K endlich ist. Den unendlichen Fall bearbeitet
man auch hier mit Hilfe des Zornschen Lemmas (siehe Anhang). Der Beweis wird durch vollstdndige Induktion iiber
n =[L : K] gefiihrt. Ist n = 1, dann gilt L = K, und wir kénnen einfach ¢ = ¢ setzen.

Sei nun n € N, und setzen wird die Aussage fiir Erweiterungen vom Grad < n voraus. Sei a € L \ K ein beliebiges
Element und f € K[x] das Minimalpolynom von « iiber K. Weil K algebraisch abgeschlossen ist, besitzt das Polynom
f = ¢(f) eine Nullstelle & in K. Wir wenden nun den Fortsetzungssatz, Satz , auf den Isomorphismus ¢ : K —
#(K) an und erhalten einen (eindeutig bestimmten) Homomorphismus ¢ : K(a) — K mit ¢(a) = & und ¢| k=o.
Wegen a ¢ K ist [K(a) : K] > 1, und nach dem Gradsatz gilt
[L:K]
[L:K(a)] = ———— < [L:K] = n.

[K(a):K]
Wir kénnen somit die Induktionsvoraussetzung auf die Erweiterung L|K(a) anwenden und erhalten einen Homo-
morphismus 1) : L — K mit Yl = ¢- Es folgt Yl = (Ylg)lk = @l = ¢ O

Satz 17.11 Sei K ein Korper und S € K[x] eine Menge bestehend aus nicht-konstanten Po-
lynomen. Sei ¢ : K — K ein Isomorphismus von Korpern und § = {¢(f) | f € S}. Sei L ein
Zerfillungskorper von S und L ein Zerfillungskorper von S. Dann gibt es einen Isomorphismus

i L — L mit g = ¢.

Beweis: Sei L ein algebraischer Abschluss von L. Weil der Korper L algebraisch abgeschlossen ist, kann ¢ nach[17.10
zu einem Homomorphismus 1) : L — L fortgesetzt werden. Zu zeigen ist (L) = L.

Sei N die Menge der Nullstellen aller Polynome f € S in L, und sei N C L die entsprechende Menge fiir 5. Nach
Definition der Zerfillungskorper gilt L = K(N) und L = K(N). Fiir jedes a € N gibt es ein f € S mit f (a) = 0. Wegen
¢ = Y|k ist Y(a) nach Satz eine Nullstelle von f = ¢ (f). Es folgt 1)(a) € N und insgesamt )(N) C N. Mit
Lemma erhalten wir

Y(L) = YENW) = K@¥©) < KW) = L.

Nun zeigen wir, dass jedes nicht-konstante Polynom aus S iiber dem Korper (L) in Linearfaktoren zerfillt. Sei also
f € 8 vorgegeben und f € S mit f = ¢(f). Weil L ein Zerfallungskérper von S ist, zerfallt f iiber L in Linearfaktoren.
Es gibt also ein c € K und ay, ...,a, € L mit f =c(x—a;)-...-(x —a,), wobei n = grad(f) ist. Anwendung von 2
auf diese Gleichung liefert

fo= o) = 9(f) = ¢@x—p(a) .- (x—p(ay) ,
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und es gilt y(a;) € (L) fiir 1 < i < n. Dies zeigt, dass die Nullstellen sdmtlicher Polynome f € § in L bereits in (L)
enthalten sind. Damit ist 1(L) ein Zwischenkérper von L|K mit+)(L) 2 N. Weil L = K(N) nach Definition der kleinste
Zwischenkorper von L|K mit dieser Eigenschaft ist, folgt I C +(L). Insgesamt ist damit 1)(L) = L nachgewiesen. O

Folgerung 17.12 SeiK ein Korper, und seien L, L algebraische Abschliisse von K. Dann existiert
ein K-Isomorphismus zwischen L und L.

Beweis: Nach sind L und L beide Zerfillungskérper der Menge Sy aller nicht-konstanten Polynome iiber K.
Somit existiert nach Satz[17.11|ein Isomorphismus 1) : L — L mit 1|; = idy, also ein K-Isomorphismus. O

Definition 17.13 FEine algebraische Korpererweiterung L|K hei3t normal, wenn folgende Be-
dingung erfiillt ist: Ist f € K[x] ein irreduzibles Polynom, das in L eine Nullstelle besitzt, dann
zerfallt f iiber L in Linearfaktoren.

Proposition 17.14 Sei L|K eine Korpererweiterung vom Grad 2. Dann ist L|K normal.

Beweis: Sei f € K[x] ein irreduzibles Polynom, das in L eine Nullstelle a besitzt. Dabei kénnen wir uns auf den Fall
beschrédnken, dass f normiert und somit das Minimalpolynom von « ist. Wegen [L : K(a)]-[K(a) : K]=[L:K]=2
gilt grad(f) = [K(a) : K] € {1,2}. Im Fall grad(f) = 1 ist f bereits ein lineares Polynom. Im Fall grad(f) = 2 ist
x — a ein Teiler von f € L[x]. Es gibt somit ein Polynom grad(g) vom Grad 1 mit f = (x — a)g. Also zerfillt f auch
in diesem Fall tiber L in Linearfaktoren. O

Wenn wir nach Gegenbeispielen zu normalen Erweiterungen suchen, miissen wir uns also auf solche vom Grad > 3
konzentrieren. Sei etwa K = Q und L = Q(+/2), wobei wir beide Korper als Teilkérper von R betrachten. Dann ist die
Erweiterung L|K nicht normal. Denn das Polynom f = x> —2 € K[x] ist nach dem Eisenstein-Kriterium irreduzibel
iiber K, besitzt aber andererseits in L eine Nullstelle, nimlich ¥/2. Wire L|K normal, dann miisste f iiber Q(+/2) in
Linearfaktoren zerfallen. Aber wir haben bereits im Abschnitt iiber Zerfallungskorper gesehen, dass dies nicht der
Fall ist.

Durch den folgende Satz wird gezeigt, dass normale Erweiterungskorper nichts weiter als Zerfallungskorper von
Polynomen des Grundkorpers sind. Die zusétzliche Charakterisierung iiber die Kérperhomomorphismen werden wir
spéater in der Galoistheorie verwenden.

Satz 17.15 Sei K ein Korper, und seien K 2 L 2 K Erweiterungen von K, wobei L|K endlich
und K algebraisch abgeschlossen ist. Dann sind folgende Aussagen Adquivalent:

(i) L|K ist normal.

(ii) Es gibt ein nicht-konstantes Polynom f € K[x], so dass L der Zerfallungskorper von f
iiber K ist.

(iii) Es gilt Homg(L,K) = Auty (L).
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Beweis: (i) = (i) Da L|K endlich ist, gibt es iiber K algebraische Elemente aj,...,a, € L mit L = K(a, ..., ;)
(wéhle zum Beispiel eine K-Basis von L). Fiir jedes i € {1,...,r} sei f; € K[x] das Minimalpolynom von «; und
f= l_[ir:1 fi. Jedes f; besitzt offenbar in L eine Nullstelle. Weil L|K normal ist, zerfallt jedes f; und damit auch
das Polynom f iiber L in Linearfaktoren, und zugleich wird f von den Nullstellen von f erzeugt. Also ist L ein
Zerfallungskorper von f .

,(ii) = (iii)* Die Inklusion ,2* ist auf Grund der Definition von Hom(L,K) und Autg(L) klar. Zum Nachweis
von ,,C“ sei nun ¢ € Homy(L,K) vorgegeben. AuRerdem setzen wir voraus, dass L der Zerfillungskorper des nicht-
konstanten Polynoms f € K[x] ist. Dann gilt L = K(a, ..., @), wobei a4, ...,a, € L die verschiedenen Nullstellen
von f sind. Fiir jedes i ist ¢(a;) nach Satz[16.3]ebenfalls eine Nullstelle von f und liegt damit in L. Aus

¢({a15"'3 ar}) g {ala"'a ar}

erhalten wir durch Anwendung von Lemma die Inklusion ¢ (L) € L, d.h. ¢(L) ist ein Teilkorper von L. Weil ¢
aber injektiv ist, muss der Grad [¢ (L) : K] mit [L : K] tibereinstimmen. Es folgt ¢)(L) = L und somit ¢ € Autg(L).

L(i) = ([D“ Sei f € K[x] ein irreduzibles Polynom, das in L eine Nullstelle a besitzt. Zu zeigen ist, dass f tiiber
L in Linearfaktoren zerfillt. Zumindest zerfillt f iiber dem Kérper K, da dieser algebraisch abgeschlossen ist. Sei
B € K eine beliebige weitere Nullstelle von f. Auf Grund des Fortsetzungssatzes gibt es einen K-Homomorphismus
¢ : K(a) = K mit ¢(a) = 8. Nach Proposition gibt es eine Fortsetzung 1) : L — K von ¢ auf L. Dieses 1)) ist
nach Definition in Homy (L, K) enthalten. Nach Voraussetzung gilt Homy (L, K) = Aut, (L), also ist = ¢ (a) = (a)
in L enthalten. Jede Nullstelle von f liegt also bereits in L, d.h. f zerféllt iiber L in Linearfaktoren. m|

Sei { = —% + %«/—3 € C und L = Q(¥2,2). Dann ist die Erweiterung L|Q normal, denn wie wir in § 13 gezeigt
haben, handelt es sich bei L um den Zerféllungskérper des Polynoms x3 —2 € Q[x]. Nach Satz|17.15| (iii) ist jeder
Q-Homomorphismus ¢ : L — C ein Q-Automorphismus von L.

Definition 17.16 Sei L|K eine normale Erweiterung und a € L. Dann werden die Nullstellen
des Minimalpolynoms u, x in L die Konjugierten des Element a iiber K genannt.

Zum Beispiel sind die Konjugierten eines Elements z € C iiber R stets das Element z selbst und das konjugiert-
komplexe Element Z.

Auf Grund des Fortsetzungssatzes und wegen Satz[17.15|lassen sich die Konjugierten in einer normalen Erweiterung
L|K auch folgendermaRen charakterisieren: Sei a € L vorgegeben. Ein Element 3 € L ist genau dann iiber K zu a
konjugiert, wenn ein o € Aut, (L) mit o(a) = B existiert. Sei namlich I ein algebraischer Abschluss von L. Ist 3 eine
Nullstelle von f = u, x € K[x], dann gibt es auf Grund des Fortsetzungssatzes einen K-Homomorphismus o : L — i,
und wegen Satz[17.15|(iii) ist o in Aut,(L) enthalten. Ist umgekehrt 8 € L ein Element, fiir das ein o € Aut(L) mit
o(a) = f existiert, dann ist mit a nach Satz auch f3 eine Nullstelle von f. Zum Schluss untersuchen wir noch,
wie sich die Eigenschaft ,normal“ bei Tiirmen von Korpererweiterungen verhalt.

Proposition 17.17 Ist L|K eine normale Erweiterung und M ein Zwischenkorper von L|K,
dann ist auch die Erweiterung L|M normal.
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Beweis: Sei f € M[x] ein irreduzibles Polynom und a € L eine Nullstelle von f. Zu zeigen ist, dass f iiber L in
Linearfaktoren zerféllt. Nach Multiplikation von f mit einem a@ € M* kénnen wir voraussetzen, dass f normiert
ist. Dann ist f das Minimalpolynom von a iiber M. Das Minimalpolynom g € K[x] von a iiber K zerfillt {iber L in
Linearfaktoren, weil die Erweiterung L|K normal ist. Nun ist g auch ein Polynom in M[x] mit g(a) = 0 und damit
ein Vielfaches des Minimalpolynoms f von «a {iber L. Mit g zerfallt also auch f iiber L in Linearfaktoren. O

Aus den Voraussetzungen von Proposition [17.17] folgt nicht, dass auch die auch die untere Teilerweiterung M|K
normal ist. Als Beispiel betrachten wir die Kérper

K=Q , M=Q(2) und L=Q(V2)

mit { = —% + %«/—_3 Wir haben bereits festgestellt, dass L|K eine normale Erweiterung ist, und auf Grund der
Proposition gilt dasselbe fiir die Erweiterung L|M. Aber MK ist nicht normal, wie wir im Beispiel von oben gesehen
haben. Ebenso wenig folgt im Allgemeinen aus der Normalitéit der beiden Teilerweiterungen M|K und L|M, dass die
Gesamterweiterung L|K normal ist.

Anhang: Unendliche algebraische Erweiterungen und Zornsches Lemma

In diesem Anhang werden die vollstindigen Beweise von Satz und Proposition [17.10|nachgeliefert.

Zunéchst wiederholen wir einige Grundbegriffe der Mengenlehre, die bereits im ersten Semester eingefiihrt wurden.
Eine Relation < auf einer Menge X heil3t reflexiv, wenn x =X x fiir alle x € X gilt, anti-symmetrisch, wenn fiir alle
x,y € X aus x X y und y <X x jeweils x = y folgt, und transitiv, wenn fiir alle x,y,z € X ausx < yund y < z
jeweils x < z folgt. Eine Relation auf X, die alle drei Eigenschaften besitzt, wird Halbordnung genannt. Sind je zwei
Elemente x,y € X vergleichbar, gilt also x <X y oder y < x, dann spricht man von einer Totalordnung. Zusétzlich
definieren wir

Definition 17.18 Sei (X, <) eine Menge mit einer Halbordnung. Eine Teilmenge T C X heil3t
Kette in X, wenn sie nichtleer ist und jeweils zwei Elemente x, y € T miteinander vergleichbar
sind. Dies ist dquivalent dazu, dass die Einschrankung der Relation <X auf T eine Totalordnung
ist.

Ein Element s € X heil3t obere Schranke einer Teilmenge T C X, wenn s > t fiir alle t € T gilt. Ein Element x € X
wird maximal genannt, wenn kein y € X mit y > x und y # x existiert.

Satz 17.19 (Zornsches Lemma)
Sei X eine nichtleere Menge und =< eine Halbordnung auf X mit der Eigenschaft, dass jede Kette
in X eine obere Schranke in X besitzt. Dann existiert in X ein maximales Element.

Offenbar geniigt es, die Bedingung fiir nichtleere Ketten zu iiberpriifen, denn jedes Element in X ist eine obere
Schranke der leeren Menge.
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Man kann zeigen, dass das Zornsche Lemma dquivalent zum sogenannten Auswahlaxiom ist, welches besagt, dass fiir
jede Menge X, deren Elemente selbst Mengen sind, eine Menge C existiert, die aus jedem X € X genau ein Element
enthélt, und keine weiteren Elemente. Wir konnen also eine Menge bilden, indem wir aus jeder Menge X € X
genau ein Element auswéhlen. (Die Giiltigkeit dieser Aussage wirkt so offensichtlich, dass man sie hdufig unbewusst
anwendet. Wir hatten sie in § 4 im Zusammenhang mit den Reprédsentantensystemen bereits kurz erwéahnt.) Dabei
bedeutet die Aquivalenz von Auswahlaxiom und Zornschem Lemma folgendes: Setzt man die sog. ZF-Axiome der
Mengenlehre voraus, dann kann das Zornsche Lemma aus dem Auswahlaxiom abgeleitet werden und umgekehrt das
Auswahlaxiom aus dem Zornschen Lemma. Einen Beweis findet man zum Beispiel im Anhang A von [Hi].

Leider konnen wir aus Platz- und Zeitgriinden auf die Zusammensetzung der ZF-Axiome, benannt nach den Mengen-
theoretikern E. Zermelo (1871-1953) und A. Fraenkel (1891-1965), hier nicht genauer eingehen. Sie stellen unter
anderem sicher, dass eine leere Menge, Vereinigungen von Mengen, Potenzmengen und unendliche Mengen existie-
ren, und dass man mit Hilfe pradikatenlogischer Aussagenschemata Teilmengen von Mengen definieren darf. Die
ZF-Axiome werden mit dem Auswahlaxiom zum ZFC-Axiomensystem zusammengefasst. Die gesamte heutige Mathe-
matik kann auf den ZFC-Axiomen aufgebaut werden.

Erwédhnt werden sollte noch, dass das Zornsche Lemma an vielen Stellen die frither gebrauchliche transfinite Induk-
tion als Beweisprinzip abgeldst hat. Dabei handelt es sich um eine Verallgemeinerung der vollstdndigen Induktion,
die nicht auf den natiirlichen Zahlen, sondern auf den sog. Ordinalzahlen basiert. Wahrend die vollstdndige Induk-
tion nur zum Beweis einer abzdhlbar unendlichen Menge von Aussagen geeignet ist, lassen sich mit der transfiniten
Induktion beliebig groe Mengen von Aussagen beweisen. Aus diesem Grund kann auch die Anwendung des Zorn-
schen Lemmas als ,,verallgemeinerte vollstdndige Induktion“ betrachten.

Wir beginnen mit einer einfachen mengentheoretischen Anwendung des Zornschen Lemmas. Aus dem ersten Seme-
ster ist folgendes bekannt: Eine Abbildung f : X — Y zwischen zwei Mengen X und Y ist genau dann injektiv, wenn
eine Abbildung g : Y — X mit g o f = idy existiert, und genau dann surjektiv, wenn eine Abbildung h : Y — X mit
f oh = idy existiert. Dabei ist die Abbildung g dann offenbar surjektiv, und h ist injektiv. Existiert also zwischen
zwei Mengen X und Y eine injektive Abbildung X — Y, dann gibt es auch eine surjektive Abbildung Y — X. Gibt
es umgekehrt eine surjektive Abbildung X — Y, dann auch eine injektive Abbildung ¥ — X. Mit dem Zornschen
Lemma kann nun dariiber hinaus gezeigt werden

Satz 17.20 Sind X,Y beliebige Mengen, dann gibt es eine injektive Abbildung X — Y oder
eine injektive Abbildung ¥ — X.

Beweis: Wir orientieren uns an der Darstellung in [Ph] und betrachten die Menge M aller Paare (A, f ) bestehend
aus einer Teilmenge A C X und einer injektiven Abbildung f : A — Y. Diese Menge ist nichtleer, denn das Paar
bestehend aus @ C X und der ,leeren” Abbildung @ — Y ist offenbar in M enthalten. Auf M definieren wir eine
Relation < mit der Eigenschaft, dass (A;, f1) =X (A, f,) genau dann gilt, wenn A; € A, und f,|,, = f; erfiillt ist, fir
beliebige (A, f1), (A,, fo) € M. Zunéchst weisen wir nach, dass < eine Halbordnung auf M ist. Die Reflexivitit ist
offensichtlich, denn fiir jedes Paar (4, f) € M giltA C Aund f|, = f. Zum Nachweis der Antisymmetrie seien (A4, f;)
und (A,, f>) mit (A1, f1) = (A,, f5) und (A,, f5) < (A, f1) vorgegeben. Dann gilt A; € A, und A, C A;, also A; = A,.
Aus Ay = A, folgt fola, = fala, = fo, und mit f,|4, = f; erhalten wir f, = f;. Insgesamt gilt also (A;, f;) = (A, f>). Fiir
die Transitivitat seien (A4, f1), Ay, f2), (A3, f3) € M mit (A4, f1) = (A,, f5) und (A, fy) < (As, f3) vorgegeben. Dann
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gilt A; CA; und A; C A, also A} S Az. Aus f3]y, = fo und fols, = f1 folgt f3la, = (f3la,)la, = fola, = f1- Insgesamt ist
damit (A;, f;) < (A3, f3) nachgewiesen.

Nun {iberpriifen wir, dass die halbgeordnete Menge (M, <) die Voraussetzungen des Zornschen Lemmas erfiillt. Dass
M nichtleer ist, haben wir bereits festgestellt. Sei nun 7 eine nichtleere Kette in M. Zu zeigen ist, dass 7 in M eine
obere Schranke besitzt. Dafiir sei A C X die Vereinigung aller Mengen A, fiir die eine Abbildung f : A — Y mit
(A, f) € T existiert. Wir definieren eine Abbildung f : A — Y, indem wir fiir jedes a € Ay ein Paar (4, f,) € 7 mit
a € Awihlen und f;(a) = f,(a) setzen. Das Bild f;-(a) ist von der Wahl des Paares (4, f,) unabhéngig. Ist ndmlich
(A, f') € T ein weiteres Element mit a € A’, dann gilt (4, f,) < (A, f") oder (A, f') < (4, f,), weil T eine Kette ist. Im
ersten Fall gilt f,(a) = (f’|,)(a) = f’(a), im zweiten f'(a) = (f |4 )(a) = f,(a), in beiden Fallen also f,(a) = f'(a).

Wir behaupten nun, dass (A7, f) in M liegt und eine obere Schranke von 7 ist. Fiir Ersteres miissen wir noch zeigen,
dass fr injektiv ist. Seien also a;,a, € Ay mit f(a;) = f(a,) vorgegeben. Auf Grund der Definition von A gibt
es Paare (A1, f1),(As, f) € T mit a; € Ay, a, € A,, und unsere Feststellung aus dem vorherigen Absatz zeigt, dass
filay) = fr(ay) = frlay) = fo(ay) gilt. Weil T eine Kette ist, diirfen wir 0.B.d.A. annehmen, dass (A, f1) = (A,, f>)
gilt. Daraus folgt A; € A,, also a;,a; € Ay, auBerdem f,|4 = f1 und somit f5(a,) = fi(a;) = (fala,)(a1) = f2(a;). Die
Injektivitdt von f, liefert nun a; = a,, wie gewiinscht. Damit ist (A, f+) nachgewiesen. Ist nun (A4, f) € T beliebig
vorgegeben, dann gilt A, 2 A nach Definition von A, und fiir jedes a € A ist f-(a) = f(a), also f|, = f. Also gilt
(A, f) =X (Ar, f7), und somit ist (A7, f+) in der Tat eine obere Schranke von 7.

Nach dem Zornschen Lemma existiert in M nun ein maximales Element (4, f). Ist A = X, dann ist f eine
injektive Abbildung X — Y, und wir sind fertig. Gilt f(A) = Y, dann ist f : A — Y surjektiv, und wir kénnen f zu
einer surjektiven Abbildung X — Y fortsetzen. Wie wir vor dem Beweis angemerkt haben, existiert dann eine injektive
Abbildung Y — X. Nehmen wir nun an, dass sowohl A G X als auch f(A) S Y gilt. Seia € X \Aund b € Y\ f(A). Wir
konnen dann auf A; = AU {a} eine injektive Abbildung f; : A; — Y definieren, indem wir f;(a) = b und f;| A, = f
festlegen. Aber dann ist (A, f;) in M ein echt groReres Element als (4, f ), im Widerspruch zur Maximalitit. Also ist
der Fall A ¢ X und f (A) ¢ Y ausgeschlossen. |

Wenden wir uns nun wieder der Kérpertheorie zu. Als erstes beweisen wir Proposition|17.10|fiir beliebige algebraische
Erweiterungen. Sei L|K eine solche Erweiterung, K ein algebraisch abgeschlossener Korper und ¢ : K — K ein
Homomorphismus von Kérpern. Zu zeigen ist, dass ein Homomorphismus v : L — K mit 1| = ¢ existiert.

Es sei F die Menge aller Paare (M,,,) bestehend aus einem Zwischenkérper M von L|K und einer Fortsetzung
Wy : M — K von ¢ auf M. Wir definieren eine Relation < auf F, indem wir fordern, dass die Aquivalenz

My, ) = (My,Yy,) & My S M, und Yy, by, =Py,

fir alle Paare (My,vyy, ), (My,¢y,) € F gilt. Wegen (K, ¢) € F ist die Menge F nicht leer. Ahnlich wie im Beweis
von Satz [17.20| iiberpriift man, dass durch < eine Halbordnung auf F definiert ist; der einzige Unterschied besteht
darin, dass an Stelle von Abbildungen nun Kérperhomomorphismen betrachtet werden.

Nun zeigen wir, dass die halbgeordnete Menge (F, <) die Voraussetzungen des Zornschen Lemmas erfiillt. Sei 7 € F
eine nichtleere Kette in F. Weiter sei M+ die Vereinigung aller Zwischenkérper M von L|K, fiir die ein Kdrperhomo-
morphismen 1, : M — K mit (M,,,) € T existiert. Dann ist auch M, ein Zwischenkdrper von L|K. Zunéchst ist
das Einselement 1 = 1; in M enthalten, denn weil M fiir jedes Element (M,,,) aus T ein Teilkdrper von L ist,
gilt jeweils 1y € M. Seien nun a, § € My vorgegeben. Dann gibt es Elemente (M, vy, ), (Mg, v,bMﬂ) € T mit a € M,
und f3 € M. Weil T eine Kette ist, kénnen wir 0.B.d.A. (M, ) < (Mp, ¢Mﬁ) annehmen. Dann sind a, 3 beide in
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Mj enthalten. Weil My ein Teilkérper von L ist, liegen auch die Elemente a — 8 und af8 in Mg, im Fall a # Ok auch
das Element a~!. Erst recht enthilt M- all diese Elemente. Damit ist die Teilkérpereigenschaft nachgewiesen.
T pereig g

AuRerdem definieren wir eine Abbildung v : M — K, indem wir fiir jedes & € M, ein Element (M, m,) it
a € M, auswihlen und ¢ r(a) = v (a) setzen. Ist a € K, dann gilt Y(a) = ¢y (a) = ¢(a), weil Y, eine
Fortsetzung von ¢ ist. Auflerdem ist 1, ein Kérperhomomorphismus. Dazu bemerken wir zunéchst: Ist a € My
und (M,,,) € T ein beliebiges Element mit a € M, dann gilt 1+(a) = ¢ ,(a). Denn weil T eine Kette ist, gilt
(M, 1) < (Moo 9y, ) 0der (M, ) < (M, yy). T exsten Fall gilt 4y, (@) = (43, [ )(@) = ¥y, () = 1), und
durch eine dhnliche Rechnung erhélt man dasselbe Resultat auch im zweiten Fall. Seien nun a, 3 € M, vorgegeben,
und es seien (Mg, Yy, ), (Mg, Y Mﬁ) Elemente aus 7 wie im vorherigen Absatz. Dann liegen die Elemente a, ,a + f3
und af alle in Mg. Weil 1 M; ein Kdrperhomomorphismus ist, gilt

Yrla+p) = Yyla+p) = Yy, (@+9Yy,B) = Yr(a)+y-(B)

und ebenso Y (af) = ¢Y(a)yP(B). Ebenso gilt (1) = U)Mﬂ(lx) = ¢(1g) = 1z, weil wMﬁ eine Fortsetzung von
¢ ist. Nach Konstruktion gilt M € M und |y = 4y, fiir jedes (M,y) € T. Also ist (M, +) tatsdchlich eine
obere Schranke von 7.

Auf Grund des Zornschen Lemmas, Satz existiert nun in F ein maximales Element (M,;;). Gilt M = L,
dann ist 1 ; eine Fortsetzung von ¢ auf L, wie gewiinscht. Im Fall M ¢ L sei a € L \ M beliebig gewihlt. Weil a
iiber K und erst recht iiber M algebraisch ist, handelt es sich bei M(a)|M nach Proposition um eine endliche
Erweiterung. Da Satz ﬁ'ir endliche Erweiterungen bewiesen wurde, existiert eine Fortsetzung vy, : M; — K von
Yy auf My = M(a). Es ist dann (M, 4y, ) in F ein echt groferes Element als (M, 1 ). Aber dies widerspricht der
Maximalitit von (M, ;). Also muss M = L gelten. O

Um den Beweis von Satz iiber die Existenz von Zerfallungskorpern fiir beliebige Mengen nicht-konstanter Poly-
nome vorzubereiten, zeigen wir

Lemma 17.21 Sei X eine Menge und P(X) ihre Potenzmenge. Dann existiert keine surjektive
Abbildung ¢ : X — P(X).

Beweis: Die Argumentation dhnelt dem Cantorschen Diagonalverfahren, mit dem gezeigt wird, dass die reellen
Zahlen surjektiv sind. Nehmen wir an, ¢ : X — P(X) ist eine surjektive Abbildung, und betrachten wir die Menge
D={xeX|x¢ ¢(x)}. Weil D surjektiv ist, existiert ein x, € X mit ¢(xp) = D, und dieses Element muss x, € D
oder x;, ¢ D erfiillen. Betrachten wir den Fall x;, € D. Dann ist die Bedingung x ¢ ¢(xp) nicht erfiillt, und es
folgt x;, ¢ D, ein Widerspruch. Setzen wir nun x,, ¢ D voraus. Dann ist die Bedinung x, ¢ ¢ (xp) erfiillt, und nach
Definition von D gilt x;, € D. Also ergibt sich auch im zweiten Fall ein Widerspruch. Dies zeigt, dass unsere Annahme,
die Abbildung ¢ wiére surjektiv, falsch war. |

Lemma 17.22 Sei K ein Korper.

(i) Es gibt eine Menge Q, mit der Eigenschaft, dass fiir jede algebraische Erweiterung L|K
eine injektive Abbildung L — Q existiert. (Dies bedeutet, dass die Menge Q, gro3 genug
ist, um samtliche algebraischen Erweiterungen von K in sich ,aufzunehmen®.)

(ii) Es existiert eine Menge Q mit der Eigenschaft, dass fiir keine algebraische Erweiterung
L|K eine surjektive Abbildung L — Q existiert.
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Beweis: zu (i) Sei £, = K[x] x IN und L|K eine algebraische Erweiterung. Dann erhalten wir folgendermafSen
eine injektive Abbildung ¢ : L — Q,: Fiir jedes nicht-konstante, normierte, irreduzible Polynom f € K[x] wéhlen
wir eine Nummerierung s, ..., a, der Nullstellen von f in L und definieren dann ¢(a;) = (f,j). Die Abbildung
ist wohldefiniert, da f jeweils das (eindeutig bestimmte) Minimalpolynom von a; iiber K ist, und auf’erdem injek-
tiv, da je zwei verschiedene Elemente aus L entweder verschiedene Minimalpolynome haben, oder den Elementen
unterschiedlichen Nummern zugeordnet wurden.

zu (ii) Sei Q = P(Q,), die Potenzmenge von ,. Nehmen wir an, es gébe eine algebraische Erweiterung L|K und
eine surjektive Abbildung L — Q. Weiter sei ¢ : L — £, die injektive Abbildung aus Teil (i). Dann kénnen wir
mit Hilfe der Umkehrabbildung der Bijektion ¢ : ¢ — ¢ (L) eine surjektive Abbildung ¢ (L) — Q definieren, und
jede Fortsetzung dieser Abbildung auf €, wére ebenfalls surjektiv. Aber nach Lemmal[17.21] existiert keine surjektive
Abbildung von Q, auf Q. |

Nun kann der Beweis von Satz[17.4|durchgefiihrt werden. Sei K ein Kérper und S € K[x] eine Menge nicht-konstanter
Polynome. Zu zeigen ist, dass ein Zerfallungskorper von S {iber K existiert. Sei dazu 2 eine Menge wie in Lemma[17.22]
(ii). Nach Ersetzung von Q durch QUK diirfen wir Q2 2 K annehmen. Es sei nun F die Menge aller Erweiterungskorper
(L,+;,-;) von K mit L €  und der Eigenschaft, dass L Zerfallungskorper einer Teilmenge T C S ist. Diese Menge
ist nichtleer, denn der Koérper K mit seiner Addition und Multiplikation ist Zerfallungskorper der Teilmenge @ C S.
Wir definieren eine Relation < auf F, indem wir fordern, dass genau dann (L1,+L1, 'Ll) =< (Lo, +1,5° Lz) erfiillt ist,
wenn L; ein Teilkérper von L, ist. Dies bedeutet unter anderem, dass L, C L, gilt, dass L, abgeschlossen unter +,,
und -, ist, und dass die Einschrankung von +; bzw. -; auf L; mit +; bzw. -, {ibereinstimmt. Um die Notation
nicht zu aufwindig werden zu lassen, schreiben wir ab jetzt an Stelle von (L, +;,-;) meist einfach L. Es ist aber
darauf zu achten, dass fiir L,, L, € F die additiven und multiplikativen Verkniipfungen im Allgemeinen nur auf K
iibereinzustimmen brauchen, selbst wenn L; und L, als Teilmengen von 2 gleich sind.

Um das Zornsche Lemma anwenden zu konnen, iiberpriifen wir zundchst wieder, dass durch < eine Halbordnung
auf F gegeben ist. Die Relation ist reflexiv, denn jedes L € F ist ein Teilkorper von sich selbst. Sind L, L, € F mit
Ly X Ly, und L, <X L;, dann gilt insbesondere L; € L, und L, C L, also L; = L,. Aulerdem miissen (auf Grund
der Teilkorper-Eigenschaft) Addition und Multiplikation auf L; und L, {ibereinstimmen. Also stimmen L; und L,
als Korper tberein, und folglich ist die Relation anti-symmetrisch. Sind L,,L,,L; € F mit L; <X L, und L, < L4
vorgegeben, dann ist L; Teilkorper von L, und L, Teilkérper von Ls. Aus L; € L, und L, C Lg folgt L; € L. Schréankt
man die Addition von L5 auf L, ein, so erhilt man die Addition des Korpers L,. Schriankt man diese weiter auf L,
ein, so erhélt man die Addition auf L,. Also erhdlt man die Addition von L, auch, indem man die Addition von L,
direkt auf L, einschrankt. Dasselbe gilt fiir die Multiplikation. Insgesamt ist damit gezeigt, dass L, ein Teilkérper von
L, ist und somit L, < Lj gilt. Die Relation < ist also auch transitiv, insgesamt eine Halbordnung.

Fiir die Anwendbarkeit des Zornschen Lemmas muss noch gezeigt werden, dass jede nichtleere Kette 7 in F eine
obere Schranke besitzt. Auf der Teilmenge L, = | J Let L von Q definieren wir auf folgende Weise Verkniipfungen +-
und - Sind a, 8 € L vorgegeben, dann gibt es einen Korper L, € 7 mit o € L, und ein L, € 7 mit 3 € L,. Weil T
eine Kette ist, diirfen wir 0.B.d.A. L; <X L, annehmen. Es gilt dann L; € L, und somit a, 8 € L,. Fiir jedes Paar (a, 8)
von Elementen in L7 konnen wir also einen Kérper L, gy € 7 mit a, § € L(, gy wéhlen. Bezeichnen +, gy und (4 )
die Addition und Multiplikation auf L, ), dann definieren wir

atrB=a+epnhf , a7f=aph.

Zu tberpriifen ist nun, dass es sich bei (L+,+,+7) um einen Kérper und dariiber hinaus um einen Zerféallungs-
korper einer Teilmenge T C S handelt. Beim Nachweis der Korperaxiome beschranken wir uns auf den Nachweis
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des Assoziativgesetzes der Addition, weil der Nachweis der iibrigen Korperaxiome weitgehend analog verauft. Seien
a,B,y € Ly vorgegeben, auflerdem a’ = a +¢,p) B und v’ = 8+, v. Weil T eine Kette ist, gibt es unter den
Korpern L, gy, L(g,y)> L(a,y) Und L(q ) €in grofRtes Element, das wir mit L bezeichnen. Weil in L das Assoziativgesetz
gilt und die vier aufgezadhlten Korper alles Teilkorper von L sind, gilt

(a+rB)+ry = (a+@pB)+try = od'+ry = a/+(a/,y)+)’
= d+y = (@t Py = a+ (BHy) = a+tyy = atenty =
a+ry = a+r(B+p,y) = a+r(B+ry).

Der Nachweis der iibrigen Korperaxiome funktioniert nach dem gleichen Schema; dabei stellt man insbesondere fest,
dass Null- bzw. Einselement von L, mit Null- und Einselement des Grundkoérpers K tibereinstimmen. Dariiber hinaus
ist jedes L € T ein Teilkdrper von L. Ist ndmlich + die Addition auf L und sind a, 8 € L vorgegeben, dann gilt
L < Lypy oder Ly, gy = L. Dies zeigt, dass a + 8 = a +(, ) und a + 8 iibereinstimmen. Ebenso stimmt die
Multiplikation von L, mit der Multiplikation von L iiberein. Weil K ein Teilkérper von L ist, gilt 1, =1 =1, _. Weil
L ein Korper ist und die Verkniipfungen von L und L {ibereinstimmen, ist L abgeschlossen unter der Subtraktion
und der Multiplikation in L, fiir Elemente ungleich Oy auch unter Inversenbildung.

Zeigen wir nun noch, dass L+ Zerfallungskorper einer Teilmenge T C S ist, dann ist L insgesamt eine obere Schranke
von 7 in F. Nach Definition von F existiert fiir jedes L € F, erst recht fiir jedes L € T eine Teilmenge T; € S, so
dass L Zerfallungskorper von Tj, ist. Wir beweisen jetzt, dass L Zerféllungskorper von T = | J, . T} ist. Jedes f € T
ist in einer Teilmenge T; enthalten. Also zerfillt f {iber L, und damit auch iiber dem Erweiterungskorper L, von L,
in Linearfaktoren. Fiir jedes L € T sei N; C L jeweils die Menge aller Nullstellen von Polynomen aus T;. Dann gilt
L = K(Ny), und N = |, N, ist die Menge aller Nullstellen von Polynomen aus T. Wir miissen nun Ly € K(N)
nachweisen. Tatsédchlich liegt jedes a € L+ in L fiir ein L € 7, und somit in K(N;) € K(N).

Ingesamt haben wir damit die Voraussetzungen des Zornschen Lemmas verifiziert, und demnach existiert in F ein
maximales Element L. Nehmen wir an, dass L lediglich Zerfallungskérper einer echten Teilmenge T von S ist. Dann
gibt es ein f € S, das iiber I nicht in Linearfaktoren zerfillt. Nach Satz existiert ein Zerféallungskorper L; von
f iiber L. Wenn es eine injektive Abbildung ¢, von L; \ L nach Q\ L gibt, so kénnen wir eine injektive Abbildung
(ﬁl : L; — Q definieren, indem wir qgl(a) = a fir a € L und qgl(a) = ¢,(a) fiir a € L, \ L setzen. Mit Hilfe
von Satz aus der Ringtheorie und der Bijektion ¢, zwischen L; und der Bildmenge ¢,(L) kénnen wir auf
qgl(i) C Q die Struktur eines zu L, isomorphen Koérpers definieren. Wegen qgl |; =1id; handelt es sich dabei um einen
Erweiterungskorper von L, und mit L ist auch dgl(f,) Zerfallungskorper einer echten Obermenge von T. Insgesamt
ist qgl(l:) damit in F ein echt groReres Element als L, im Widerspruch zur Maximalitit.

Betrachten wir nun noch den Fall, dass keine injektive Abbildung von L; \ L nach Q\ L existiert. Dann gibe es nach
Satz eine injektive Abbildung Q\ L — L; \ L und somit auch eine surjektive Abbildung L; \ L — Q) L. Diese
konnte zu einer surjektiven Abbildung p : L; — Q mit p(a) = a fiir alle a € L fortgesetzt werden. Aber dies steht im
Widerspruch zur Eigenschaft der Menge (2, keine surjektive Abbildung L; — Q von einer algebraischen Erweiterung
L,|K zuzulassen. O
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§18. Endliche Korper

Zusammenfassung. Aus der Zahlentheorie-Vorlesung ist bereits bekannt, dass fiir jede Primzahl p durch
IF, = Z/pZ ein Korper mit p Elementen gegeben ist. In diesem Abschnitt wird das Konzept der Zerféllungs-
korper aus § 17 verwendet, um die endlichen Korper insgesamt zu klassifizieren. Auf3erdem diskutieren wir
die Teilkorperstruktur und die Automorphismen endlicher Korper.

Wichtige Grundbegriffe Zentrale Sdtze

— formale Ableitung eines Polynoms — Klassifikation der Primkorper

— Frobenius-Endomorphismus eines Rings — Die Elementezahl eines endlichen Korpers ist stets eine
der Charakteristik p Primzahlpotenz p" > 1.

— Existenz und Eindeutigkeit des Korpers mit p" Elementen
bis auf Isomorphie

- Eindeutigkeit des Korpers IF,. Elementen als Teilkorper
des algebraischen Abschlusses IF;lg von IF,

— Rechenregel (a + b)P = a? + b? in Charakteristik p
(,Freshman’s Dream*“)

In diesem Kapitel spielt der in §9 eingefiihrte Begriff des Primkdrpers eine besondere Rolle. Wir beginnen damit,
dass wir alle Korper, die {iberhaupt die Rolle eines Primkdrpers einnehmen konnen, bis auf Isomorphie beschreiben.

Satz 18.1 SeiK ein Korper und P sein Primkorper.
(i) Ist char(K) =0, dann gilt P = Q.
(i) Ist char(K) = p fiir eine Primzahl p, dann gilt P = T¥,.

Beweis: Nach Folgerung existiert ein eindeutig bestimmter Ringhomomorphismus ¢ : Z — K, gegeben durch
die Zuordnungsvorschrift n — n- 1. Mit Hilfe dieses Homomorphismus werden wir nun in beiden Fillen den jeweils
angegebenen Isomorphismus konstruieren.

zu (i) Im Fall char(K) = O ist ¢ injektiv. Ware ndmlich n € Z, n # 0 mit ¢(n) = O, dann wiére auch ¢(—n) =
—¢(n) = —0x = Og. Damit gébe es auf jeden Fall ein m € IN mit m - 1y = ¢(m) = Ok, was aber der Voraussetzung
char(K) = 0 widerspricht.

Die Abbildung ¢ : Z — K kann zu einer Abbildung 4; : Q — K fortgesetzt werden. Sei dazu r € Q und r = § eine
Darstellung von r als gekiirzter Bruch, mit a € Z, b € IN und ggT(a, b) = 1. Auf Grund der Injektivitit von ¢ ist
¢(b) # 0, so dass wir dS(r) = ¢(a)¢(b)~! definieren konnen. Wegen dg(%) =¢(a)p(1) ! = ¢p(a)- 1;1 = ¢(a) fir
alle a € Z gilt qg |z = ¢, also ist qg tatsdchlich eine Fortsetzung von ¢ auf Q.
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Ist 7 € Q und r = § eine beliebige Darstellung von r als Bruch (mit a € Z und b € IN). Dann gilt ¢;(r) = ¢(a)p(b) .
Istndmlich r = g—i die Darstellung von r als gekiirzter Bruch wie oben, dann folgt aus § = % die Gleichung ab; = a; b
und somit ¢ (a)¢p(b;) = ¢(a;)¢(b), woraus sich wiederum

¢(@p(d)" = dladpd) = G = $(0)

ergibt. Man tiberpriift nun leicht, dass durch ¢§ : Q — K ein Kérperhomomorphismus geben ist: Zunéchst gilt nach
Definition qf;(l) = ¢;(%) =¢p()p(1) =1, 1}1 = 1. Seien nun r,s € Q vorgegeben, r = 7 und s = 5 mita,c € Z

und b,d € IN. Aus den Gleichungen r +s = adb—fibc und rs = 47 folgt dann

$r+s) = ¢lad+b)p(bd)”" = ¢lad)p(bd)™ +p(b)p(bd)" =
$(@¢(Dp(BY D)+ p(DI)p(P(B) ¢ () = B(Qp(B) +P(c)p(d)
= dD+EH) = d+()

und

P(rs) = ¢@)pdd)™? = ¢@pPp(B) (D) = ¢(@)p(b) - p()p(d)
= $H)d(H = $1) ).

Weil Kérperhomomorphismen nach Proposition stets injektiv sind, definiert ¢§ einen Isomorphismus zwischen Q
und dem Teilkérper ¢(Q) von K. Weil P als Primkérper der kleinste Teilkérper von K ist, gilt ¢(Q) 2 P. Anderseits
gilt auch ¢;(Q) C P, denn P enthalt als Teilring von K mit 1 auch ¢;(n) =n-1g fiir alle n € Z, und als Teilkérper auch
¢(5)=(a-1x)(b- 1) fiir alle a € Z und b € IN. Insgesamt gilt also (ﬁ(Q) = P, und damit ist Q = P nachgewiesen.

zu (ii) Im Fall char(K) = p gilt ¢(p) = p - 1x = Og. Der Kern von ¢ ist damit eine Untergruppe von (Z,+), die
(p) = pZ enthilt. Nehmen wir an, es gibe ein Element m € ker(¢) \ pZ. Division mit Rest liefert dann q,r € Z
mit m =qp+r und 0 < r < p, wobei r = 0 wegen m ¢ pZ ausgeschlossen ist. Wegen r = m — gp wére dann
r-lg=m-1x—q-(p-1g) =m-1x = ¢(m) = 0, was wegen r < p aber zur Definition von char(K) im Widerspruch
steht.

Also muss ker(¢) = pZ gelten. Der Homomorphiesatz fiir Ringe liefert einen Ringisomorphismus ¢ : Z/pZ — ¢(Z).
Wir tiberpriifen nun, dass qg(IFp) = ¢(Z) der Primkdrper von K ist. Als Bild von IF, unter dem Isomorphismus ¢ ist
¢ (IF,) jedenfalls ein Teilkérper von K, und folglich gilt P € ¢(IF,). Andererseits gilt aber auch P 2 ¢(IF,)), denn als
Teilkorper von K enthélt P das Element ¢ (14 pZ) = 1x und damit auch ¢(n+pZ) =n- 1 fiir alle n € Z, also den
gesamten Teilkorper ¢ (Fp). O

Nach dieser Vorbereitung kann nun bereits eine wichtige Aussage iiber die mogliche Elementezahl eines endlichen
Korpers getroffen werden. Im Gegensatz zu endlichen Gruppen und Ringen, bei denen jede Elementezahl méglich
ist, gilt fiir die Korper

Satz 18.2 IstK ein endlicher Korper, dann ist |K| eine Primzahlpotenz. Es gilt also |[K| = p™ fiir
eine Primzahl p und ein n € IN.
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Beweis: Sei P der Primkorper von K. Nach Satz gilt P = Q oder P = I, fiir eine Primzahl p. Dabei scheidet die
erste Moglichkeit aus, weil |K| und damit |P| endlich ist. Sei also p die Primzahl mit P = Ir',. Wegen |K| < co muss
auch der Grad n = [K : P] endlich sein. Als P-Vektorraum ist K damit isomorph zu P", und es folgt |K| = |P|" = p".
O

Als néchstes werden wir zeigen, dass jeder Kérper mit p" Elementen zwangslaufig ein Zerfallungskorper iiber seinem
Primkorper ist. Weil nach § 16 jeder Zerfillungskorper eines Polynoms f € K[x] bis auf K-Isomorphie eindeutig be-
stimmt ist, stellt dies einen wichtigen Schritt hin zum Nachweis der Eindeutigkeit dar. Hierzu benétigen wir allerdings
ein wenig Vorbereitung.

Definition 18.3 Sei K ein Korper und f = Z:zo a,x* € K[x], mit n € N, und ay, ...,a, € K.
Dann nennt man

f o= Z kayx*!  die formale Ableitung von f.
k=1

Man {iberpriift unmittelbar, dass die aus der Analysis bekannten Ableitungsregeln (f + g)’ = f’' + g’ und
(fg) = f'g + f g’ auch fiir die formale Ableitung giiltig sind.

Proposition 18.4 Sei K ein Kérper, f € K[x] ein Polynom vom Grad n > 1 und L ein Erwei-
terungskorper von K, iiber dem f in Linearfaktoren zerfillt. Dann sind die folgenden beiden
Aussage dquivalent:

(i) Esgilt ggT(f,f')=1inK[x].

(ii) Das Polynom f besitzt in L nur einfache Nullstellen, d.h. es ein a € K* und n verschiedene
Elemente a,...,a, € L,sodass f =a][_;(x —a;).

Beweis: Sei a € L eine Nullstelle von f. Wir zeigen zunichst, dass a genau dann eine mehrfache Nullstelle von f ist,
wenn f’(a) = 0 gilt. Wegen f(a) = 0 gibt es ein Polynom g € L[x] mit f = (x — a)g. Auf Grund der Produktregel
gilt f' = g+ (x—a)g’, und a ist genau dann eine mehrfache Nullstelle von f, wenn

g@)=0 < gl@+(a—a)g())=0 < f'(a)=0

erfiillt ist. Wir beweisen nun die Aquivalenz. Sind die Polynome f und f’ nicht teilerfremd in K[x], dann haben sie
einen gemeinsamen irreduziblen Faktor p € K[x]. Mit f zerfallt auch p {iber L in Linearfaktoren. Jede Nullstelle von
p in L ist eine gemeinsame Nullstelle von f und f’ und somit eine mehrfache Nullstelle von f.

Eine mehrfache Nullstelle a von f in L ist umgekehrt eine gemeinsame Nullstelle von f und f’. Wiirde in K[x] nun
ggT(f, f') =1 gelten, dann gébe es nach dem Lemma von Bézout Polynome a, b € K[x] mit af +bf’ = 1. Dies hitte
den Widerspruch

0 = a@f(@+b(@)f' (@) = 1

zur Folge. Also sind f und f’ in K[x] nicht teilerfremd. O
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Proposition 18.5 Sei p eine Primzahl, n € IN und K ein Kérper mit p™ Elementen. Dann ist der
Primkérper P von K zu I, isomorph, und K ist ein Zerfdllungskorper von f, = xP" —x € P[x]
iiber dem Korper P.

Beweis: Dass der Primkorper P von K isomorph zu IF, sein muss, haben wir schon im Beweis von Satz festgestellt.
Wir zeigen nun, dass K der Zerfallungskorper von f, tiber P ist. Die multiplikative Gruppe K™ hat die Ordnung p"—1.
(Diese Beobachtung ist ganz entscheidend fiir das Verstdndnis der endlichen Korper!) Fiir jedes a € K* gilt deshalb

n

n__ n
' = P la = a = aF —a = 0

>

also ist jedes solche Element Nullstelle von f, = x?" —x. Zusitzlich gilt offenbar f,(0x) = Ox. Da f, als Polynom vom
Grad p" andererseits hochstens p" Nullstellen besitzt, kommen wir insgesamt zu dem Ergebnis, dass die Nullstellen-
menge N von f,, mit K iibereinstimmt. Das Polynom f, zerféllt also iiber K in Linearfaktoren, und zugleich wird K
wegen P(N) = P(K) =K iiber dem Grundkorper P von N erzeugt. Also ist K der Zerfallungskorper von f,. |

Umgekehrt werden wir nun zeigen, dass jeder Zerfallungskorper des Polynoms x?" — x iiber einem Korper mit p
Elementen aus genau p" Elementen besteht. Dies ist ein wichtiger Schritt in Richtung des Existenzbeweises.

Proposition 18.6 Sei p eine Primzahl, R ein Ring der Charakteristik p und n € IN.
Dann gilt
(a+by" = o +b” fir alle a,b €R.

Beweis: Ist die Aussage fiir n = 1 erst einmal bewiesen, dann erhélt man die Gleichung fiir beliebiges n durch einen
einfachen Induktionsbeweis. Wir kénnen uns also auf den Beweis der Gleichung (a + b)? = a? + b? beschréanken. Auf
Grund des binomischen Lehrsatzes gilt

(a+b)P =

(p)ap_kbk = ap+Z(p)ap_kbk+bp.
k P k

Die Binomialkoeffizienten (i) sind fiir 1 < k < p—1 durch p teilbay, denn in

0 - sy - (11

m=p—k+1

p
k=0

wird das Produkt rechts von p geteilt, und wegen k < p wird p durch den Vorfaktor (k!)~! nicht weggekiirzt. Auf-
gefasst als Elemente in R sind die Binomialkoeffizienten (i) fir 1 < k < p—1 also gleich Null, und wir erhalten
(a+ b)Y’ =aP + bP. m|

Definition 18.7 Ist R ein Ring der Charakteristik p, dann bezeichnet man die Abbildung ¢ :
R — R, a — a? als Frobenius-Endomorphismus von R.

Wie wir bereits iiberpriift haben, ist ¢ vertriglich mit der Addition auf R. AuBerdem gilt ¢(1;) = 1% = 1 und
p(ab) = (ab)’ = a?b? = p(a)y(b). Also ist ¢ tatsdchlich ein Endomorphismus des Rings R. Ist K ein endlicher
Korper der Charakteristik p, dann ist der Frobenius-Endomorphismus von K sogar ein Automorphismus. Denn als
Korperhomomorphismus ist ¢ injektiv, und als injektive Abbildung der endlichen Menge K nach K ist ¢ auch surjektiv,
insgesamt eine Bijektion. In dieser Situation wird ¢ dann auch der Frobenius-Automorphismus von K genannt.
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Proposition 18.8 Sei p eine Primzahl, P ein Korper mit p Elementen, n € IN und K ein Zer-
fallungskérper von f, = xP" — x € P[x] iiber P. Dann gilt |K| = p".

Beweis: Vorweg bemerken wir, dass char(K) = p gilt und Proposition[18.6|somit anwendbar ist. Denn wegen |P| = p
und 1, # 0p muss die Ordnung von 1; = 1, in der Gruppe (P, +) ebenfalls gleich p sein, also char(P) = p gelten.
Da K als Zerfallungskorper eines Polynoms {iber P ein Erweiterungskorper von P ist, gilt auch char(K) = p. Sei
nun M € K die Menge der Nullstellen von f,, in K. Wir zeigen zunéchst, dass M ein Teilkorper von K ist. Wegen
fu(1g) = 1? — 1 = 1y —1x = O liegt zunéchst 1; in M. Seien nun a, b € K vorgegeben. Nach Proposition gilt

(@=b)F" = (a+(=b)y" = & +(=1F'b" = a+(-1)"b.

Sowohl im Fall p = 2 als auch im Fall p # 2 erhalten wir (a — b)?" = a — b und somit a — b € M. Ebenso gilt
(ab)?" = a?"b?" = ab, also ab € M. Im Fall a # 0 gilt schlieRlich (a™')*" = a™®" = (a?")™! = a”! und damit auch
a~! € M. Damit ist der Nachweis der Teilkérper-Eigenschaft abgeschlossen.

Nun zeigen wir, dass M ein Erweiterungskorper von P ist. Die multiplikative Gruppe P> besteht aus p—1 Elementen.
Fiir alle a € P* gilt deshalb a? = a?'a = 1-a = a, und natiirlich ist die Gleichung a? = a auch fiir a = O
erfiillt. Damit gilt auch a?" = q fiir alle a € P, und es folgt P € M. Insgesamt ist M also ein Erweiterungskorper
von P, der genau aus den Nullstellen von f, besteht und insbesondere von diesen erzeugt wird. Damit ist M der
Zerfallungskorper von f,, in K. Dies bedeutet, dass M = K gilt.

Nun brauchen wir nur noch iiberpriifen, dass f,, genau p" Nullstellen besitzt und fiir M als Nullstellenmenge somit
IK| = [M| = p" gilt. Die formale Ableitung von f,, ist gegeben durch f; = p"xP" 71 —1=—1, also ist geT(f,, f) =1.
Nach Proposition besitzt f,, in K damit p" voneinander verschiedene Nullstellen. Wir erhalten |K| = [M| =p". O

Wir kdnnen nun das Hauptergebnis dieses Abschnitts formulieren.

Satz 18.9 Sei p eine Primzahl und n € IN. Dann gibt es einen Korper mit p" Elementen, und je
zwei Korper mit p” Elementen sind zueinander isomorph.

Beweis: Zunichst beweisen wir die Existenzaussage. Sei K ein Zerfallungskorper des Polynoms f, = x? —x € F,[x].
Dann gilt |[K| = p" nach Proposition Sei nun K ein beliebiger Kérper mit p" Elementen und P sein Primkorper.
Nach Proposition gibt es eine Isomorphismus ¢ : I, — P, und K ist der Zerfallungskorper von fn =xP"—xe
P[x]. Offenbar gilt f, = ¢(f,). Wir kénnen nun Satz iiber die Eindeutigkeit von Zerfallungskorpern auf die
Menge S = {f,} anwenden und erhalten einen Isomorphismus v : K — K, der ¢ fortsetzt. O

. . . 1 . .
Folgerung 18.10 Sei p eine prim und ]F}a) & ein algebraischer Abschluss von IF,,.

(i) Fiir jedes n € IN gibt es genau einen Teilkorper IF,.» € IF;lg mit p" Elementen.
(i) Firm,n €N gilt IF,» € IF,» genau dann, wenn m ein Teiler von n ist.

cese . 1 _
(iii) Es gilt 58 = Upen F

nelN = p"*
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Beweis: zu (i) Seilf,. der Zerfallungskérper von f,, = xP'—x e IF,[x]in ]Fglg. Dann gilt |IF,.| = p" nach Proposition
Ist umgekehrt L C Fglg ein beliebiger Teilkorper mit p" Elementen, dann ist I, der Primkérper von L, und nach
Proposition ist L der Zerféallungskorper von f,, in leg. Also stimmen L und I . tiberein.

zu (ii) Wenn m ein Teiler von n ist, n = dm mit d € IN, dann ist der Zerfallungskorper von f,, im Zerfallungskorper von
f, enthalten. Ist ndmlich a € F;lg eine Nullstelle von f,,, dann gilt a?" = a, und folglich wird a unter der Abbildung

¢m(a) = aP" auf sich selbst abgebildet. Durch vollstindige Induktion iiber k € IN, sieht man, dass ¢§1 (@)= ar™” gilt,
und wir erhalten insbesondere a?" = o?"" = ¢>gl(a) = a. Dies zeigt, dass a auch Nullstelle von f,, ist.

Seien umgekehrt m,n € IN mit der Eigenschaft, dass I, ein Teilkérper von IF,,. ist. Setzen wir d = [IF}» : IF ], dann
handelt es sich bei IF,. also um einen d-dimensionalen IF,»-Vektorraum. Dieser enthalt (p™® = p™ Elemente, und
aus p™ = I, | = p" folgt dm = n.

zu (iii) Die Inklusion ,, 2 ist auf Grund der Definition der Teilkorper I,. offensichtlich. Zum Nachweis von ,,C* sei
ae€ ]F;lg vorgegeben. Nach Definition von IF;lg ist a algebraisch tiber IF,. Sei f = baF, und n = grad(f). Dann gilt
[F,(a): F,]=n, somit ist I ,(a) ein n-dimensionaler I ,-Vektorraum. Als solcher besteht I ,(a) aus p" Elementen,

und aus der Eindeutigkeitsaussage in Teil (i) folgt IF,(a) = IF,.; insbesondere gilt a € IF .. m|
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§19. Separable Korpererweiterungen und Galois-Erweiterungen

Zusammenfassung. Eine Korpererweiterung L|K wird separabel genannt, wenn das Minimalpolynom jedes
Element von L {iber K nur einfache Nullstellen hat. Diese Eigenschaft spielt in der Galoistheorie eine wichtige
Rolle, weil sie Auswirkung auf die Anzahl der K-Homomorphismen von L in andere Kérper hat. Wie wir sehen
werden, ist sie immer gegeben, wenn K ein Korper der Charakteristik O oder ein endlicher Korper ist.

Eine weitere wichtige Eigenschaft endlicher separabler Erweiterungen kommt im Satz vom primitiven Element
zum Ausdruck, welcher besagt, dass solche Erweiterungen stets durch ein einziges Element erzeugt werden
konnen. In Anbetracht der Tatsache, dass solche Erweiterungen bei einem Grundkorper wie @ bereits eine sehr
komplizierte Struktur haben konnen, ist dies eine bemerkenswerte Aussage.

Wichtige Grundbegriffe Zentrale Sdtze

— separables Polynom — Separabilitiat von algebraischen Erweiterungen end-

L . . licher Korper und von Korpern der Charakteristik O
— separables Element in einer Korpererweiterung

.. . — Satz vom primitiven Element
— separable Korpererweiterung

— Endliche separable Erweiterungen haben endlich vie-

— rationaler Funktionenkorper IF,(¢t) tiber IF), le Zwischenkérper.

— Separabilitatsgrad einer endlichen Erweiterung  _ gennzeichnung von separablen Erweiterungen durch

die Anzahl von Kérperhomomorphismen

Definition 19.1 SeiK ein Korper. Ein irreduzibles Polynom f € K[x] wird separabel genannt,
wenn ggT(f, f') =1 gilt.

Nach Proposition [18.4|ist die Separabilitit von f gleichbedeutend damit, dass f irreduzibel ist und in jedem Erwei-
terungskorper L von K nur einfache Nullstellen besitzt.

Definition 19.2 Sei L|K eine Korpererweiterung. Ein Element a € L wird separabel iiber K
genannt, wenn es algebraisch tiber K ist und sein Minimalpolynom f € K[x] separabel ist. Wir
nennen die Erweiterung L|K separabel, wenn jedes a € L iiber K separabel ist.

Proposition 19.3 Ist L|K eine Korpererweiterung, a € L ein {iber K separables Element und
M ein Zwischenkorper von L|K, dann ist a auch separabel tiber M.

Beweis: Sei f € K[x] das Minimalpolynom von a iiber K und g € M[x] das Minimalpolynom von a iiber M. Da
f auch in M[x] liegt und f(a) = 0 gilt, ist g als Minimalpolynom ein Teiler von f. Sei L nun ein algebraischer
Abschluss von L. Da a iiber K separabel ist, besitzt f in L keine mehrfachen Nullstellen. Dasselbe gilt dann auch fiir
den Teiler g von f. Also ist das Minimalpolynom g € M[x] separabel und a damit separabel iiber M. |
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Satz 19.4 Ist K ein Korper der Charakteristik 0, dann ist jede algebraische Erweiterung L|K
separabel.

Beweis: Sei a € L und f € K[x] sein Minimalpolynom. Ist n = grad(f), dann ist n € IN, und f’ ist vom Grad n— 1.
(Dies ist fiir Polynome iiber Kérpern positiver Charakteristik falsch, wie man anhand des Polynoms x? —1 {iber dem
Korper I, sieht.) Weil ggT(f, f') ein Teiler von £’ gilt, ist auch ggT(f, f') hochstens vom Grad n— 1. Andererseits ist
f irreduzibel und ggT(f, f') auch ein Teiler von f. Deshalb muss ggT(f, f') entweder konstant oder ein konstantes
Vielfaches von f sein. Wegen ggT(f, f') < n—1 bleibt nur die erste Moglichkeit. Also sind f und f’ teilerfremd, das
Polynom f ist also separabel, und damit ist auch a separabel iiber K. m|

Satz 19.5 Ist K ein endlicher Korper, dann ist jede algebraische Erweiterung L|K separabel.

Beweis: Sei |K| =q, ¢ = p" mit einer Primzahl p und einem r € IN, und sei a € L ein beliebiges Element. Dann gilt
|K(a)| = q" = p'™, wobei n = [K(a) : K] ist. Das Element a ist damit Nullstelle des Polynoms g = x?"" —x € K[x],
und wegen g’ = —1 besitzt dieses im algebraischen Abschluss L von L nur einfache Nullstellen. Das Minimalpolynom
f € K[x] von a ist ein Teiler von g, also hat auch f in L nur einfache Nullstellen, und es folgt ggT(f, f’) = 1 nach

Proposition |

In Anbetracht von Satz und Satz driangt sich die Frage auf, ob es iiberhaupt Kérper mit nicht-separablen
algebraischen Erweiterungen gibt. Sei p eine Primzahl und K = T¥,(t) der rationale Funktionenkérper iiber If,,.
Dabei handelt es sich um den Quotientenkérper des Polynomrings IF,[t], dessen Elemente durch

B0 = {&]gher,le) n#o)

gegeben sind. AuBerdem sei u = %/t eine Nullstelle des Polynoms f = x? — t € K[x] in einem Erweiterungskorper
von K, also ein Element u mit u? = t. Dann ist dieses Element nicht separabel iiber K, die Erweiterung L|K mit dem
Korper L = K(u) = K(#%/t) also eine nicht-separable algebraische Erweiterung.

Um dies zu sehen, bemerken wir zunichst, dass das Polynom f = xP—t iiber L in Linearfaktoren zerféllt, denn wegen
char(L) = p gilt f = xP —uP = (x —u)?. Ware f iiber K reduzibel, dann hétte ein Teiler von f die Form (x —u)™
mit 1 < m < p. Insbesondere miisste der konstante Term (—1)"u™ des Teilers und somit auch das Element u™ in K
liegen. Aber dies ist nicht der Fall. Denn andernfalls gébe es g,h € I, [t ] mit

m_ 8(t) _ gh)
T h(t)  h(up)

g@®)-u™ = h(uP).

Das Element u wiére damit eine Nullstelle des Polynoms F € IF,[x] gegeben durch F = g(x?) - x™ —h(xF), und es ist
F # 0, weil die Polynome g(x?)-x™ und h(xP) von unterschiedlichem Grad sind; der Grad von h(x?) ist im Gegensatz
zum Grad des Polynoms g(x?) - x™ durch p teilbar. Die Gleichung F(u) = 0 zeigt dann, dass das Element u € L {iber
IF, algebraisch ist. Dann wére auch t = u” iiber I, algebraisch, also Nullstelle eines Polynoms F; € IF,[x]. Aber dies
ist unmoglich, denn mit F, ist auch F,(t) € IF,[t] ein Polynom ungleich null.

Der Widerspruch zeigt, dass eine Zerlegung von f € K[x] der oben angegebenen Form nicht existiert und f somit
irreduzibel ist. Insgesamt ist damit f das Minimalpolynom von u tber K, also f = u, . Da u aber eine p-fache
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Nullstelle von f ist, ist das Minimalpolynom f ein nicht-separables Polynom, und folglich ist das Element u iiber dem
Grundkorper K nicht separabel.

Wir kommen nun zur Formulierung eines zentralen Resultats {iber separable Erweiterungen.

Definition 19.6 Eine Korpererweiterung L|K wird einfach genannt, wenn ein Element a € L
mit L = K(a) existiert. In diesem Fall nennt man a eine primitives Element der Erweiterung.

Satz 19.7 (Satz vom primitiven Element)
Jede endliche, separable Erweiterung L|K ist einfach.

Beweis: Ist K ein endlicher Korper, dann ist auch L endlich. Aus der Zahlentheorie-Vorlesung ist bekannt, dass L™ als
multiplikative Gruppe eines endlichen Korpers zyklisch ist. Ist a € L™ ein Erzeuger der Gruppe, dann gilt offenbar
L =K(a), also ist L|K einfach. Von nun an gehen wir davon aus, dass der Korper K unendlich ist.

Da es sich bei L|K um eine endliche Erweiterung handelt, gibt es Elemente a;, ..., @, mit L = K(a,...,a,). (Man
kann zum Beispiel eine Basis von L als K-Vektorraum nehmen.) Wir beweisen nun durch vollstdndige Induktion {iber
r, dass eine solche Erweiterung einfach ist. Fiir r = 1 folgt die Aussage direkt aus der Definition. Sei nun r > 1,
und setzen wir die Aussage fiir alle s < r voraus. Nach Induktionsvoraussetzung ist L, = K(a, ..., a,_;) einfach. Es
gibt also ein a € Ly mit L, = K(a). Setzen wir § = a,, dann gilt also L = K(a, ). Es bleibt zu zeigen, dass die
Erweiterung L|K von einem einzigen Element erzeugt wird.

Sei I ein algebraischer Abschluss von L, f € K[x] das Minimalpolynom von a iiber K und g € K[x] das Minimal-
polynom von f3 iiber K. Dann zerfallen f und g iiber L in Linearfaktoren, d.h. es gibt a,,...,a,, € L und B, ..., B,
mit

fo=Jle—a) wd g = [Jax-8) ,
i=1 j=1

wobei wir a; = o und 8; = 8 annehmen konnen. Ferner sind die Elemente a4, ..., a,, und f,, ..., B, jeweils verschie-
den voneinander, weil @ und f iiber K separabel und f und g damit separable Polynome sind. Fiir jedes ¢ € K* sei
nun y, = a +cf und M, = K(y.). Wir werden zeigen, dass ¢ so gewahlt werden kann, dass M, = K(a, f8) erfillt ist.
Dazu betrachten wir das Polynom h, = f (y. —cx) = [ [~ h.; € M.[x] mit den Linearfaktoren

heg = (re—ex)—a; = y.—(gi+cx)  inL[x].

Das Polynom h, ist so konstruiert, dass es 8 = f; auf jeden Fall als Nullstelle besitzt, denn nach Definition gilt
he1(B)=y.—(a;+cB)=v.—(a+cB) =y, ~r.=0und somit h.(f3;) = h.() = 0. Andererseits kann das Element c
so gewahlt werden, dass f3,, ..., B, nicht als Nullstellen von h, auftreten. Fiir 1 <i < m und 2 < j < n gelten ndmlich
ie Gleichungen

hei(B;) = ve—(aij+ch) = (a+cB)—(a;+ch) = (a—a)+c(f—p;)
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und somit die Aquivalenzen

h(B)#0 & (a—a)+c(B—PB)#0 & cA 2T

B—B;

Weil K unendlich ist, kénnen wir ¢ so wéhlen, dass diese Ungleichungen alle erfiillt sind und somit h.(3;) # 0 fir

2 < j < n gilt. In diesem Fall ist dann x — 3 der einzige Linearfaktor von g, der auch das Polynom h, teilt, es gilt also
x—B = ggT(g,h,).Aber der grolite gemeinsame Teiler von zwei Polynomen g, h, € M, [x]ist wiederum in M,[x]
enthalten. Es folgt € M, und damit auch a =y, —cf € M,. Aus a, 8 € M, erhalten wir K(a, ) € M. =K(y.). Da
andererseits y. = a +cf3 in K(a, ) liegt, erhalten wir insgesamt die gewiinschte Gleichung K(a, ) = K(y,). O

Satz 19.8 Sei L|K eine endliche Erweiterung und K ein algebraisch abgeschlossener Erwei-
terungskorper von L. Dann gilt [Homg(L,K)| < [L : K] mit Gleichheit genau dann, wenn die
Erweiterung L|K separabel ist.

Beweis: Wir beweisen die Ungleichung und die ,,<“-Richtung der Implikation durch vollstdndige Induktion iiber
n = [L : K]. Genauer gesagt zeigen wir etwas allgemeiner: Ist ¢ : K — K ein beliebiger Kérperhomomorphismus,
so gibt es < [L : K] Fortsetzungen von ¢ auf L; bei einer separablen Erweiterung L|K gibt es genau [L : K] solche
Fortsetzungen. Im Fall n = 1 ist nichts zu zeigen, denn dann gilt L = K, die Erweiterung ist separabel (weil jedes
Minimalpolynom uy , eines Elements a € K vom Grad 1 und somit separabel ist), und die einzige Fortsetzung von
¢ auf K ist offenbar ¢ selbst.

Sei nun n = [L : K] > 1, und setzen wir die Aussage fiir Erweiterungen kleinen Grades voraus. Sei a € L \ K,
f = g4 m=grad(f) =[K(a): K] und f = ¢(f). Nach Folgerungist die Anzahl m, der Fortsetzungen von ¢
zu einem Homomorphismus K(a) — K gleich der Anzahl der verschiedenen Nullstellen von f in K. Wir bezeichnen
diese Anzahl mit m,. Weil f als Polynom iiber einem Korper nicht mehr als m = grad(f) Nullstellen in K haben
kann, gilt m; < m mit Gleichheit genau dann, wenn das Polynom f separabel ist. Letzteres wiederum ist genau
dann der Fall, wenn f separabel ist (denn die Bedingung ggT(f, f’) = 1 bleibt unter dem Kérperhomomorphismus ¢
erhalten), und dies wiederum ist 4quivalent zur Separabilitit von a iiber K. Ist nun die Erweiterung L|K separabel,
dann insbesondere das Element a {iber K, und dann folgt m; = m. In jedem Fall bezeichnen wir mit v, ..., ¢, die
verschiedenen Fortsetzungen von ¢ auf den Korper K(a).

Wegen K € K(a) gilt [K(a) : K] > 1. Fiir den Erweiterungsgrad r = [L : K(a)] gilt dann auf Grund der Gradformel
r=[L:K(a)]= % < [L : K] = n. Nach Induktionsvoraussetzung besitzt jedes v; hochstens r Fortsetzungen
auf L. Weil jede Fortsetzung von ¢ auf L durch Fortsetzung eines v); auf L zu Stande kommt, ist die Anzahl der
Fortsetzungen von ¢ auf L durch myr < mr =[K(a) : K]-[L : K(a)] =[L : K] = n begrenzt. Ist nun L|K separabel,
dann ist jedes 8 € L nach Proposition [19.3]auch separabel iiber K(a), die Erweiterung L|K(a) also separabel. Nach
Induktionsvoraussetzung besitzt jedes 1; dann genau r Fortsetzungen, und insgesamt existieren dann genau n = mr

Fortsetzungen von ¢ auf L. Damit ist der Induktionsschritt abgeschlossen.

Beweisen wir nun noch die Richtung ,,=“ der Aquivalenz und nehmen dazu an, dass L|K nicht separabel ist. Dann
gibt es ein Element a € L, das nicht separabel iiber K ist. Wie bereits oben bemerkt, ist die Anzahl m; der K-
Homomorphismen K(a) — K, also die Anzahl der Fortsetzungen der identischen Abbildung K — K, a — a, dann
kleiner als m = [K(a) : K]. Fiir jeden solchen K-Homomorphismus wiederum gibt es héchstens r = [L : K(a)]
Fortsetzungen von K(a) auf L. Die Gesamtzahl der K-Homomorphismen L — K ist damit beschriankt durch m;r,
insbesondere ist die Anzahl kleiner als mr =[L : K]. O
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Definition 19.9  Sei L|K eine endliche Erweiterung und K ein algebraisch abgeschlossener
Erweiterungskorper von L. Dann nennt man

[L:K]ep = |[Homy (L, K)|

den Separabilititsgrad der Erweiterung L|K.

Der Separabilititsgrad ist von der Wahl des algebraisch abgeschlossenen Erweiterungskorpers K unahingig. Denn
zunichst einmal ist jedes o € Homy(L,K) ein K-Isomorphismus von L auf sein Bild o(L), und dieses damit eine
endliche und insbesondere algebraische Erweiterung von K. Das Bild o (L) ist also im algebraischen Abschluss von
K innerhalb des Kérper K enthalten, so dass sich Homg (L, K) nicht dndert, wenn wir K durch diesen algebraischen
Abschluss ersetzen. AufSerdem existiert nach Folgerung zwischen je zwei algebraischen Abschliissen K; und K,
ein K-Isomorphismus ¢, so dass zwischen Homy (L, K;) und Homy(L,K,) durch o — ¢ o o eine Bijektion gegeben
1st.

Der Satz vom primitiven Element hat auch Auswirkungen auf die Anzahl der Zwischenkorper einer algebraischen
Erweiterung. Diesen Zusammenhang sehen wir uns als nichstes an. Als Vorbereitung beweisen wir

Lemma 19.10 Sei L|K eine einfache algebraische Erweiterung, also L = K(a) fiir ein a € L.
Sei M ein Zwischenkérper von L|K und

das Minimalpolynom von a iiber M. Dann gilt M = K(ay, ..., a,_1)-

Beweis:  Sei M, = K(ay,...,a,_;). Dann ist M, jedenfalls in M enthalten, denn jedes der Elemente a; liegt nach
Voraussetzung in M. Wir betrachten nun die Erweiterung L|M,. Wegen L = K(a) gilt erst recht L = M,(a), und das
Polynom f ist irreduzibel in My[x], weil es sogar in M[x] irreduzibel ist. Also ist f auch das Minimalpolynom von a
iiber M,, und wir erhalten

[L:M] = grad(f) = [L:M,l
Der Gradsatz liefert nun [L:K] (L K]
[My:K] = —= = - = [M:K].
[L:M,] [L:M]
Zusammen mit M, € M erhalten wir My = M. |

Satz 19.11 Eine endliche Erweiterung L|K besitzt genau dann nur endlich viele Zwischen-
korper, wenn sie einfach ist.

Beweis: Ist K ein endlicher Korper, dann ist auch L endlich. Weil es in L nur endlich viele Teilmengen gibt, kann
es auch nur endlich viele Zwischenkorper gegeben. Andererseits ist L™ als multiplikative Gruppe eines endlichen
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Korpers zyklisch, und ist a ein Erzeuger dieser Gruppe, dann gilt L = K(a). Die Aquivalenz ist im Fall endlicher
Korper also richtig, weil beide Teilaussagen immer erfiillt sind. Wir setzen von nun an voraus, dass K unendlich ist.

,<=“ Seia € L ein Element mit L = K(a) und f € K[x] das Minimalpolynom von a iiber K. Sei aullerdem M ein
Zwischenkorper von L|K und g € M[x] das Minimalpolynom von « {iber M. Da f in M[x] liegt und f (a) = 0 gilt,
ist f ein Vielfaches von g[x]. AuRerdem wird M nach Lemma von den Koeffizienten von g erzeugt. Jedem
Zwischenkorper kann also ein normierter Teiler von f zugeordnet werden, und diese Zuordnung ist injektiv. Da f
nur endlich viele normierte Teiler besitzt, kann es auch nur endlich viele Zwischenkorper geben.

»,=“ Da L|K eine endliche Erweiterung ist, gibt es Elemente a;,...,a, € L mit L = K(a,...,a,). Wir zeigen nun
durch vollstandige Induktion tiber r, dass jede algebraische Erweiterung L|K, die nur endlich viele Zwischenkérper
besitzt und von r Elementen a,, ..., a, erzeugt wird, eine einfache Erweiterung ist.

Fiir r = 1 ist nichts zu zeigen. Sei nun r > 1, und setzen wir die Aussage fiir alle s < r als giiltig voraus. Setzen wir
L, =K(ay,...,a,_;), dann hat mit L|K auch die Erweiterung L,|K nur endlich viele Zwischenkorper. Nach Indukti-
onsvoraussetzung gibt es ein a € Ly mit Ly = K(a). Es gilt dann L = K,() = K(a, ) mit 8 = a,. Da L|K nur endlich
viele Zwischenkorper besitzt, der Kérper K nach Voraussetzung aber unendlich ist, gibt es Elemente ¢,d € K, ¢ #d,
so dass

K(a+cB) = K(a+dp) gilt.

Setzen wir M = K(a+cf3), dann liegen also die Elemente a+cf und a+dp beide in M. Es folgt (a+cfB)—(a+dp) =
(¢c—d)p € M und wegen (c —d) € K* auch € M. Dies wiederum bedeutet, dass auch a = (a —cf) +cf in M
liegt. Aus a, 8 € M folgt K(a, ) € M, und wegen a + cf3 € K(a, ) folgt umgekehrt M C K(a, ). Also ist L|K eine
einfache Erweiterung. O

Folgerung 19.12 Jede endliche, separable Erweiterung L|K besitzt nur endlich viele Zwischen-
korper.

Beweis: Nach dem Satz vom primitiven Element ist L|K einfach, und nach Satz|19.11|besitzt L|K deshalb nur endlich
viele Zwischenkorper. m|

— 215 —



§20. Kreisteilungspolynome und Quadratisches Reziprozitiitsgesetz

Zusammenfassung. Die Kreisteilungskérper verdanken ihren Namen der Eigenschaft, von den sog. Einheits-
wurgzeln erzeugt zu werden, die als Punkte in der komplexen Ebene den Einheitskreis gleichma3ig unterteilen.
Die Minimalpolynome der Einheitswurzeln bezeichnet man als Kreisteilungspolynome. Die Nullstellen des n-ten
Kreisteilungspolynom sind dabei gerade die primitiven n-ten Einheitswurzeln. Wir werden zeigen, dass es sich
dabei um ganzzahlige Polynome handelt, und geben eine Rekursionsformel fiir ihre Berechnung an. Besonde-
ren Aufwand erfordert der Beweis, dass die Polynome, die durch die Formel definiert werden, tatsichlich iiber
Q irreduzibel sind. Hier kommen unter anderem die Ergebnisse aus § 13 zur Anwendung.

Mit dem Quadratischen Regziprogitdtsgesetz (QRG) lasst sich die Frage nach der Losbarkeit von Kongruenzen
der Form x2 = a mod p fiir eine vorgegebene Primzahl p und ein vorgegebenes a € Z schnell und effizient
beantworten. Der Beweis des QRG durch Gauf in seinen Disquisitiones Arithmeticae gilt als ein Hohepunkt der
Elementaren Zahlentheorie. Die Bemiihungen, dieses Gesetz auf hohere Potenzen zu verallgemeinern, hatten
einen entscheidenden Einfluss auf die Entwicklung der Algebraischen Zahlentheorie zu einem eigenstindigen
Teilgebiet der Mathematik.

Wichtige Grundbegriffe Zentrale Sdtze

- n-te Einheitswurzel, primitive n-Einheitswurzel =~ — Rekursionsformel fiir Kreisteilungspolynome

— Gruppe u,, der Einheitswurzeln — Irreduzibilitdt der Kreisteilungspolynome iiber ©
— n-tes Kreisteilungspolynom — der Isomorphismus Gal(Q(Z,)|Q) = (Z/nZ)*

— quadratischer Rest, Legendre- und Jacobisymbol - Quadratisches Reziprozitdtsgesetz und Ergidnzungs-
satze

Wir beginnen mit der Definition der Einheitswurzeln.

Definition 20.1 Sei n € IN. Eine n-te Einheitswurzel in C ist ein Element ¢ € C mit {" = 1.

Wie man leicht nachrechnet, bilden die n-ten Einheitswurzeln eine Untergruppe von C*, die wir mit u,, bezeichnen.
Es gilt u, = {ezmk/ n | 0<k< n}, denn nach Definition sind die n-ten Einheitswurzeln genau die Nullstellen von
x"—1 € Z[x] in C, und da x™ — 1 ein Polynom vom Grad n ist, kann es héchstens n verschiedene Nullstellen in
C geben. Andererseits sind durch die Elemente auf der rechten Seite der Gleichung wegen (ezmk/ ”)n =2tk =1

offenbar n verschiedene Nullstellen des Polynoms gegeben. Das Element ¢, = e2™/"

es gilt also u, = ({,).

ist ein Erzeuger der Gruppe U,
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Lemma 20.2 Sei k € Z. Genau dann gilt u,, = (Cﬁ), wenn ggT(k,n) =1 ist.

Beweis: Sei G eine zyklische Gruppe der endlichen Ordnung n und g ein Erzeugendes Element. Nach Teil (i) von
Satz ist g¢ genau dann von Ordnung n, und somit ebenfalls ein Erzeuger von G, wenn ggT(k,n) = 1 ist. Das
Lemma ist ein Spezialfall dieser Aussage. m|

Definition 20.3 Sein € IN, n > 2. Eine primitive n-te Einheitswurzel ist ein Element { € u,
mit u, = (). Wir bezeichnen mit > C u,, die Menge der primitiven n-ten Einheitswurzeln. Das
Polynom &, € C[x] gegeben durch

e, = [[e-0

fepy

wird das n-te Kreisteilungspolynom genannt.

Aus technischen Griinden setzen wir &; = x—1, obwohl wir fiir n = 1 keine primitiven n-ten Einheitswurzeln definiert
haben. Nach Lemma gilt flir alle n > 2 jeweils

lurl = Hke€Z|0<k<n,ggT(k,n)=1} = o¢(n) ,

also ist ¢(n) auch der Grad des Polynoms &,,. Unser néichstes Ziel besteht in dem Nachweis, dass jedes Kreisteilungs-
polynom nicht nur iiber C, sondern {iber den ganzen Zahlen definiert ist.

Lemma 20.4 Fir alle n € N gilt x" —1 = [ ], ®4, wobei d die natiirlichen Teiler von n
durchlauft.

Beweis: Nach Definition sind die Nullstellen von x™ — 1 genau die Elemente { € C* mit {" = 1. Die Ordnung
d = ord({) von ¢ in C* ist dann ein Teiler von n. Also erzeugt ¢ erzeugt in diesem Fall die Gruppe u, ist also eine
primitive d-te Einheitswurzel und somit eine Nullstelle von ®,. Sei umgekehrt ¢ eine Nullstelle von &, fiir einen
Teiler d von n. Ist k € IN mit n = kd, dann gilt " = ({4)* = 1¥ = 1, also ist { eine Nullstelle von x™ — 1.

Somit haben wir gezeigt, dass die Nullstellenmengen der beiden Polynome auf der linken und rechten Seite der
Gleichung iibereinstimmen. Beide Polynome haben dariiber hinaus nur einfache Nullstellen, also sind sie gleich. O

Satz 20.5 Es gilt ®, € Z[x] fiir alle n € IN.

Beweis:  Erneut fithren wir den Beweis durch vollstindige Induktion iiber n. Fiir n = 1 ist die Aussage wegen
®, = x —1 klar. Sei nun n > 1, und setzen wir &, € Z[x] fiir alle d < n voraus. Nach Lemma gilt

=1 = []e

d|n
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Seinun § = {d € N | d|n,d < n} und g = [ [;o; ®4. Dann gilt also x" —1 = g - &, wobei das Polynom g nach
Induktionsvoraussetzung in Z[x] liegt; dariiber hinaus ist es normiert. Wir zeigen nun zunéchst, dass ¢,, in Q[x]
enthalten ist. Weil Q[x] ein euklidischer Ring ist, gibt es Polynome q,r € Q[x] mit g-®, =x"—1=qg+rundr =0
oder grad(r) < grad(g). Durch Umformen erhalten wir (®,, —q)g = r, und auf Grund des Grades von g bleibt r =0
als einzige Moglichkeit. Es gilt also g - ¢, = gg und somit ®, = q € Q[x], da Q ein Integritdtsbereich ist, in dem die
Kiirzungsregel angewendet werden kann.

Also ist g ein normierter Teiler von x" — 1 im Ring Q[x], wobei g und x" — 1 beide in Z[x] liegen. Nach Satz[13.9]
folgt daraus, dass g auch ein Teiler von x™ — 1 im Ring Z[x] ist. Es gibt also ein eindeutig bestimmtes, normiertes
Polynom h € Z[x] mit x" —1 = gh. Aus gh=x"—1=g - &, folgt &, = h € Z[x]. O

Die Produktformel x"—1 = dn £a kann verwendet werden, um die Kreisteilungspolynome fiir die einzelnen na-
tlirlichen Zahlen n rekursiv zu berechnen. Ist p zum Beispiel eine Primzahl, dann gilt

-1 = &9, = (x—1)¢,
und somit
xP—1 1 5
3} = = xXP+xP+ L+ x+1.
p x—1

Ist ¢ € IN eine Primzahlpotenz, ¢ = p” mit einer Primzahl p und r € IN, r > 2, dann gilt

-1 = [ = (ﬂ@d)épr = (@7 -1)s,

dlp dlpr
also
T A N S e AT e |

= xPTOD LT P g,

Das sechste Kreisteilungspolynom berechnet man durch

® x®—1 x6—1 5 1
= = = X" —X >
6 ®,3,P, (x—Dc+1D(x2+x+1)

und das zwolfte Kreisteilungspolynom erhélt man durch die Rechnung

12 12
x“—1 x“—1 4 9
¢, = ——— = = x"—x“+1

Wir zeigen nun, dass die Kreisteilungspolynome {iber @ irreduzibel sind. Zur Vorbereitung bemerken wir
Lemma 20.6 Fiir jedes Polynom f € I, [x] gilt fP = f(xF).

Beweis: Wir konnen f # 0 voraussetzen. Sei f = ZZ:O a;x* mitn € Nund ay, ...,a, € IF,,. Auf Grund der allgemeinen
Rechenregel (a + b)? = a” + b? in Ringen der Charakteristik p und der Gleichung a? = a fiir alle a € I, (siehe
Algebra-Skript, Abschnitt endliche Korper) gilt

n p n n
fP = (Zaixp) = Zafxip = Zaixip = f(xP). O

k=0 k=0 k=0
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Satz 20.7 Fiir jedes n € IN ist das Kreisteilungspolynom &, in Z[x] und Q[x] irreduzibel.

Beweis: Wir gehen davon aus, dass n > 1 ist, denn fiir n = 1 ist die Aussage offensichtlich. Wére das Kreisteilungs-
polynom in Q[x] reduzibel, dann nach Satz[13.9](ii) auch in Z[x]. Es gibt dann normierte Polynome f, g € Z[x] mit
®, = fg und grad(f),grad(g) > 1, wobei wir voraussetzen, dass f in Z[x] (und damit auch in Q[x]) irreduzibel
ist. Wir zeigen nun:

Ist p eine Primzahl mit p { n und ¢ € C eine Nullstelle von f, dann gilt auch f(Z?) =0.

Angenommen, es gilt f(Z?) # 0. Wegen ®,({) = 0 und ®,, = f g muss dann g({?) = O gelten. Dies bedeutet, dass
{ eine Nullstelle des Polynoms g(x?) ist. Weil aber f das Minimalpolynom von ( ist, teilt f das Polynom g(x?) in
Q[x]. Dariiber hinaus ist f normiert, insbesondere primitiv, und nach Satz (i) ist f damit auch im Ring Z[x]
ein Teiler von g(x?).

Seien nun f, g die Bilder von f, g im Polynomring IF,[x]. Dann ist f ein Teiler von g(x?), nach Lemmaalso ein
Teiler von gP. Sei f; ein irreduzibler Teiler von f. Dann ist f; wegen f|gP auch ein Teiler von g§. Wegen ¢, = f g und
@, | (x"—1) ist f g ein Teiler von x" — 1, und wegen f,|f und f,|g folgt daraus f?2|(x" — 1). Insbesondere hat x" — 1
im algebraischen Abschluss F;lg von IF, mehrfache Nullstellen. Andererseits zeigt die Gleichung

ggT(x"—1,(x"-1)) = geT(x"—Lnx"") = 1 ,
dass dies nicht der Fall ist. Auf Grund dieses Widerspruchs ist die Annahme falsch und die Behauptung bewiesen.

Jede Nullstelle von ®,,, also jede primitive n-te Einheitswurzel, kann in der Form {™ dargestellt werden, wobei m € IN
eine zu n teilerfremde Zahl bezeichnet. Ist m > 1, dann ist m ein Produkt p; - - - p, bestehend aus Primzahlen p, mit
P tnfir 1 < k < r. Durch mehrfache Anwendung der soeben bewiesenen Behauptung erkennt man, dass mit ¢
auch die Elemente {P1, PPz ¢PiP2Ps ™ Nullstellen von f sind. Insgesamt sind also alle p(m) verschiedenen
Linearfaktoren von ¢, Teiler von f. Daraus folgt ®,|f und f = &,, insgesamt also die Irreduzibilitit von ®,,. |

Definition 20.8 Sei p eine Primzahl und a € 7. Man nennt a einen quadratischen Rest
modulo p, wenn eine Zahl ¢ € Z mit a = ¢ mod p existiert. Andernfalls spricht man von einem
quadratischen Nichtrest.

Eine alternative Formulierung lautet: Die Zahl a ist quadratischer Rest modulo p genau dann, wenn das Bild a =
a+pZinI¥, ein Quadrat ist. Anhand dieser Formulierung sieht man, dass die Eigenschaft einer Zahl, quadratischer
(Nicht-)Rest zu sein, nur von ihrer Restklasse modulo p abhéngt. Fiir die Formulierung der nachfolgenden Aussagen
ist die Einfiihrung der folgenden Notation sinnvoll.
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Definition 20.9 Sei p eine ungerade Primzahl und a € Z. Das Legendre-Symbol modulo p
ist definiert durch

1 falls a quadratischer Rest modulo p und p {a

(E) = 0 fallsp|a

—1 falls a quadratischer Nichtrest modulo p.

Man beachte, dass durch p teilbare Zahlen a auf jeden Fall quadratische Reste sind, denn fiir sie gilt jeweils a =
0% mod p. Fiir die Primzahl 2 wire die Definition des Legendre-Symbols zwar auch méglich, aber wenig sinnvoll,
denn jede ganze Zahl (gerade oder ungerade) ist auf Grund der Kongruenzen 02 = 0 mod 2 und 12 = 1 mod 2 ein
quadratischer Rest modulo 2.

Lemma 20.10 Seip eine ungerade Primzahl, und seien a, b € Z. Dann gelten fiir das Legendre-
Symbol die folgenden Rechenregeln:

® (%) =a?P V2 modp (Eulersches Kriterium)

(ii) Aus a = b mod p folgt (%) = (%)
()= ¢)

Beweis: zu (i) ImFallp | aist (%) =0, und aus a = 0 mod p folgt a®® /2 = 0 mod p. Andernfalls sei a das Bild von
ainFyundc= a®?=v/2_ Wegen [F5|=p—1gil ¢2 = (alP~V/2)2 = @*~! = 1. Das Element ¢ ist also eine Nullstelle
des Polynoms x? — 1 = (x — 1)(x + 1), und daraus folgt ¢ € {£1}. Offenbar gilt (%) =1 genau dann, wenn @ in I,
ein Quadrat ist. Wir miissen also zeigen, dass dies genau dann der Fall ist, wenn ¢ = 1 gilt.

Ist @ = @i fiir ein i1 € IF,, dann folgt ¢ = aP~! = 1. Setzen wir nun umgekehrt voraus, das a?~1/2 = 1 gilt. Sei 7
ein erzeugendes Element von IF; und ¢ € Z mit @ = n’. Durch Einsetzen erhalten wir n‘®~1/2 = 1, und weil 1 von
Ordnung p — 1 ist, folgt daraus £(p —1)/2 = k(p — 1) fiir ein k € Z. Wir erhalten £ = 2k und a@ = n**. Also ist @ ein
Quadrat in IF,.

zu (i) Aus a = b mod p folgt a®®V/2 = p®~1/2 mod p, und somt (%) = (%) mod p. Weil die Legendre-Symbole
s

nur die Wert —1, 0 oder 1 annehmen kénnen und p > 2 ist, folgt darau (%) = (%).

zu (iii) Durch Teil (i) erhalten wir in dieser Situation

(ﬂ) = (ab)P/2 = go-V/2 . po-1/2 = (E) . (9) modp |
p p) \p

und wiederum folgt aus der Kongruenz modulo p die Gleichheit. |
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Satz 20.11 (Ergdnzungssdtze zum Quadratischen Reziprozitdtsgesetz)
Fiir jede ungerade Primzahl p gilt

(—_1) _ e = { 1 falls p=1 mod 4

p —1 falls p =3 mod 4

und
(%) _ (_1)(17271)/8 _ 1 fallsp=1,7 mod 8
p —1 falls p=3,5 mod 8

Beweis: Den zweiten Teil jeder der beiden Gleichungen {iberpriift man unmittelbar dadurch, dass man die Fille
einzeln durchgeht. Ist p = 1 mod 4, dann ist %(p —1) gerade und folglich (—1)®~1/2 = 1. Ist dagegen p = 3 mod 4,
dann ist %(p— 1) ungerade, und wir erhalten (—1)?~1/2 = —1.Ist p = 1 mod 8 oder p = 7 mod 8, dann ist p modulo
16 kongruent zu einer der Zahlen —7,—1,1 oder 7. In jedem Fall gilt dann p? = 1 mod 16, also ist %(p2 —1) gerade
und (—1)®*~D/8 = 1. Ist p = 3 mod 8 oder p = 5 mod 8, dann gilt p = a mod 16 fiir ein a € {—5,—3,3,5} und
p? =9 mod 16. In diesem Fall ist %(p2 — 1) ungerade und (—1)@*-D/8 =1,

Auf Grund der Eulerschen Gleichung gilt (_71) = (—1)®?"Y/2 mod p. Weil auf beiden Seiten der Kongruenz nur die
Werte £1 moglich sind und wegen p > 2 folgt aus der Kongruenz modulo p Gleichheit. Zum Beweis des ersten Teils
der zweiten Gleichung rechnen wir im Ring Z[i] der GauRschen Zahlen. Weil der Faktorring Z[i]/(p) ein Ring der
Charakteristik p ist, gilt (a + ) = af + 3P mod p. Auf Grund der Eulerschen Gleichung und wegen 2 = (—i)(1+1)?
erhalten wir

_ie-1)/2
(%) = 20702 = (D24t = L(l +i)P =
p 1+1
—P-/2(1 —;
M(l +i7) = (A=) V2 4 L)) (1 4 iP)

1+d(1-1)

Gehen wir nun die einzelnen moglichen Fille durch. Weil p ungerade ist, gilt p = 1, 3, 5 oder 7 modulo 8. Im Fall
p=1mod 8 gilt (3(—)P/2+ 2(—)P*V/2)(1+iP) = (3 — 2i)(1 +i) = 1. Im Fall p = 3 mod 8 ist

(G2 43(E2)A+7) = GED-HA-D) = -1
Ist p =5 mod 8, dann erhalten wir
(G2 ()R A +iP) = (—z+30(0+D) = -1,
und im letzten Fall p = 7 mod 8 gilt (3(—i)?~/2 + 1(—i)P*D/2) (1+iP) = (3i+3)(1—i) = 1. Also ist die Kongruenz

(%) = (—1)(1’2’1)/ 8 mod p in jedem der vier Fille erfiillt. Da auf beiden Seite der Kongruenz nur die Werte +1, folgt
aus der Kongruenz modulo p wiederum Gleichheit. |
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Das entscheidende Hilfsmittel zur Berechnung des Legendre-Symbol ist nun das berithmte, auf C. E Gaul3 zuriickge-
hende Gesetz.

Satz 20.12 (Quadratisches Reziprozitdtsgesetz)

Fiir zwei beliebige voeinander verschiedene ungerade Primzahlen p,q gilt

(p)(q) _ (UE'E _ 1 falls p=1mod 4 oder g =1 mod 4
q/\p —1 falls p =q =3 mod 4.

Der Beweis, den wir weiter unten angeben werden, basiert auf der Darstellung im Lehrbuch [|5]]. Zuerst aber zeigen
wir anhand eines Beispiels, wie das Quadratische Reziprozitdtsgesetz zur Berechnung des Legendre-Symbols verwen-
det werden kann. Die Zahl 5209 ist eine Primzahl. Mit Hilfe der uns zur Verfiing stehenden Rechenregeln erhalten

) (@) (8 ¢ @SS ¢
EEIE) = GEE) * EEREE) @
@) ¢ @) 2 ) o)
RIOENERTE

Dabei kommt die Gleichung (1) durch 8498 = 3289 mod 5209 zu Stande. In Schritt (4) wird zum ersten Mal
das Quadratische Reziprozitiatsgesetz angewendet, und zwar auf jeden der drei Faktoren. Wegen 5209 = 1 mod 4
kommt es dabei zu keinem Vorzeichenwechsel. Gleichung (5) ist wegen 5209 = 6 mod 11, 5209 = 9 mod 13 und
5209 = 11 mod 23 erfiillt. In Schritt (7) wurde auf den ersten Faktor der Zweite Ergénzungssatz angewendet; wegen

wir

11 =3 mod 8 gilt (%) = —1. Aullerdem ist zu beachten, dass das Legendre-Symbol (%) wegen 13} 3 gleich 1 oder
—1, das Quadrat also gleich 1 ist. In Schritt (9) wird noch das Quadratische Reziprozitdtsgesetz angewendet, auf
beide Faktoren. Wegen 3 =3 mod 4, 11 = 3 mod 4 und 23 = 3 mod 4 entsteht dabei jeweils ein Vorzeichenwechsel.
Gleichung (10) gilt wegen 11 = 2 mod 3 und 23 = 1 mod 11. Schlief3lich wird Schritt (12) noch einmal der Zwei-
te Ergdnzungssatz angewendet. Insgesamt ergibt unsere Rechnung, dass 8498 ein quadratischer Rest modulo der
Primzahl 5209 ist. Durch aufwindiges Probieren findet man tatséchlich die Kongruenz 8498 = 20462 mod 5209.

Man beachte, dass die erste Anwendung des Quadratischen Reziprozitiatsgesetzes unter (4) nur moglich war, weil wir
zuvor die Zahl 3289 in das Produkt 11-13-23 von Primzahlen zerlegt haben. Die Berechnung einer solchen Primfak-
torzerlegung ist natiirlich bei grolen Zahlen sehr aufwandig (sogar so aufwandig, dass unter anderem die Sicherheit
der RSA-Verschliisselung darauf beruht). Um das Quadratische Reziprozititsgesetz in dieser Hinsicht praktikabler zu
machen, werden wir es spater durch das Jacobi-Symbol verallgemeinern.
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Wir werden nun einen Beweis fiir das Quadratische Reziprozitéitsgesetz entwickeln, der auf dem Rechnen mit Ein-
heitswurzeln basiert. Fiir jede ungerade Primzahl p sei {, = e?™/P_ Wir erinnern daran, dass die Nullstellen des
Kreisteilungspolynoms &, durch CZI gegeben sind, wobei m die ganzen Zahlen mit 1 < m < p — 1 durchlauft.

Lemma 20.13 [20.13] Seien p und g zwei verschiedene ungerade Primzahlen. Weiter sei
{,=e"PeC , R=Z[{,] und (q)=gqR,
das von g in R erzeugte Hauptideal. Dann gilt (q) N Z = qZ und

—2
R = {a0+a1§p+...+ap,2§5 | ao,al,...,ap,ZGZ}.

Beweis: Die Gleichung fiir R zeigen wir dhnlich wie in den Beispielen aus § 9. Sei S C C die Teilmenge auf der rechten
Seite der Gleichung. Zunéchst iiberpriifen wir, dass es sich dabei um einen Teilring von C handelt. Offenbar gilt 1 € S
(setze ap =1 und a; =0 fiir 1 < j < p—2), und auch dass fiir vorgegebene a, § € S jeweils auch a — f§ € S liegt, ist
offensichtlich. Um zu zeigen, dass auch af} in S liegt, bemerken wir zunéchst, dass das Produkt die Form Z}zi 54 u; Ci
besitzt, mit uy, ..., Uy,_4 € Z. Es gentigt damit zu {iberpriifen, dass die Potenzen Ci) fir0 < j <2p—4in S liegen. Weil
es keinen zusatzlichen Aufwand bereitet, zeigen wir die Aussage ¢ ; € S fiir alle j € IN, durch vollstdndige Induktion
iiber j. Fiir j < p — 2 ist die Aussage auf Grund der Definition von S erfiillt. Sei nun j > p — 2, und setzten wir die
Aussage fiir kleinere Werte von j voraus. Weil ¢, eine Nullstelle des p-ten Kreisteilungspolynoms &, ist, gilt

p—2 p—2
g o= gret = c{:P“-(Z(—c;)) = DT,
k=0 k=0

Die Aussage ¢ {7 € S folgt nun durch Anwendung der Induktionsvoraussetzung und der Tatsache, dass S abgeschlossen
unter Addition und Subtraktion ist. Damit ist die Teilring-Eigenschaft nachgewiesen. Offenbar gilt auch ZU{{,} € S.
Ist nun R’ ein beliebiger Teilring von C mit R' 2 Z U {{,}, dann folgt unmittelbar aus der Abgeschlossenheit von R’
unter Addition und Multiplikation, dass jedes Element aus S in R’ enthalten ist.

Kommen wir nun zum Beweis der Gleichung (q) N Z = qZ. Die Inklusion ,.2“ ist offensichtlich, weil gZ sowohl in
(q) = gR als auch in Z enthalten ist. Zum Nachweis von ,,C“ sei a € (q) N Z vorgegeben. Dann existiert ein @ € R

p—2

mit a = ga. Das Element a kann in der Form a = =0 4j 4 {7 mit a, ..., a,_, € Z dargestellt werden. Durch Einsetzen

erhalten wir die Gleichung
p—2
a-l = gqa = anj-CJp.
j=0

Weil @, € Z[x] auf Grund der Irreduzibilitdt das Minimalpolynom von ¢, iiber Q ist, handelt es sich bei {{ {7 |0<j<
p—1} nach § 15 um eine Basis von Q({ Jp ) als Q-Vektorraum. Jedes Element aus diesem Korper kann also auf eindeutige
Weise als Linearkombination dieser Menge dargestellt werden. Daraus folgt qap =aund a; =0 fir 1 <j <p—2.
Damit ist a € gZ nachgewiesen. O

— 223 —



Definition 20.14 Sei p eine ungerade Primzahl und a € Z mit p t a. Dann ist die Gau8sche
Summe g, , € Z[{,] gegeben durch
p—1
E gna
pJ)P

n=1

Fiir jede ungerade Primzahl p setzen wir p* = p, falls p = 1 mod 4 und p* = —p, falls p = 3 mod 4 ist. Offenbar

gilt p* = (—=1)P~Y/2p, was auf Grund des ersten Erganzungssatzes[20.11|auch in der Form p* = (_Fl)p geschrieben
werden kann.

Lemma 20.15 Fiir die Gaul3schen Summen gelten die folgenden Rechenregeln. Es seien p,q
zwei verschiedene ungerade Primzahlen und a € Z mit p { a.

. a .. -1
() gap= (I_?) g1p (ii) gip = (?)p =p* ({ii) gip = g,, mod (q)
wobei unter (iii) die Kongruenz im Ring Z[{, ] gemeint ist.

Beweis: zu (i) Wegen p t a durchlauft mit n auch na die Restklassen in Z/pZ ungleich 0, und &:;a durchléuft die
von 1 verschiedenen ganzzahligen Potenzen von ¢,,. Damit erhalten wir

O - SO - $®e - S0 - w

n=1 n=1 n=1

Wegen (%) € {*1} folgt daraus g, , = (%)gl’p.

zu (ii) Dasselbe Argument wie unter (i) erlaubt es im dritten Schritt der folgenden Rechnung in der zweiten Summe
n durch mn zu ersetzen. Damit erhalten wir

5 = (E0)=)E0) - SGER - S(es(P

m=1 n=1 m=1 n=1
p—1 p—1 TTlZTl -1 p—1 n p—1 p—-1 p—1 n p—1
— ( )Z:m+mn Z Z (_) Z:;n(1+n) ( )gm(1+n) — (_) Z gpm(1+n)
m=1n=1 p m=1n=1 b n=1m=1 n=1 p m=1
p—2 n p—1 p—1 p—1 ) p—2
2G)zae () zar ¢ 2o (5 )e-n
n=1 p m=1 p m=1 n=1 p p

Dabei wurde an der Stelle (*) verwendet, dass wegen p 4 (n + 1) mit C;" auch C}T(””) alle von 1 verschiedenen
Potenzen von ¢, durchléuft, und dass sich diese Potenzen zu —1 addieren.

Im Beweis von [20.10| haben wir festgestellt: Ist ¢ eine Primitivwurzel mod p, dann sind die verschiedenen quadrati-
schen Reste modulo p ungleich 0 gegeben durch ¢ mit 0 < k < %(p — 1), und die quadratischen Nichtreste durch
Al mito <k < %(p —1).Fiir 1 <£n < p—1 nimmt das Legendre-Symbol (g) deshalb %(p —1)-mal den Wert 1 und
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genauso oft den Wert —1 an. Daraus folgt i;i(g) =0 und Zflj(%)(—l) = (‘%1) = (%1). Setzen wir dies in das
Ergebnis unserer Rechnung ein, so erhalten wir gl2 b= (%)p = p* wie gewiinscht.

zu (iii)) Weil Z[{,]/(q) ein Ring der Charakteristik q ist, gilt (a+)? = a?+ 7 mod (q), und dieselbe Kongruenz gilt
auch fiir eine beliebig grol3e endliche Anzahl von Summanden. (Diese Rechenregel haben wir in der Kérpertheorie
unter dem Namen ,Freshman’s Dream“ kennengelernt.) Damit erhalten wir

o= (B0)) = B0 = S@e = Z0e = o

n=1 n=1 n=1
Mit Hilfe dieser Lemmata konnen wir nun das Quadratische Reziprozitdtsgesetz erneut beweisen. Seien p,q unge-

rade Primzahlen. Durch aufeinanderfolgende Anwendung der Rechenregeln (i) und (iii) und mit dem Eulerschen
Kriterium ?? erhalten wir zunéchst die Kongruenz

q = = = - = —
(E)g“’ = g = &, = &, @) = g, (YR

Multiplizieren wir diese Kongruenz mit g, ,, so erhalten wir mit Regel (ii)

G = (e = (B)as = (B)r @

Weil g und p* teilerfremd sind, gibt es nach dem Lemma von Bézout Zahlen k, { € Z mit kq +{p* = 1. Multiplizieren

&1p (%*) mod (q).

wir die soeben erhaltene Kongruenz mit ¢, so kiirzt sich der Faktor p* wegen £p* = 1 mod (q) weg, und wir erhalten
(1) = (%) mod (g)-

Wir bemerken jetzt, dass damit auch die Kongruenz (%) = (%*) mod ¢ im Ring Z gilt. Denn die Kongruenz beider
Seiten modulo (q) im Z[{, ] bedeutet, dass die Differenz beider Seiten im Hauptideal (¢q) enthalten ist. Damit liegt
die Differenz auch in (q) N Z, denn die Legendre-Symbole sind ganze Zahlen. Dieser Durchschnitt stimmt mit dem
Hauptideal qZ in Z berein: Die Inklusion qZ C (q) N Z ist unmittelbar klar. Setzen wir umgekehrt a € (q) N Z
voraus. Weil ¢, das Minimalpolynom von {,, ist, wissen wir aus der Kérpertheorie, dass unser a wie jedes Element
aus Q(¢,) eine eindeutige Darstellung der Form ay + a;¢, + ... + ap,zgg* mit ay, ..., a,— € Q besitzt. Aus a € (q)

und ?? folgt a; € Z und q | g, fiir 0 < k < p—2. Wegen a € Z gilt auerdem a; = ... = a,_, = 0. Ingesamt ist damit

P
a = ay € q7Z nachgewiesen.

Mit Hilfe der Kongruenz (%) = (%*) mod q in Z erhalten wir nun das Quadratische Reziprozititsgesetz. Es gilt

() = €)= (257 - ()

((_1)(4—1)/2)(p_1)/2(§) = (—1)p2_1'q;1(g) mod q.

Weil auf beiden Seiten jeweils eine Zahl der Menge {£1} steht und —1 # 1 mod q gilt, folgt aus der Kongruenz der
beiden Seiten die Gleichheit.
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Wie oben bereits angekiindigt, behandeln wir nun noch eine leichte Verallgemeinerung des Quadratischen Rezipro-
zitatsgesetzes, bei dem die Zerlegung in Primfaktoren vor jeder Anwendung entféllt.

Definition 20.16 Sein € IN ungerade und n = p; -...-p, die Primfaktorzerlegung von n, wobei
wir auch das mehrfache Auftreten derselben Primzahl zulassen (und die Anzahl r der Faktoren
im Fall n = 1 gleich Null ist). Sei a € Z. Dann ist das Jacobi-Symbol von a modulo n definiert

@ - @)@

Unmittelbar aus der Definition folgt (-) = (5.)(5) fiir alle a € Z und ungerade m,n € IN. Aus [20.10|kann leicht
(%) = (%)(%) fiir alle a, b € Z und ungerades n € IN abgeleitet werden, und (3) = (%) falls a = b mod n. Ist ndmlich
n=p;-..p, die Primfaktorzerlegung von n, dann gilt

@) = HED - IG0E) - G0
(n !:1[ Di !:1[ Di !:1[ bi n/s\n
Aus a = b mod n folgt a = b mod p; fiir 1 <i < r und somit

(&) - T1(¢) - T

i=1 t i=1

G) = @)

Dariiber hinaus gilt

Satz 20.17 Der Erste und Zweite Ergdnzungssatz sowie das Quadratische Reziprozitétsgesetz
gelten unverdndert auch fiir das Jacobi-Symbol.

Beweis: Da das Jacobi-Symbol, wie wir bereits festgestellt haben, in der unteren Komponente multiplikativ ist,
miissen wir zeigen, dass sich auch die ,rechten Seiten“ unserer drei Rechenregeln multiplikativ verhalten. Wir be-
weisen fiir alle ungeraden m;, m,, n;,n, € IN die Gleichungen

(ny n2)2—1

D (DF =D, (DT EDF =)

und

[ e T ) e G e e TG I it e b i
Die erste Gleichung ist Aquivalent zu (—1)111775’“22;l =(-1) M Weil allgemein (—1)“ fiir a € Z nur von der Restklasse
von a modulo 2 abhéngt, ist dies wiederum &quivalent zu
n—1 ny,—1 nn,—1
12 + 22 =2 ; mod2 & (n—1+(n,—1)=nn,—1mod4 <
mn,—n;—ny,+1=0mod4 << (n;—1)(ny;—1)=0mod 4.
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Die letzte Aquivalenz ist offenbar erfiillt, weil die Faktoren n; —1 und n,—1 beide durch 2 teilbar sind. Entsprechend
beweist man die zweite Gleichung durch die Aquivalenzumformung

n%-1 nZ-1 nin
DT CDF =)™ o Mo D+ iD=yl —Dmed2 o
(n§—1)+(n§—1)z(n1n2)2—1rnod16 = (nlnz)z—nf—n§+150modl6 =

(M?—1)(ni—-1)=0mod 16 < (n;—1)(n; +1)(ny—1)(ny+1) =0 mod 16.

Wieder sind alle vier Faktoren durch 2 teilbar und die letzte Kongrenz somit erfiillt. Die dritte Gleichung folgt aus
der ersten durch die Rechnung

—1
-1 “1 ”12 1 ”1 1m2 -1 _np —1 mlmz -1 n1 -1

D DT = (G D) T = ((DTED)T = (T

Der Beweis der vierten Gleichung verlduft weitgehend analog. Seien nun ungerade natiirliche Zahlen m,n € IN

vorgegeben, mit zugehorigen Primfaktorzerlegungen m = p; - ... p, und n = q; - ... - q;. Den Ersten Ergénzungssatz
erhélt man nun mit Hilfe der ersten Gleichung von oben durch die Rechnung

_1) ﬁ(_l) lL[ —1)/2 cep—1)/2 —1)/2
_— — _- — (_1)(171 ) — (_1)(p1 -pr—1) — (_1)(m )
( m i=1  Pi i=1
den Zweiten Ergédnzungssatz mit der zweiten Gleichung durch
(3) = l_[ (E) = r[(_l)(p?—l)/s = (=Dt = (Lq)mi-1/8
m i=1 “Pi i=1

und das Quadratische Reziprozitatsgesetz fiir das Jacobi-Symbol schliel3lich unter Verwendung der dritten und vierten

(M) = T1(%)(2 ) (2

i=1 i=1 j=1

l—[l—[( 1 q} l_[( 1)p1 pr—l ‘1; _ (_1)P1'---‘2Pr*1fZl'---;IS’l _ (_1)%—1%;1 O

Man beachte, dass am Jacobi-Symbol (%), im Gegensatz zum Legendre-Symbol, nicht abgelesen werden kann, ob a

Gleichung durch

ein quadratischer Rest modulo n ist. Beispielsweise ist 2 kein quadratischer Rest modulo 15, denn wiére dies der Fall,
dann miisste 2 sowohl ein quadratischer Rest modulo 3 als auch ein quadratischer Rest modulo 5 sein. Ist nAmlich
2 = ¢? mod 15 fiir ein ¢ € 7Z erfiillt, dann folgt daraus auch 2 = ¢? mod 3 und 2 = c? mod 5. Aber wie man durch
Ausprobieren leicht iiberpriift, ist 2 weder modulo 3 noch modulo 5 ein quadratischer Rest, also erst recht kein
quadratischer Rest moduldo 15. Andererseits gilt

(2) - Q) - o -

Das Jacobi-Symbol erméglicht aber eine effizientere Berechnung von Legendre-Symbolen, weil es vor der Anwendung
des Reziprozititsgesetzes nicht mehr noétig ist, die obere Zahl in ihre Primfaktoren zu zerlegen. So vereinfacht sich
zum Beispiel die Rechnung von oben zu

(8498) B (3289) _ (5209) _ (1920) _(27-15) (2 )7( 15)
5209)  \5209) = \3289) = \3289) 3289 — \ 3289/ \ 3289

) - 3 - B - @) -
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