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Abstract

We provide a motivic decomposition of a twisted form of a smooth
hyperplane section of Gr(3, 6). This twisted form is a norm variety
corresponding to a symbol in the Milnor K-theory KM

3 /3. As an ap-
plication we construct a torsion element in the Chow group of this
variety.
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1 Introduction

In the present paper we study certain twisted forms of a smooth hyperplane
section of Gr(3, 6). These twisted forms are smooth SL1(A)-equivariant com-
pactifications of a Merkurjev-Suslin variety corresponding to a central simple
algebra A of degree 3. On the other hand, these twisted forms are norm
(generic splitting) varieties corresponding to symbols in the Milnor K-theory
KM

3 /3 given by the Serre-Rost invariant g3 of Albert algebras. In the present
paper we provide a complete decomposition of the Chow motives of these
varieties.

The history of this problem goes back to Rost and Voevodsky. Namely,
Rost obtained the celebrated decomposition of a norm quadric (see [23])
and later Voevodsky found some direct summand, called a generalized Rost
motive, in the motive of any norm variety (see [25]). These varieties as well
as Rost motives appearing in their motivic decompositions play an essential
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role in the proof of Milnor’s conjecture and the drafts of the proof of the
Bloch-Kato conjecture. The latter says that for all natural numbers n, prime
numbers p, and fields k of characteristic different from p the Milnor K-theory
KM

n (k)/p is isomorphic to the étale cohomology Hn(k, µ⊗n
p ) of the field k with

coefficients in the twists of µp. We refer the reader to the introduction of
paper [25] for an overview and general ideas of the proof of the Bloch-Kato
conjecture.

For a field k and a central simple k-algebra A of degree 3 consider a
variety D obtained by Galois descent from the variety V/ GL1(As), where
As = A ⊗k ks, ks denotes a separable closure of k and V is the variety of
elements (α, β) in As ×As with rank of α⊕ β equal 3 and the reduced norm
Nrd α = c Nrd β for some fixed c ∈ k∗. Note that the F4-varieties from
paper [19] can be considered as a mod-3 analogue of a Pfister quadric (more
precisely, of a maximal Pfister neighbour). In turn, our variety, being a norm
variety of a symbol in KM

3 (k)/3, can be considered as a mod-3 analogue of
a norm quadric (see [24] § 1). Thus, there is a close connection between our
variety and F4-varieties.

The main result of the present paper (Theorem 3.7) asserts that the
Chow motive of D is isomorphic to a direct sum of a non-pure motive R and
some shifted copies of the motives of Severi-Brauer varieties M(SB(A)). The
motive R has the property that over ks it becomes isomorphic to a direct sum
of shifted Lefschetz motives Z⊕ Z(4)⊕ Z(8) (cf. [25] formula between (5.4)
and (5.5)).

As an application of this motivic decomposition we show that if D is
anisotropic then the Chow group CH2(D) has 3-torsion (Theorem 4.1).

The paper is organized as follows. In section 2 we provide background in-
formation on the category of Chow motives, Schubert calculus, and Steenrod
operations. In section 3 we define a smooth compactification of a Merkurjev-
Suslin variety MS(A, c) with A a central simple algebra of degree 3, describe
its geometrical properties, and decompose its Chow motive. Section 4 is
devoted to an application of the obtained motivic decomposition. Namely,
using the ideas of Karpenko and Merkurjev we construct a 3-torsion element
in the Chow group of our variety.

The main ingredients of our proofs are results of Bia lynicki-Birula [2], the
Lefschetz hyperplane theorem, and the Segre embedding.
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2 Notation

2.1. Let k denote a field. We use Galois descent language, i.e., identify a
(quasi-projective) variety X over a field k with the variety Xs = X ×Spec k

Spec ks over a separable closure ks equipped with an action of the absolute
Galois group Γ = Gal(ks/k). The set of k-rational points of X is precisely
the set of ks-rational points of Xs stable under the action of Γ.

We consider the Chow group CHi(X) (resp. CHi(X)) of classes of alge-
braic cycles of codimension i (resp. of dimension i) on an irreducible algebraic
variety X modulo rational equivalence (see [10]).

The Poincaré polynomial or generating function for a variety X is, by
definition, the polynomial

∑
ait

i ∈ Z[t] with ai = rk CHi(X).

2.2 (Schubert calculus). The structure of the Chow ring of a Grassmann
variety is of particular interest for us. We do a lot of computations using
formulae from Schubert calculus (see [10] 14.7) which we briefly describe
below.

Consider the Grassmann variety Gr(d + 1, n + 1) of (d + 1)-dimensional
subspaces in the affine space of dimension n + 1. For each partition λ =
(λ0, . . . , λd) with n−d ≥ λ0 ≥ . . . ≥ λd ≥ 0 there exists a canonical generator

(1) ∆λ ∈ CH|λ|(Gr(d + 1, n + 1))

with |λ| =
∑d

i=0 λi, called a Schubert class. The Schubert classes form a free
Z-basis of CH∗(Gr(d + 1, n + 1)).

The multiplication is determined by Pieri’s formula:

(2) ∆λ ·σm =
∑

∆µ,

where the sum runs over µ with n − d ≥ µ0 ≥ λ0 ≥ . . . ≥ µd ≥ λd, |µ| =
|λ|+ m and σm = ∆(m,0,...,0) is a special Schubert class.

If |λ|+ |µ| = (d + 1)(n− d) = dim Gr(d + 1, n + 1), one has the Poincaré
duality theorem:

(3) ∆λ ·∆µ = (
d∏

i=0

δλi+µd−i,n−d) ∆(n−d,...,n−d) .
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2.3. Let A be a central simple k-algebra of degree n. A generalized Severi-
Brauer variety SBd(A) is the variety of right ideals of reduced dimension d
in A (see [15] Definition (1.16)). This variety is a twisted form of Gr(d, n)
(see [15] Theorem (1.18)). For d = 1 we write SB(A) = SB1(A) for the usual
Severi-Brauer variety. For two central simple algebras A and B there exists
a Segre morphism

(4) Seg : SBd(A)× SBd′(B) → SBdd′(A⊗k B)

given by the tensor product of ideals.
We also assume that the reader is familiar with Chern classes and the

tautological vector bundle on Grassmannians (see [10]).

2.4 (Lefschetz’s hyperplane theorem). Assume that char k = 0 and the
field k is algebraically closed. Let X ⊂ Pn be a smooth projective cellular
variety over k, i.e., a variety which admits a filtration

(5) ∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xm = X

by closed subvarieties such that Xi \Xi−1 is a disjoint union of affine spaces
for all i = 0, . . . ,m.

Let Y
ı

↪→ X be a smooth hyperplane section of X. Assume that Y is
a cellular variety. The Lefschetz hyperplane theorem (see [11]) asserts that
the pull-back ı∗ : CHi(X) → CHi(Y ) is an isomorphism for 0 ≤ i < [dim Y

2
],

is injective for i = [dim Y
2

], and the push-forward map with Q-coefficients
ı∗ ⊗ Q : CHi(Y ) ⊗ Q → CHi(X) ⊗ Q is an isomorphism for 0 ≤ i < [dim Y

2
],

and is surjective for i = [dim Y
2

].

2.5 (Gm-varieties). We shall need the following result of Bia lynicki-Birula
(see [2]). Let k be an algebraically closed field of arbitrary characteristic.
Let X be a smooth projective variety over k equipped with an action of the
multiplicative group Gm such that the fixed point locus XGm consists of a
finite number r of isolated points. Then the variety X is a disjoint union of
r affine cells. In particular, X is cellular.

There are further generalizations of this statement to the case of an ar-
bitrary field k (see [5] Theorem 3.2). We don’t use them in the present
paper.

Next we introduce the category of Chow motives over a field k following
[16] and [8]. We recall the notion of a rational cycle and state the Rost
Nilpotence Theorem following [7].
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2.6. Let k be an arbitrary field and Vark be the category of smooth projective
varieties over k. For any variety X we set Ch(X) := CH(X)⊗ZZ/3. First, we
define the category of correspondences with Z/3-coefficients (over k) denoted
by Cork. Its objects are smooth projective varieties over k. For morphisms,
called correspondences, we set Mor(X, Y ) :=

∐n
i=1 Chdi

(Xi × Y ), where
X1, . . . , Xn are the irreducible components of X of dimensions d1, . . . , dn.
For any two correspondences α ∈ Ch(X × Y ) and β ∈ Ch(Y × Z) we define
their composition β ◦ α ∈ Ch(X × Z) as

(6) β ◦ α = pr13∗(pr∗12(α) · pr∗23(β)),

where prij denotes the projection on the i-th and j-th factors of X × Y × Z
respectively and prij∗, pr∗ij denote the induced push-forwards and pull-backs
for Chow groups.

The pseudo-abelian completion of Cork is called the category of Chow
motives with Z/3-coefficients and is denoted by Mk. The objects of Mk are
pairs (X, p), where X is a smooth projective variety and p ∈ Mor(X, X) is
an idempotent, that is, p◦p = p. The morphisms between two objects (X, p)
and (Y, q) are the compositions q ◦Mor(X, Y ) ◦ p.

2.7. By construction, Mk is a tensor additive category, where the tensor
product is given by the usual product (X, p) ⊗ (Y, q) = (X × Y, p × q). For
any cycle α ∈ Ch(X × Y ) we denote by αt the corresponding transposed
cycle.

2.8. Observe that the composition product ◦ induces the ring structure on
the abelian group Mor(X,X). The unit element of this ring is the class of
the diagonal map ∆X , which is defined by ∆X ◦ α = α ◦ ∆X = α for all
α ∈ Mor(X, X). The motive (X, ∆X) will be denoted by M(X) and called
the (Chow) motive of X.

2.9. Consider the morphism (e, id) : {pt} × P1 → P1 × P1. The image by
means of the induced push-forward (e, id)∗(1) does not depend on the choice
of the point e : {pt} → P1 and defines a projector in CH1(P1 × P1) denoted
by p1. The motive Z(1) = (P1, p1) is called Lefschetz motive. For a motive
M and a nonnegative integer i we denote its twist by M(i) = M ⊗ Z(1)⊗i.

From now on we assume that all varieties under consideration are irre-
ducible.
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2.10. An isomorphism between twisted motives (X, p)(m) and (Y, q)(l) is
given by correspondences j1 ∈ q ◦ Chdim X+m−l(X × Y ) ◦ p and j2 ∈ p ◦
Chdim Y +l−m(Y ×X) ◦ q such that j1 ◦ j2 = q and j2 ◦ j1 = p.

2.11. Let X be a smooth projective cellular variety. The abelian group
structure of CH(X) is well-known. Namely, X has a cellular filtration and the
generators of Chow groups of the bases of this filtration correspond to the free
additive generators of CH(X). Note that the product of two cellular varieties
X×Y has a cellular filtration as well, and CH∗(X×Y ) ' CH∗(X)⊗CH∗(Y )
as graded rings. The correspondence product of two homogeneous cycles
α = fα × gα ∈ Ch(X × Y ) and β = fβ × gβ ∈ Ch(Y ×X) is given by (see [3]
Lemma 5)

(7) (fβ × gβ) ◦ (fα × gα) = deg(gα · fβ)(fα × gβ),

where deg : Ch(Y ) → Ch(pt) = Z/3 is the degree map. This formula is an
obvious consequence of intersection theory.

2.12. Let X be a projective variety of dimension n over a field k. Let ks

be a separable closure of k and Xs = X ×Spec k Spec ks. We say a cycle
J ∈ Ch(Xs) is rational if it lies in the image of the natural homomorphism
Ch(X) → Ch(Xs). For instance, there is an obvious rational cycle ∆Xs

in Chn(Xs × Xs) that is given by the diagonal class. Clearly, all linear
combinations, intersections and correspondence products of rational cycles
are rational.

2.13 (Rost Nilpotence). Finally, we shall also use the following fact (see
[7] Theorem 8.2) called Rost Nilpotence theorem. Let X be a projective
homogeneous variety over k. Then for any field extension l/k the kernel
of the natural ring homomorphism End(M(X)) → End(M(Xl)) consists of
nilpotent elements.

In the last section of the present paper we use Steenrod operations and
the notion of connected class of fields.

2.14 (Steenrod operations). We briefly recall the basic properties of
Steenrod operations modulo 3 following Brosnan [4]. Note that these opera-
tions were defined before by Voevodsky in the context of motivic cohomology.

Let X be a smooth projective variety over a field k with char k 6= 3. For
every i ≥ 0 there exist certain homomorphisms Si : Ch∗(X) → Ch∗+2i(X)
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called Steenrod operations. The total Steenrod operation is the sum S =
SX = S0 + S1 + . . . : Ch(X) → Ch(X). This map is a ring homomorphism.
The restriction Si|Chn(X) is 0 for i > n and is the map α 7→ α3 for n = i. The
map S0 is the identity. Moreover, the total Steenrod operation commutes
with pull-backs and, in particular, preserves rationality of cycles.

The following Riemann-Roch formula holds for the total Steenrod oper-
ation:

(8) f∗(SY (α) · c(−TY )) = SX(f∗(α)) · c(−TX),

where f : Y → X is a morphism of smooth projective k-varieties, f∗ denotes
the induced push-forward, c is the total Chern class, TX is the tangent bundle
of X and c(−TX) = c(TX)−1.

2.15 (Connected class of fields and R-equivalence). Following [9] let
X be a scheme over k and A(X) be the class of all field extensions K/k
such that X(K) 6= ∅. In [9] Section 6 Chernousov and Merkurjev intro-
duce the notion of X-equivalence on A(X) and a connectedness of A(X)
with respect to this equivalence relation and prove the following statement
([9] Theorem 6.5): Let X be a proper scheme of finite type over k with
CH0(XL) := Ker(deg : CH0(XL) → Z) = 0 for any L ∈ A(X). Assume that
the class A(X) is connected. Then CH0(X) = 0.

Moreover, they show ([9] Theorem 11.3) that the class of all splitting fields
of an Albert algebra arising from the first Tits construction over 3-special
fields is connected (see also [15] Chapter IX).

Next we briefly recall the notion of R-equivalence. We say that two
points p, q ∈ X(k) are elementarily linked if there exists a rational morphism
ϕ : P1

k 99K X such that p, q ∈ Im(ϕ(k)). The R-equivalence relation is the
equivalence relation generated by this relation.

We use this notion as well as results of Chernousov-Merkurjev once in
the last section in order to show that CH0(D) = 0 for our compactification
D of a Merkurjev-Suslin variety.

3 Motivic decomposition

From now on we assume the characteristic of the base field k is 0. We need
this assumption for validity of the Lefschetz hyperplane theorem.

It is well-known (see [11] Ch. 1, § 5, p. 193) that the Grassmann variety
Gr(l, n) can be represented as the variety of l× n matrices of rank l modulo

7



an obvious action of the group GLl. Having this in mind we give the following
definition.

3.1 Definition. Let A be a central simple algebra of degree 3 over a field k,
c ∈ k∗. Fix an isomorphism As ' M3(ks). Consider the variety D = D(A, c)
obtained by Galois descent from the variety
(9)
{α⊕β ∈ (A⊕A)s ' M3,6(ks) | rk(α⊕β) = 3, Nrd(α) = c Nrd(β)}/ GL1(As),

where GL1(As) acts on As⊕As by the left multiplication and Nrd stands for
the reduced norm (see [15] § 1).

This variety was first considered by M. Rost.

Consider the Plücker embedding of Gr(3, 6) into a projective space (see
[11] Ch. 1, § 5, p. 209). It is obvious that under this embedding for all c ∈ k∗

the variety D(M3(k), c) is a hyperplane section of Gr(3, 6).
Moreover, it is easy to see from the definition of D that the closed em-

bedding Ds → Gr(3, 6) over ks gives rise to a closed embedding ı : D →
SB3(M2(A)) over k.

3.2 Lemma. The variety D is smooth.

Proof. (M. Florence) We can assume k is separably closed. Consider first the
variety
(10)
V = {α⊕ β ∈ M3(k)⊕M3(k) = M3,6(k) | rk(α⊕ β) = 3, det(α) = c det(β)}.

An easy computation of differentials shows that V is smooth. The variety
V is a GL3-torsor over D and, since GL3 is smooth, the torsor V is locally
trivial for étale topology. Therefore to prove the smoothness of D we can
assume that the torsor V is split.

Since D×k GL3 is smooth, D×k M3 is also smooth. Therefore it suffices
to prove that if D×k A1 is smooth, then D is smooth. But this is true for any
variety. Indeed, for any point x on D we have T(x,0)(D×kA1) = TxD⊕T0A1 =
TxD ⊕ k and dim TxD = dim T(x,0)(D ×k A1) − 1 = dim(D ×k A1) − 1 =
dim D.

3.3 Remark. One can associate to the variety D a Serre-Rost invariant
g3(D) = (A)∪ (c) ∈ H3(k, Z/3) (see [15] § 40). This invariant is trivial if and
only if D is isotropic.
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It is easy to see that D0 := MS(A, c) := {α ∈ A | Nrd(α) = c} is an
open orbit under the natural right SL1(A)- or SL1(A) × SL1(A)-action on
D. Namely, the open orbit consists of all α ⊕ β with rk(α) = 3. D0 is
called a Merkurjev-Suslin variety. In other words, the variety D(A, c) is a
smooth SL1(A)-equivariant compactification of the Merkurjev-Suslin variety
MS(A, c).

3.4 Lemma. For the variety Ds the following properties hold.
1. There exists a Gm-action on Ds with 18 fixed points. In particular, Ds

is a cellular variety.
2. The generating function for CH(Ds) is equal to g = t8 + t7 + 2t6 +

3t5 + 4t4 + 3t3 + 2t2 + t + 1.
3. The natural homomorphism Pic(D) → Pic(Ds) is an isomorphism. In

particular, the Picard group Pic(Ds) is rational.

Proof. 1. We can assume c = 1. The right action of Gm on Ds is induced by
the following action:

(M3(ks)⊕M3(ks))×Gm(ks) → M3(ks)⊕M3(ks)

(α⊕ β, λ) 7→ α diag(λ, λ5, λ6)⊕ β diag(λ2, λ3, λ7)

The exponents 1, 5, 6, 2, 3, 7 of λ’s are choosen in such a way that all of them
are different and the sum of the first three equals the sum of the last three.
Then the relation det α = det β is preserved.

The 18 fixed points of Ds are the
(
6
3

)
= 20 3-dimensional standard sub-

spaces in Gr(3, 6) minus 2 subspaces, generated by the first and by the last
3 standard basis vectors. By the result of Bia lynicki-Birula (see 2.5) the
variety Ds is cellular.

2. By the Lefschetz hyperplane theorem (see 2.4) the pull-back ı∗s is

an isomorphism in codimensions i < dim(Gr(3,6))−1
2

. Therefore rk CHi(Ds) =
rk CHi(Gr(3, 6)) for such i’s. Since Poincaré duality holds, we have rk CHi(Ds) =

rk CHi(Gr(3, 6)) for i < dim(Gr(3,6))−1
2

= 4.
It remains to determine only the rank in the middle codimension. To

do this observe that rk CH∗(Ds) = 18 (see 2.5). Therefore rk CH4(Ds) =
2rk CH4(Gr(3, 6))− 2 = 4.
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3. Consider the following commutative diagram:

(11) Pic(SB3(M2(A))) ı∗ //

��

Pic(D)

res∗

��
Pic(Gr(3, 6))

ı∗s // Pic(Ds)

where the vertical arrows are the morphisms of scalar extension. By the Lef-
schetz hyperplane theorem the map ı∗s restricted to Pic(Gr(3, 6)) is an iso-
morphism. Since Pic(SB3(M2(A))) is rational (see [18] and [19] Lemma 4.3),
i.e., the left vertical arrow is an isomorphism, the restriction map res∗ is sur-
jective. On the other hand, it immediatelly follows from the Hochschild-Serre
spectral sequence (see [1] § 2) that Pic(D) can be identified with a subgroup
of Pic(Ds). Since Pic(Ds) ' Z, we are done.

3.5 Remark. It immediately follows from this Lemma that the variety D
is not a twisted flag variety. Indeed, the generating functions of all twisted
flag varieties over a separabely closed field are well-known and all of them
are different from the generating function of Ds.

3.6. We must determine partially the multiplicative structure of CH(Ds).
By the Lefschetz hyperplane theorem the generators in codimensions 0, 1,
2, and 3 are pull-backs of the canonical generators ∆(0,0,0), ∆(1,0,0), ∆(1,1,0),
∆(2,0,0), ∆(1,1,1), ∆(2,1,0), ∆(3,0,0) of Gr(3, 6) (see 2.2 and [10] 14.7). We denote

these pull-backs as 1, h1, h
(1)
2 , h

(2)
2 , h

(1)
3 , h

(2)
3 and h

(3)
3 , respectively. In codi-

mension 4 the pull-back is injective and the pull-backs h
(1)
4 := ı∗s(∆(2,1,1)),

h
(2)
4 := ı∗s(∆(2,2,0)), h

(3)
4 := ı∗s(∆(3,1,0)), where ı is as above, form a subbasis of

CH4(Ds).
Consider the following diagram, which visualizes the multiplicative struc-

ture of CH(Ds):

(12) h
(1)
3

BB
BB

h
(1)
2

||||

BB
BB

h
(1)
4

1 h1

�����

??
??

? h
(2)
3

||||

BB
BB

h
(2)
4

h
(2)
2

||||

BB
BB

h
(3)
4

h
(3)
3

||||
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Since pull-backs are ring homomorphisms, it immediately follows from
the Pieri formula (2) that

(13) h1 · u =
∑
u→v

v,

where u is a vertex in the diagram which corresponds to a generator of
codimension less than 4, and the sum runs through all the edges going from
u one step to the right.

Next we compute some products in the middle codimension using in the
main Poincaré duality (3).

Since ∆(3,1,0) ∆(2,1,1) = ∆2
(2,2,0) = 0 and ∆2

(2,1,1) = ∆2
(3,1,0) = ∆(2,2,0) ∆(2,1,1) =

∆(2,2,0) ∆(3,1,0) = ∆(3,3,2) (see 2.2 and [10] 14.7), we have h
(1)
4 h

(3)
4 = (h

(2)
4 )2 = 0

and (h
(1)
4 )2 = (h

(3)
4 )2 = h

(2)
4 h

(3)
4 = h

(1)
4 h

(2)
4 = ı∗s(∆(3,3,2)) = pt, where pt denotes

the class of a rational point on Ds.
The next theorem shows that the Chow motive of D with Z/3-coefficients

is decomposable. Note that for any cycle h in CH(Ds) or in CH(Ds × Ds)
the cycle 3h is rational.

3.7 Theorem. Let A denote a central simple algebra of degree 3 over a field
k, c ∈ k∗, and D = D(A, c). Then

(14) M(D) ' R⊕ (⊕5
i=1R

′(i)),

where R is a motive such that over a separably closed field it becomes iso-
morphic to Z⊕ Z(4)⊕ Z(8) and R′ 'M(SB(A)).

Proof. Consider the following commutative diagram (see [6] 5.5):

(15) Ds × P2
ıs×ids //

��

Gr(3, 6)× P2
Segs //

��

Gr(3, 18)

��
D × SB(Aop)

ı×id // SB3(M2(A))× SB(Aop)
Seg // SB3(M2(A)⊗k Aop)

where the right horizontal arrows are Segre embeddings given by the ten-
sor product of ideals (resp. linear subspaces) and the vertical arrows are
canonical maps induced by the scalar extension ks/k.

11



This diagram induces the commutative diagram of rings
(16)

Ch∗(Ds × P2) Ch∗(Gr(3, 6)× P2)
(ıs×ids)∗

oo Ch∗(Gr(3, 18))
Seg∗s

oo

Ch∗(D × SB(Aop))

OO

Ch∗(SB3(M2(A))× SB(Aop))
(ı×id)∗
oo

OO

Ch∗(SB3(M2(A)⊗k Aop))

'

OO

Seg∗
oo

Observe that the right vertical arrow is an isomorphism since M2(A)⊗k Aop

splits.
Let τ3 and τ1 be tautological vector bundles on Gr(3, 6) and P2 respec-

tively and let e denote the Euler class (the top Chern class). By [6] Lemma 5.7
the cycle (ıs × ids)

∗(e(pr∗1τ3 ⊗ pr∗2τ1)) ∈ Ch(Ds × P2) is rational.

We have c(τ3) =
1

1 + σ1 + σ2 + σ3

= 1−σ1−σ2−σ3 + σ2
1 + 2σ1σ2−σ3

1 =

1− σ1 + ∆(1,1,0)−∆(1,1,1) ∈ Ch(Gr(3, 6)), where σi’s denote special Schubert
classes (see 2.2 and [6] 5.9). Therefore by the formula for Chern classes of a
tensor product (see [10] 3.2) we have r := −(ıs × ids)

∗(e(pr∗1τ3 ⊗ pr∗2τ1)) =

h
(1)
3 × 1 + h

(1)
2 ×H + h1 ×H2 ∈ Ch3(Ds × P2) (cf. [6] 5.10 and 5.11), where

H = −c1(τ1) is the class of a smooth hyperplane section of P2.
Define the following rational cycles ρi = r(hi

1 × 1) ∈ Ch3+i(Ds × P2) for
i = 1, . . . , 4, ρ0 = r + h3

1 × 1 ∈ Ch3(Ds × P2) and ρ′1 = r(h1 × 1) + h4
1 × 1.

A straightforward computation using the multiplication rules in 3.6 shows
that (−ρ′1) ◦ ρt

3 as well as (−ρ4−i) ◦ ρt
i ∈ Ch2(P2 × P2) is the diagonal ∆P2 .

Moreover, the opposite compositions (−ρ0)
t ◦ ρ4, (−ρ1)

t ◦ ρ3, (−ρ2)
t ◦ ρ2,

(−ρ3)
t ◦ ρ′1, and (−ρ4)

t ◦ ρ0 give rational pairwise orthogonal idempotents in
Ch8(Ds ×Ds).

To finish the proof of the theorem it remains by 2.10 to lift all these
rational cycles ρi, ρt

j to Ch(D×SB(Aop)) and to Ch(SB(Aop)×D) respectively
in such a way that the corresponding compositions of their preimages give
the diagonal ∆SB(Aop).

Fix an i = 0, . . . , 4. Consider first any preimage α ∈ Ch(D × SB(Aop))
of −ρ4−i and any preimage β ∈ Ch(SB(Aop) × D) of ρt

i. These preimages
exist, since the cycles ρi, ρ4−i are rational. The image of the composition
α ◦ β under the restriction map is the diagonal ∆P2 . Therefore by the Rost
Nilpotence theorem for Severi-Brauer varieties (see 2.13) α◦β = ∆SB(Aop)+n,
where n is a nilpotent element in End(M(SB(Aop))). Since n is nilpotent
α ◦ β is invertible and ((∆SB(Aop) + n)−1 ◦ α) ◦ β = ∆SB(Aop). In other words,
we can take (∆SB(Aop) + n)−1 ◦ α as a preimage of −ρ4−i and β as a preim-
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age of ρt
i (note that n is always a torsion element and since by [13] Cri-

terion 7.1 End(M(SB(Aop))) ' Mor(M(SB(A)),M(SB(Aop))) and by [20]
Theorem 2.3.7 CH(SB(A)) has no torsion, the projective bundle theorem (see
[12] Proposition 4.3) implies that in fact n = 0).

Denote as R the remaining direct summand of the motive of D. Com-
paring the left and the right hand sides of the decomposition over ks we
see that the Poincaré polynomial of Rs over ks is the difference P (Ds) −∑5

i=1 P (P2)ti = 1+t4+t8 ∈ Z[t], where P (−) denotes the respective Poincaré
polynomials. This implies that Rs ' Z⊕ Z(4)⊕ Z(8).

3.8 Remark. Using messier computations one can show that the same proof
works for the motive of D with integral coefficients. On the other hand, it
follows from the general result [22] Theorem 2.16 that one can lift a modulo p
motivic decomposition to a decomposition with Z-coefficients for any prime
number p.

4 Torsion

In this section we use Steenrod operations modulo 3 (see [4], [14] § 3, [17],
and 2.14). We denote the total Steenrod operation by S• = S0 + S1 + . . ..

Let X be a smooth projective variety over k. For any cycle p ∈ CH(X×X)
we define its realization p? : CH(X) → CH(X) as p?(α) = pr2∗(pr∗1(α)p),
α ∈ CH(X), where pr1, pr2 : X × X → X denote the first and the second
projections. As deg : CH0(X) → Z we denote the usual degree map.

The goal of the present section is to prove the following theorem.

4.1 Theorem. Assume that the variety D is anisotropic. Then CH2(D)
contains 3-torsion.

4.2. The proof of this Theorem consists of several parts. First we define an
important element d as follows. The kernel of the push-forward map

(17) (ıs)∗|CH4(Ds) : CH4(Ds) → CH4(Gr(3, 6))

has rank 1, since by the Lefschetz hyperplane theorem (see 2.4) the push-
forward ((ıs)∗|CH4(Ds))⊗Q is surjective. Denote as d ∈ CH4(Ds) a generator
of this kernel. The projection formula immediately implies that (ıs)∗(αd) = 0
for any α ∈ Im ı∗s and therefore by the Lefschetz hyperplane theorem αd = 0.
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4.3 Lemma. We have

1. d2 6= 0 mod 3,

2. the total Chern class of the tangent bundle

(18) c(−TDs) = 1 + h1 + h2
1 − h3

1 − h4
1 − h5

1 ∈ Ch(Ds),

and

3. S•(d) = d.

Proof. The first equality is just a routine computation using Poincaré duality
on CH(Ds).

Next we compute the total Chern class of the tangent bundle TDs . Since
Ds is a hyperplane section of Gr(3, 6) we have the following exact sequence:

(19) 0 → TDs → ı∗s(TGr(3,6)) → ı∗s(OGr(3,6)(1)) → 0

Therefore c(TDs)ı
∗
s(c(OGr(3,6)(1))) = ı∗s(c(TGr(3,6))). Since ı∗s(c(OGr(3,6)(1))) =

1+h1 and ı∗s(c(TGr(3,6))) = 1−h2
1−h3

1 +h5
1 (this formula follows immediatelly

from Schubert calculus), we have c(TDs) = (1 − h2
1 − h3

1 + h5
1)(1 + h1)

−1 =
1− h1 − h3

1 + h4
1 and c(−TDs) = c(TDs)

−1 = 1 + h1 + h2
1 − h3

1 − h4
1 − h5

1.
To prove the last assertion note that ∆Ds = ∆′ ± d× d, where ∆′ is the

part of the diagonal ∆Ds which does not involve d, i.e., which comes from
Gr(3, 6). Let δ : Ds → Ds ×Ds denote the diagonal morphism.

Now

(20) S•(±d× d) = S•(∆Ds −∆′) = S•(δ∗(1)−∆′) = S•(δ∗(1))− S•(∆′).

To prove that S•(d) = d we must show that the right hand side does not
contain summands of the form d × α, α ∈ Ch(Ds), different from ±d × d.
Therefore the summand S•(∆′) is not interesting for us.

We have

S•(δ∗(1)) = c(TDs×Ds)δ∗(S
•
Ds

(1)c(−TDs)) = c(TDs×Ds)(c(−TDs)× 1)δ∗(1)

= c(TDs×Ds)(c(−TDs)× 1)∆Ds ,

where the first equality follows from the Riemann-Roch formula (8) and the
second from the projection formula. But by item 2. the Chern classes ci(TDs)
don’t involve d, i.e., lie in the image of ı∗s. Since αd = 0 for all α ∈ Im ı∗ (see
above), the lemma is proved.

14



In the notation of Theorem 3.7 denote as p ∈ Ch8(D ×D) the projector
corresponding to the motive R, i.e., R = (D, p). From the proof of Theo-
rem 3.7 it is easy to see that

(21) ps = 1× pt± d× d + pt× 1.

Since the natural map Pic(D) → Pic(Ds) is an isomorphism (see Lemma 3.4(3)),
we denote as h1 the canonical generator of Pic(Ds) as well as the correpond-
ing generator of Pic(D).

4.4 Lemma. The following properties of D hold:

1. The natural group homomorphism CH0(D) → CH0(Ds) is injective. Its
image is generated by zero cycles of degree divisible by 3.

2. S1(p?(h6
1)) = h8

1.

Proof. 1. To prove the statement we use the notion of connectedness of
classes of fields introduced by Chernousov and Merkurjev (see 2.15).

By [9] Theorem 6.5 it suffices to show that the class A(D) of all field
extensions E/k such that D(E) 6= ∅ is connected and for any L ∈ A(D) the
group CH0(DL) = Z. By [15] Corollary (40.11) the Jordan algebra J(A, c)
obtained by the first Tits construction splits if and only if c ∈ NrdA(A∗).
Therefore the connectedness of A(D) follows from [9] Theorem 11.3, since
the variety D = D(A, c) has an E-point for a field extension E/k if and only
if c ∈ NrdAE

(A∗
E).

To prove that CH0(DL) = Z for any L ∈ A(D) it suffices to check that
for any field extension E/L any two rational points of DE are rationally
equivalent (see [9] Lemma 5.2). If the algebra AE is not split, then all ra-
tional points of DE are contained in MS(AE, 1) ' SL1(AE). Since SL1(A)
is a rational and homogeneous variety, this implies that DE is R-trivial (see
2.15), and, hence, CH0(DE) = Z. If the algebra AE splits, then obviously
CH0(DE) = Z.

Since D is anisotropic, it follows from [21] Cor. on p. 205 that the image
of the degree map CH0(D) → CH0(Ds) = Z is divisible by 3.

2. The proof of this item is similar to the proof of Corollary 4.9 [14]. By
[14] Lemma 3.1

(22) S•(p?(h6
1)) = S•(p)?(h6

1(1 + h2
1)

6c(−TD)).
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Therefore S1(p?(h6
1)) equals the 0-dimensional component of the right hand

side. Assume that

(23) S1(p)?(h6
1) = 0.

Then by Lemma 4.3 S•(p)?(h6
1(1 + h2

1)
6c(−TD)) = S•(p)?(h6

1(1 + h1 + h2
1 −

h3
1 − h4

1 − h5
1 + e)), where e ∈ Ch≥2(D) is a torsion element. Therefore the

0-dimensional component equals S0(p)?(h8
1) + S1(p)?(h6

1) = p?(h8
1) = h8

1 (cf.
[14]).

To prove (23) it suffices to show that deg S1(p)?(h6
1) is divisible by 9 (cf.

[14] Proof of Corollary 4.5). Without loss of generality we can compute
this degree over ks. It follows from the proof of Corollary 4.5 [14] that
deg S1(p)?(h6

1) = deg h6
1pr1∗(S

1(ps)). But pr1∗(S
1(ps)) is divisible by 3 (see

Lemma 4.3(3)) and for any α ∈ Ch2(Ds) the product h6
1α is divisible by 3.

We are done.

Now we are ready to prove Theorem 4.1. Consider the cycle S1(p?(h6
1)).

Since deg h8
1 = 42 = 3 · 14 and D is anisotropic, by lemma 4.4 this cycle

is non-zero. Therefore p?(h6
1) ∈ Ch2(D) is non-zero. On the other hand,

(ps)?(h6
1) = 0. In other words, p?(h6

1) is a non-trivial torsion element in
Ch2(D).
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