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Abstract

Given an hermitian space we compute its essential dimension,
Chow motive and prove its incompressibility in certain dimensions.

The notion of an essential dimension dimes is an important birational
invariant of an algebraic variety X which was introduced and studied by
N. Karpenko, A. Merkurjev, Z. Reichstein, J.-P. Serre and others. Roughly
speaking, it is defined to be the minimal possible dimension of a rational
retract of X. In particular, if it coincides with the usual dimension, then X
is called incompressible.

In general, this invariant is very hard to compute. As a consequence, there
are only very few known examples of incompressible varieties: certain Severi-
Brauer varieties and projective quadrics. In the present paper we provide
new examples of incompressible varieties: Hermitian quadrics of dimensions
2r − 1. We also give an explicit formula for the essential dimension of a
Hermitian form in the sense of O. Izhboldin, hence, providing a Hermitian
version of the result of Karpenko-Merkurjev [KM03]. At the end we discuss
the relations with Higher forms of Rost motives of Vishik [Vi00].

We follow the notation of [Kr07]. Let F be a base field of characteristic
not 2 and let L/F be a quadratic field extension. Let (W, h) be a non-
degenerate L/F -Hermitian space of rank n and let q be the quadratic form
associated to the hermitian form h via q(v) = h(v, v), v ∈ W . We call q the
underlying quadratic form of h.

The main objects of our study are the following two smooth projective
varieties over F :

∗Supported by DFG GI706/1-1 and INTAS 05-1000008-8118.
Keywords: Chow motives, Hermitian form, incidence variety, Milnor hypersurface, incom-
pressibility. MSC: 14E05; 11E39, 14C25

1



• the variety V (q) of q-isotropic F -lines in W , i.e. a projective quadric;

• the variety V (h) of h-isotropic L-lines in W called a Hermitian quadric.

Observe that V (q) has dimension (2n − 2) and V (h) is a (2n − 3)-
dimensional projective homogeneous variety under the action of the unitary
group associated with h. It is also a twisted form of the incidence variety that
is the variety of flags consisting of a dimension one and codimension one lin-
ear subspaces in an n-dimensional vector space (see [MPW98, pp. 172-173]).

The forms q and h are closely related by the following celebrated result
of Milnor-Husemoller (see [Le79]):

A quadratic form q on an F -vector space W is the underlying form
of a Hermitian form over a quadratic field extension L = F (

√
a)

if and only if dim W = 2n, qL is hyperbolic, and det q = (−a)n

mod F 2.

In this case q ' 〈1,−a〉 ⊗ q′ for some form q′.

1. Incompressibility A smooth projective F -variety X is called incom-
pressible if any rational map X 99K X is dominant. The basic examples of
such varieties are anisotropic quadrics of dimensions 2r−1 and Severi-Brauer
varieties of division algebras of prime degrees.

Theorem (A). Assume that the variety V (h) is anisotropic, i.e., has no
F -rational points, and dim V (h) = 2r − 1 for some r > 0. Then V (h) is
incompressible.

Proof. The key idea is that a Hermitian quadric which is purely a geometric
object can be viewed as a twisted form of a Milnor hypersurface M — a topo-
logical object, namely, a generator of the Lazard ring of algebraic cobordism
of M. Levine and F. Morel [LM].

More precisely, by [LM, 2.5.3] the variety M is the zero divisor of the line
bundle O(1)⊗O(1) on Pn−1

F × Pn−1
F , i.e. it is given by the equation

n−1∑
i=0

xiyi = 0, (1)

where [x0 : . . . xn−1] and [y0 : . . . : yn−1] are the projective coordinates of the
first and the second factor respectively.
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On the other hand, the Hermitian quadric V (h) is a twisted form of the
incidence variety X = {W1 ⊂ Wn−1}, where dim Wi = i. Taking [x0 : . . . :
xn−1] = W1 and [y0 : . . . : yn−1] to be a normal vector to Wn−1 we obtain
that X is given by the same equation (1), therefore, X ' M .

By [Me02, Prop.7.2] we obtain the following explicit formula for the Rost
characteristic number η2 of M

η2(M) :=
cdim M(−TM)

2
=

1

2

(
2(n− 1)

n− 1

)
mod 2.

It has the following property:

η2(M) ≡ 1 mod 2 ⇐⇒ dim M = 2r − 1 for some r > 0. (2)

Since η2 is invariant under field extensions, η2(M) = η2(V (h)).
We apply now the standard arguments involving the Rost degree formula

(see [Me03, §7]). Let f : V (h) 99K V (h) be a rational map. By the degree
formula:

η2(V (h)) ≡ deg f · η2(V (h)) mod nV (h), (3)

where nV (h) is the greatest common divisor of degrees of all closed points of
V (h). Since V (h) becomes isotropic over L, nV (h) = 2.

Assume now that dim(V (h)) = 2r − 1 for some r > 0. Then, by (2)
η2(V (h)) ≡ 1 and by (3) deg f 6= 0 which means that f is dominant. This
finishes the proof of the theorem.

2. Essential dimension Following O. Izhboldin we define the essential
dimension of a Hermitian space (W, h) as

dimes(h) := dim V (h)− i(q) + 2,

where i(q) stands for the first Witt index of the form q, i.e., for the Witt
index of q over its field of rational functions (see also [KM03]). The following
theorem provides a Hermitian version of the main result of [KM03]

Theorem (B). Let Y be a complete F -variety with all closed points of even
degree. Suppose that Y has a closed point of odd degree over F (V (h)). Then
dimes(h) ≤ dim Y . Moreover, if dimes(h) = dim Y , then V (h) is isotropic
over F (Y ).
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Proof. In [Kr07] D. Krashen constructed a P1-bundle

BlS(V (q)) → V (h), (4)

where BlS(V (q)) is the blow-up of the quadric V (q) along the linear subspace
S = Pn−1

L . In particular, the function field of V (q) is a purely transcendental
extension of the function field of V (h) of degree 1, and, therefore, our theorem
follows from [KM03, Theorem 3.1].

Using Theorem (B) we can give an alternative proof of Theorem (A):

Another proof of (A). Let Y be the closure of the image of a rational map
V (h) 99K V (h). Then by Theorem (B) the incompressibility of V (h) fol-
lows from the equality dimes(h) = dim V (h). The latter can be deduced
from Hoffmann’s conjecture (proven in [Ka03]) if V (h) is anisotropic and
dim V (h) = 2r − 1. Indeed, if dim V (h) = 2r − 1, then dim q = 2r + 2.
Therefore, i(q) = 1 or 2. But by the result of Milnor-Husemoller q is
divisible by the binary form 〈1,−a〉, hence i(q) must be even. Therefore
dimes(h) = dim V (h).

3. Chow motives We follow the notation of [CM06, §6]. As a direct
consequence of the fibration (4) and the Krull-Schmidt theorem proven in
[CM06] we obtain the following expressions for the Chow motives of V (q)
and V (h):

Theorem (C). There exists a motive Nh such that

M(V (q)) '

{
Nh ⊕Nh{1}, if n is even;

Nh ⊕M(Spec L){n− 1} ⊕Nh{1}, if n is odd;
(5)

and

M(V (h)) '

{
Nh ⊕

⊕(n−4)/2
i=0 M(Pn−1

L ){2i + 1}, if n is even;

Nh ⊕
⊕(n−3)/2

i=0 M(Pn−2
L ){2i + 1}, if n is odd.

(6)

Observe that by the projective bundle theorem M(Pm
L ) '

⊕m
i=0 M(Spec L){i}.

Proof. Using the P1-fibration (4) D. Krashen provided the following formula
relating the Chow motives of V (q) and V (h):

M(V (q))⊕
n−2⊕
i=1

M(Pn−1
L ){i} ' M(V (h))⊕M(V (h)){1}. (7)
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Observe that the motives of all varieties participating in the formula (7)
split over L into direct sums of twisted Tate motives ZL. For each such
decomposition ML '

⊕
i≥0 ZL{i}⊕ai we define the respective Poincaré poly-

nomial by PML
(t) :=

∑
i≥0 ait

i. Using the standard combinatorial description

of the cellular structure on V (q)L, V (h)L and Pn−1
L (see [CM06]) we obtain

the following explicit formulae:

PV (q)L
(t) = (1−tn)(1+tn−1)

1−t
, PV (h)L

(t) = (1−tn)(1−tn−1)
(1−t)2

and PSpec L(t) = 2. (8)

Consider the subcategory of the category of Chow motives with Z/2-
coefficients generated by M(V (h); Z/2). Since V (h) is a projective homo-
geneous variety, the Krull-Schmidt theorem and the cancellation theorem
hold in this subcategory by [CM06, Cor. 35]. In particular, the decomposi-
tions coming from the two sides of equation (7) have to consist of the same
indecomposable summands.

Analyzing their Poincaré polynomials over L using (8) we obtain the
formulae (5) and (6) for motives with Z/2-coefficients. Finally, applying
[PSZ, Thm. 2.16] for m = 2 we obtain the desired formulae integrally.

4. Higher forms of Rost motives In [Vi00, Thm.5.1] A. Vishik proved
that given a quadratic form q over F divisible by an m-fold Pfister form ϕ,
that is q = q′ ⊗ ϕ for some form q′, there exists a direct summand N of the
motive M(Qq) of the projective quadric Qq associated with q such that

M(Qq) '

{
N ⊗M(P2m−1

F ), if dim q′ is even;

(N ⊗M(P2m−1
F ))⊕M(Qϕ){dim q

2
− 2m−1}, if dim q′ is odd.

In view of the Milnor-Husemoller theorem mentioned in the beginning, for-
mula (5) implies a shortened proof of Vishik’s result for m = 1.
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