
DEGREE 5 INVARIANT OF E8

SKIP GARIBALDI AND NIKITA SEMENOV

Abstract. We give a formula for the recently-discovered degree 5 cohomo-
logical invariant of groups of type E8. We use this formula to calculate the
essential dimension and cohomological invariants of H1(∗, Spin16)0, and to
give a precise interpretation of Serre’s “funny-looking statement” in terms of
embeddings finite subgroups in the split E8.

1. Introduction

Let G be a split simple linear algebraic group over a field k of characteristic 0.
One of the main goals of the theory of linear algebraic groups over arbitrary fields
is to compute the Galois cohomology set H1(k, G).

One of the main tools was suggested by J-P. Serre in the 90s, namely the Rost
invariant

rG : H1(∗, G) → H3(∗, Q/Z(2))

discovered by M. Rost and explained in Merkurjev’s portion of the book [GMS].
It is a morphism of functors from the category of fields over k to the category of
pointed sets.

Mimicking the situation in topology one can consider the kernel of the Rost
invariant and try to define a cohomological invariant on it. In the theory of qua-
dratic forms this procedure leads to the invariants defined on the powers of the
fundamental ideal In.

In the present paper we consider the most complicated and yet unsettled case
when G has Cartan-Killing type E8. The paper is organized as follows. In Sec-
tion 2 we recall the recently-discovered invariant u defined on the kernel of the
Rost invariant for groups of type E8. Section 3 is devoted to a computation of the
value u(G) for groups G obtained by a Tits construction. Sections 4 and 5 provide
applications of u to cohomological invariants and essential dimension of Spin16.

In the last section we investigate the finite subgroups of algebraic groups. It
turns out that under some additional conditions cohomological invariants provide
an obstruction for certain finite groups to be subgroups of algebraic groups. This
is connected with Serre’s “funny-looking statement” from [GR, p. 209]:

“Let K be a field of characteristic 0, and G a group of type E8 over K.
Suppose that SL2(32) can be embedded in G(K). Then PGL2(31) can be
embedded in G(K). Nice!”

More precisely, Serre proved that PGL2(31) can be embedded in G(K) iff G “is
compact”, i.e., isomorphic to the scalar extension of the anisotropic E8 over Q, and
that SL2(32) embeds in G(K) iff G is compact and cos(2π/11) is in K. This led
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him to the question: How to tell, e.g., if the split E8 is compact in this sense? We
show:

1.1. Theorem. PGL2(31) embeds in E8(K) if and only if −1 is a sum of 16 squares
in K. The group SL2(32) embeds in E8(K) if and only if −1 is a sum of 16 squares
in K and cos(2π/11) is in K.

2. Preliminaries

Let k denote a field of characteristic 0. We write E8 for the split simple algebraic
group with Killing-Cartan type E8. The Galois cohomology set H1(k, E8) classifies
simple algebraic groups of type E8 over k.

We put

H1(k, E8)0 := {η ∈ H1(k, E8) | rE8(η) has odd order}.

In [Sem 08, Corollary 8.7], the second author defined a morphism of functors:

u : H1(∗, E8)0 → H5(∗, Z/2Z).

This is the degree 5 invariant from the title.
Let now G be a group of type E8. It corresponds with a canonical element of

H1(k, E8), so it makes sense to speak of “the Rost invariant of G”; we denote it
by r(G). Suppose now that r(G) has odd order, so G belongs to H1(k, E8)0. The
second author also proved in [Sem 08]:

(2.1) u(G) = 0 if and only if there is an odd-degree extension of k that
splits G.

For example, the compact group G of type E8 over R has Rost invariant zero and
u(G) = (−1)5.

As an obvious corollary, we have:

(2.2) If k has cohomological dimension ≤ 2, then every k-group of type
E8 is split by an odd-degree extension of k.

Serre’s “Conjecture II” for groups of type E8 is that in fact every group of type E8

over such a field is split.

3. Tits’s construction of groups of type E8

3.1. There are inclusions of algebraic groups G2×F4 ⊂ E8, where G2 and F4 denote
split groups of those types. Furthermore, this embedding is essentially unique.
Applying Galois cohomology gives a function H1(k, G2)×H1(k, F4) → H1(k, E8).
The first two sets classify octonion k-algebras and Albert k-algebras respectively,
so this map gives a construction by Galois descent of groups of type E8:

octonion k-algebras × Albert k-algebras → groups of type E8

Jacques Tits gave concrete formulas on the level of Lie algebras for this construction
in [T], see also [J]. This method of constructing groups of type E8 is known as the
Tits construction. (Really, Tits’s construction is more general and gives other kinds
of groups as well. The variety of possibilities is summarized in Freudenthal’s magic
square as in [Inv, p. 540]. However, the flavor in all cases is the same, and this case
is the most interesting.)
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Our purpose is to compute the value of u on those groups of type E8 with Rost
invariant of odd order (so that it makes sense to speak of u) and arising from Tits’s
construction. We do this in Theorem 3.7.
3.2. Following [Inv], we write f3(−) for the even component of the Rost invariant
of an Albert algebra or an octonion algebra (equivalently, a group of type F4 or
G2). We write g3(−) for the odd component of the Rost invariant of an Albert
algebra; such algebras also have an invariant f5 taking values in H5(k, Z/2Z). An
Albert algebra A has g3(A) = 0 and f5(A) = 0 iff A has a nonzero nilpotent, iff the
group Aut(A) is isotropic.

Suppose now that G ∈ H1(k, E8) is the image of an octonion algebra O and an
Albert algebra A. It follows from a twisting argument as in the proof of Lemma 5.8
in [GQ] — and was pointed out by Rost as early as 1999 — that

(3.3) r(G) = rG2(O) + rF4(A).

In particular, G belongs to H1(k, E8)0 if and only if f3(O)+f3(A) = 0 in H3(k, Z/2Z),
i.e., if and only if f3(O) = f3(A).

3.4. Definition. Define

t : H1(∗, F4) → H1(∗, E8)0
by sending an Albert k-algebra A to the group of type E8 constructed from A and
the octonion algebra with norm form f3(A), via Tits’s construction from 3.1. By
the preceding paragraph, r(G) = g3(A) ∈ H3(k, Z/3Z), so G does indeed belong to
H1(k, E8)0.

3.5. Example. If A has a (nonzero) nilpotent element, then the group t(A) is split.
Indeed, g3(A) is zero so t(A) is in the kernel of the Rost invariant. Also, t(A) is
isotropic because it contains the isotropic subgroup Aut(A), hence t(A) is split by,
e.g., [Ga, Prop. 12.1(1)].

3.6. Example. In case k = Q or R, there are exactly three Albert algebras up to
isomorphism. All have g3 = 0; they are distinguished by the values of f3 and f5.

f3(A) f5(A) t(A)
0 0 split by Example 3.5

(−1)3 0 split by Example 3.5
(−1)3 (−1)5 anisotropic by [J, p. 118]

It follows from Chernousov’s Hasse Principle for groups of type E8 [PR] that for
every number field K with a unique real place, the set H1(K, E8)0 has two elements:
the split group and the anisotropic group constructed as in the last line of the table.

3.7. Theorem. For every Albert k-algebra A, we have:

u(t(A)) = f5(A) ∈ H5(k, Z/2Z).

Proof. The composition ut is an invariant H1(∗, F4) → H5(∗, Z/2Z), hence is given
by

ut(A) = λ5 + λ2 · f3(A) + λ0 · f5(A)
for uniquely determined elements λi ∈ Hi(Q, Z/2Z), see [GMS, p. 50].

We apply this formula to each of the three lines in the table from Example 3.6.
Obviously u of the split E8 is zero, so the first line gives:

0 = u(split E8) = λ5 ∈ H5(Q, Z/2Z).
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Applying this to the second line gives:

0 = u(split E8) = λ2 · (−1)3 ∈ H5(Q, Z/2Z).

For the last line, u of the compact E8 is (−1)5 by (2.1), see the end of [Sem 08] for
details. We find:

(−1)5 = u(compact E8) = λ0 · (−1)5,
so λ0 equals 1 in H0(Q, Z/2Z) = Z/2Z.

To show that λ2 = 0 we proceed as follows. Consider the purely transcendental
extension F = Q(x, y, z, a, b) and let H be the group of type F4 with f3(H) =
(x, y, z), f5(H) = f3(H) · (a, b) and g3(H) = 0. Then ut(H) = f5(H) + f3(H) · λ2.

Let K be a generic splitting field for the symbol f5(H). Since HK is isotropic,
the resulting group t(H) of type E8 is isotropic over K, and, since it has trivial
Rost invariant, it splits over K [Ga, Prop. 12.1]. Obviously, ut(H) is killed by K.
Therefore f3(H) · λ2 is zero over K. If f3(H) · λ2 is zero over F , then by taking
residues we see that λ2 is zero in H2(Q(a, b), Z/2Z), hence also in H2(Q, Z/2Z).
Otherwise, f3(H) · λ2 is equal to f5(H) by [OViVo, Theorem 2.1], and again com-
pleting and taking residues with respect to the x-, y-, and z-adic valuations, we find
that λ2 = (a, b) ∈ H2(Q(a, b), Z/2Z). But this is impossible because λ2 is defined
over Q. This proves that λ2 = 0. �

3.8. Corollary. For every field k of characteristic zero and every group G ∈
H1(k, E8)0 in the image of t, we have:

〈60〉(KillG −KillE8) = 23 · u(G) ∈ I8(k),

where Kill− denotes the Killing form of − and E8 the split group.

Proof. Follows from [Ga, 13.5 and Example 15.9] and Theorem 3.7. �

3.9. Example. Whatever field k of characteristic zero one starts with, there is
an extension K/k that supports an anisotropic 5-Pfister quadratic form q5—one
can adjoin 5 indeterminates to k, for example. Let q3 be a 3-Pfister form dividing
q5 and let A be the Albert K-algebra with fd(A) = ed(qd) for d = 3, 5. The
group G := t(A) of type E8 over K has Rost invariant zero yet u(G) = f5(A)
nonzero by Theorem 3.7. In particular, G is not split, hence is anisotropic by [Ga,
Prop. 12.1(1)].

Example 15.9 in [Ga] produced anisotropic groups of type E8 in a similar manner,
but used the Killing form to see that the resulting groups were anisotropic; that
method does not work if −1 is a square in k. Roughly, Example 3.9 above exhibits
more anisotropic groups because u is a finer invariant than the Killing form.

3.10. Remark (Application to E7). Write Esc
7 for the split simply connected group

of type E7. The set H1(k, Esc
7 )0 is zero by [Ga 01]. Suppose now that G is simply

connected with Tits index

r r r r r rrf f f f
i.e., non-split with a minimal parabolic subgroup that is “wesentlich” in the lan-
guage of [H, p. 132]. Twisting the inclusion of (SL2×E7)/µ2 in E8 gives an em-
bedding of G in (the split) E8 and the composition H1(∗, G)0 → H1(∗, E8)0

u−→
H5(∗, Z/2Z) is an invariant. It is not difficult to show that this invariant is not
zero if G has Tits algebra (−1,−1) and (−1)5 ∈ H5(k, Z/2Z) is not zero. (And
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trivially that H1(k, G)0 may be nonzero.) One expects that the invariant is nonzero
in general and that this follows from Theorem 3.7.

4. Invariants of H1(∗,Spin16)0

Recall from [Inv, pp. 436, 437] that the Rost invariant of a class η ∈ H1(k, Spin16)
is given by the formula

rSpin16
(η) = e3(qη) ∈ H3(k, Z/2Z)

where qη is the 16-dimensional quadratic form in I3k corresponding to the image
of η in H1(k, SO16) and e3 is the Arason invariant. It follows that η belongs to the
kernel of the Rost invariant if and only if qη belongs to I4k.

We can quickly find some invariants of the kernel H1(k, Spin16)0 of the Rost
invariant. For η in that set, qη is 〈αη〉γ for some αη ∈ k× and some 4-Pfister qua-
dratic form γ [Lam, X.5.6]. (One can take αη to be any element of k× represented
by qη [Lam, X.1.8].) We define invariants fd : H1(∗,Spin16)0 → Hd(∗, Z/2Z) for
d = 4, 5 via:

f4(η) := e4(qη) and f5(η) := (αη) · e4(qη),
where e4 is the usual additive map I4(∗) → H4(∗, Z/2Z). If qη is isotropic, then qη

is hyperbolic and e4(qη) is zero, so the value of f5(η) depends only on η and not on
the choice of αη, see [Ga 09, 10.2].

We can identify two more (candidates for) invariants of H1(∗,Spin16)0. The split
E8 has a subgroup isomorphic to HSpin16, the nontrivial quotient of Spin16 that is
neither adjoint (i.e., not PSO16) nor SO16. Further, the composition

H1(∗,Spin16) → H1(∗,HSpin16) → H1(∗, E8)
rE8−−→ H3(∗, Z/60Z(2))

is the Rost invariant of Spin16 [Ga, (5.2)]. We find a morphism of functors

H1(∗,Spin16)0 → H1(∗, E8)0.

Composing this with the invariant u gives an invariant

u5 : H1(∗,Spin16)0 → H5(∗, Z/2Z).

(Roughly speaking, we have used the invariant u of H1(∗, E8)0 to get an invariant
of H1(∗,Spin16)0 in the same way that Rost used the f5 invariant of H1(∗, F4) to
get an invariant of H1(∗,Spin9), see [Rost] or [Ga 09, 18.9].)

The purpose of this section is to prove:

4.1. Theorem. The invariants H1(∗,Spin16)0 → H•(∗, Z/2Z) form a free H•(k, Z/2Z)-
module with basis

1, f4, f5, u5, u6,

where the invariant u6 is given by the formula u6(η) := (αη) · u5(η).

We first replace Spin16 with a more tractable group. The first author described
in [Ga, §11] a subgroup of HSpin16 isomorphic to PGL×4

2 . Examining the root
system data for this subgroup given in Tables 7B and 11 of that paper, we see
that the inverse image of this subgroup in Spin16 is a subgroup H obtained by
modding SL×4

2 out by the subgroup generated by (−1,−1, 1, 1), (−1, 1,−1, 1), and
(−1, 1, 1,−1). The image of the center of each copy of SL2 has the same nonidentity
element; this defines a homomorphism µ2 → H that gives a short exact sequence:

1 → µ2 → H → PGL×4
2 → 1.
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The image of H1(k, H) in H1(k, PGL2)×4 consists of quadruples (Q1, Q2, Q3, Q4)
of quaternion algebras so that Q1 ⊗Q2 ⊗Q3 ⊗Q4 is split.

Let ϕ map the Klein four-group V := Z/2Z× Z/2Z into (SL2×SL2)/µ2 via

ϕ(1, 0) :=
((−1 0

0 1

)
,
(−1 0

0 1

))
and ϕ(0, 1) :=

((
0 1
−1 0

)
,
(

0 1
−1 0

))
.

This defines a homomorphism. Twisting (SL2×SL2)/µ2 by a pair (a, b) ∈ k×/k×2×
k×/k×2 = H1(k, V ) gives (SL(Q)×SL(Q))/µ2, where Q denotes the quaternion al-
gebra (a, b). (Of course, composing ϕ with either of the projections (SL2×SL2)/µ2 →
PGL2 sends (a, b) to the same quaternion algebra Q.) The composition

V × V
ϕ×ϕ−−−→ (SL2×SL2)/µ2 × (SL2×SL2)/µ2 → H

gives a map whose image does not meet the center of Spin16, which we denote by
Z. This gives a homomorphism Z × V × V → Spin16.
4.2. We now fix a ν ∈ H1(K, Z × V × V ), write ζ for its image in H1(K, Z), write
Q1, Q2 respectively for its images under the two projections

H1(K, Z × V × V ) → H1(K, V ) → H1(K, PGL2),

and write qi for the 2-Pfister norm form of Qi. It follows from the description
of the map H1(K, HSpin16) → H1(K, PSO16) in [Ga, §4] that the image of ν in
H1(K, SO16) is 〈αν〉q1q2 for some αν ∈ K×. Hence rSpin16

(ν) = 0.
Conversely, given η ∈ H1(K, Spin16)0), there is some α ∈ K× so that 〈α〉qη is a

4-Pfister form. Fix ν ∈ H1(K, Z × V × V ) so that q1q2 = 〈α〉qη. Then the image
of ν in H1(K, Spin16) is λ · η for some λ ∈ H1(K, Z) and λ · ν maps to η. We have
shown:

(4.3) The map Z×V ×V → Spin16 gives a surjection H1(K, Z×V ×V ) →
H1(K, Spin16)0.

It follows (using [Ga 09, 5.3]) that the module of invariants H1(∗,Spin16)0 →
H•(∗, Z/2Z) injects into the module of invariants H1(∗, Z×V ×V ) → H•(∗, Z/2Z).
But we know this larger module by [GMS, p. 40] or [Ga 09, 6.7]: it is spanned by
products π1π2π3 for π1 : H1(∗, Z) → H•(∗, Z/2Z) and π2, π3 invariants H1(∗, V ) →
H•(∗, Z/2Z) composed with projection on the 2nd or 3rd term in the product.

4.4. Lemma. In the notation of 4.2, if [Q1] · [Q2] = 0 in H4(K, Z/2Z), then the
image of ν in H1(K, Spin16) is zero.

Proof. If [Q1] · [Q2] is zero, then q1q2 is in I5(k) and so is hyperbolic. It follows that
the image of ν in H1(K, PSO16) is zero, hence the image of ν in H1(K, Spin16) is
in the image of H1(K, Z). But Spin16 is split semisimple, so the image of H1 of
the center in H1 of the group is zero. �

Proof of Theorem 4.1. We abuse the notation of 4.2 and write (ζ, Q1, Q2) for ν.
The invariant f4 sends (ζ, Q1, Q2) to [Q1] · [Q2]. Lemma 4.4 combined with argu-
ments like those in [GMS, pp. 43, 44] shows that every invariant of H1(∗,Spin16)0
restricts to one of the form λ+φ · f4 for uniquely determined λ ∈ H•(k, Z/2Z) and
φ : H1(∗, Z) → H•(∗, Z/2Z), i.e., is given by the formula

(ζ, Q1, Q2) 7→ λ + φ(ζ) · [Q1] · [Q2].

The collection of such invariants of H1(∗, Z × V × V ) forms a free H•(k, Z/2Z)-
module with basis

1, f4, χv · f4, χh · f4, χv · χh · f4,
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where χv and χh denote the maps H1(∗, Z) → H1(∗, Z/2Z) defined by restricting
to Z the vector representation Spin16 → SO16 and the half-spin representation
Spin16 → HSpin16 implicit in our root-system description above. Obviously, f5

restricts to be χv · f4.
At this point, it suffices to prove:

(4.5) u5 restricts to be χh · f4.

Indeed, this statement implies that u5 is zero when qη is isotropic, hence by [Ga 09,
10.2] the formula for u6 gives a well-defined invariant; it obviously restricts to
χv ·u5 = χv ·χh ·f4 on H1(∗, Z×V ×V ). Spanning and linear independence follow
from the previous paragraph.

We now prove (4.5). The restriction of u5 sends zero to zero, so it is φ · f4 for
some φ : H1(∗, Z) → H1(∗, Z/2Z) that itself sends zero to zero. Therefore (by
[GMS, p. 40]) φ is induced by some homomorphism χ : Z → Z/2Z. As u5 is defined
by pulling back along the map Spin16 → E8, one quickly sees that χ must be zero
or χh. As χ, the zero invariant, and χh are all defined over Q, it suffices to prove
that χ is not the zero invariant in the case where k = Q. Example 15.1 of [Ga]
gives a class ν ∈ H1(R, Z × V × V ) whose image in H1(R, E8) is the compact E8,
on which u is nonzero. Hence the restriction of u5 to Z × V × V is not zero over Q
and must be χh · f4. �

5. Essential dimension of H1(∗,Spin16)0

The following is a corollary of the previous section:

5.1. Corollary. The essential dimension of the functor H1(∗,Spin16)0 over every
field of characteristic zero is 6.

Proof. The existence of the nonzero invariant u6 : H1(∗,Spin16)0 → H6(∗, Z/2Z)
implies that the essential dimension is at least 6 by [RY, Lemma 6.9]; this is the
interesting inequality. One can deduce that the essential dimension is at most 6 by,
for example, the surjectivity in (4.3). �

By way of contrast, Merkurjev proved that the essential dimension of the functor
H1(∗,Spin16) (without restricting to the kernel of the Rost invariant) is 24 by [BRV,
Remark 3.9].

6. Galois descent for representations of finite groups

In this section, we restate some observations of Serre from [Serre 00] and [GR]
regarding projective embeddings of simple groups in exceptional algebraic groups.
Combining these results with the u-invariant for E8 gives some new embeddings
results, see Example 6.5 below.

Let A be an abstract finite group and G a semisimple linear algebraic group
defined over Q. Fix a faithful representation π : G → GLN defined over Q.

6.1. Definition. Let Q ⊂ F be a field. The character of a homomorphism α : A →
G(F ) is the character of the composition π ◦ α : A → GLN (F ). We say that the
character of α is defined over F if all its values belong to F .

Let ϕ : A → G(F ) be a monomorphism and χ its character. Assume that χ is
defined over F , ZG(F )(A) = 1, that there is exactly one G(F )-conjugacy class of
homomorphisms A → G(F ) with character χ, and G is either split or Aut G = G.
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The following theorem can be extracted from Serre’s paper [Serre 00, 2.5.3]:

6.2. Theorem. In the above notation there exists a twisted form G0 of G defined
over F together with a monomorphism A → G0(F ). Moreover, for a field extension
K/F there is a representation A → G(K) with character χ iff G ' G0 over K.

Proof. Let

P = {α : A → G | α is a representation with character χ};

it is a variety over F and G acts on it by conjugation. By assumptions on A and
G this action is transitive. Moreover, the condition on the centralizer guarantees
that this action is simply transitive, i.e., for any α, β ∈ P (F ) there exists a unique
g ∈ G(F ) with β = αg. Thus, P is a G-torsor.

Let η ∈ H1(F,G) be the 1-cocycle corresponding to the torsor P . Then σ · ϕ =
η−1

σ ϕησ for all σ in the absolute Galois group Gal(F/F ). Define now G0 as the
twisted form of G over F by the torsor P . The group G0 is defined out of G(F ) by
a twisted Galois action ∗:

σ ∗ g = ησ(σ · g)η−1
σ (g ∈ G(F )).

Now it is easy to see that the homomorphism ϕ : A → G(F ) is an F -defined homo-
morphism A → G0(F ).

Let K/F be a field extension. If there is a representation A → G(K) with
character χ, then obviously G and G0 are isomorphic over K. Conversely, if G and
G0 are isomorphic over K, then the image of the cocycle η in H1(K, Aut(G)) is
zero. Since the centralizer of A in G is trivial, the group G is adjoint. If G is split
or AutG = G, it follows that η is already zero in H1(K, G). �

To characterize the isomorphism criterion of Theorem 6.2 we need the following
proposition.

6.3. Proposition. For each Killing-Cartan type Φ in the table
Type Φ F4 G2 E8

n 3 3 5
there is a unique algebraic group G0 of type Φ that is compact at every real place
of every number field; it is defined over Q. For every field K of characteristic zero
and n as in the table, the following are equivalent:

(1) G0 ⊗K is split.
(2) (−1)n = 0 ∈ Hn(K, Z/2).
(3) −1 is a sum of 2n−1 squares of the field K.

Proof. The first sentence is a standard part of the Kneser-Harder-Chernousov Hasse
principle. The group G0 is split at every finite place.

For the second claim, all cases but E8 are well-known. For E8, if G0 ⊗ K is
split, then (−1)5 is zero by the existence of u; see 2.1. For the converse, G0 equals
t(A) where A is the unique Albert Q-algebra with no nilpotents (see Example 3.6).
If (−1)5 — i.e., f5(A) — is zero in H5(K, Z/2Z), then A ⊗ K has nilpotents and
G0 ⊗K is split by Example 3.5. �

In the following examples we write Altl for the alternating group of degree l and
as ζl = e2πi/l a primitive l-th root of unity.
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6.4. Example (type G2). Let G denote the split group of type G2, A = G(F2)
(resp. PSL(2, 8), PSL(2, 13)), and K a field of characteristic zero. Then there is
an embedding A → G(K) iff −1 is a sum of 4 squares of K and ζ9 + ζ̄9 ∈ K (for
PSL(2, 8)), resp.

√
13 ∈ K (for PSL(2, 13)).

Indeed, fix the minimal fundamental representation G → GL7. By [A87, Theo-
rem 9(3,4,5)] there is a representation ϕ : A → G(Q) whose character χ is defined
over F = Q (resp. F = Q(ζ9 + ζ̄9), F = Q(

√
13)). Moreover, G acts transitively

on the homomorphisms A → G(Q) with character χ (see [A87] and [Griess, Cor. 1
and 2]).

By [A87, 9.3(1)] the representation ϕ is irreducible, so ZG(Q)(A) = 1. Thus, all
conditions of Theorem 6.2 are satisfied. Therefore there is a twisted form G0 of G
defined over F and an embedding A → G0(F ).

In particular, there is an embedding A → G0(R). Since any finite subgroup of a
Lie group is contained in its maximal compact subgroup, it is easy to see that G0⊗F

R is compact for all embeddings of F into R. Moreover, by Theorem 6.2 we have
an embedding A → G(K) iff G0 and G are isomorphic over K. By Proposition 6.3
the latter occurs iff −1 is a sum of 4 squares of K.

(Thus, we have recapitulated the argument from [Serre 00, 2.5.3]).

6.5. Example (type E8). Let G denote the split group of type E8, A = PGL(2, 31)
(resp. A = SL(2, 32)), and K a field of characteristic zero. We view G as a subgroup
of GL248 via the adjoint representation. There is an embedding A → G(K) iff −1
is a sum of 16 squares and ζ11 + ζ̄11 ∈ K (for SL(2, 32)).

Indeed, by [GR, Theorem 2.27 and Theorem 3.25] there exists an embedding
A → G(Q) whose character is defined over F = Q (resp. F = Q(ζ11 + ζ̄11)). Using
[GR] one can check all conditions of Theorem 6.2 (cf. Example 6.4).

It follows by Theorem 6.2 that there is an embedding A → G0(F ) for some
twisted form G0 of G. Again as in Example 6.4 one can see that G0 is the unique
group such that G0 ⊗F R is compact for all embeddings of F into R. Finally by
Proposition 6.3 G and G0 are isomorphic over a field extension K/F iff −1 is a sum
of 16 squares in K. This proves Theorem 1.1.

Roughly speaking, we have added the facts about the compact E8 contained in
the proof of Proposition 6.3 (which uses the existence of the u-invariant) to Serre’s
appendix [GR, App. B].

One can also take G to be the form of E8 over Q that is neither split nor
anisotropic. Then in the same way one can show that A embeds in G(K) iff −1 is
a sum of 4 squares and ζ11 + ζ̄11 ∈ K (for A = SL(2, 32)).

In the same way one can get the following example:

6.6. Example (type A1). Let G = PGL2, A = Alt4 (resp. Alt5), and K a field of
characteristic zero. Then there is an embedding A → G(K) iff −1 is a sum of 2
squares and for Alt5 additionally

√
5 ∈ K (see [Serre 72, §2.5] and [Serre 80, §1]).
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[H] G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J.
Reine Angew. Math. 274/275 (1975), 125–138.

[Inv] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol. The book of involutions. AMS Col-
loquium Publ., vol. 44, 1998.

[J] N. Jacobson, Exceptional Lie algebras. Lecture Notes in Pure and Applied Math., 1
Marcel Dekker, Inc., New York 1971.

[Lam] T.-Y. Lam, Introduction to quadratic forms over fields, Amer. Math. Soc., Providence,
RI, 2005.

[OViVo] D. Orlov, A. Vishik, V. Voevodsky, An exact sequence for KM
∗ /2 with applications to

quadratic forms, Ann. of Math. 165 (2007), no. 1, 1–13.
[PR] V.P. Platonov and A.S. Rapinchuk, Algebraic groups and number theory, Academic

Press, Boston, 1994.
[RY] Z. Reichstein and B. Youssin, Essential dimension of algebraic groups and a resolution

theorem for G-varieties, Canad. J. Math. 52 (2000), 1018–1056.
[Rost] M. Rost, On the Galois cohomology of Spin(14), Preprint 1999. Available from

http://www.math.uni-bielefeld.de/~rost

[Sem08] N. Semenov, Motivic construction of cohomological invariants. Preprint 2008. Available
from http://arxiv.org/abs/0905.4384

[Serre 72] J-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.
Math. 15 (1972), 259–331 (= Oe., vol. III, #94).

[Serre 80] , Extensions icosaédriques. In Seminar on Number Theory, 1979–1980, exp. 19,
Uni. Bordeaux I, Talence 1980 (= Oe., vol. III, #123).

[Serre 00] , Sous-groupes finis des groupes de Lie. Astérisque 266 (2000), 415–430 (= Oe.,
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Indag. Math. 28 (1966), 223–237.

(Garibaldi) Department of Mathematics & Computer Science, Emory University, At-
lanta, GA 30322, USA

E-mail address: skip@member.ams.org

URL: http://www.mathcs.emory.edu/~skip/

(Semenov) Mathematisches Institut der LMU München, Theresienstr. 39, 80333 München,
Germany

E-mail address: semenov@mathematik.uni-muenchen.de


