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Abstract

In the present paper we set up a connection between the indices of the
Tits algebras of a semisimple linear algebraic group G and the degree one
indices of its motivic J-invariant. Our main technical tools are the second
Chern class map and Grothendieck’s γ-filtration.

As an application we provide lower and upper bounds for the degree
one indices of the J-invariant of an algebra A with orthogonal involution σ
and describe all possible values of the J-invariant in the trialitarian case,
i.e., when degree of A equals 8. Moreover, we establish several relations
between the J-invariant of (A, σ) and the J-invariant of the corresponding
quadratic form over the function field of the Severi-Brauer variety of A.
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Introduction

The notion of a Tits algebra was introduced by Jacques Tits in his celebrated
paper on irreducible representations [Ti71]. This invariant of a linear algebraic
group G plays a crucial role in the computation of the K-theory of twisted flag
varieties by Panin [Pa94] and in the index reduction formulas by Merkurjev,
Panin and Wadsworth [MPW96]. It has important applications to the classifi-
cation of linear algebraic groups, and to the study of the associated homogeneous
varieties.

Another invariant of a linear algebraic group, the J-invariant, has been
recently defined in [PSZ08]. It extends the J-invariant of a quadratic form
which was studied during the last decade, notably by Karpenko, Merkurjev,
Rost and Vishik. The J-invariant is a discrete invariant which describes the
motivic behavior of the variety of Borel subgroups of G. It plays an important
role in the classification of generically split projective homogeneous varieties and
in studying of cohomological invariants of G (see [GPS10], [PS10]). Apart from
this, it plays a crucial role in the solution of a problem posed by Serre about
compact Lie groups of type E8 (see [Sem09]).

The main goal of the present paper is to set up a connection between the
indices of the Tits algebras of a group G and the elements of its motivic J-
invariant corresponding to degree 1 generators. The main results are Cor. 4.2
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and Thm. 4.7, which consist of inequalities relating those integers. As a crucial
ingredient, we use Panin’s computation of K0(X), where X is the variety of
Borel subgroups of G [Pa94]. The result is obtained using Grothendieck’s γ-
filtration on K0(X), and relies on the properties of the Steinberg basis and on
Lemma 4.10, which describes Chern classes of rational bundles of the first two
layers of the γ-filtered group K0(X).

Let (A, σ) be a central simple algebra endowed with an involution of orthogo-
nal type and trivial discriminant. Its automorphism group is a group of type Dn,
and the J-invariant in this setting provides a discrete motivic invariant of (A, σ).
The most interesting case is the degree 8 case, treated in Thm. 6.3, where the
proof is based on triality, and precisely on its consequences on Clifford algebras
(see [KMRT, §42.A]). In this case using results of Section 4, Dejaiffe’s direct
sum of algebras with involutions, and Garibaldi’s “orthogonal sum lemma” we
give a list of all possible values of the J-invariant.

The J-invariant of (A, σ) is an r-tuple of integers (j1, j2, . . . , jr) with 0 ≤
ji ≤ ki for some explicit upper bounds ki (see Section 3). Moreover, the Steen-
rod operations provide additional restrictions on values of the J-invariant (see
[PSZ08, 4.12] and Appendix below for a precise table for algebras with orthogo-
nal involutions). For quadratic forms, this was already noticed by Vishik [Vi05,
§5], who also checked that these restrictions are the only ones for quadratic
forms of small dimension (loc. cit. Question 5.13). As opposed to this, we prove
in Cor. 6.1 that some values for the J-invariant, which are not excluded by the
Steenrod operations, do not occur. This happens already in the trialitarian case,
and follows from a classical result on algebras with involution [KMRT, (8.31)],
due to Tits and Allen.

The paper is organized as follows. In Sections 1 and 3 we introduce notation
and explain known results. Sections 2 and 4 are devoted to the inequalities
relating Tits algebras and the J-invariant. In Sections 5 and 6 we give appli-
cations to algebras with orthogonal involutions. Finally, we study in Section 7
the properties of the quadratic form attached to an orthogonal involution σ af-
ter generic splitting of the underlying algebra A. In particular, when this form
belongs to the s-th power of the fundamental ideal of the Witt ring, we get
interesting consequences on the J-invariant of (A, σ) in Thm. 7.2.

Note that Junkins in [Ju11] has successfully applied and extended our results
for prime p = 3 to characterize the behavior of Tits indices of exceptional groups
of type E6.

1 Preliminaries. Notation.

1.1 Roots and weights. We work over a base field F of characteristic different
from 2. Let G0 be a split semisimple linear algebraic group of rank n over F .
We fix a split maximal torus T0 ⊂ G0, and a Borel subgroup B0 ⊃ T0, and
we let T̂0 be the character group of T0. We let Π = {α1, α2, . . . , αn} be a set
of simple roots with respect to B0, and {ω1, ω2, . . . , ωn} the respective set of
fundamental weights, so that α∨i (ωj) = δij . The roots and weights are always
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numbered as in Bourbaki [Bou].
Recall that Λr ⊂ T̂0 ⊂ Λω, where Λr and Λω are the root and weight lattices,

respectively. The lattice T̂0 coincides with Λr (respectively Λω) if and only if
G0 is adjoint (resp. simply connected).

1.2 The Picard group. We let X0 be the variety of Borel subgroups of G0,
or equivalently of its simply connected cover Gsc

0 . The Picard group Pic(X0)
can be computed as follows. Since any character λ ∈ T̂0 extends uniquely
to B0, it defines a line bundle L(λ) over X0. Hence, there is a natural map
T̂0 → Pic(X0), which is an isomorphism if G0 is simply connected. So, we can
identify the Picard group Pic(X0) with the weight lattice Λω (this fact goes back
to Chevalley, see also [MT95, Prop. 2.2]).

1.3 Inner forms. Throughout the paper, G denotes a twisted form of G0, and
T ⊂ G is the corresponding maximal torus. We always assume that G is an
inner twisted form of G0, and even a little bit more, that is G = ξG0 for some
cocycle ξ ∈ Z1(F,G0). Note that not every twisted form of G0 can be obtained
in this way. For instance, if G0 is simply connected, then G is a strongly inner
twisted form of G0.

We denote by X = ξX0 the corresponding twisted variety. Observe that X
is the variety of Borel subgroups of G and, hence, is a projective homogeneous
G-variety (see e.g. [MPW96, §1]). The varieties X and X0 are defined over F ,
and they are isomorphic over a separable closure Fs of F .

1.4 Tits algebras. Consider the simply connected cover Gsc
0 of G0 and the

corresponding twisted group Gsc = ξG
sc
0 , ξ ∈ Z1(F,G0). We denote by Λ+

ω ⊂ Λω
the cone of dominant weights. Since G is an inner twisted form of G0, for any
ω ∈ Λ+

ω the corresponding irreducible representation Gsc
0 → GL(V ), viewed as a

representation of Gsc×Fs, descends to a representation Gsc → GL1(Aω), where
Aω is a central simple algebra over F , called a Tits algebra of ξ (cf. [Ti71, §3,4]
or [KMRT, §27]). In particular, to any fundamental weight ω` corresponds a
Tits algebra Aω`

.
Taking Brauer classes, the assignment Λ+

ω 3 ω 7→ Aω induces a homomor-
phism β : Λω/T̂0 → Br(F ) known as the Tits map [Ti71].

For any ω ∈ Λω we denote by ω̄ its class in Λω/T̂0, by i(ω) the index of the
Brauer class β(ω̄), that is the degree of the underlying division algebra. For
fundamental weights, i(ω`) is the index of the Tits algebra Aω`

.

1.5 Algebras with involution. We refer to [KMRT] for definitions and classical
facts on algebras with involution. Throughout the paper, (A, σ) always stands
for a central simple algebra of even degree 2n, endowed with an involution
of orthogonal type with trivial discriminant. In particular, this implies that
the Brauer class [A] of the algebra A is an element of order 2 of the Brauer
group Br(F ). Because of the discriminant hypothesis, the Clifford algebra of
(A, σ), endowed with its canonical involution, is a direct product (C(A, σ), σ) =
(C+, σ+) × (C−, σ−) of two central simple algebras. If moreover n is even, the
involutions σ+ and σ− are also of orthogonal type.
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1.6 Hyperbolic involutions. We refer to [KMRT, §6] for the definition of isotropic
and hyperbolic involutions. In particular, recall that A has a hyperbolic involu-
tion if and only if it decomposes as A = M2(A′) for some central simple algebra
A′ over F . When this occurs, A has a unique hyperbolic involution σ0 up to iso-
morphism. Moreover, σ0 has trivial discriminant, and if additionally the degree
of A is divisible by 4, then its Clifford algebra has a split component by [KMRT,
(8.31)].

1.7 The cocenter for Dn. The connected component of the automorphism group
of (A, σ) is denoted by PGO+(A, σ). Since the involution has trivial discrimi-
nant, it is an inner twisted form of PGO+

2n (see 1.3). Both groups are adjoint
of type Dn. We recall from Bourbaki [Bou] the description of their cocenter
Λω/Λr in terms of the fundamental weights, for n ≥ 3:

If n = 2m is even, then Λω/Λr ' Z/2Z × Z/2Z, and the three non-trivial
elements are the classes of ω1, ω2m−1 and ω2m if m ≥ 2.

If n = 2m+1 is odd, then Λω/Λr ' Z/4Z, and the generators are the classes
of ω2m and ω2m+1. Moreover, the element of order 2 is the class of ω1.

1.8 Fundamental relations. The Tits algebras Aω1
, Aω2m−1

and Aω2m
of the

group G = PGO+(A, σ) are respectively the algebra A and the two components
C+ and C− of the Clifford algebra of (A, σ) (see [KMRT, §27.B]). Applying the
Tits map, and taking into account the description of Λω/T̂0 = Λω/Λr, we get
the so-called fundamental relations [KMRT, (9.12)] relating their Brauer classes,
namely:

If n = 2m is even, that is deg(A) ≡ 0 mod 4, then [C+] and [C−] are of order
at most 2, and [A]+ [C+]+ [C−] = 0 ∈ Br(F ). In other words, any of those three
algebras is Brauer equivalent to the tensor product of the other two.

If n = 2m + 1 is odd, that is deg(A) ≡ 2 mod 4, then [C+] and [C−] are of
order dividing 4, and [A] = 2[C+] = 2[C−] ∈ Br(F ).

2 Characteristic maps and restriction maps

2.1 Characteristic map for Chow groups. Let CH∗(−) be the graded Chow ring
of algebraic cycles modulo rational equivalence. Since X0 is smooth projective,
the first Chern class induces an isomorphism between the Picard group Pic(X0)
and CH1(X0) [Ha, Cor. II.6.16]. Combining with the isomorphism Λω ' Pic(X0)
of 1.2, we get an isomorphism, which is the simply connected degree 1 charac-
teristic map:

c(1)
sc : Λω −̃→ CH1(X0).

Hence, the cycles hi := c1(L(ωi)), i = 1 . . . n, form a Z-basis of the group
CH1(X0).

In general, the degree 1 characteristic map is the restriction of this isomor-
phism to the character group of T0,

c(1) : T̂0 ↪→ Λω −→ CH1(X0).
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Hence, it maps λ =
∑n
i=1 aiωi ∈ T̂0, where ai ∈ Z, to c1(L(λ)) =

∑n
i=1 aihi. For

instance, in the adjoint case, the image of c(1) is generated by linear combinations∑
j cijhj , where cij = α∨i (αj) are the coefficients of the Cartan matrix.
The degree 1 characteristic map extends to a characteristic map

c : S∗(T̂0) −→ CH∗(X0),

where S∗(T̂0) is the symmetric algebra of T̂0 (see [Gr58, §4], [De74, §1.5]). Its
image im(c) is generated by the elements of codimension one, that is by the
image of c(1).

2.2 Example. We let p = 2 and consider the Chow group with coefficients
in F2 Ch1(X0) = CH1(X0) ⊗Z F2. Assume G0 is of type D4. Using the simply
connected characteristic map, we can identify the degree 1 Chow group modulo
2 with the F2-lattice Ch1(X0) = F2h1 ⊕ F2h2 ⊕ F2h3 ⊕ F2h4.

In the adjoint case the image of the characteristic map c
(1)
ad with F2-coefficients

is the subgroup im(c
(1)
ad ) = F2h2 ⊕ F2(h1 + h3 + h4) ⊂ Ch1(X0).

In the half-spin case, that is when one of the two weights ω3, ω4 is in T̂0, say

ω3 ∈ T̂0, we get im(c
(1)
hs ) = F2h2 ⊕ F2h3 ⊕ F2(h1 + h4) ⊂ Ch1(X0).

2.3 Restriction map for Chow groups. Let G and ξ ∈ Z1(F,G0) be as in 1.3,
so that G = ξG0. The cocycle ξ induces an identification X×F Fs ' X0 ×F Fs.
Moreover, since X0 is split, CH∗(X0 ×F Fs) = CH∗(X0). Hence the restriction
map can be viewed as a map

resCH : CH∗(X) −→ CH∗(X×F Fs) ' CH∗(X0).

2.4 Definition. A cycle of CH∗(X0) is called rational if it belongs to the
image of the restriction resCH.

In [KM06, Thm. 6.4(1)], it is proven that, under the hypothesis (1.3), any
cycle in the image of the characteristic map c is rational, i.e. im(c) ⊆ im(resCH)
(See [KM06, §7] to compare their ϕ̄G with our characteristic map.)

2.5 Remark. Note that the image of the restriction map does not depend on
the choice of G in its isogeny class, while the image of the characteristic map
does.

For a split group G0, the restriction map is an isomorphism, and this inclu-
sion is strict, except if H1(F,G0) is trivial. On the other hand, generic torsors
are defined as the torsors for which it is an equality:

2.6 Definition. A cocycle ξ ∈ Z1(F,G0) defining the twisted group G = ξG0

is said to be generic if any rational cycle is in im(c), so that im(c) = im(resCH).

Observe that a generic cocycle always exists over some field extension of F
by [KM06, Thm. 6.4(2)].

2.7 Characteristic map for K0. Using the identification between Λω and Pic(X0)
of 1.2, one also gets a characteristic map for K0 (see [De74, §2.8]),

cK : Z[T̂0]→ K0(X0),
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where Z[T̂0] ⊂ Z[Λω] denotes the integral group ring of the character group
T̂0. Any generator eλ, λ ∈ T̂0, maps to the class of the associated line bundle
[L(λ)] ∈ K0(X0).

Combining a theorem of Pittie [Pi72] (see also [Pa94, §0]), and Chevalley’s
description of the representation rings of the simply connected cover Gsc

0 of G0

and its Borel subgroup Bsc
0 , one can check that K0(X0) is isomorphic to the

tensor product Z[Λω] ⊗Z[Λω]W Z. That is, the simply-connected characteristic
map

cK,sc : Z[Λω]→ K0(X0)

is surjective, and its kernel is generated by the elements of the augmentation
ideal that are invariant under the action of the Weyl group W .

2.8 The Steinberg basis. Consider the weights ρw defined for every w in the
Weyl group W by ρw =

∑
{αk∈Π, w−1(αk)∈Φ−} w

−1(ωk), where Φ− denotes the
set of negative roots with respect to Π. The elements

gw := cK,sc(eρw) = [L(ρw)], w ∈W,

form a Z-basis of K0(X0), called the Steinberg basis (see [St75, §2] and [Pa94,
§12.5]). Note that if w is the reflection w = si, 1 ≤ i ≤ n, associated to the root
αi, we get

ρsi =
∑

{αk∈Π, si(αk)∈Φ−}

si(ωk) = si(ωi) = ωi − αi.

2.9 Definition. The elements of the Steinberg basis gi = [L(ρsi)], i = 1 . . . n,
will be called special elements.

2.10 Restriction map for K0 and the Tits algebras. As we did for Chow groups,
we use the identification X ×F Fs ' X0 ×F Fs to view the restriction map for
K0 as a morphism

resK0 : K0(X)→ K0(X0) =
⊕
w∈W

Z · gw.

By Panin’s theorem [Pa94, Thm. 4.1], the image of the restriction map, whose
elements are called rational bundles, is the sublattice with basis

{i(ρw) · gw, w ∈W},

where i(ρw) is the index of the Brauer class β(ρ̄w), that is the index of any
corresponding Tits algebra (see 1.4).

Note that since the Weyl group acts trivially on Λω/T̂0, we have

ρ̄w =
∑

{αk∈Π|w−1(αk)∈Φ−}

ω̄k.

Therefore, the corresponding Brauer class is given by

β(ρ̄w) = Σ{αk∈Π|w−1(αk)∈Φ−}β(ω̄k).

In particular, for special elements we get β(ρ̄si) = β(ω̄i), so that i(ρsi) is the
index of the Tits algebra Aωi .
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2.11 Rational cycles versus rational bundles. Since the total Chern class of a
rational bundle is a rational cycle, the graded-subring B∗ of CH∗(X0) generated
by Chern classes of rational bundles consists of rational cycles. We use Panin’s
description of rational bundles to compute B∗. The total Chern class of i(ρw)·gw
is given by

c(i(ρw) · gw) =
(
1 + c1(L(ρw))

)i(ρw)
=

i(ρw)∑
k=1

(
i(ρw)

k

)
c1(L(ρw))k

Therefore, B∗ is generated as a subring by the homogeneous elements(
i(ρw)

k

)
c1(L(ρw))k, for w ∈W, 1 ≤ k ≤ i(ρw).

Let p be a prime number, and denote by iw the p-adic valuation of i(ρw),
so that i(ρw) = piwq for some prime-to-p integer q. By Luca’s theorem [Di, p.

271] the binomial coefficient
(i(ρw)
piw

)
is congruent to q modulo p. Hence its image

in Fp is invertible. Considering the image in the Chow group modulo p of the

rational cycle
(i(ρw)
piw

)
c1(L(ρw))p

iw
, we get:

2.12 Lemma. Let p be a prime number. For any w in the Weyl group, the
cycle

c1(L(ρw))p
iw ∈ CH(X0)⊗Z Fp is rational.

3 The J-invariant

In this section, we briefly recall the definition and key properties of the J-
invariant following [PSZ08].

3.1 The Chow ring of G0. Let us denote by π : CH∗(X0)→ CH∗(G0) the pull-
back induced by the natural projection G0 → X0, where X0 is the variety of
Borel subgroups of G0. By [Gr58, §4, Rem. 2], π is surjective and its kernel is
the ideal I(c) ⊂ CH∗(X0) generated by non-constant elements in the image of
the characteristic map (see Section 2). Therefore, there is an isomorphism of
graded rings

CH∗(X0)/I(c) ' CH∗(G0).

In particular, in degree 1, we get

CH1(G0) ' CH1(X0)/(im c(1)) ' Λω/T̂0. (1)

By [Kc85, Thm. 3] the Chow ring of G0 with Fp-coefficients is isomorphic
as an Fp-algebra (and even as a Hopf algebra) to

Ch∗(G0) ' Fp[x1, . . . , xr]/(x
pk1

1 , . . . , xp
kr

r ) (2)

for some integers r, ki and degrees di of xi such that d1 ≤ . . . ≤ dr. Below in
3.5 we explain, how we choose this isomorphism in D2m case. The number of
generators of degree 1 of Ch∗(G0), denoted by s, is the dimension over Fp of

the vector space Λω/T̂0 ⊗Z Fp.
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3.2 Motivic decomposition. Let G be an inner form of G0 that is G = ξG0 for
some ξ ∈ Z1(F,G0). Consider the variety X of Borel subgroups of G. Recall
that X ' ξX0. The main result (Thm. 5.13) in [PSZ08] asserts that the Chow-
motive M(X) splits as a direct sum of twisted copies of some indecomposable
motive Rp(G) and the Poincaré polynomial of Rp(G) over a separable closure
of F (see [PSZ08, §1.3]) is given by

P (Rp(G)×F Fs, t) =

r∏
i=1

1− tdipji

1− tdi
, for some 0 ≤ ji ≤ ki. (3)

The parameters r, di and ki for i = 1, . . . , r are the same as in the Chow ring
of G0, but the integers ji depend on ξ.

In this way we obtain a multiset of pairs

{(d1, j1), . . . , (dr, jr)} (4)

with d1 ≤ . . . ≤ dr and 0 ≤ ji ≤ ki for each i = 1 . . . r. Recall from [PSZ08, §4]
that ji = ki for each i = 1 . . . r if ξ is a generic cocycle, and j1 = . . . = jr = 0
if and only if X has a point of degree prime to p or, equivalently, if ξ splits over
a p-primary closure of the base field F . Moreover, as explained in [PSZ08, 4.7]
the integers ji can only decrease after extension of the base field.

Observe that the multiset {(d1, j1), . . . , (dr, jr)} depends only on the group
G and can be viewed as an invariant of G.

Let now Gan denote the semisimple anisotropic kernel of G and let

{(d′1, j′1), . . . , (d′m, j
′
m)}

be its (unordered) J-invariant. It follows from [PSZ08, Cor. 5.19] and for-
mula (3) that the the multisets {(dl, jl) | jl 6= 0} and {(d′l, j′l) | j′l 6= 0} are
equal, i.e. the non-zero entries in the J-invariants of G and Gan are the same.

3.3 The J-invariant. Choosing a cocycle ξ ∈ Z1(F,G0) and an isomorphism
(2) allows us to compute the integers ji from (4) as follows: Let Rξ denote the
subring

Im
(
Ch∗(ξX0)

π ◦ resCh−−−−−−→ Ch∗(G0)
(2)−−→ Fp[x1, . . . , xr]/(x

pk1

1 , . . . , xp
kr

r )
)
, (5)

where the restriction map is defined in (2.3). Following [PSZ08, Definition 4.6]
we introduce the deglex order on the set of generators {x1, . . . , xr} with x1 <

. . . < xr. Define ji to be the smallest non-negative integer a such that xp
a

i mod-
ulo smaller terms lies in Rξ. We get an ordered r-tuple of integers (j1, . . . , jr),
whose elements precisely are the indices j1, . . . , jr of (4). We call this tuple the
J-invariant of ξ with respect to (2). In particular, the first element j1 of the

J-invariant is the smallest non-negative integer a such that xp
a

1 belongs to Rξ.
Hence, j1 = 0 if and only if x1 ∈ Rξ.
3.4 Example. One can check from the values given in the table [Kc85,
Table II] (see also [PSZ08, §4]), that for simple groups G, except if p = 2 and
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G is adjoint of type Dn with n even, the degrees di are pairwise distinct. If
so, the increasing hypothesis d1 < · · · < dr determines a canonical ordering
of the generators, and we obtain a well defined invariant (j1, j2, . . . , jr) of the
group G which doesn’t depend on a choice of a cocycle ξ with G ' ξG0 and an
isomorphism (2). We denote it by Jp(G).

3.5 Example. Assume that p = 2 and G0 is adjoint of type D2m, with m ≥ 1,
that is G0 = PGO+

4m. In this case s = 2 and an isomorphism (2) is uniquely
determined by a choice of generators x1 and x2 of degree one. In view of (1)
choosing two degree 1 generators for Ch∗(G0) amounts to the choice of two
generators of the cocenter Λω/Λr = Z/2Z× Z/2Z of the group. We set

x1 = π(h1), x2 = π(h2m) if m 6= 1 and x1 = π(h1 + h2), x2 = π(h2) if m = 1,
(6)

where hi = c1(L(ωi)) as in Section 2. Observe that this is compatible with [PSZ08],

since the relations x2k1

1 = x2k2

2 = 0 are fulfilled. By definition j2 is then the
smallest integer b such that

x2b

2 +
∑

0<i≤2b

aix
i
1x

2b−i
2 ∈ Rξ for some ai ∈ F2.

3.6 The J-invariant of an algebra with involution. Let G0 = PGO+
4m and

consider ξ ∈ Z1(F,G0). By [KMRT, p. 409] the class of ξ corresponds to
a central simple algebra A of degree 4m with orthogonal involution σ and a
designation of the two components of its Clifford algebra. Note that, if m ≥ 3, A
is the Tits algebra Aω1

. Consider the two cocycles ξ+ = ξ and ξ− corresponding
to the opposite designation of the components of the Clifford algebra.

We claim that the J-invariants of ξ+ and ξ− with respect to (6) are equal.
Indeed, since the two cocycles lead to the same group PGO+(A, σ), the motivic
point of view recalled in § 3.2 shows that the two tuples can only differ by
a permutation of j1 and j2, which both correspond to generators of degree 1.
Hence, it suffices to compute the first entry j1 of the J-invariants of ξ+ and
ξ−. The images of the restriction maps defined by ξ+ and ξ− differ by an
automorphism of Ch∗(X0), which permutes h2m−1 and h2m and, hence, leaves
the ideal I(c) invariant. This induces a ring automorphism of Ch∗(G0), which
fixes x1. Hence, x2a

1 ∈ Rξ+ if and only if x2a

1 ∈ Rξ− and, thus, j1 for ξ+ and ξ−

are equal.
So the tuple (j1, . . . , jr) is an invariant of the algebra with involution (A, σ),

denoted by J(A, σ). If we are not in the trialitarian case, i.e., if m 6= 2, the al-
gebra with involution (A, σ) is uniquely determined by its automorphism group;
therefore, (j1, . . . , jr) also is an invariant of the group G, which does not depend
on the choice of a cocycle, and denoted by J2(G).

3.7 Remark. We could also take x1 = π(h1) and x2 = π(h2m−1) in (6), this
would not affect the value of the J-invariant.

3.8 The trialitarian case. In the trialitarian case, i.e., if m = 2, the twisted
group G = ξG0 can be described as the connected component of the automor-
phism group of three possibly non-isomorphic degree 8 algebras with orthogonal
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involution, which are the Tits algebras of the weights ω1, ω3 and ω4 (see [KMRT,
§42])

G ' PGO+(A, σA) ' PGO+(B, σB) ' PGO+(C, σC).

Therefore, the J-invariant does depend in this case of the choice of a cocycle.
Precisely, picking a cocycle determines an ordering of those three algebras with
involution, and the J-invariant of the cocycle is the J-invariant of the first
algebra with involution in the corresponding triple. Nevertheless, since the
automorphism group is the same, the variety X and its motive do not depend
on this choice. Hence, the multiset {(1, j1), (1, j2), (2, j3)} is the same for all
three algebras with involution, so that if J(A, σA) = (j1, j2, j3), then

J(B, σB), J(C, σC) ∈ {(j1, j2, j3), (j2, j1, j3)}.

In Theorem 6.3 and Example 6.8 below, we give a more precise statement,
and provide explicit examples of algebras with involution having isomorphic
automorphism groups and different J-invariants.

4 The J-invariant in degree one and indices of
the Tits algebras

In this section, we prove the main results of the paper, which give connections
between the indices of the J-invariant corresponding to generators of degree 1
and indices of Tits algebras of the group G (cf. [PS10, §4]).

4.1 Notation. From now on, we let s be the dimension over Fp of Λω/T̂0⊗Fp '
Ch1(G0), and we fix G0 and a prime p so that s ≥ 1. We fix a cocycle ξ, and a
presentation (2) of the Chow group of G0. The J-invariant in this section refers
to the J-invariant of ξ with respect to (2). Moreover, we assume throughout
this section that the degree 1 generators are given by x` = π(hi`) ∈ Ch1(G0)
for some integers i1, . . . , is, chosen so that the classes ωi` , ` = 1, . . . , s, generate

Λω/T̂0 ⊗ Fp.
Note that one can always choose generators x` in such a way, though this

conflicts the convention we made in (6) to define the J-invariant of a degree 4
algebra with involution.

Consider the special elements gi, i = 1 . . . n of the Steinberg basis of K0(X0)
(see Definition 2.9). Since c1(gi) = hi − c1(L(αi)) ∈ Ch1(X0), we have

π(c1(gi)) = π(hi)− π(c1(L(αi))) = π(hi) ∈ Ch1(G0).

Hence x` = π(c1(gi`)). In view of the isomorphism (1), it follows that for any
g ∈ Pic(X0) its Chern class modulo p can be written as

c1(g) =

s∑
`=1

a`c1(gi`) mod im(c(1)) ∈ Ch1(X0) (7)

As an immediate consequence of rationality of cycles introduced in Lemma 2.12
we obtain a different proof of the first part of [PS10, Prop. 4.2]:
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4.2 Corollary. For ` = 1, . . . , s the first entries j` of the J-invariant are
bounded

j` ≤ ii` ,

by the p-adic valuation ii` of the index of the Tits algebra Aωi`
associated with

ωi` .

Proof. We apply lemma 2.12 to the weight ρsi` = ωi` −αi` . As noticed in 2.10,
the index i(ρsi` ) is equal to the index i(ωi`) of the Tits algebra Aωi`

. Hence, the

cycle c1(gi`)
p
ii` is rational, and its image xp

ii`

` ∈ Ch∗(G0) belongs to R := Rξ.
The inequality then follows from the definition of j` (see 3.3).

Assume now that p = 2 and G0 is adjoint of type D2m, with m ≥ 2. As
explained in 3.5, we take i1 = 1, i2 = 2m, and define x1 and x2 as in (6).

4.3 Corollary. If p = 2 and G is adjoint of type D2m with m ≥ 2, we have
s = 2,

j1 ≤ i1 and j2 ≤ min{i2m−1, i2m},

where i` is the 2-adic valuation of the index of the Tits algebra Aω`
.

The next result, which gives an inequality in the other direction, uses the
notion of common index, which we introduce now.

4.4 Definition. Consider the Tits algebrasAωi`
associated to the fundamental

weights ωi` , for 1 ≤ ` ≤ s, where i` are as in 4.1. We define their common index
iJ to be the p-adic valuation of the greatest common divisor of all the indices
ind(A⊗a1ωi1

⊗ . . .⊗A⊗asωis
), where at least one of the ai is coprime to p.

4.5 Example. If s = 1, then iJ is the p-adic valuation ii1 of the index of the
Tits algebra Aωi1

. Assume for instance that G is adjoint of type D2m+1. As
recalled in 1.7, we may take i1 = 2m or i1 = 2m + 1, so that iJ is the 2-adic
valuation of any component C+ or C− of the Clifford algebra of (A, σ). From
the fundamental relations 1.8, we know that the two components have the same
index.

4.6 Example. If p = 2 and G0 is adjoint of type D2m with m ≥ 2, then s = 2.
Using 1.8, one can check that iJ is the p-adic valuation of the greatest common
divisor of the indices of Aω1

, Aω2m−1
and Aω2m

, that is

iJ = min{i1, i2m−1, i2m}.

We will prove:

4.7 Theorem. Let iJ be the common index of the Tits algebras Aωi`
, ` =

1 . . . s.
If iJ > 0, then j` > 0 for every `, 1 ≤ ` ≤ s.
If iJ > 1 and p = 2, then for every ` such that k` > 1 we have j` > 1.

11



Proof. Consider the ideal I(resCh) of Ch∗(X0) generated by non-constant ratio-
nal elements. For any integer i, we let I(resCh)(i) ⊂ Chi(X0) be the homoge-
neous part of degree i. Since the image of the characteristic map consists of
rational elements, we have I(c) ⊂ I(resCh). The theorem follows immediately
from the following lemma:

4.8 Lemma. If iJ > 0, then I(resCh)(1) = I(c)(1) ⊂ Ch1(X0).
If iJ > 1 and p = 2, then I(resCh)(2) = I(c)(2) ⊂ Ch2(X0).

Indeed, let us assume first that iJ > 0. By the lemma, any element in

im(res
(1)
Ch) = I(resCh)(1) belongs to I(c)(1), which is in the kernel of π. Therefore,

the image of the composition

R
(1)
ξ = im

(
Ch1(X)

res
(1)

Ch−−−−→ Ch1(X0)
π−→ Ch1(G0)

)
is trivial, R

(1)
ξ = {0}. From the definition 3.3, 3.5 of j1 and j2, this implies that

they are both strictly positive.
The proof of the second part follows the same lines. We write it in details

for s = 2 and k1, k2 > 1. Assume that iJ > 1. Since the image im(resCh)(2) is

contained in I(resCh)(2), the lemma again implies that R
(2)
ξ = {0}. On the other

hand, the hypothesis on k1 and k2 guarantees that in the truncated polynomial

algebra F2[x1, x2]/(x2k1

1 , x2k2

2 ) ⊂ Ch∗(G0), the elements x2
1 and x2

2 + a1x1x2 +
a2x

2
1 are all non-trivial. Hence they do not belong to Rξ, and we get j1, j2 >

1.

The rest of the section is devoted to the proof of Lemma 4.8. The main tool
is the Riemann-Roch theorem, which we now recall.

4.9 Filtrations of K0 and the Riemann-Roch Theorem. Let X be a smooth
projective variety over F . Consider the topological filtration on K0(X) given
by

τ iK0(X) = 〈[OV ], codimV ≥ i〉,

where OV is the structure sheaf of the closed subvariety V in X. There is an
obvious surjection

ψ : CHi(X)→ τ i/i+1K0(X) = τ iK0(X)/τ i+1K0(X),

given by V 7→ [OV ]. By the Riemann-Roch theorem without denominators [Ful,
§15], the i-th Chern class induces a map in the opposite direction

ci : τ
i/i+1K0(X)→ CHi(X)

and the composite ci ◦ ψ is the multiplication by (−1)i−1(i− 1)!. In particular,
it is an isomorphism for i ≤ 2 (see [Ful, Ex. 15.3.6 ]).

The topological filtration can be approximated by the so-called γ-filtration.
Let cK0

i be the i-th Chern class with values in K0 (see [Ful, Ex. 3.2.7(b)],
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or [Ka98, §2]). We use the convention cK0
1 ([L]) = 1− [Lv] for any line bundle L,

where Lv is the dual of L. Similarly, one can compute the second Chern class

c2
(
cK0
1 ([L1])cK0

1 ([L2])
)

= −c1(L1)c1(L2). (8)

The γ-filtration on K0(X) is given by the subgroups (cf. [GZ10, §1])

γiK0(X) = 〈cK0
n1

(b1) · . . . · cK0
nm

(bm) | n1 + . . .+ nm ≥ i, bl ∈ K0(X)〉,

(see [Ful, Ex.15.3.6], [FL, Ch.3,5]). We let γi/i+1(K0(X)) = γiK0(X)/γi+1K0(X)
be the respective quotients, and γ∗(X) = ⊕i≥0γ

i/i+1(K0(X)) the associated
graded ring.

By [Ka98, Prop. 2.14], γi(K0(X)) is contained in τ i(K0(X)), and they co-
incide for i ≤ 2. Hence, by the Riemann-Roch theorem, the Chern class ci with
values in CHi(X) vanishes on γ(i+1)K0(X), and induces a map

ci : γ
i/i+1(K0(X))→ CHi(X).

In codimension 1 we get an isomorphism

c1 : γ1/2(K0(X))
'−→ CH1(X)

which sends for a line bundle L the class cK0
1 (L) to c1(L). In codimension 2 the

map
c2 : γ2/3(K0(X)) � CH2(X),

is surjective and has torsion kernel [Ka98, Cor. 2.15].
Let us now apply this to the varieties X0 and X of Borel subgroups of G0

and G respectively. Since K0(X0) is generated by the line bundles gw = [L(ρw)]
for w ∈W , one can check that γi/i+1(X0) is generated by the products

{cK0
1 (gw1) . . . cK0

1 (gwi), w1, . . . , wi ∈W}.

Moreover, the restriction map commutes with Chern classes, so it induces

resγ : γ∗(X)→ γ∗(X0).

Using Panin’s description of the image of the restriction map resK0 we ob-

tain that the image of res
(1)
γ : γ1/2(X)→ γ1/2(X0) is generated by the elements

cK0
1 (i(ρw)gw) = i(ρw)cK0

1 (gw), for any w ∈ W , while the image of res
(2)
γ is

generated by

i(ρw1
)i(ρw2

)cK0
1 (gw1

)cK0
1 (gw2

) and cK0
2 (i(ρw)gw) for w1, w2, w ∈W.

If the index i(ρw) is 1, then cK0
2 (i(ρw)gw) = 0. Otherwise, the Whitney sum

formula gives

cK0
2 (i(ρw)gw) =

(
i(ρw)

2

)
cK0
1 (gw)2.

Applying the morphisms c1 and c2, and using (8), we now get
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4.10 Lemma. The subgroup c1
(
im(res

(1)
γ )
)
∈ CH1(X0) is generated by i(ρw)c1(gw),

for all w ∈ W . The subgroup c2
(
im(res

(2)
γ )
)
∈ CH2(X0) is generated by the ele-

ments i(ρw1
)i(ρw2

)c1(gw1
)c1(gw2

) and
(
i(ρw)

2

)
c1(gw)2 for all w1, w2, w ∈W .

Proof of Lemma 4.8. Since the image of the characteristic map consists of ra-
tional elements (see 2.3), we already know that I(c) ⊂ I(resCh). We now prove
the reverse inclusions for the homogeneous parts of degree 1 and 2 under the
relevant hypothesis on the common index iJ . Note that since c1 and c2 are both
surjective, and commute with restriction maps, one has

im
(
res

(k)
Ch

)
= ck

(
im(res(k)

γ )
)
, for k = 1, 2.

In degree 1, we have I(resCh)(1) = im(res
(1)
Ch), so to prove the first part of the

lemma, we have to prove that if iJ > 0, then for any w ∈ W , the element
i(ρw)c1(gw) belongs, after tensoring with Fp, to I(c)(1) = im c(1). Let us write

c1(gw) =

s∑
`=1

a`c1(gi`) mod im c(1),

as in (7). If all the a` ∈ Fp are trivial, we are done, so we may assume at least
one of them is invertible in Fp. The weights ρw and ρi` satisfy the same relation

ρw =

s∑
`=1

a`ρi` mod T̂0 ⊗Z Fp.

Applying the morphism β, we get that the p-primary part of the Brauer class
β(ρ̄w) coincides with the p-primary part of the Brauer class of⊗s`=1A

a`
ωi`

(see 2.10).

The hypothesis on iJ guarantees that this index of this algebra is divisible by
p. Hence i(ρw), which is the index of β(ρ̄w), is also divisible by p, so that
i(ρw)c1(gw) = 0 in the Chow group Ch1(X0) modulo p, and we are done.

Let us now assume that p = 2 and iJ > 1. The homogeneous part I(resCh)(2)

decomposes as

I(resCh)(2) = im
(
res

(1)
Ch

)
Ch1(X0) + im

(
res

(2)
Ch

)
.

By the first part of the Lemma, we already know that

im
(
res

(1)
Ch

)
Ch1(X0) ⊂ I(c).

Hence it remains to prove that im(res
(2)
Ch) = c2(im res

(2)
γ ) ⊂ I(c)(2). The proof

for the degree 1 part already shows that i(ρw1)i(ρw2)c1(gw1)c1(gw2) belongs to

I(c)(2). The same argument extends to
(
i(ρw)

2

)
c1(gw)2. Indeed, if the coefficients

a` are not all trivial modulo 2, the condition on the common index now implies
that 4 divides i(ρw), so that

(
i(ρw)

2

)
is zero modulo 2.
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5 Applications to quadratic forms and algebras
with orthogonal involutions

Let ϕ be a non-degenerate quadratic form of even dimension 2n. We always
assume that ϕ has trivial discriminant, so that its special orthogonal group
O+(ϕ) satisfies condition 1.3. We define the J-invariant of ϕ as

J(ϕ) = J2

(
O+(ϕ)

)
.

Let ϕ0 be any non-degenerate subform of ϕ of codimension 1. Since ϕ has
trivial discriminant, ϕ and ϕ0 have the same splitting fields. In particular, each
of them splits over the function field of the maximal orthogonal Grassmannian
of the other. Therefore by the comparison lemma [PSZ08, 5.18(iii)], the corre-
sponding indecomposable motives R2

(
O+(ϕ0)

)
and R2

(
O+(ϕ)

)
are isomorphic.

Hence they have the same Poincaré polynomial, and by (3), it follows that
O+(ϕ0) and O+(ϕ) have the same J-invariant. Since any odd-dimensional form
can be embedded in an even-dimensional form with trivial discriminant, we only
consider the even-dimensional case in the sequel.

Theorem 4.7 immediately implies:

5.1 Corollary. Let ϕ be a 2n-dimensional quadratic form with trivial dis-
criminant. The 2-adic valuation iS of its Clifford algebra and the first index j1
of its J-invariant are related as follows:

(1) j1 ≤ iS; (2) If n ≥ 2, and iS > 0, then j1 > 0;

(3) If n ≥ 3 and iS > 1, then j1 > 1.

Let now (A, σ) be a degree 2n central simple algebra over F , endowed with
an involution of orthogonal type and trivial discriminant. In particular, this
implies that A has exponent 2, so that it has index 2iA for some integer iA. The
connected component PGO+(A, σ) of the automorphism group of (A, σ) is an
adjoint group of type Dn. Because of the discriminant hypothesis, it is an inner
twisted form of PGO+

2n.
The J-invariant J(A, σ) was defined in section 3. From the table [PSZ08,

4.13] (see also the appendix below), J(A, σ) is an r-tuple (j1, j2, . . . , jr), with
r = m + 1 if n = 2m and r = m if n = 2m + 1. Note that our notation
slightly differs from the notation in the table, where in the n-odd case, there
is an additional index, but which is bounded by k1 = 0. So, for n odd, our
(j1, . . . , jr) coincides with (j2, . . . , jr+1) in [PSZ08]. In particular, the indices
corresponding to generators of degree 1 are j1 if n is odd and j1 and j2 if n is
even.

Since σ has trivial discriminant, its Clifford algebra splits as a direct product
C(A, σ) = C+×C− of two central simple algebras over F . We let iA (respectively
i+, i−) be the 2-adic valuation of the index of A (respectively C+, C−). From
Examples 4.5 and 4.6, the common index iJ is

iJ =

{
i+ = i− if n is odd,
min{iA, i+, i−} if n is even.
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Hence, Corollaries 4.2 and 4.3 and Theorem 4.7 translate as follows:

5.2 Corollary. Depending on the parity of n = deg(A)/2 we have

n is even, n 6= 2 and iJ = min{iA, i+, i−} n is odd and iS = i+ = i−
(1) j1 ≤ iA; (1) j1 ≤ iS;
(2) j2 ≤ min{i+, i−}; (2) If iS > 0, then j1 > 0;
(3) If iJ > 0, then j1 > 0 and j2 > 0. (3) If deg(A) ≥ 6 and iS > 1,
(4) If deg(A) ≡ 0[8] and iJ > 1, then j1 > 1. then j1 > 1.
(5) If deg(A) ≥ 8 and iJ > 1, then j2 > 1.

The additional conditions on the degrees are obtained from the table [PSZ08,
4.13], and guarantee that k1 > 1 or k2 > 1.

We say that an algebra (A, σ) with deg(A) ≡ 0[4] is half-spin, if one of
the components of its Clifford algebra is split. As explained in [Ga09, 4.1], this
happens if and only if one of the cocycles ξ ∈ Z1(F,PGO+

4m) associated to (A, σ)
lifts to the half-spin group. Therefore, we can refine the inequalities in this case
by applying Theorem 4.7 to the corresponding twisted group Spin+(A, σ). The
common index is iJ = iA, and we get:

5.3 Corollary. If deg(A) ≡ 0[4] and (A, σ) is half-spin, then:

(1) If iA > 0, then j1 > 0. (2) If iA > 1, then j1 > 1.

5.4 Remark. Using [PS10, Prop. 4.2] one can show that (A, σ) is half-spin
iff j2 = 0, and A is split iff j1 = 0.

6 The trialitarian case

From now on, we assume that (A, σ) has degree 8. The J-invariant of (A, σ) is
a triple J(A, σ) = (j1, j2, j3) with 0 ≤ j1, j2 ≤ 2 and 0 ≤ j3 ≤ 1. In this section,
we will explain how to compute J(A, σ). As a consequence of our results, we
will prove:

6.1 Corollary. (i) There is no algebra of degree 8 with orthogonal involution
with trivial discriminant having J-invariant equal to (1, 2, 0), (2, 1, 0) or (2, 2, 0).

(ii) All other possible values do occur.

In particular, this shows that the restrictions described in the table [PSZ08,
4.13] (see also §8), which were obtained by applying the Steenrod operations on
Ch∗(G0) (loc. cit. 4.12), are not the only ones.

Recall that the group PGO+(A, σ) is of type D4. To complete the classifica-
tion in this case, we need to understand the action of the symmetric group S3

on the J-invariant (see 3.8). Let (B, τ) and (C, γ) be the two components of the
Clifford algebra C(A, σ), each endowed with its canonical involution. It follows
from the structure theorems [KMRT, (8.10) and (8.12)] that both are degree
8 algebras with orthogonal involutions. The triple

(
(A, σ), (B, τ), (C, γ)

)
is a

trialitarian triple in the sense of loc.cit. §42.A, and in particular, the Clifford
algebra of any of those three algebras with involution is the direct product of
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the other 2. Hence, if one of them, say (A, σ) is split, then the other two are
half-spin.

6.2 Definition. The trialitarian triple
(
(A, σ), (B, τ), (C, γ)

)
is said to be

ordered by indices if the indices of the algebras A, B and C satisfy

ind(A) ≤ ind(B) ≤ ind(C).

In the next theorem we compute the J-invariant of such a triple. We remark
that we don’t know any elementary proof, which does not use both inequalities
from Theorem 4.7.

6.3 Theorem. Let
(
(A, σ), (B, τ), (C, γ)

)
be a trialitarian triple ordered by

indices, so that iA ≤ iB ≤ iC . The J-invariants are given by

J(A, σ) = (j, j′, j3) and J(B, τ) = J(C, γ) = (j′, j, j3),

where j = min{iA, 2} and j′ = min{iB , iC , 2} = min{iB , 2}.
Moreover, the third index j3 is 0 if the involution is isotropic and 1 otherwise.

6.4 Remark. (i) The first index of the J-invariant of a degree 8 algebra with
involution (D, ρ) is min{iD, 2} if D is not of maximal index in its triple. But if
indD is maximal, then j1 might be strictly smaller. In Example 6.9 below, we
will give an explicit example where j1 < iD = 2.

(ii) By 3.8, we already know that j3 does not depend on the choice of an
element of the triple. On the other hand, as explained in [Ga99], the involutions
σ, τ and γ are either all isotropic or all anisotropic. The triple is said to be
isotropic or anisotropic accordingly.

Proof. To start with, let us compute the first two indices j1 and j2 of the
J-invariant of (A, σ). Since we are in degree 8, they are both bounded by
2. Moreover, the triple being ordered by indices, the common index is given
by iJ = iA. So the equality j1 = j follows directly from the inequalities of
Corollary 5.2. If additionally j′ = j, the very same argument gives j2 = j′.
Assume now that j and j′ are different, that is j < j′. If so, j = 0 or j = 1.
In the first case, we have iA = 0 so that the algebra A is split, and the result
follows from Corollary 5.1.

The only remaining case is j = iA = 1 and iB ≥ 2, so that j′ = 2. Con-
sider the function field FA of the Severi-Brauer variety of A, which is a generic
splitting field of A. By the fundamental relations 1.8, the algebra C is Brauer
equivalent to A⊗B. Hence Merkurjev’s index reduction formula [Me91] says

ind(BFA
) = min{ind(B), ind(B ⊗A)} = ind(B).

So the values of iB and j′ are the same over F and FA. We know the result
holds over FA by reduction to the split case. Since the index j2 can only decrease
under scalar extension, we get j2 ≥ j′ = 2, which concludes the proof in this
case.

So the J-invariant of (A, σ) is given by J(A, σ) = (j, j′, j3) for some integer
j3. Let us now compute the J-invariant of (B, τ) and (C, γ). Recall from 3.8
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that (j, j′, j3) and (j′, j, j3) are the only possible values. So, if j = j′, there
is no choice and we are done. Again, there are two remaining cases. Assume
first that j = iA = 0 and j′ ≥ 1, so that J(A, σ) = (0, j′, j3). Since A is split,
(B, τ) and (C, γ) are half-spin, so they have trivial j2 and this gives the result.
Assume now that j = 1 and j′ = 2, so that J(A, σ) = (1, 2, j3). By the previous
case, over the field FA, both (B, τ) and (C, γ) have J-invariant (2, 0, j3). So the
value over F has to be (2, 1, j3).

To conclude the proof, it only remains to compute j3. If the involution is
anisotropic, then by [Ka00] in the division case, by [Si05, Prop. 3] in index 4, and
by [PSS01, Cor. 3.4] in index 2 (see also [Ka09]) the triple remains anisotropic
after scalar extension to a generic splitting field FA of the algebra A, and the
J-invariant over FA is (0, ∗, ∗). Now extending scalars to a generic splitting field
FC of the Clifford algebra, by [La96, Thm. 4] the respective quadratic form still
remains anisotropic, and the J-invariant equals (0, 0, 1). Hence j3 is equal to 1
over the generic splitting fields, and this implies j3 = 1 over F .

If σ is isotropic, then obviously J(A, σ) equals (0, 2, 0), if the semisimple
anisotropic kernel of the respective group is of type A3, equals (1, 1, 0), if the
anisotropic kernel is of type 3A1, and equals (0, 1, 0), if it is of type 2A1.

The first part of Corollary 6.1 follows from Theorem 6.3. Indeed, if one of
j1, j2 is 2 and the other one is ≥ 1, then the algebras A, B and C are all three
non-split, and B and C have index ≥ 4. By 1.6, since A and B are non-split,
the involution γ on C is not hyperbolic, so it is anisotropic, and the theorem
gives j3 = 1.

Explicit examples

We now prove the second part of Corollary 6.1. Obviously, if A is split, and σ
is adjoint to a quadratic form ϕ, then J(A, σ) = (0, J(ϕ)), and any triple with
j1 = 0 is obtained for a suitable choice of ϕ. Considering the components of the
even Clifford algebra of those quadratic forms, we also obtain all triples with
j2 = 0 by Theorem 6.3. The maximal value (2, 2, 1) is obtained from a generic
cocycle; such a cocycle exists by [KM06, Thm. 6.4(ii)]. Hence, it only remains
to prove that the values (1, 1, 0), (1, 1, 1), (1, 2, 1) and (2, 1, 1) occur. For each
of those, we will produce an explicit example, inspired by the trialitarian triple
constructed in [QT10, Lemma 6.2]

Our construction uses the notion of direct sum for algebras with involution,
which was introduced by Dejaiffe [Dej98]. Consider two algebras with involution
(E1, θ1) and (E2, θ2) which are Morita-equivalent, that is E1 and E2 are Brauer
equivalent and the involutions θ1 and θ2 are of the same type. Dejaiffe defined
a notion of Morita equivalence data, and explains how to associate to any such
data an algebra with involution (A, σ), which is called a direct sum of (E1, θ1)
and (E2, θ2). In the split orthogonal case, if θ1 and θ2 are respectively adjoint to
the quadratic forms ϕ1 and ϕ2, any direct sum of (E1, θ1) and (E2, θ2) is adjoint
to ϕ1 ⊕ 〈λ〉ϕ2 for some λ ∈ F×, and the choice of a Morita-equivalence data
precisely amounts to the choice of a scalar λ. In general, as the split case shows,
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there exist non-isomorphic direct sums of two given algebras with involution.
We will use the following characterization of direct sums [QT10, Lemma 6.3]:

6.5 Lemma. The algebra with involution (A, σ) is a direct sum of (E1, θ1)
and (E2, θ2) if and only if there is an embedding of the direct product (E1, θ1)×
(E2, θ2) in (A, σ) and deg(A) = deg(E1) + deg(E2).

Slightly extending Garibaldi’s ‘orthogonal sum lemma’ [Ga01, Lemma 3.2],
we get:

6.6 Proposition. Let Q1, Q2, Q3 and Q4 be quaternion algebras such that
Q1⊗Q2 and Q3⊗Q4 are isomorphic. If (A, σ) is a direct sum of (Q1, )⊗(Q2, )
and (Q3, ) ⊗ (Q4, ), then one of the two components of the Clifford algebra
of (A, σ) is a direct sum of (Q1, ) ⊗ (Q3, ) and (Q2, ) ⊗ (Q4, ), while the
other is a direct sum of (Q1, )⊗ (Q4, ) and (Q2, )⊗ (Q3, ).

6.7 Remark. If one of the four quaternion algebras is split, as we assumed
in [QT10], then all three direct sums have a hyperbolic component. Hence they
are uniquely defined. This is not the case anymore in the more general setting
considered here. The algebra with involution (A, σ) does depend on the choice
of an equivalence data. Nevertheless, once such a choice is made, its Clifford
algebra is well defined. So the equivalence data defining the other two direct
sums are determined by the one we have chosen.

Proof. Denote (E1, θ1) = (Q1, ) ⊗ (Q2, ) and (E2, θ2) = (Q3, ) ⊗ (Q4, ).
By [KMRT, (15.12)], their Clifford algebras with canonical involution are respec-
tively (Q1, ) × (Q2, ), and (Q3, ) × (Q4, ). The embedding of the direct
product (E1, θ1)×(E2, θ2) in (A, σ) induces an embedding of the tensor product
of their Clifford algebras in the Clifford algebra of (A, σ):(

(Q1, )× (Q2, )
)
⊗
(
(Q3, )× (Q4, )

)
↪→ (C(A, σ), σ).

This tensor product splits as a direct product of four tensor products of quater-
nion algebras with canonical involution; for degree reasons, two of them em-
bed in each component of C(A, σ). To identify them, it is enough to look
at their Brauer classes. From the hypothesis, we have Brauer equivalences
Q1 ⊗Q3 ∼ Q2 ⊗Q4 and Q1 ⊗Q4 ∼ Q2 ⊗Q3. If Q1 ⊗Q3 and Q1 ⊗Q4 are not
Brauer equivalent, that is if A is non-split, this concludes the proof. Otherwise,
all four tensor products are isomorphic, and the result is still valid.

With this in hand, we now give explicit examples of algebras with involution
having J-invariant (1, 2, 1), (2, 1, 1), (1, 1, 1) and (1, 1, 0).

6.8 Example. Let F = K(x, y, z, t) be a function field in 4 variables over a
field K, and consider the following quaternion algebras over F :

Q1 = (x, zt), Q2 = (y, zt), Q3 = (xy, z) and Q4 = (xy, t).

We let (A, σ) be a direct sum of (Q1, ) ⊗ (Q2, ) and (Q3, ) ⊗ (Q4, ) as in
Proposition 6.6, and denote by (B, τ), and respectively (C, γ), the component of
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C(A, σ) Brauer equivalent to Q1⊗Q3 ∼ (x, t)⊗(y, z) and Q1⊗Q4 ∼ (x, z)⊗(y, t).
The algebras A, B and C have index 2, 4 and 4, so that

(
(A, σ), (B, τ), (C, γ)

)
is a trialitarian triple ordered by indices. By Theorem 6.3, we get J(A, σ) =
(1, 2, j3) and J(B, τ) = J(C, γ) = (2, 1, j3) for some j3. Finally, assertion (i) of
Corollary 6.1 implies j3 = 1; in other words, this triple is anisotropic.

6.9 Example. This example is obtained from the previous one by scalar
extension. Consider the Albert form ϕ = 〈x, t,−xt,−y,−z, yz〉 associated to
the biquaternion algebra Q1 ⊗ Q3. We let F ′ be its function field, F ′ = F (ϕ),
and denote by (A′, σ′), (B′, τ ′) and (C ′, γ′) the extensions of (A, σ), (B, τ)
and (C, γ) to F ′. Since B is Brauer equivalent to Q1 ⊗ Q3, the algebra B′

has index 2. On the other hand, it follows from Merkurjev’s index reduction
formula [Me91, Thm. 3] that the indices of A and C are preserved by scalar
extension to F ′, so that A′ and C ′ have indices 2 and 4 respectively. Hence(
(A′, σ′), (B′, τ ′), (C ′, γ′)

)
is again a trialitarian triple ordered by indices and

Theorem 6.3 now gives J(A′, σ′) = J(B′, τ ′) = J(C ′, γ′) = (1, 1, j3) for some
j3. The same argument as in the proof of the first assertion of Corollary 6.1
applies here: since A′ and B′ are non-split and C ′ has index 4, the involutions
are anisotropic and Theorem 6.3 gives j3 = 1. Note that, in particular, we have
J(C ′, γ′) = (1, 1, 1), even though C ′ has index 4 = 22.

6.10 Example. We now produce another example of an anisotropic trialitar-
ian triple having J-invariant (1, 1, 1) in which all three algebras have index 2.
Namely, consider the F -quaternion algebras

Q1 = (x, y), Q2 = (x, z), Q3 = (x, t) and Q4 = (x, yzt).

Pick an arbitrary orthogonal involution ρ on H = (x, yz) over F . Since Q1⊗Q2

is isomorphic to 2 by 2 matrices over H, the tensor product of the canonical
involutions of Q1 and Q2 is adjoint to a 2-dimensional hermitian form h12 over
(H, ρ). Similarly, (Q3, ) ⊗ (Q4, ) is isomorphic to M2(H) endowed with the
adjoint involution with respect to some hermitian form h34. Since h12 and h34

are both anisotropic, the hermitian form h = h12⊕〈u〉h34 over H ′′ = H⊗F (u),
for some indeterminate u, is also anisotropic. We define

(A, σ) = (M4(H ′′), adh).

It is clear from the definition that (A, σ) is a direct sum of (Q1, )⊗(Q2, ) and
(Q3, ) ⊗ (Q4, ). Hence, by Proposition 6.6, the two components (B, τ) and
(C, γ) of its Clifford algebra are Brauer equivalent to (x, yt) and (x, zt). This
shows that all three algebras have index 2. Since the involutions are anisotropic,
by Theorem 6.3, their J-invariant is (1, 1, 1).

6.11 Remark. Note that there are many other examples, and not all of
them can be described as in Proposition 6.6. In particular, any triple which
includes a division algebra cannot be obtained from this proposition. Consider
for instance the algebra with involution (A, σ) described in [QT02, Example
3.6], and let (B, τ) and (C, γ) be the two components of its Clifford algebra. As
explained there, A is a indecomposable division algebra, and one component of
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its Clifford algebra, say B, has index 2. Since A is Brauer equivalent to B⊗C, its
indecomposability guarantees that C is division, and we get J(A, σ) = J(C, γ) =
(2, 1, 1) and J(B, τ) = (1, 2, 1).

To produce examples of algebras with involution having J-invariant (1, 1, 0),
we now construct examples of isotropic non-split and non-half-spin triples. As
opposed to the previous examples, they can always be described using Propo-
sition 6.6. Indeed, we get the following explicit description for such triples (cf.
Garibaldi’s [Ga98, Thm. 0.1])

6.12 Proposition. If
(
(A, σ), (B, τ), (C, γ)

)
is an isotropic trialitarian triple

with A, B and C non-split, then there exists division quaternion algebras Q1,
Q2 and Q3 such that Q1 ⊗ Q2 ⊗ Q3 is split and the triple is described as in
Proposition 6.6 with Q4 = M2(k).

Proof. Since B and C are non-split, the involution σ is not hyperbolic by 1.6.
Hence A has index 2, A = M4(Q1) for some quaternion algebra Q1 over F . Fix
an orthogonal involution ρ1 on Q1; the involution σ is adjoint to a hermitian
form h = h0 ⊕ h1 over (Q1, ρ1), with h0 hyperbolic, h1 anisotropic and both
of dimension 2 and trivial discriminant. Therefore, (A, σ) is a direct sum of
(M2(Q1), adh0

) and (M2(Q1), adh1
). Since the first summand is hyperbolic, it

is isomorphic to (M2(k), )⊗(Q1, ). The second is (Q2, )⊗(Q3, ), where Q2

and Q3 are the two components of the Clifford algebra adh1 , and this concludes
the proof.

We refer the reader to [QT10, §6] for a more precise description of those
triples. They are the only ones for which the J-invariant is (1, 1, 0).

7 Generic properties

In the present section we investigate the relationship between the values of
the J-invariant of an algebra with involution (A, σ) and the J-invariant of the
respective adjoint quadratic form ϕσ over the function field FA of the Severi-
Brauer variety of A, which is a generic splitting field of A.

7.1 Definition. We say (A, σ) is generically Pfister if ϕσ is a Pfister form.
Observe that in this case degA is always a power of 2 and the J-invariant over
FA has the form:

J
(
(A, σ)FA

)
= (0, . . . , 0, ∗)

(all zeros except possibly the last entry which is 0 or 1).
We say (A, σ) is in Is, s > 2, if ϕσ belongs to the s-th power Is(FA) of the

fundamental ideal I(FA) ⊂W (FA) of the Witt ring of FA.

7.2 Theorem. Let (A, σ) be an algebra of degree 2n with orthogonal involution
with trivial discriminant.

(a) If (A, σ) is in Is, s > 2, then J(A, σ) = (j1, 0, . . . , 0,︸ ︷︷ ︸
2s−2−1 times

∗, . . . , ∗).
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(b) In particular, if (A, σ) is generically Pfister, then J(A, σ) = (∗, 0, . . . , 0, ∗).

Proof. (a) Let X = Dn/Pi be the variety of maximal parabolic subgroups of
type i := 2 · [n+1

2 ] − 2s−1 + 1 (For parabolic subgroups we use notation from
[PS10, 2.1]). Since i is odd, AF (X) splits, and therefore the quadratic form ϕσ is

defined over F (X). By assumption ϕσ ∈ Is
(
F (X)

)
. The Witt index of ϕσ is at

least i. Therefore the anisotropic part of ϕσ has dimension at most 2(n−i) < 2s.
Thus, by the Arason-Pfister theorem ϕσ is hyperbolic. In particular, the variety
X is generically split. Therefore by [PS11, Theorem 2.3] we obtain the desired
expression for the J-invariant.

(b) Finally, if (A, σ) is generically Pfister, then ϕσ ∈ Is
(
F (X)

)
, where 2s =

2n and (b) follows from (a).

7.3 Remark. Let (j2, . . . , jr) be the J-invariant of ϕσ over FA, r = [n+2
2 ]. In

view of the theorem one can conjecture that the J-invariant of (A, σ) is obtained
from J(ϕσ) just by adding an arbitrary left term, i.e.

J(A, σ) = (∗, j2, . . . , jr).

For example, if ϕσ is excellent, then the J-invariant should be equal to

J(A, σ) = (∗, 0, . . . , 0, ∗, 0, . . . , 0),

where the second ∗ has degree 2s − 1 for some s and equals either 0 or 1.
By the results of Section 6, observe that this holds for algebras of degree 8.

8 Appendix

8.1 The following table provides the values of the parameters of the J-invariant
for all orthogonal groups (here p = 2).

G0 r di ki restrictions on ji
O+
n [n+1

4 ] 2i− 1 [log2
n−1
di

] if di + l = 2sdm
and 2 -

(
di
l

)
, then jm ≤ ji + s

Spin±2n, 2 | n n
2 1, i = 1 2k1 ‖ n the same restrictions

2i− 1, i ≥ 2 [log2
2n−1
di

]

Spinn [n−3
4 ] 2i+ 1 [log2

n−1
di

] the same restrictions

PGO+
2n [n+2

2 ] 1, i = 1, 2 2k1 ‖ n the same restrictions
2i− 3, i ≥ 3 [log2

2n−1
di

] assuming i,m ≥ 2

Note that this table coincides with [PSZ08, Table 4.13] except of the last
column which in our case contains more restrictive conditions. For s = 0 and 1
the restrictions in the last column are equivalent to those in [PSZ08, Table 4.13].

The conditions of the last column are simply translation of [Vi05, Prop. 5.12]
from the language of Vishik’s J-invariant to ours.

All values of the J-invariant which satisfy the restrictions given in the table
are called admissible.
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8.2 In his paper [Ho98], Hoffmann classified quadratic forms of small dimen-
sion in terms of their splitting pattern. Using his classification, one can give a
precise description of quadratic forms of dimension 8 with trivial discriminant,
depending on the value of their J-invariant. The results are summarized in the
table below.

The notation Jv(ϕ) stands for Vishik’s J-invariant, as defined in [EKM, §88].
The index i is the 2-adic valuation of the greatest common divisor of the degrees
of the splitting fields of ϕ. In the explicit description, Pfk stands for a k-fold
Pfister form, sl/k(Pf2) for the Scharlau transfer of a 2-fold Pfister form with
respect to a quadratic field extension, and Al6 for an Albert form.

J(ϕ) Jv(ϕ) iS , i Splitting Pattern Description

(0) ∅ iS = i = 0 (4) hyperbolic
(1,0) {1} iS = i = 1 (2,4) Pf2 ⊥ 2H
(2,0) {1, 2} iS = i = 2 (1,2,4) Al6 ⊥ H
(0,1) {3} iS = 0; i = 1 (0,4) Pf3
(1,1) {1, 3} iS = i = 1 (0,2,4) q = 〈1,−a〉 ⊗ q′
(2,1) {1, 2, 3} iS = i = 2 (0,1,2,4) Pf2 ⊥ Pf2 or sl/k(Pf2)

iS = i = 3 “ generic
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