Algebraische Geometrie 2 Übungsblatt 7

Aufgabe 1. (Verkleben von Garben). Seien X ein topologischer Raum und $X = \bigcup_{i \in I} U_i$ eine offene Überdeckung von X. Für jedes $i \in I$ sei \mathcal{F}_i eine Garbe auf U_i . Für jedes Paar $i, j \in I$ sei

$$\varphi_{ij} \colon \mathcal{F}_i|_{U_i \cap U_j} \to \mathcal{F}_j|_{U_i \cap U_j}$$

ein Isomorphismus von Garben. Angenommen zusätzlich, dass für jede drei Indizes $i, j, k \in I$ das folgende Diagramm kommutativ ist:

$$\mathcal{F}_{i}|_{U_{i}\cap U_{j}\cap U_{k}} \xrightarrow{\varphi_{ik}} \mathcal{F}_{k}|_{U_{i}\cap U_{j}\cap U_{k}}$$

$$\mathcal{F}_{j}|_{U_{i}\cap U_{j}\cap U_{k}}$$

Zeige: Es gibt eine Garbe \mathcal{F} auf X und Isomorphismen $\varphi_i \colon \mathcal{F}|_{U_i} \to \mathcal{F}_i$, so dass folgendes Diagramm für alle i, j kommutativ ist:

$$\mathcal{F}|_{U_{i}\cap U_{j}} \xrightarrow{\varphi_{i}} \mathcal{F}_{i}|_{U_{i}\cap U_{j}}$$

$$\downarrow \text{id} \qquad \qquad \varphi_{ij} \downarrow$$

$$\mathcal{F}|_{U_{i}\cap U_{j}} \xrightarrow{\varphi_{j}} \mathcal{F}_{j}|_{U_{i}\cap U_{j}}$$

Hinweis: Für eine offene Teilmenge W von X definiere

$$\mathcal{F}(W) = \{(s_i)_{i \in I} \mid s_i \in \mathcal{F}_i(W \cap U_i), \varphi_{ij}(s_i|_{W \cap U_i \cap U_i}) = s_j|_{W \cap U_i \cap U_i} \text{ für alle } i, j\}.$$

Aufgabe 2. Seien $X = \operatorname{Spec} A$ ein affines Schema über einem Körper k und U und V offene affine Teilmengen von X.

Zeige: $U \cap V$ ist eine abgeschlossene Teilmenge von $U \times_k V$ (wobei $U \cap V$ in $U \times_k V$ diagonal eingebettet wird).

Aufgabe 3. Untersuche folgenden Spezialfall der Aufgabe (1). Seien k ein Körper,

$$X_1 = X_2 = \mathbb{A}^1_k, \ U_1 = U_2 = \mathbb{A}^1_k \setminus \{0\},\$$

wobei $\{0\}$ der Punkt ist, der dem maximalen Ideal (x) von k[x] entspricht. Sei $\varphi\colon U_1\to U_2$ die Identität. Wir definieren das Schema X durch Verkleben von X_1 und X_2 entlang U_1 und U_2 mithilfe von φ . Als topologischer Raum ist X gleich $(X_1\coprod X_2)/\sim$, wobei $x_1\sim \varphi(x_1)$ für alle $x_1\in U_1$. Die Topologie auf X ist die induzierte Quotiententopologie. Seien $i_1\colon X_1\to X$ und $i_2\colon X_2\to X$ die offensichtlichen Einbettungen. Eine Teilmenge $V\subset X$ ist genau dann offen in X, wenn $i_1^{-1}(V)$ offen in X_1 und $i_2^{-1}(V)$ offen in X_2 ist. Die Strukturgarbe auf $X=X_1\cup X_2$ entsteht durch Verkleben von Strukturgarben von X_1 und X_2 wie in der Aufgabe (1). Das Schema X heißt affine Gerade mit doppeltem Punkt 0.

Zeige mit Hilfe der Aufgabe (2): Dieses Schema ist nicht affin.

Bemerkung: Später werden wir sehen, dass X nicht separiert ist.

Aufgabe 4. Berechne explizit folgende Tensorprodukte:

$$\mathbb{Z}/p \otimes_{\mathbb{Z}/pq} \mathbb{Z}/q, \qquad \mathbb{Z}/n \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}, \qquad \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q},$$

$$\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}, \qquad \mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z},$$

$$\mathbb{Q}[y] \otimes_{\mathbb{Q}[y^2]} \mathbb{Q}(y^2), \qquad \mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x-1),$$

$$\mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x), \qquad \mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x+1),$$

wobei p, q zwei verschiedene Primzahlen sind, $n \in \mathbb{N}$ und $\mathbb{Q}[y]$ ein $\mathbb{Q}[x]$ -Modul vermöge des Morphismus $\mathbb{Q}[x] \xrightarrow{g} \mathbb{Q}[y], x \mapsto y^2$ ist.

Hinweis: Sei $f \in \mathbb{Q}[t]$. Dann gilt in $\mathbb{Q}(t)$: $\frac{1}{f(t)} = \frac{f(-t)}{f(t)f(-t)}$. Bemerkung: Die letzten 4 Tensorprodukte sind Fasern über dem generischen Punkt (bzw. über Punkten 1, 0 und -1) für den Morphismus Spec g. Äquivalent sind sie Fasern über oben genannten Punkten für die Projektion der Parabel $x=y^2$ auf die x-Achse.