O. Forster: Analytic Number Theory

13. Proof of the Prime Number Theorem
13.1. In this chapter we will prove the prime number theorem

for z — oo.

m(x)

~ log x
As we have seen in corollary 11.11, this is equivalent to the asymptotic relation
Y(x) ~x for z — oo.

To prove this, we use the Mellin transform of 1, calculated in theorem 12.4

h _Sd_x__g'(s) or Re(s
/11/1(30)30 v ) for Re(s) > 1.

A first step is

13.2. Proposition. The following improper integral exists:

[P T = (2T

Proof. We write the Mellin transform of ¢ as a Laplace transform

_C,<S) _ - T\ ,—ST _ Oow<€x) —(s—1)z
S<<S)_/O p(e®)e da:—/o — € dx

Since

/ e~y = ! for Re(s) > 1,
0 s—1

we get for Re(s) > 1

/OOO<M — 1)67(571)1031’ = <(s) - =: F(s).

er S sC(s) s—1

The zeta function has a pole of order 1 at s = 1, hence (’(s)/(s((s)) has a pole of
order 1 with residue —1 at s = 1. It follows that F' is holomorphic at s = 1. We now
use the fact that the zeta function has no zeroes on the line Re(s) = 1 and get that
the function F' can be continued holomorphically to some neighborhood of the closed
halfplane Re(s) > 1. The Tauberian theorem 12.5 of Ingham/Newman can be applied
to the above Laplace transform (after a coordinate change § = s — 1), yielding the
existence of the improper integral

/j(@ - 1) dz.
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By the substitution & = e¢* this is nothing else than the improper integral

/ = (TP(SC) ) dx
1 T x’
which proves the proposition.

13.3. Lemma. Let g : [1,00] — R be a monotonically increasing function such that
the improper integral

/“(@_ )d_x

exists. Then

lim @ =1.

r—oo I

Remark. In general, the existence of an improper integral floo f (x)d?x does not imply
lim f(z) = 0, as can be seen by the example

Tr—00

< dx i Rging
sinz — = lim dx.

That this improper integral converges follows from the Leibniz criterion for the con-
vergence of alternating series.

Proof. lim g(z)/x =1 is equivalent to the following two assertions

(1) lim sup _g(:l:) <1,
T—00 X

2)  liminf &Y () S )
T—00 T

Proof of (1). If this is not true, there exists an € > 0 and a sequence (x,) with z,, — oo
such that

g(xz,) > (1+¢)x, for all v.

Since g is monotonically increasing, it follows that

(1+e)zw p (1+e)zw p
1+¢)x,
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where «(e) is a positive constant independent of v (the function 1—? — 1 is continuous

and positive on the interval [1,1+ ¢[). But this contradicts the Cauchy criterion for

the existence of the improper integral floo(L;) —1)%,

Remark. The Cauchy criterion for the existence of the improper integral [ f(z)dx
can be formulated as follows: For every € > 0 there exists an Ry > a such that

R/
’/ f(x)dx’ <¢ forall R,R with R > R > Ry,
R
Proof of (2). If this is not true, there exists an € > 0 and a sequence (x,) with x, — oo
such that
g(z,) < (1 —¢)x, forall v

Since g is monotonically increasing, it follows that

Ty Ty
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(1—€)zw (1—16)xu
_ /(1;5_1)%——5(5)@,
1—e

where ((¢) is a positive constant independent of v (the function % — 1 is continuous
and negative on |1 — ¢,1]). This contradicts the Cauchy criterion for the existence of

the improper integral floo(% — 1) % Therefore (2) must be true, which completes the
proof of the lemma.

13.4. Theorem (Prime number theorem). The prime number function
7(x) := #{p € Ny : p prime and p < z}

satisfies the asymptotic relation

m(x)

~ for z — o0.
log x

Proof. Lemma 13.3 applied to proposition 13.2 yields v (z) ~ x, which is by corollary
11.11 equivalent to 7(x) ~ x/logz, q.e.d.

The following corollary is a generalization of Bertrand’s postulate (theorem 11.13).

13.5. Corollary. For every e > 0 there exists an xo > 1 such that for all x > xq there
1s at least one prime p with

r<p<(1+e)z.
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Proof. By the prime number theorem

lim m(14+¢e)r) lim (1+¢e)x ogz

= 1 .
v—oo  m(x) v—oo log(l +¢) +logx = e

Therefore there exists an zy such that 7((1 + €)x) > w(z) for all x > x¢, hence there
must be a prime p with x < p < (1+ ¢)z, q.e.d.

13.6. Corollary. Let p, denote the n-th prime (in the natural order by size). Then
we have the asymptotic relation

pn ~ nlogn for n — oo.

Proof. By the prime number theorem, we have the following asymptotic relation for
n — oo

nlogn nlogn n

1 lav) p— p— ~Y
m(nlogn) log(nlogn) logn +loglogn 1 4 leelen "

logn

Since m(p,) = n by definition, the assertion follows immediately from the next lemma.

13.7. Lemma. Let f,g:N; — Ry be two functions with lim f(n) = lim g(n) = oo

n—oo n—oo

and

w(f(n)) ~m(g(n)) forn — co.
Then we have also

f(n) ~g(n) forn — oo.

Proof. We have to show

i M an imsu w
(1) hfln_)sotip 4(n) <1 d (2) ln_)oop ) <1

To prove (1), assume this is false. Then there exists an € > 0 and a sequence (n,) with
n, — oo such that

f(n,) > (1+¢)g(n,) forall v.

Since

o T+ 2)g(n,)
A lgln,)

cf. the proof of corollary 13.5, this implies

(f ()

li T
1m su
vl 7 (g(my)

=1+e¢,

>1+e,

contradicting the hypothesis 7(f(n)) ~ m(g(n)). Therefore (1) must be true. Assertion
(2) follows from (1) by interchanging the roles of f and g.
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