
O. Forster: Analytic Number Theory

13. Proof of the Prime Number Theorem

13.1. In this chapter we will prove the prime number theorem

π(x) ∼
x

log x
for x→ ∞.

As we have seen in corollary 11.11, this is equivalent to the asymptotic relation

ψ(x) ∼ x for x→ ∞.

To prove this, we use the Mellin transform of ψ, calculated in theorem 12.4

∫

∞

1

ψ(x) x−s dx

x
= −

ζ ′(s)

sζ(s)
for Re(s) > 1.

A first step is

13.2. Proposition. The following improper integral exists:

∫

∞

1

(ψ(x)

x
− 1

) dx

x
= lim

R→∞

∫ R

1

(ψ(x)

x
− 1

) dx

x
.

Proof. We write the Mellin transform of ψ as a Laplace transform

−
ζ ′(s)

sζ(s)
=

∫

∞

0

ψ(ex)e−sxdx =

∫

∞

0

ψ(ex)

ex
e−(s−1)xdx

Since
∫

∞

0

e−(s−1)xdx =
1

s− 1
for Re(s) > 1,

we get for Re(s) > 1

∫

∞

0

(ψ(ex)

ex
− 1

)

e−(s−1)xdx = −
ζ ′(s)

sζ(s)
−

1

s− 1
=: F (s).

The zeta function has a pole of order 1 at s = 1, hence ζ ′(s)/(sζ(s)) has a pole of
order 1 with residue −1 at s = 1. It follows that F is holomorphic at s = 1. We now
use the fact that the zeta function has no zeroes on the line Re(s) = 1 and get that
the function F can be continued holomorphically to some neighborhood of the closed
halfplane Re(s) ≥ 1. The Tauberian theorem 12.5 of Ingham/Newman can be applied
to the above Laplace transform (after a coordinate change s̃ = s − 1), yielding the
existence of the improper integral

∫

∞

0

(ψ(ex)

ex
− 1

)

dx.
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By the substitution x̃ = ex this is nothing else than the improper integral

∫

∞

1

(ψ(x)

x
− 1

) dx

x
,

which proves the proposition.

13.3. Lemma. Let g : [1,∞[ → R be a monotonically increasing function such that
the improper integral

∫

∞

1

(g(x)

x
− 1

) dx

x

exists. Then

lim
x→∞

g(x)

x
= 1.

Remark. In general, the existence of an improper integral
∫

∞

1
f(x)dx

x
does not imply

lim
x→∞

f(x) = 0, as can be seen by the example

∫

∞

1

sin x
dx

x
= lim

R→∞

∫ R

1

sin x

x
dx.

That this improper integral converges follows from the Leibniz criterion for the con-
vergence of alternating series.

Proof. lim
x→∞

g(x)/x = 1 is equivalent to the following two assertions

(1) lim sup
x→∞

g(x)

x
≤ 1,

(2) lim inf
x→∞

g(x)

x
≥ 1.

Proof of (1). If this is not true, there exists an ε > 0 and a sequence (xν) with xν → ∞
such that

g(xν) ≥ (1 + ε)xν for all ν.

Since g is monotonically increasing, it follows that

(1+ε)xν
∫

xν

(g(x)

x
− 1

) dx

x
≥

(1+ε)xν
∫

xν

((1 + ε)xν

x
− 1

) dx

x
= [Subst. t = x

xν

]

=

1+ε
∫

1

(1 + ε

t
− 1

) dt

t
= α(ε) > 0,
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where α(ε) is a positive constant independent of ν (the function 1+ε
t

− 1 is continuous
and positive on the interval [1, 1 + ε[). But this contradicts the Cauchy criterion for

the existence of the improper integral
∫

∞

1
(g(x)

x
− 1) dx

x
.

Remark. The Cauchy criterion for the existence of the improper integral
∫

∞

a
f(x)dx

can be formulated as follows: For every ε > 0 there exists an R0 ≥ a such that

∣

∣

∣

∫ R′

R

f(x)dx
∣

∣

∣
< ε for all R,R′ with R′ ≥ R ≥ R0.

Proof of (2). If this is not true, there exists an ε > 0 and a sequence (xν) with xν → ∞
such that

g(xν) ≤ (1 − ε)xν for all ν.

Since g is monotonically increasing, it follows that

xν
∫

(1−ε)xν

(g(x)

x
− 1

) dx

x
≤

xν
∫

(1−ε)xν

((1 − ε)xν

x
− 1

) dx

x
= [Subst. t = x

xν

]

=

1
∫

1−ε

(1 − ε

t
− 1

) dt

t
= −β(ε) < 0,

where β(ε) is a positive constant independent of ν (the function 1−ε
t

− 1 is continuous
and negative on ]1 − ε, 1]). This contradicts the Cauchy criterion for the existence of

the improper integral
∫

∞

1
(g(x)

x
−1) dx

x
. Therefore (2) must be true, which completes the

proof of the lemma.

13.4. Theorem (Prime number theorem). The prime number function

π(x) := #{p ∈ N1 : p prime and p ≤ x}

satisfies the asymptotic relation

π(x) ∼
x

log x
for x→ ∞.

Proof. Lemma 13.3 applied to proposition 13.2 yields ψ(x) ∼ x, which is by corollary
11.11 equivalent to π(x) ∼ x/ log x, q.e.d.

The following corollary is a generalization of Bertrand’s postulate (theorem 11.13).

13.5. Corollary. For every ε > 0 there exists an x0 ≥ 1 such that for all x ≥ x0 there
is at least one prime p with

x < p ≤ (1 + ε)x.
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Proof. By the prime number theorem

lim
x→∞

π((1 + ε)x)

π(x)
= lim

x→∞

(1 + ε)x

log(1 + ε) + log x
·
log x

x
= 1 + ε.

Therefore there exists an x0 such that π((1 + ε)x) > π(x) for all x ≥ x0, hence there
must be a prime p with x < p ≤ (1 + ε)x, q.e.d.

13.6. Corollary. Let pn denote the n-th prime (in the natural order by size). Then
we have the asymptotic relation

pn ∼ n logn for n→ ∞.

Proof. By the prime number theorem, we have the following asymptotic relation for
n→ ∞

π(n logn) ∼
n log n

log(n log n)
=

n log n

log n+ log logn
=

n

1 + log log n

log n

∼ n.

Since π(pn) = n by definition, the assertion follows immediately from the next lemma.

13.7. Lemma. Let f, g : N1 → R+ be two functions with lim
n→∞

f(n) = lim
n→∞

g(n) = ∞

and

π(f(n)) ∼ π(g(n)) for n→ ∞.

Then we have also

f(n) ∼ g(n) for n→ ∞.

Proof. We have to show

(1) lim sup
n→∞

f(n)

g(n)
≤ 1 and (2) lim sup

n→∞

g(n)

f(n)
≤ 1.

To prove (1), assume this is false. Then there exists an ε > 0 and a sequence (nν) with
nν → ∞ such that

f(nν) ≥ (1 + ε)g(nν) for all ν.

Since

lim
ν→∞

π((1 + ε)g(nν))

π(g(nν))
= 1 + ε,

cf. the proof of corollary 13.5, this implies

lim sup
ν→∞

π(f(nν))

π(g(nν)
≥ 1 + ε,

contradicting the hypothesis π(f(n)) ∼ π(g(n)). Therefore (1) must be true. Assertion
(2) follows from (1) by interchanging the roles of f and g.

13.4


