13. Proof of the Prime Number Theorem

13.1. In this chapter we will prove the prime number theorem

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { for } x \rightarrow \infty
$$

As we have seen in corollary 11.11, this is equivalent to the asymptotic relation

$$
\psi(x) \sim x \quad \text { for } x \rightarrow \infty
$$

To prove this, we use the Mellin transform of ψ, calculated in theorem 12.4

$$
\int_{1}^{\infty} \psi(x) x^{-s} \frac{d x}{x}=-\frac{\zeta^{\prime}(s)}{s \zeta(s)} \quad \text { for } \operatorname{Re}(s)>1
$$

A first step is
13.2. Proposition. The following improper integral exists:

$$
\int_{1}^{\infty}\left(\frac{\psi(x)}{x}-1\right) \frac{d x}{x}=\lim _{R \rightarrow \infty} \int_{1}^{R}\left(\frac{\psi(x)}{x}-1\right) \frac{d x}{x}
$$

Proof. We write the Mellin transform of ψ as a Laplace transform

$$
-\frac{\zeta^{\prime}(s)}{s \zeta(s)}=\int_{0}^{\infty} \psi\left(e^{x}\right) e^{-s x} d x=\int_{0}^{\infty} \frac{\psi\left(e^{x}\right)}{e^{x}} e^{-(s-1) x} d x
$$

Since

$$
\int_{0}^{\infty} e^{-(s-1) x} d x=\frac{1}{s-1} \quad \text { for } \operatorname{Re}(s)>1
$$

we get for $\operatorname{Re}(s)>1$

$$
\int_{0}^{\infty}\left(\frac{\psi\left(e^{x}\right)}{e^{x}}-1\right) e^{-(s-1) x} d x=-\frac{\zeta^{\prime}(s)}{s \zeta(s)}-\frac{1}{s-1}=: F(s)
$$

The zeta function has a pole of order 1 at $s=1$, hence $\zeta^{\prime}(s) /(s \zeta(s))$ has a pole of order 1 with residue -1 at $s=1$. It follows that F is holomorphic at $s=1$. We now use the fact that the zeta function has no zeroes on the line $\operatorname{Re}(s)=1$ and get that the function F can be continued holomorphically to some neighborhood of the closed halfplane $\operatorname{Re}(s) \geq 1$. The Tauberian theorem 12.5 of Ingham/Newman can be applied to the above Laplace transform (after a coordinate change $\tilde{s}=s-1$), yielding the existence of the improper integral

$$
\int_{0}^{\infty}\left(\frac{\psi\left(e^{x}\right)}{e^{x}}-1\right) d x .
$$

By the substitution $\tilde{x}=e^{x}$ this is nothing else than the improper integral

$$
\int_{1}^{\infty}\left(\frac{\psi(x)}{x}-1\right) \frac{d x}{x}
$$

which proves the proposition.
13.3. Lemma. Let $g:[1, \infty[\rightarrow \mathbb{R}$ be a monotonically increasing function such that the improper integral

$$
\int_{1}^{\infty}\left(\frac{g(x)}{x}-1\right) \frac{d x}{x}
$$

exists. Then

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{x}=1
$$

Remark. In general, the existence of an improper integral $\int_{1}^{\infty} f(x) \frac{d x}{x}$ does not imply $\lim _{x \rightarrow \infty} f(x)=0$, as can be seen by the example

$$
\int_{1}^{\infty} \sin x \frac{d x}{x}=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{\sin x}{x} d x
$$

That this improper integral converges follows from the Leibniz criterion for the convergence of alternating series.

Proof. $\lim _{x \rightarrow \infty} g(x) / x=1$ is equivalent to the following two assertions
(1) $\quad \limsup _{x \rightarrow \infty} \frac{g(x)}{x} \leq 1$,
(2) $\liminf _{x \rightarrow \infty} \frac{g(x)}{x} \geq 1$.

Proof of (1). If this is not true, there exists an $\varepsilon>0$ and a sequence $\left(x_{\nu}\right)$ with $x_{\nu} \rightarrow \infty$ such that

$$
g\left(x_{\nu}\right) \geq(1+\varepsilon) x_{\nu} \quad \text { for all } \nu
$$

Since g is monotonically increasing, it follows that

$$
\begin{aligned}
\int_{x_{\nu}}^{(1+\varepsilon) x_{\nu}}\left(\frac{g(x)}{x}-1\right) \frac{d x}{x} & \geq \int_{x_{\nu}}^{(1+\varepsilon) x_{\nu}}\left(\frac{(1+\varepsilon) x_{\nu}}{x}-1\right) \frac{d x}{x}=\left[\text { Subst. } t=\frac{x}{x_{\nu}}\right] \\
& =\int_{1}^{1+\varepsilon}\left(\frac{1+\varepsilon}{t}-1\right) \frac{d t}{t}=\alpha(\varepsilon)>0
\end{aligned}
$$

where $\alpha(\varepsilon)$ is a positive constant independent of ν (the function $\frac{1+\varepsilon}{t}-1$ is continuous and positive on the interval $[1,1+\varepsilon[)$. But this contradicts the Cauchy criterion for the existence of the improper integral $\int_{1}^{\infty}\left(\frac{g(x)}{x}-1\right) \frac{d x}{x}$.
Remark. The Cauchy criterion for the existence of the improper integral $\int_{a}^{\infty} f(x) d x$ can be formulated as follows: For every $\varepsilon>0$ there exists an $R_{0} \geq a$ such that

$$
\left|\int_{R}^{R^{\prime}} f(x) d x\right|<\varepsilon \quad \text { for all } R, R^{\prime} \text { with } R^{\prime} \geq R \geq R_{0}
$$

Proof of (2). If this is not true, there exists an $\varepsilon>0$ and a sequence $\left(x_{\nu}\right)$ with $x_{\nu} \rightarrow \infty$ such that

$$
g\left(x_{\nu}\right) \leq(1-\varepsilon) x_{\nu} \quad \text { for all } \nu
$$

Since g is monotonically increasing, it follows that

$$
\begin{aligned}
\int_{(1-\varepsilon) x_{\nu}}^{x_{\nu}}\left(\frac{g(x)}{x}-1\right) \frac{d x}{x} & \leq \int_{(1-\varepsilon) x_{\nu}}^{x_{\nu}}\left(\frac{(1-\varepsilon) x_{\nu}}{x}-1\right) \frac{d x}{x}=\left[\text { Subst. } t=\frac{x}{x_{\nu}}\right] \\
& =\int_{1-\varepsilon}^{1}\left(\frac{1-\varepsilon}{t}-1\right) \frac{d t}{t}=-\beta(\varepsilon)<0
\end{aligned}
$$

where $\beta(\varepsilon)$ is a positive constant independent of ν (the function $\frac{1-\varepsilon}{t}-1$ is continuous and negative on $] 1-\varepsilon, 1]$). This contradicts the Cauchy criterion for the existence of the improper integral $\int_{1}^{\infty}\left(\frac{g(x)}{x}-1\right) \frac{d x}{x}$. Therefore (2) must be true, which completes the proof of the lemma.
13.4. Theorem (Prime number theorem). The prime number function

$$
\pi(x):=\#\left\{p \in \mathbb{N}_{1}: p \text { prime and } p \leq x\right\}
$$

satisfies the asymptotic relation

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { for } x \rightarrow \infty
$$

Proof. Lemma 13.3 applied to proposition 13.2 yields $\psi(x) \sim x$, which is by corollary 11.11 equivalent to $\pi(x) \sim x / \log x$, q.e.d.

The following corollary is a generalization of Bertrand's postulate (theorem 11.13).
13.5. Corollary. For every $\varepsilon>0$ there exists an $x_{0} \geq 1$ such that for all $x \geq x_{0}$ there is at least one prime p with

$$
x<p \leq(1+\varepsilon) x .
$$

Proof. By the prime number theorem

$$
\lim _{x \rightarrow \infty} \frac{\pi((1+\varepsilon) x)}{\pi(x)}=\lim _{x \rightarrow \infty} \frac{(1+\varepsilon) x}{\log (1+\varepsilon)+\log x} \cdot \frac{\log x}{x}=1+\varepsilon
$$

Therefore there exists an x_{0} such that $\pi((1+\varepsilon) x)>\pi(x)$ for all $x \geq x_{0}$, hence there must be a prime p with $x<p \leq(1+\varepsilon) x$, q.e.d.
13.6. Corollary. Let p_{n} denote the n-th prime (in the natural order by size). Then we have the asymptotic relation

$$
p_{n} \sim n \log n \quad \text { for } n \rightarrow \infty .
$$

Proof. By the prime number theorem, we have the following asymptotic relation for $n \rightarrow \infty$

$$
\pi(n \log n) \sim \frac{n \log n}{\log (n \log n)}=\frac{n \log n}{\log n+\log \log n}=\frac{n}{1+\frac{\log \log n}{\log n}} \sim n
$$

Since $\pi\left(p_{n}\right)=n$ by definition, the assertion follows immediately from the next lemma.
13.7. Lemma. Let $f, g: \mathbb{N}_{1} \rightarrow \mathbb{R}_{+}$be two functions with $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and

$$
\pi(f(n)) \sim \pi(g(n)) \quad \text { for } n \rightarrow \infty
$$

Then we have also

$$
f(n) \sim g(n) \quad \text { for } n \rightarrow \infty
$$

Proof. We have to show

$$
\text { (1) } \quad \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq 1 \quad \text { and } \quad \text { (2) } \quad \limsup _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq 1 \text {. }
$$

To prove (1), assume this is false. Then there exists an $\varepsilon>0$ and a sequence $\left(n_{\nu}\right)$ with $n_{\nu} \rightarrow \infty$ such that

$$
f\left(n_{\nu}\right) \geq(1+\varepsilon) g\left(n_{\nu}\right) \quad \text { for all } \nu
$$

Since

$$
\lim _{\nu \rightarrow \infty} \frac{\pi\left((1+\varepsilon) g\left(n_{\nu}\right)\right)}{\pi\left(g\left(n_{\nu}\right)\right)}=1+\varepsilon
$$

cf. the proof of corollary 13.5, this implies

$$
\limsup _{\nu \rightarrow \infty} \frac{\pi\left(f\left(n_{\nu}\right)\right)}{\pi\left(g\left(n_{\nu}\right)\right.} \geq 1+\varepsilon
$$

contradicting the hypothesis $\pi(f(n)) \sim \pi(g(n))$. Therefore (1) must be true. Assertion (2) follows from (1) by interchanging the roles of f and g.

