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12. Laplace and Mellin Transform

12.1. Laplace Transform. Let f : R+ → C be a measurable function such that
|f(x)|e−σ0x is bounded on R+ for some σ0 ∈ R. Then the integral

F (s) =

∫

∞

0

f(x)e−sxdx

exists for all s ∈ C with Re(s) > σ0 and represents a holomorphic function in the
halfplane

H(σ0) = {s ∈ C : Re(s) > σ0}

F is called the Laplace transform of f .

Remark. Measurable here means Lebesgue measurable. In our applications, f will al-
ways be at least piecewise continuous. Hence the reader who does not feel confortable
with Lebesgue integration theory may assume f piecewise continuous.

The existence of the integral follows from the estimate

|f(x)esx| ≤ Ke−(σ−σ0)x, σ := Re(s) > σ0,

where K is an upper bound for |f(x)|eσ0x on R.

Example. Let f(x) = 1 for all x ∈ R+. The Laplace transform of this function is

F (s) =

∫

∞

0

e−sxdx = lim
R→∞

[

−
e−sx

s

]x=R

x=0
= lim

R→∞

1 − e−sR

s
=

1

s
for Re(s) > 0.

12.2. Relation between Laplace and Fourier transform.

We set s = σ + it, σ, t ∈ R. Then the formula for the Laplace transform becomes

F (σ + it) =

∫

∞

0

f(x)e−σxe−itxdx =

∫

∞

−∞

g(x)e−itxdx,

where

g(x) =

{

f(x)e−σx for x ≥ 0,
0 for x < 0.

Therefore the function t 7→ F (σ+ it) can be regarded (up to a normalization constant)
as the Fourier transform of the function g.

12.3. Mellin Transform. The Mellin transform is obtained from the Laplace trans-
form by a change of variables. With the substitution

x = log t, dx =
dt

t
,
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the formula for the Laplace transform becomes

F (s) =

∫

∞

1

f(log t) t−s dt

t
.

This can be viewed as a transformation of the function g(t) := f(log t), t ≥ 1, and
leads to the following definition.

Definition. Let g : [1,∞[ → R a measurable function such that g(x)x−σ0 is bounded
on [1,∞[ for some σ0 ∈ R. Then the integral

G(s) =

∫

∞

1

g(x)x−s dx

x

exists for all s ∈ C with Re(s) > σ0. The function G is holomorphic in the halfplane
H(σ0) and is called the Mellin transform of g.

Remark. There exists a generalization of the Mellin transform where the integral is
extended from 0 to ∞. An example is the Euler integral for the Gamma function

Γ(s) =

∫

∞

0

e−xx−s dx

x
.

This generalized Mellin transform corresponds to the “two-sided” Laplace transform

F (s) =

∫

∞

−∞

f(x)e−sxdx

12.4. Theorem. The Mellin transform of the Chebyshev ψ-function is

∫

∞

1

ψ(x) x−s dx

x
= −

ζ ′(s)

sζ(s)
for Re(s) > 1.

Proof. It follows from theorems 11.3 and 11.10 that ψ(x)/x is bounded, hence the
Mellin transform of ψ exists for Re(s) > 1. We apply the Abel summation theorem

11.4 to the sum
∑

n6x

Λ(n)

ns
. Since

d

dx

1

xs
= −s

1

xs+1
,

we obtain

∑

n6x

Λ(n)

ns
=
ψ(x)

xs
+ s

∫ x

1

ψ(t)

ts+1
dt.
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Letting x→ ∞, we get ψ(x)/xs → 0 for Re(s) > 1, and using theorem 11.8

−
ζ ′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
= s

∫

∞

1

ψ(t)

ts+1
dt, q.e.d.

12.5. Theorem (Tauberian theorem of Ingham and Newman). Let f : R+ → C be a

measurable bounded function and

F (s) =

∫

∞

0

f(x)e−sxdx, Re(s) > 0,

its Laplace transform. Suppose that F , which is holomorphic in

H(0) = {s ∈ C : Re(s) > 0},

admits a holomorphic continuation to some open neighborhood U of H(0). Then the

improper integral

∫

∞

0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx

exists and one has

F (0) =

∫

∞

0

f(x)dx,

where F (0) denotes the value at 0 of the continued function.

Proof. For a real parameter R > 0 define the function

FR(s) :=

∫ R

0

f(x)e−sxdx.

Since the integration interval [0, R] is compact, FR is holomorphic in the whole plane
C. The assertion of the theorem is equivalent to

lim
R→∞

(F (0) − FR(0)) = 0.

The function F − FR is holomorphic in U ⊃ H(0), therefore its value at the point 0
can be calculated by the Cauchy formula.

F (0) − FR(0) =
1

2πi

∫

γ

(F (s) − FR(s))
1

s
ds.

Here the curve γ = γ+ + γ− is chosen as indicated in the following figure. γ+ is a
semi-circle of radius r > 0 with center 0 in the right halfplane from −ir to ir, and γ−
consists of three straight lines from ir to −δ + ir, from −δ + ir to −δ − ir and from
−δ − ir to −ir. The constant δ > 0 has to be chosen (depending on r) sufficiently
small, such that γ and its interior are completely contained in U .
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The function s 7→ (F (s) − FR(s)) eRs is holomorphic in U and for s = 0 its value is
F (0) − FR(0). Therefore we have also

F (0) − FR(0) =
1

2πi

∫

γ

(F (s) − FR(s)) eRs 1

s
ds.

We still use another trick and write

F (0) − FR(0) =
1

2πi

∫

γ

(F (s) − FR(s)) eRs
(1

s
+

s

r2

)

ds. (∗)

This is true since the added function

s 7→ (F (s) − FR(s)) eRs s

r2

is holomorphic in U , hence its integral over γ vanishes.

Note that for |s| = r one has

(1

s
+

s

r2

)

=
s̄

ss̄
+

s

r2
=
s+ s̄

r2
=

2σ

r2
, where σ = Re(s).

For the proof of our theorem, we have to estimate the integral (∗).

Let ε > 0 be given. We choose r := 3/ε and a suitable δ > 0. We estimate the integral
in three steps.

1) Estimation of the integral over the curve γ+.
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Since by hypothesis f : R → C is bounded, we may suppose |f(x)| ≤ 1 for all x ≥ 0.
Then for σ = Re(s) > 0

|F (s) − FR(s)| =
∣

∣

∣

∫

∞

R

f(x)e−sxdx
∣

∣

∣
≤

∫

∞

R

e−σxdx =
e−Rσ

σ
.

With the abbreviation

G1(s) := (F (s) − FR(s)) eRs
(1

s
+

s

r2

)

we get therefore on γ+

|G1(s)| ≤
e−Rσ

σ
eRσ 2σ

r2
=

2

r2
,

hence

∣

∣

∣

1

2πi

∫

γ+

G1(s)ds
∣

∣

∣
≤

1

2π

∫

γ+

2

r2
|ds| =

1

2π
·

2

r2
· πr =

1

r
=
ε

3
.

2) Estimation of the integral

∫

γ−

FR(s)eRs
(1

s
+

s

r2

)

ds.

Since FR is holomorphic in the whole plane, we may replace the integration curve γ− by
a semicircle α of radius r in the halfplane Re(s) ≤ 0 from ir to −ir. For σ = Re(s) < 0
we have

|FR(s)| ≤

∫ R

0

e−xσdx =
1

σ
(1 − e−Rσ) ≤

e−Rσ

|σ|
,

Therefore the integrand

G2(s) := FR(s)eRs
(1

s
+

s

r2

)

satisfies the following estimate on the curve α

|G2(s)| ≤
∣

∣FR(s)eRs
∣

∣

2|σ|

r2
≤

2

r2
,

hence

∣

∣

∣

1

2πi

∫

α

G2(s)ds
∣

∣

∣
≤

1

2π

∫

α

2

r2
|ds| =

1

πr2

∫

α

|ds| =
1

r
=
ε

3
.

3) Estimation of the integral

∫

γ−

F (s)eRs
(1

s
+

s

r2

)

ds.
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The function s 7→ F (s)
(1

s
+

s

r2

)

is holomorphic in a neighborhood of the integration

path γ−. Therefore there exists a constant K > 0 such that
∣

∣

∣
F (s)

(1

s
+

s

r2

)
∣

∣

∣
≤ K for all s on the curve γ−.

Hence the integrand

G3(s) := F (s)eRs
(1

s
+

s

r2

)

satisfies the following estimate on γ−

|G3(s)| ≤ KeRσ, where σ = Re(s).

Let τ be some constant with

0 < τ < δ,

whose value will be fixed later. We split the integration curve γ− into two parts

γ′
−

:= γ− ∩ {Re(s) ≥ −τ},

γ′′
−

:= γ− ∩ {Re(s) ≤ −τ}.

γ′
−

consists of two line segments of length τ each. Let L be the length of γ−. Then

∣

∣

∣

1

2πi

∫

γ−

G3(s)ds
∣

∣

∣
≤

1

2π

{

∫

γ′

−

KeRσ|ds| +

∫

γ′′

−

KeRσ|ds|
}

≤
K

2π

{

∫

γ′

−

|ds| +

∫

γ′′

−

e−Rτ |ds|
}

≤
K

2π

(

2τ + Le−Rτ
)

.

We now fix a value of τ > 0 such that

K

2π
· 2τ <

ε

6

and choose an R0 > 0 such that

K

2π
· Le−R0τ <

ε

6

Then we have
∣

∣

∣

1

2πi

∫

γ−

G3(s)ds
∣

∣

∣
<
ε

3
for all R ≥ R0.

Putting the estimates of 1), 2) and 3) together we finally get

|F (0) − FR(0)| =
∣

∣

∣

1

2πi

∫

γ

(F (s) − FR(s)) eRs
(1

s
+

s

r2

)

ds
∣

∣

∣
< ε

for all R ≥ R0, q.e.d.
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