O. Forster: Analytic Number Theory

12. Laplace and Mellin Transform

12.1. Laplace Transform. Let f : Ry — C be a measurable function such that
| f(x)|e~?°" is bounded on R, for some oy € R. Then the integral

F(s) = /0 " F@)eda

exists for all s € C with Re(s) > oo and represents a holomorphic function in the
halfplane

H(og) ={s € C:Re(s) > 0o}
F is called the Laplace transform of f.

Remark. Measurable here means Lebesgue measurable. In our applications, f will al-
ways be at least piecewise continuous. Hence the reader who does not feel confortable
with Lebesgue integration theory may assume f piecewise continuous.

The existence of the integral follows from the estimate
|f(x)e**| < Ke™ 7902 5 .= Re(s) > oy,
where K is an upper bound for |f(x)|e’* on R.

Example. Let f(x) =1 for all x € R,. The Laplace transform of this function is

—ST =R 1 — —sR 1
[_e ] = lim - _Z for Re(s) > 0.
=0 R—o0 S S

F(s) = / e **dr = lim
0 R—oo S
12.2. Relation between Laplace and Fourier transform.

We set s = o +it, o,t € R. Then the formula for the Laplace transform becomes

[e o]

F(o+it) = /OO flz)e 7 e " dy = / g(x)e "™ dx,
0

— 0
where

—0oXx >
() = f(x)e for z > 0,
0 for x < 0.

Therefore the function ¢t — F(o +it) can be regarded (up to a normalization constant)
as the Fourier transform of the function g.

12.3. Mellin Transform. The Mellin transform is obtained from the Laplace trans-
form by a change of variables. With the substitution

dt

xr=logt, dr= e
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the formula for the Laplace transform becomes

F(s) = /100 F(logt) = %.

This can be viewed as a transformation of the function ¢(t) := f(logt), ¢ > 1, and
leads to the following definition.

Definition. Let g : [1,00] — R a measurable function such that g(z)x~?° is bounded
on [1, 00| for some oy € R. Then the integral

da

6(5)= [ gta)s

X

exists for all s € C with Re(s) > 0¢. The function G is holomorphic in the halfplane
H(op) and is called the Mellin transform of g.

Remark. There exists a generalization of the Mellin transform where the integral is
extended from 0 to oo. An example is the Euler integral for the Gamma function

This generalized Mellin transform corresponds to the “two-sided” Laplace transform

F(s) = / Z flx)e™*oda

12.4. Theorem. The Mellin transform of the Chebyshev v -function is

h _Sd_x__g'(s) or Re(s
/1w<x>x T = 50 for Re(s) > 1.

Proof. 1t follows from theorems 11.3 and 11.10 that ¢(x)/x is bounded, hence the
Mellin transform of ¢ exists for Re(s) > 1. We apply the Abel summation theorem

A
11.4 to the sum ) ﬂ Since
n<x n®
d 1 1
dr x° st
we obtain
A Tab(t
SAG) v 0,
n<e n’ ° 1 t8+
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Letting © — oo, we get ¢(x)/2° — 0 for Re(s) > 1, and using theorem 11.8

_ﬁ — i M =3 T o) dt, q.e.d.

ns 1 ts+1

12.5. Theorem (Tauberian theorem of Ingham and Newman). Let f: R, — C be a
measurable bounded function and

F(s) = / f(z)e**dz, Re(s) >0,
0
its Laplace transform. Suppose that F', which is holomorphic in

H(0) = {s € C: Re(s) > 0},

admits a holomorphic continuation to some open neighborhood U of H(0). Then the
improper integral

oo R
/ f(z)dx = lim f(x)dx
0 R=o0 Jo
exists and one has
FO)= [ fla)da,
0
where F'(0) denotes the value at 0 of the continued function.

Proof. For a real parameter R > 0 define the function

Fr(s) = /0 ’ f(z)e~*da.

Since the integration interval [0, R] is compact, Fg is holomorphic in the whole plane
C. The assertion of the theorem is equivalent to

lim (F(0) — Fr(0)) = 0.
The function F' — Fg is holomorphic in U D H(0), therefore its value at the point 0
can be calculated by the Cauchy formula.

1 1
F(0) ~ Fi(0) = 5 A (F(s) ~ Fa(s)) - ds.
Here the curve v = 7, + v_ is chosen as indicated in the following figure. v, is a
semi-circle of radius » > 0 with center 0 in the right halfplane from —ur to ¢r, and v_
consists of three straight lines from ir to —9 + ir, from —é + ir to —6 — ir and from
—0 —ir to —ir. The constant 6 > 0 has to be chosen (depending on r) sufficiently
small, such that « and its interior are completely contained in U.
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’7'<
—0+ir G
L 5» T+
r
0
7Y
—0—ir H .
—ir

The function s — (F(s) — Fr(s)) e is holomorphic in U and for s = 0 its value is
F(0) — Fg(0). Therefore we have also

1 1
F(0) — Fp(0) = — [ (F(s) = F. Rs _ (s,
(0= Fil0) = 5= [ (Flo) = Fulo) ™ s
We still use another trick and write
1 s (1 s
F(0) ~ F(0) = 5 L(F(s) ~ Fu(s)e™ (%4 5 ) ds. (+)

This is true since the added function

s (F(s) = Fa(s)) ™ =

is holomorphic in U, hence its integral over v vanishes.

Note that for |s| = r one has

1 S s 2
(_+ 8>:i+i:8+8: 7 where o = Re(s).

s r2 s5 12 r2 r2’

For the proof of our theorem, we have to estimate the integral ().

Let € > 0 be given. We choose r := 3 /¢ and a suitable § > 0. We estimate the integral
in three steps.

1) Estimation of the integral over the curve 7,.
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Since by hypothesis f : R — C is bounded, we may suppose |f(z)| < 1 for all z > 0.
Then for 0 = Re(s) > 0

oo oo —Ro
F(s) = Falo)| = | [ fa)esrda] < [~ eoin =
R R o
With the abbreviation
s (1 5
Gh(s) i= (F(s) = Fu(s)) e™ (- + )
we get therefore on
e o 20 2
G < Ro - -
Gils)] < e 22 = 2,
hence
1 1 2 1 2 1
—/ G1(s)ds S—/ —2|ds|:—-—2-777“:—:£
2mi )., 2 [, T 2t r r o3

1
2) Estimation of the integral / FR(S)6R8<— + i)als.
s
Y—
Since F'r is holomorphic in the whole plane, we may replace the integration curve v_ by
a semicircle « of radius 7 in the halfplane Re(s) < 0 from ir to —ir. For o = Re(s) < 0
we have

efRU

R
1
|Fa(s)| < / 7y — 1(1 - Py <
0 o
Therefore the integrand

Go(s) := FR(s)eRs <§ 4 5 )

2
satisfies the following estimate on the curve «

2 2
Gals)] < | Frfs)e| 22 < 2

r2 - T2’

1 1 2 1 1 ¢
‘27?2' LGQ(S)dS‘ - 27 /a r2 ds| mTr? /a |ds] r 3

1
3) Estimation of the integral / F(s)eRs(— + i)ds.

2
v s T

hence
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1
The function s — F(s) (— + %) is holomorphic in a neighborhood of the integration
s T
path v_. Therefore there exists a constant K > 0 such that
1
‘F(s)(— + %) ‘ < K for all s on the curve v_.
s r

Hence the integrand

Gs(s) := F(s)e™™ <§ + ;2)
satisfies the following estimate on ~_

|G3(s)| < Kef'”,  where 0 = Re(s).
Let 7 be some constant with

0< 1<y,

whose value will be fixed later. We split the integration curve v_ into two parts

v = ~v_N{Re(s) > -7},
7" = ~v_N{Re(s) < —7}.

~' consists of two line segments of length 7 each. Let L be the length of v_. Then
1 1
‘—/ Gg(S)dS} < —{/ Kef|ds| + K6R0|d$|}
211 y_ 2 A N

K
g—{/ |ds\+/ e’RT|ds\}
2 7. v

K —RT
< % (27‘ + Le ) .

We now fix a value of 7 > 0 such that

K 15

- . 2 < =

2T 4 6
and choose an Ry > 0 such that

K €

L Le Bom =

2T ¢ < 6

Then we have

1
’% /y_ Gg(S)dS

Putting the estimates of 1), 2) and 3) together we finally get

|F(0) — Fr(0)| = )QLM /V(F(s) — Fr(s)) e (1 + i) ds) <e

<§ for all R > R,.

s 72

for all R > Ry, q.e.d.
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