12. Laplace and Mellin Transform

12.1. Laplace Transform. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{C}$ be a measurable function such that $|f(x)| e^{-\sigma_{0} x}$ is bounded on \mathbb{R}_{+}for some $\sigma_{0} \in \mathbb{R}$. Then the integral

$$
F(s)=\int_{0}^{\infty} f(x) e^{-s x} d x
$$

exists for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>\sigma_{0}$ and represents a holomorphic function in the halfplane

$$
H\left(\sigma_{0}\right)=\left\{s \in \mathbb{C}: \operatorname{Re}(s)>\sigma_{0}\right\}
$$

F is called the Laplace transform of f.
Remark. Measurable here means Lebesgue measurable. In our applications, f will always be at least piecewise continuous. Hence the reader who does not feel confortable with Lebesgue integration theory may assume f piecewise continuous.

The existence of the integral follows from the estimate

$$
\left|f(x) e^{s x}\right| \leq K e^{-\left(\sigma-\sigma_{0}\right) x}, \quad \sigma:=\operatorname{Re}(s)>\sigma_{0}
$$

where K is an upper bound for $|f(x)| e^{\sigma_{0} x}$ on \mathbb{R}.
Example. Let $f(x)=1$ for all $x \in \mathbb{R}_{+}$. The Laplace transform of this function is

$$
F(s)=\int_{0}^{\infty} e^{-s x} d x=\lim _{R \rightarrow \infty}\left[-\frac{e^{-s x}}{s}\right]_{x=0}^{x=R}=\lim _{R \rightarrow \infty} \frac{1-e^{-s R}}{s}=\frac{1}{s} \quad \text { for } \operatorname{Re}(s)>0 .
$$

12.2. Relation between Laplace and Fourier transform.

We set $s=\sigma+i t, \sigma, t \in \mathbb{R}$. Then the formula for the Laplace transform becomes

$$
F(\sigma+i t)=\int_{0}^{\infty} f(x) e^{-\sigma x} e^{-i t x} d x=\int_{-\infty}^{\infty} g(x) e^{-i t x} d x
$$

where

$$
g(x)= \begin{cases}f(x) e^{-\sigma x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

Therefore the function $t \mapsto F(\sigma+i t)$ can be regarded (up to a normalization constant) as the Fourier transform of the function g.
12.3. Mellin Transform. The Mellin transform is obtained from the Laplace transform by a change of variables. With the substitution

$$
x=\log t, \quad d x=\frac{d t}{t}
$$

the formula for the Laplace transform becomes

$$
F(s)=\int_{1}^{\infty} f(\log t) t^{-s} \frac{d t}{t}
$$

This can be viewed as a transformation of the function $g(t):=f(\log t), t \geq 1$, and leads to the following definition.

Definition. Let $g:\left[1, \infty\left[\rightarrow \mathbb{R}\right.\right.$ a measurable function such that $g(x) x^{-\sigma_{0}}$ is bounded on $\left[1, \infty\left[\right.\right.$ for some $\sigma_{0} \in \mathbb{R}$. Then the integral

$$
G(s)=\int_{1}^{\infty} g(x) x^{-s} \frac{d x}{x}
$$

exists for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>\sigma_{0}$. The function G is holomorphic in the halfplane $H\left(\sigma_{0}\right)$ and is called the Mellin transform of g.

Remark. There exists a generalization of the Mellin transform where the integral is extended from 0 to ∞. An example is the Euler integral for the Gamma function

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{-s} \frac{d x}{x}
$$

This generalized Mellin transform corresponds to the "two-sided" Laplace transform

$$
F(s)=\int_{-\infty}^{\infty} f(x) e^{-s x} d x
$$

12.4. Theorem. The Mellin transform of the Chebyshev ψ-function is

$$
\int_{1}^{\infty} \psi(x) x^{-s} \frac{d x}{x}=-\frac{\zeta^{\prime}(s)}{s \zeta(s)} \quad \text { for } \operatorname{Re}(s)>1
$$

Proof. It follows from theorems 11.3 and 11.10 that $\psi(x) / x$ is bounded, hence the Mellin transform of ψ exists for $\operatorname{Re}(s)>1$. We apply the Abel summation theorem 11.4 to the sum $\sum_{n \leqslant x} \frac{\Lambda(n)}{n^{s}}$. Since

$$
\frac{d}{d x} \frac{1}{x^{s}}=-s \frac{1}{x^{s+1}}
$$

we obtain

$$
\sum_{n \leqslant x} \frac{\Lambda(n)}{n^{s}}=\frac{\psi(x)}{x^{s}}+s \int_{1}^{x} \frac{\psi(t)}{t^{s+1}} d t
$$

Letting $x \rightarrow \infty$, we get $\psi(x) / x^{s} \rightarrow 0$ for $\operatorname{Re}(s)>1$, and using theorem 11.8

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}=s \int_{1}^{\infty} \frac{\psi(t)}{t^{s+1}} d t, \quad \text { q.e.d. }
$$

12.5. Theorem (Tauberian theorem of Ingham and Newman). Let $f: \mathbb{R}_{+} \rightarrow \mathbb{C}$ be a measurable bounded function and

$$
F(s)=\int_{0}^{\infty} f(x) e^{-s x} d x, \quad \operatorname{Re}(s)>0
$$

its Laplace transform. Suppose that F, which is holomorphic in

$$
H(0)=\{s \in \mathbb{C}: \operatorname{Re}(s)>0\},
$$

admits a holomorphic continuation to some open neighborhood U of $\overline{H(0)}$. Then the improper integral

$$
\int_{0}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x
$$

exists and one has

$$
F(0)=\int_{0}^{\infty} f(x) d x
$$

where $F(0)$ denotes the value at 0 of the continued function.
Proof. For a real parameter $R>0$ define the function

$$
F_{R}(s):=\int_{0}^{R} f(x) e^{-s x} d x
$$

Since the integration interval $[0, R]$ is compact, F_{R} is holomorphic in the whole plane \mathbb{C}. The assertion of the theorem is equivalent to

$$
\lim _{R \rightarrow \infty}\left(F(0)-F_{R}(0)\right)=0
$$

The function $F-F_{R}$ is holomorphic in $U \supset \overline{H(0)}$, therefore its value at the point 0 can be calculated by the Cauchy formula.

$$
F(0)-F_{R}(0)=\frac{1}{2 \pi i} \int_{\gamma}\left(F(s)-F_{R}(s)\right) \frac{1}{s} d s
$$

Here the curve $\gamma=\gamma_{+}+\gamma_{-}$is chosen as indicated in the following figure. γ_{+}is a semi-circle of radius $r>0$ with center 0 in the right halfplane from -ir to $i r$, and γ_{-} consists of three straight lines from $i r$ to $-\delta+i r$, from $-\delta+i r$ to $-\delta-i r$ and from $-\delta-i r$ to $-i r$. The constant $\delta>0$ has to be chosen (depending on r) sufficiently small, such that γ and its interior are completely contained in U.

The function $s \mapsto\left(F(s)-F_{R}(s)\right) e^{R s}$ is holomorphic in U and for $s=0$ its value is $F(0)-F_{R}(0)$. Therefore we have also

$$
F(0)-F_{R}(0)=\frac{1}{2 \pi i} \int_{\gamma}\left(F(s)-F_{R}(s)\right) e^{R s} \frac{1}{s} d s .
$$

We still use another trick and write

$$
\begin{equation*}
F(0)-F_{R}(0)=\frac{1}{2 \pi i} \int_{\gamma}\left(F(s)-F_{R}(s)\right) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s \tag{*}
\end{equation*}
$$

This is true since the added function

$$
s \mapsto\left(F(s)-F_{R}(s)\right) e^{R s} \frac{s}{r^{2}}
$$

is holomorphic in U, hence its integral over γ vanishes.
Note that for $|s|=r$ one has

$$
\left(\frac{1}{s}+\frac{s}{r^{2}}\right)=\frac{\bar{s}}{s \bar{s}}+\frac{s}{r^{2}}=\frac{s+\bar{s}}{r^{2}}=\frac{2 \sigma}{r^{2}}, \quad \text { where } \sigma=\operatorname{Re}(s) .
$$

For the proof of our theorem, we have to estimate the integral $(*)$.
Let $\varepsilon>0$ be given. We choose $r:=3 / \varepsilon$ and a suitable $\delta>0$. We estimate the integral in three steps.

1) Estimation of the integral over the curve γ_{+}.

Since by hypothesis $f: \mathbb{R} \rightarrow \mathbb{C}$ is bounded, we may suppose $|f(x)| \leq 1$ for all $x \geq 0$. Then for $\sigma=\operatorname{Re}(s)>0$

$$
\left|F(s)-F_{R}(s)\right|=\left|\int_{R}^{\infty} f(x) e^{-s x} d x\right| \leq \int_{R}^{\infty} e^{-\sigma x} d x=\frac{e^{-R \sigma}}{\sigma}
$$

With the abbreviation

$$
G_{1}(s):=\left(F(s)-F_{R}(s)\right) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right)
$$

we get therefore on γ_{+}

$$
\left|G_{1}(s)\right| \leq \frac{e^{-R \sigma}}{\sigma} e^{R \sigma} \frac{2 \sigma}{r^{2}}=\frac{2}{r^{2}}
$$

hence

$$
\left|\frac{1}{2 \pi i} \int_{\gamma_{+}} G_{1}(s) d s\right| \leq \frac{1}{2 \pi} \int_{\gamma_{+}} \frac{2}{r^{2}}|d s|=\frac{1}{2 \pi} \cdot \frac{2}{r^{2}} \cdot \pi r=\frac{1}{r}=\frac{\varepsilon}{3}
$$

2) Estimation of the integral $\int_{\gamma_{-}} F_{R}(s) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s$.

Since F_{R} is holomorphic in the whole plane, we may replace the integration curve γ_{-}by a semicircle α of radius r in the halfplane $\operatorname{Re}(s) \leq 0$ from $i r$ to $-i r$. For $\sigma=\operatorname{Re}(s)<0$ we have

$$
\left|F_{R}(s)\right| \leq \int_{0}^{R} e^{-x \sigma} d x=\frac{1}{\sigma}\left(1-e^{-R \sigma}\right) \leq \frac{e^{-R \sigma}}{|\sigma|}
$$

Therefore the integrand

$$
G_{2}(s):=F_{R}(s) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right)
$$

satisfies the following estimate on the curve α

$$
\left|G_{2}(s)\right| \leq\left|F_{R}(s) e^{R s}\right| \frac{2|\sigma|}{r^{2}} \leq \frac{2}{r^{2}}
$$

hence

$$
\left|\frac{1}{2 \pi i} \int_{\alpha} G_{2}(s) d s\right| \leq \frac{1}{2 \pi} \int_{\alpha} \frac{2}{r^{2}}|d s|=\frac{1}{\pi r^{2}} \int_{\alpha}|d s|=\frac{1}{r}=\frac{\varepsilon}{3} .
$$

3) Estimation of the integral $\int_{\gamma_{-}} F(s) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s$.

The function $s \mapsto F(s)\left(\frac{1}{s}+\frac{s}{r^{2}}\right)$ is holomorphic in a neighborhood of the integration path γ_{-}. Therefore there exists a constant $K>0$ such that

$$
\left|F(s)\left(\frac{1}{s}+\frac{s}{r^{2}}\right)\right| \leq K \quad \text { for all } s \text { on the curve } \gamma_{-} .
$$

Hence the integrand

$$
G_{3}(s):=F(s) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right)
$$

satisfies the following estimate on γ_{-}

$$
\left|G_{3}(s)\right| \leq K e^{R \sigma}, \quad \text { where } \sigma=\operatorname{Re}(s)
$$

Let τ be some constant with

$$
0<\tau<\delta
$$

whose value will be fixed later. We split the integration curve γ_{-}into two parts

$$
\begin{aligned}
\gamma_{-}^{\prime} & :=\gamma_{-} \cap\{\operatorname{Re}(s) \geq-\tau\}, \\
\gamma_{-}^{\prime \prime} & :=\gamma_{-} \cap\{\operatorname{Re}(s) \leq-\tau\} .
\end{aligned}
$$

γ_{-}^{\prime} consists of two line segments of length τ each. Let L be the length of γ_{-}. Then

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{\gamma_{-}} G_{3}(s) d s\right| & \leq \frac{1}{2 \pi}\left\{\int_{\gamma_{-}^{\prime}} K e^{R \sigma}|d s|+\int_{\gamma_{-}^{\prime \prime}} K e^{R \sigma}|d s|\right\} \\
& \leq \frac{K}{2 \pi}\left\{\int_{\gamma_{-}^{\prime}}|d s|+\int_{\gamma_{-}^{\prime \prime}} e^{-R \tau}|d s|\right\} \\
& \leq \frac{K}{2 \pi}\left(2 \tau+L e^{-R \tau}\right)
\end{aligned}
$$

We now fix a value of $\tau>0$ such that

$$
\frac{K}{2 \pi} \cdot 2 \tau<\frac{\varepsilon}{6}
$$

and choose an $R_{0}>0$ such that

$$
\frac{K}{2 \pi} \cdot L e^{-R_{0} \tau}<\frac{\varepsilon}{6}
$$

Then we have

$$
\left|\frac{1}{2 \pi i} \int_{\gamma_{-}} G_{3}(s) d s\right|<\frac{\varepsilon}{3} \quad \text { for all } R \geq R_{0}
$$

Putting the estimates of 1), 2) and 3) together we finally get

$$
\left|F(0)-F_{R}(0)\right|=\left|\frac{1}{2 \pi i} \int_{\gamma}\left(F(s)-F_{R}(s)\right) e^{R s}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s\right|<\varepsilon
$$

for all $R \geq R_{0}$, q.e.d.

