10. Functional Equation of the Zeta Function

10.1. Theorem (Functional equation of the theta function).

The theta series is defined for real $x>0$ by

$$
\theta(x):=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x} .
$$

It satisfies the following functional equation

$$
\theta\left(\frac{1}{x}\right)=\sqrt{x} \theta(x) \quad \text { for all } x>0
$$

i.e.

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x}=\frac{1}{\sqrt{x}} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / x}
$$

Remarks. a) The theta series, as well as its derivatives, converge uniformly on every interval $\left[\varepsilon, \infty\left[, \varepsilon>0\right.\right.$; hence θ is a \mathcal{C}^{∞}-function on $] 0, \infty[$.
b) In the theory of elliptic functions one defines more general theta functions of two complex variables. For $\tau \in \mathbb{C}$ with $\operatorname{Im}(\tau)>0$ and $z \in \mathbb{C}$ one sets

$$
\vartheta(\tau, z):=\sum_{n \in \mathbb{Z}} e^{i \pi n^{2} \tau} e^{2 \pi i n z} .
$$

For fixed τ this is an entire holomorphic function in z, which can be used to construct doubly periodic functions with respect to the lattice $\mathbb{Z}+\mathbb{Z} \tau$. As a function of τ, it is holomorphic in the upper halfplane. The relation to the theta series of theorem 10.1 is

$$
\theta(t)=\vartheta(i t, 0) .
$$

Proof. For fixed $x>0$, we consider the function $F: \mathbb{R} \rightarrow \mathbb{R}$,

$$
F(t):=\sum_{n \in \mathbb{Z}} e^{-\pi(n-t)^{2} x} .
$$

The series converges uniformly on \mathbb{R} together with all its derivatives, hence represents a \mathcal{C}^{∞}-function on \mathbb{R}. It is periodic with period 1, i.e. $F(t+1)=F(t)$ for all $t \in \mathbb{R}$. Therefore we can expand F as a uniformly convergent Fourier series

$$
F(t)=\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n t}
$$

where the coefficients c_{n} are the integrals

$$
c_{n}=\int_{0}^{1} F(t) e^{-2 \pi i n t} d t=\sum_{k \in \mathbb{Z}} \int_{0}^{1} e^{-\pi(k-t)^{2} x} e^{-2 \pi i n t} d t
$$

Now $\int_{0}^{1} e^{-\pi(k-t)^{2} x} e^{-2 \pi i n t} d t=\int_{k}^{k+1} e^{-\pi t^{2} x} e^{-2 \pi i n t} d t$ (substitution $\tilde{t}=t-k$), hence

$$
c_{n}=\int_{-\infty}^{\infty} e^{-\pi t^{2} x} e^{-2 \pi i n t} d t
$$

For $n=0$ this is the well known integral of the Gauss bell curve

$$
\begin{aligned}
c_{0} & =\int_{-\infty}^{\infty} e^{-\pi t^{2} x} d t=2 \int_{0}^{\infty} e^{-\pi t^{2} x} d t=\frac{2}{\sqrt{\pi x}} \int_{0}^{\infty} e^{-t^{2}} d t \\
& =\frac{1}{\sqrt{\pi x}} \int_{0}^{\infty} u^{-1 / 2} e^{-u} d u=\frac{1}{\sqrt{\pi x}} \Gamma\left(\frac{1}{2}\right)=\frac{1}{\sqrt{x}} .
\end{aligned}
$$

For general n we write

$$
-\pi t^{2} x-2 \pi i n t=-\pi\left(t \sqrt{x}+\frac{i n}{\sqrt{x}}\right)^{2}-\frac{\pi n^{2}}{x} .
$$

This leads to

$$
c_{n}=e^{-\pi n^{2} / x} \int_{-\infty}^{\infty} e^{-\pi(t \sqrt{x}+i n / \sqrt{x})^{2}} d t
$$

We will prove

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\pi(t \sqrt{x}+i n / \sqrt{x})^{2}} d t=\frac{1}{\sqrt{x}} \int_{-\infty}^{\infty} e^{-\pi t^{2}} d t=\frac{1}{\sqrt{x}} \tag{*}
\end{equation*}
$$

Assuming this for a moment, we get

$$
F(t)=\frac{1}{\sqrt{x}} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / x} e^{2 \pi i n t}
$$

Setting $t=0$, it follows

$$
F(0)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x}=\frac{1}{\sqrt{x}} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / x},
$$

which is the assertion of the theorem.
It remains to prove the formula $(*)$. Using the substitution $\tilde{t}=t \sqrt{x}$ we see that

$$
\int_{-\infty}^{\infty} e^{-\pi(t \sqrt{x}+i n / \sqrt{x})^{2}} d t=\frac{1}{\sqrt{x}} \int_{-\infty}^{\infty} e^{-\pi(t+i n / \sqrt{x})^{2}} d t
$$

With the abbreviation $a:=n / \sqrt{x}$ we have to show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\pi(t+i a)^{2}} d t=\int_{-\infty}^{\infty} e^{-\pi t^{2}} d t \tag{**}
\end{equation*}
$$

To this end we integrate the holomorphic function $f(z):=e^{-\pi z^{2}}$ over the boundary of the rectangle with corners $-R, R, R+i a,-R+i a$, where R is a positive real number.

By the residue theorem the whole integral is zero, hence

$$
\int_{-R}^{R} f(z) d z=\int_{-R+i a}^{R+i a} f(z) d z-\int_{R}^{R+i a} f(z) d z+\int_{-R}^{-R+i a} f(z) d z
$$

Now

$$
\begin{aligned}
\int_{-R}^{R} f(z) d z & =\int_{-R}^{R} e^{-\pi t^{2}} d t \\
\int_{-R+i a}^{R+i a} f(z) d z & =\int_{-R}^{R} e^{-\pi(t+i a)^{2}} d t, \\
\int_{ \pm R}^{ \pm R+i a} f(z) d z & =i \int_{0}^{a} e^{-\pi\left(R^{2}-t^{2}\right) \mp 2 \pi i R t} d t=i e^{-\pi R^{2}} \int_{0}^{a} e^{\pi t^{2} \mp 2 \pi i R t} d t .
\end{aligned}
$$

We have the estimate

$$
\left|\int_{ \pm R}^{ \pm R+i a} f(z) d z\right| \leq e^{-\pi R^{2}}|a| e^{\pi|a|^{2}}
$$

which tends to 0 as $R \rightarrow \infty$. This implies

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-\pi t^{2}} d t=\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-\pi(t+i a)^{2}} d t
$$

which proves $(* *)$ and therefore $(*)$. This completes the proof of the functional equation of the theta function.
10.2. Corollary. The theta function $\theta(x):=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x}$ defined in the preceding theorem satifies

$$
\theta(x)=O\left(\frac{1}{\sqrt{x}}\right) \quad \text { as } x \searrow 0 .
$$

10.3. Proposition. For all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ one has

$$
\Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{s / 2} \int_{0}^{\infty} t^{s / 2}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\right) \frac{d t}{t}
$$

Remark. The function

$$
\psi(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}
$$

decreases exponentially as $t \rightarrow \infty$. One has $\theta(t)=1+2 \psi(t)$, hence $\psi(t)=\frac{1}{2}(\theta(t)-1)$, so corollary 10.2 implies

$$
\psi(t)=O\left(\frac{1}{\sqrt{t}}\right) \quad \text { for } t \searrow 0 .
$$

This shows that the integral exists for $\operatorname{Re}(s)>1$.
Proof. We start with the Euler integral for $\Gamma(s / 2)$,

$$
\Gamma\left(\frac{s}{2}\right)=\int_{0}^{\infty} t^{s / 2} e^{-t} \frac{d t}{t}
$$

and apply the substitution $\tilde{t}=\pi n^{2} t$, where $n \in \mathbb{N}_{1}$. Since $d \tilde{t} / \tilde{t}=d t / t$, we get

$$
\Gamma\left(\frac{s}{2}\right)=n^{s} \pi^{s / 2} \int_{0}^{\infty} t^{s / 2} e^{-\pi n^{2} t} \frac{d t}{t} .
$$

For $\operatorname{Re}(s)>1$ we have

$$
\begin{aligned}
\Gamma\left(\frac{s}{2}\right) \zeta(s) & =\sum_{n=1}^{\infty} \Gamma\left(\frac{s}{2}\right) \frac{1}{n^{s}}=\sum_{n=1}^{\infty} \pi^{s / 2} \int_{0}^{\infty} t^{s / 2} e^{-\pi n^{2}} t \frac{d t}{t} \\
& =\pi^{s / 2} \int_{0}^{\infty} t^{s / 2}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\right) \frac{d t}{t} .
\end{aligned}
$$

The interchange of summation and integration is allowed by the theorem of majorized convergence for Lebesgue integrals.
10.4. Theorem (Functional equation of the zeta function).
a) The function

$$
\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s),
$$

which is a meromorphic function in \mathbb{C}, satisfies the functional equation

$$
\xi(1-s)=\xi(s) .
$$

b) For the zeta function itself one has

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2}\right) \zeta(s)
$$

Proof. By the preceding theorem

$$
\xi(s)=\int_{0}^{\infty} t^{s / 2} \psi(t) \frac{d t}{t} \quad \text { with } \quad \psi(t)=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}
$$

The functional equation of the theta function implies for $\psi(t)=\frac{1}{2}(\theta(t)-1)$

$$
\psi(t)=t^{-1 / 2} \psi(1 / t)-\frac{1}{2}\left(1-t^{-1 / 2}\right)
$$

We substitute this expression in the integral from 0 to 1 :

$$
\int_{0}^{1} t^{s / 2} \psi(t) \frac{d t}{t}=\int_{0}^{1} t^{(s-1) / 2} \psi\left(\frac{1}{t}\right) \frac{d t}{t}+\frac{1}{2} \int_{0}^{1}\left(t^{(s-1) / 2}-t^{s / 2}\right) \frac{d t}{t}
$$

The last integral can be evaluated explicitly (recall that $\operatorname{Re}(s)>1)$:

$$
\frac{1}{2} \int_{0}^{1}\left(t^{(s-1) / 2}-t^{s / 2}\right) \frac{d t}{t}=\frac{1}{s-1}-\frac{1}{s} .
$$

For the first integral on the right hand side we use the substitution $\tilde{t}=1 / t$ and obtain

$$
\int_{0}^{1} t^{(s-1) / 2} \psi\left(\frac{1}{t}\right) \frac{d t}{t}=\int_{1}^{\infty} t^{(1-s) / 2} \psi(t) \frac{d t}{t}
$$

Putting everything together we get

$$
\xi(s)=\int_{0}^{\infty} t^{s / 2} \psi(t) \frac{d t}{t}=\int_{1}^{\infty}\left(t^{(1-s) / 2}+t^{s / 2}\right) \psi(t) \frac{d t}{t}+\left(\frac{1}{s-1}-\frac{1}{s}\right) .
$$

The integral on the right hand side converges for all $s \in \mathbb{C}$ to a holomorphic function in \mathbb{C}. Thus we have got a representation of the function $\xi(s)$ valid in the whole plane. This representation is invariant under the map $s \mapsto 1-s$, proving $\xi(1-s)=\xi(s)$, i.e. part a) of the theorem.

To prove part b), we use the equation we just proved:

$$
\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

yielding

$$
\zeta(1-s)=\pi^{1 / 2-s} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{1-s}{2}\right)^{-1} \zeta(s)
$$

By theorem 9.5.a) we have

$$
\Gamma\left(\frac{1-s}{2}\right) \Gamma\left(\frac{1+s}{2}\right)=\frac{\pi}{\sin \left(\pi \frac{1+s}{2}\right)}=\frac{\pi}{\cos \left(\frac{\pi s}{2}\right)},
$$

therefore

$$
\zeta(1-s)=\pi^{-1 / 2-s} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{1+s}{2}\right) \cos \left(\frac{\pi s}{2}\right) \zeta(s) .
$$

Now by theorem 9.5.b)

$$
\Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{1+s}{2}\right)=2^{1-s} \sqrt{\pi} \Gamma(s)
$$

which implies

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2}\right) \zeta(s), \quad \text { q.e.d. }
$$

10.5. Corollary. a) For every integer $k>0$

$$
\zeta(-2 k)=0 .
$$

These are the only zeroes of the zeta function in the halfplane $\operatorname{Re}(s)<0$.
b) $\quad \zeta(0)=-\frac{1}{2}$.
c) For every integer $k>0$

$$
\zeta(1-2 k)=-\frac{B_{2 k}}{2 k} .
$$

Proof. a) We use the functional equation

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \Gamma(s) \cos \frac{\pi s}{2} \zeta(s)
$$

$\operatorname{Re}(1-s)<0$ is equivalent to $\operatorname{Re}(s)>1$. Since $\zeta(s) \neq 0$ for $\operatorname{Re}(s)>1$ (theorem 4.5), the only zeroes of the right hand side for $\operatorname{Re}(s)>1$ come from the cosine function. Now

$$
\cos \frac{\pi s}{2}=0 \quad \Longleftrightarrow \quad s=1+2 k \quad \text { with } k \in \mathbb{Z}
$$

This implies assertion a)
c) From the functional equation we get

$$
\zeta(1-2 k)=2^{1-2 k} \pi^{-2 k} \Gamma(2 k) \cos (\pi k) \zeta(2 k)=\frac{2}{(2 \pi)^{2 k}}(2 k-1)!(-1)^{k} \zeta(2 k)
$$

By theorem 5.8.ii)

$$
\zeta(2 k)=(-1)^{k-1} \frac{(2 \pi)^{2 k}}{2(2 k)!} B_{2 k} .
$$

Substituting this in the equation above yields

$$
\zeta(1-2 k)=-\frac{B_{2 k}}{2 k}
$$

b) We write the functional equation in the form $\zeta(1-s)=f_{1}(s) f_{2}(s)$ with

$$
f_{1}(s):=2^{1-s} \pi^{-s} \Gamma(s) \quad \text { and } \quad f_{2}(s):=\cos \frac{\pi s}{2} \zeta(s)
$$

f_{1} is holomorphic in a neighborhood of $s=1$ and $f_{1}(1)=1 / \pi$. The function f_{2} is likewise holomorphic in a neighborhood of $s=1$, since the pole of the zeta function is cancelled by the zero of the cosine. To calculate $f_{2}(1)$, we determine the first terms of the Taylor resp. Laurent expansions of the factors.

$$
\begin{aligned}
\cos \frac{\pi s}{2} & =\cos \left(\frac{\pi}{2}(s-1)+\frac{\pi}{2}\right)=-\sin \left(\frac{\pi}{2}(s-1)\right)=-\frac{\pi}{2}(s-1)+O\left((s-1)^{3}\right) \\
\zeta(s) & =\frac{1}{s-1}+(\text { holomorphic function })
\end{aligned}
$$

Multiplying both expressions yields $f_{2}(s)=-\frac{\pi}{2}+O(s-1)$, hence $f_{2}(1)=-\frac{\pi}{2}$. Therefore

$$
\zeta(0)=f_{1}(1) f_{2}(1)=-\frac{1}{2}, \quad \text { q.e.d. }
$$

10.6. Theorem. For all $t \in \mathbb{R}$

$$
\zeta(1+i t) \neq 0
$$

Proof. We use the inequality

$$
3+4 \cos t+\cos 2 t \geq 0 \quad \text { for all } t \in \mathbb{R}
$$

This is proved as follows: Since $\cos 2 t=\cos ^{2} t-\sin ^{2} t=2 \cos ^{2} t-1$, we have

$$
3+4 \cos t+\cos 2 t=2\left(1+2 \cos t+\cos ^{2} t\right)=2(1+\cos t)^{2} \geq 0
$$

Let now $s=\sigma+i t$ be a complex number with $\operatorname{Re}(s)=\sigma>1$. Then

$$
\log \zeta(s)=\sum_{p \in \mathbb{P}} \log \frac{1}{1-p^{-s}}=\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{1}{p^{k s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}},
$$

where

$$
a_{n}= \begin{cases}1 / k, & \text { if } n=p^{k} \text { for some prime } p \\ 0 & \text { otherwise }\end{cases}
$$

Since $\log |z|=\operatorname{Re}(\log z)$ for every $z \in \mathbb{C}^{*}$,

$$
\log |\zeta(s)|=\sum_{n=1}^{\infty} a_{n} \operatorname{Re}\left(n^{-s}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\sigma}} \cos (t \log n) .
$$

Using a trick of v. Mangoldt (1895) we form the expression

$$
\begin{aligned}
& \log \left(|\zeta(\sigma)|^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)|\right) \\
& \quad=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\sigma}}(\underbrace{3+4 \cos (t \log n)+\cos (2 t \log n)}_{\geq 0}) \geq 0 .
\end{aligned}
$$

Therefore

$$
\left|\zeta(\sigma)^{3} \zeta(\sigma+i t)^{4} \zeta(\sigma+2 i t)\right| \geq 1 \quad \text { for all } \sigma>1 \text { and } t \in \mathbb{R} .
$$

Assume that $\zeta(1+i t)=0$ for some $t \neq 0$. Then the function $s \mapsto \zeta(s)^{3} \zeta(s+i t)^{4}$ has a zero at $s=1$, since the pole of order 3 of the function $\zeta(s)^{3}$ is compensated by the zero of order ≥ 4 of the function $\zeta(s+i t)^{4}$. Therefore

$$
\lim _{\sigma \searrow 1}\left|\zeta(\sigma)^{3} \zeta(\sigma+i t)^{4} \zeta(\sigma+2 i t)\right|=0
$$

contradicting the above estimate. Hence the assumption is false, which proves the theorem.
10.7. Riemann Hypothesis. It follows from theorem 10.6 and the functional equation that $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)=0$. Therefore, besides the trivial zeroes of the zeta function at $s=-2 k, k \in \mathbb{N}_{1}$, all other zeroes of the zeta function must satisfy $0<\operatorname{Re}(s)<1$. It was conjectured by Riemann in 1859 that all non-trivial zeroes of the zeta function actually have $\operatorname{Re}(s)=\frac{1}{2}$. This is the famous Riemann hypothesis which is still unproven today.

