
O. Forster: Analytic Number Theory

10. Functional Equation of the Zeta Function

10.1. Theorem (Functional equation of the theta function).

The theta series is defined for real x > 0 by

θ(x) :=
∑

n∈Z

e−πn2x.

It satisfies the following functional equation

θ
(1

x

)

=
√
xθ(x) for all x > 0,

i.e.
∑

n∈Z

e−πn2x =
1√
x

∑

n∈Z

e−πn2/x.

Remarks. a) The theta series, as well as its derivatives, converge uniformly on every
interval [ε,∞[, ε > 0; hence θ is a C∞-function on ]0,∞[.

b) In the theory of elliptic functions one defines more general theta functions of two
complex variables. For τ ∈ C with Im(τ) > 0 and z ∈ C one sets

ϑ(τ, z) :=
∑

n∈Z

eiπn2τe2πinz.

For fixed τ this is an entire holomorphic function in z, which can be used to construct
doubly periodic functions with respect to the lattice Z + Zτ . As a function of τ , it is
holomorphic in the upper halfplane. The relation to the theta series of theorem 10.1 is

θ(t) = ϑ(it, 0).

Proof. For fixed x > 0, we consider the function F : R → R,

F (t) :=
∑

n∈Z

e−π(n−t)2x.

The series converges uniformly on R together with all its derivatives, hence represents
a C∞-function on R. It is periodic with period 1, i.e. F (t + 1) = F (t) for all t ∈ R.
Therefore we can expand F as a uniformly convergent Fourier series

F (t) =
∑

n∈Z

cne
2πint

where the coefficients cn are the integrals

cn =

∫ 1

0

F (t)e−2πintdt =
∑

k∈Z

∫ 1

0

e−π(k−t)2xe−2πintdt.
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Now
∫ 1

0
e−π(k−t)2xe−2πintdt =

∫ k+1

k
e−πt2xe−2πintdt (substitution t̃ = t− k), hence

cn =

∫ ∞

−∞
e−πt2xe−2πintdt.

For n = 0 this is the well known integral of the Gauss bell curve

c0 =

∫ ∞

−∞
e−πt2xdt = 2

∫ ∞

0

e−πt2xdt =
2√
πx

∫ ∞

0

e−t2dt

=
1√
πx

∫ ∞

0

u−1/2e−udu =
1√
πx

Γ
(1

2

)

=
1√
x
.

For general n we write

−πt2x− 2πint = −π
(

t
√
x+

in√
x

)2

− πn2

x
.

This leads to

cn = e−πn2/x

∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt.

We will prove
∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt =

1√
x

∫ ∞

−∞
e−πt2dt =

1√
x
. (∗)

Assuming this for a moment, we get

F (t) =
1√
x

∑

n∈Z

e−πn2/xe2πint.

Setting t = 0, it follows

F (0) =
∑

n∈Z

e−πn2x =
1√
x

∑

n∈Z

e−πn2/x,

which is the assertion of the theorem.

It remains to prove the formula (∗). Using the substitution t̃ = t
√
x we see that

∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt =

1√
x

∫ ∞

−∞
e−π(t+in/

√
x)2dt

With the abbreviation a := n/
√
x we have to show that

∫ ∞

−∞
e−π(t+ia)2dt =

∫ ∞

−∞
e−πt2dt. (∗∗)

To this end we integrate the holomorphic function f(z) := e−πz2

over the boundary of
the rectangle with corners −R,R,R + ia,−R + ia, where R is a positive real number.
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−R R

−R + ia R + ia

By the residue theorem the whole integral is zero, hence

∫ R

−R

f(z)dz =

∫ R+ia

−R+ia

f(z)dz −
∫ R+ia

R

f(z)dz +

∫ −R+ia

−R

f(z)dz

Now
∫ R

−R

f(z)dz =

∫ R

−R

e−πt2dt,

∫ R+ia

−R+ia

f(z)dz =

∫ R

−R

e−π(t+ia)2dt,

∫ ±R+ia

±R

f(z)dz = i

∫ a

0

e−π(R2−t2)∓2πiRtdt = ie−πR2

∫ a

0

eπt2∓2πiRtdt.

We have the estimate

∣
∣
∣

∫ ±R+ia

±R

f(z)dz
∣
∣
∣ ≤ e−πR2 |a|eπ|a|2,

which tends to 0 as R → ∞. This implies

lim
R→∞

∫ R

−R

e−πt2dt = lim
R→∞

∫ R

−R

e−π(t+ia)2dt,

which proves (∗∗) and therefore (∗). This completes the proof of the functional equation
of the theta function.

10.2. Corollary. The theta function θ(x) :=
∑

n∈Z
e−πn2x defined in the preceding

theorem satifies

θ(x) = O
( 1√

x

)

as xց 0.

10.3. Proposition. For all s ∈ C with Re(s) > 1 one has

Γ
(s

2

)

ζ(s) = πs/2

∫ ∞

0

ts/2
( ∞∑

n=1

e−πn2t
)dt

t
.
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Remark. The function

ψ(t) :=
∞∑

n=1

e−πn2t

decreases exponentially as t→ ∞. One has θ(t) = 1 + 2ψ(t), hence ψ(t) = 1
2
(θ(t)− 1),

so corollary 10.2 implies

ψ(t) = O
( 1√

t

)

for tց 0.

This shows that the integral exists for Re(s) > 1.

Proof. We start with the Euler integral for Γ(s/2),

Γ
(s

2

)

=

∫ ∞

0

ts/2e−tdt

t
,

and apply the substitution t̃ = πn2t, where n ∈ N1. Since dt̃/t̃ = dt/t, we get

Γ
(s

2

)

= nsπs/2

∫ ∞

0

ts/2e−πn2tdt

t
.

For Re(s) > 1 we have

Γ
(s

2

)

ζ(s) =
∞∑

n=1

Γ
(s

2

) 1

ns
=

∞∑

n=1

πs/2

∫ ∞

0

ts/2e−πn2tdt

t

= πs/2

∫ ∞

0

ts/2
( ∞∑

n=1

e−πn2t
)dt

t
.

The interchange of summation and integration is allowed by the theorem of majorized
convergence for Lebesgue integrals.

10.4. Theorem (Functional equation of the zeta function).

a) The function

ξ(s) := π−s/2 Γ(s/2) ζ(s),

which is a meromorphic function in C, satisfies the functional equation

ξ(1 − s) = ξ(s).

b) For the zeta function itself one has

ζ(1 − s) = 21−sπ−s Γ(s) cos(πs
2

) ζ(s).
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Proof. By the preceding theorem

ξ(s) =

∫ ∞

0

ts/2ψ(t)
dt

t
with ψ(t) =

∞∑

n=1

e−πn2t.

The functional equation of the theta function implies for ψ(t) = 1
2
(θ(t) − 1)

ψ(t) = t−1/2ψ(1/t) − 1
2
(1 − t−1/2).

We substitute this expression in the integral from 0 to 1:

∫ 1

0

ts/2ψ(t)
dt

t
=

∫ 1

0

t(s−1)/2ψ
(1

t

)dt

t
+ 1

2

∫ 1

0

(t(s−1)/2 − ts/2)
dt

t
.

The last integral can be evaluated explicitly (recall that Re(s) > 1):

1
2

∫ 1

0

(t(s−1)/2 − ts/2)
dt

t
=

1

s− 1
− 1

s
.

For the first integral on the right hand side we use the substitution t̃ = 1/t and obtain

∫ 1

0

t(s−1)/2ψ
(1

t

)dt

t
=

∫ ∞

1

t(1−s)/2ψ(t)
dt

t
.

Putting everything together we get

ξ(s) =

∫ ∞

0

ts/2ψ(t)
dt

t
=

∫ ∞

1

(t(1−s)/2 + ts/2)ψ(t)
dt

t
+

( 1

s− 1
− 1

s

)

.

The integral on the right hand side converges for all s ∈ C to a holomorphic function
in C. Thus we have got a representation of the function ξ(s) valid in the whole plane.
This representation is invariant under the map s 7→ 1− s, proving ξ(1− s) = ξ(s), i.e.
part a) of the theorem.

To prove part b), we use the equation we just proved:

π−(1−s)/2Γ
(1 − s

2

)

ζ(1 − s) = π−s/2Γ
(s

2

)

ζ(s),

yielding

ζ(1 − s) = π1/2−sΓ
(s

2

)

Γ
(1 − s

2

)−1

ζ(s).

By theorem 9.5.a) we have

Γ
(1 − s

2

)

Γ
(1 + s

2

)

=
π

sin(π 1+s
2

)
=

π

cos(πs
2

)
,
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therefore

ζ(1 − s) = π−1/2−sΓ
(s

2

)

Γ
(1 + s

2

)

cos(πs
2

) ζ(s).

Now by theorem 9.5.b)

Γ
(s

2

)

Γ
(1 + s

2

)

= 21−s
√
π Γ(s),

which implies

ζ(1 − s) = 21−sπ−sΓ(s) cos(πs
2

) ζ(s), q.e.d.

10.5. Corollary. a) For every integer k > 0

ζ(−2k) = 0.

These are the only zeroes of the zeta function in the halfplane Re(s) < 0.

b) ζ(0) = −1
2
.

c) For every integer k > 0

ζ(1 − 2k) = −B2k

2k
.

Proof. a) We use the functional equation

ζ(1 − s) = 21−sπ−sΓ(s) cos πs
2
ζ(s)

Re(1 − s) < 0 is equivalent to Re(s) > 1. Since ζ(s) 6= 0 for Re(s) > 1 (theorem 4.5),
the only zeroes of the right hand side for Re(s) > 1 come from the cosine function.
Now

cos πs
2

= 0 ⇐⇒ s = 1 + 2k with k ∈ Z

This implies assertion a)

c) From the functional equation we get

ζ(1 − 2k) = 21−2kπ−2kΓ(2k) cos(πk)ζ(2k) =
2

(2π)2k
(2k − 1)! (−1)kζ(2k).

By theorem 5.8.ii)

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k.
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Substituting this in the equation above yields

ζ(1 − 2k) = −B2k

2k
.

b) We write the functional equation in the form ζ(1 − s) = f1(s)f2(s) with

f1(s) := 21−sπ−sΓ(s) and f2(s) := cos πs
2
ζ(s).

f1 is holomorphic in a neighborhood of s = 1 and f1(1) = 1/π. The function f2 is
likewise holomorphic in a neighborhood of s = 1, since the pole of the zeta function is
cancelled by the zero of the cosine. To calculate f2(1), we determine the first terms of
the Taylor resp. Laurent expansions of the factors.

cos πs
2

= cos (π
2
(s− 1) + π

2
) = − sin (π

2
(s− 1)) = −π

2
(s− 1) +O((s− 1)3),

ζ(s) =
1

s− 1
+ (holomorphic function).

Multiplying both expressions yields f2(s) = −π
2
+O(s−1), hence f2(1) = −π

2
. Therefore

ζ(0) = f1(1)f2(1) = −1
2
, q.e.d.

10.6. Theorem. For all t ∈ R

ζ(1 + it) 6= 0.

Proof. We use the inequality

3 + 4 cos t+ cos 2t ≥ 0 for all t ∈ R.

This is proved as follows: Since cos 2t = cos2 t− sin2 t = 2 cos2 t− 1, we have

3 + 4 cos t+ cos 2t = 2(1 + 2 cos t+ cos2 t) = 2(1 + cos t)2 ≥ 0.

Let now s = σ + it be a complex number with Re(s) = σ > 1. Then

log ζ(s) =
∑

p∈P

log
1

1 − p−s
=

∑

p∈P

∞∑

k=1

1

k
· 1

pks
=

∞∑

n=1

an

ns
,

where

an =

{

1/k, if n = pk for some prime p,
0 otherwise.

Since log |z| = Re(log z) for every z ∈ C∗,

log |ζ(s)| =

∞∑

n=1

anRe(n−s) =

∞∑

n=1

an

nσ
cos(t logn).
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Using a trick of v. Mangoldt (1895) we form the expression

log
(

|ζ(σ)|3|ζ(σ+it)|4|ζ(σ+2it)|
)

=
∞∑

n=1

an

nσ

(

3 + 4 cos(t log n) + cos(2t logn)
︸ ︷︷ ︸

≥ 0

)

≥ 0.

Therefore

∣
∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)

∣
∣ ≥ 1 for all σ > 1 and t ∈ R.

Assume that ζ(1 + it) = 0 for some t 6= 0. Then the function s 7→ ζ(s)3ζ(s + it)4 has

a zero at s = 1, since the pole of order 3 of the function ζ(s)3 is compensated by the

zero of order ≥ 4 of the function ζ(s+ it)4. Therefore

lim
σց1

∣
∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)

∣
∣ = 0,

contradicting the above estimate. Hence the assumption is false, which proves the

theorem.

10.7. Riemann Hypothesis. It follows from theorem 10.6 and the functional equation

that ζ(s) 6= 0 for all s ∈ C with Re(s) = 0. Therefore, besides the trivial zeroes of the

zeta function at s = −2k, k ∈ N1, all other zeroes of the zeta function must satisfy

0 < Re(s) < 1. It was conjectured by Riemann in 1859 that all non-trivial zeroes of the

zeta function actually have Re(s) = 1
2
. This is the famous Riemann hypothesis which

is still unproven today.
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