
O. Forster: Analytic Number Theory

9. The Gamma Function

9.1. Definition. The Gamma function is defined for complex z with Re(z) > 0 by the
Euler integral

Γ(z) :=

∫ ∞

0

tz−1e−tdt.

Since with x := Re(z) one has |tz−1e−t| = tx−1e−t, the convergence of this integral
follows from the corresponding fact in the real case (which we suppose known) and we
have the estimate

|Γ(z)| ≤ Γ(Re(z)) for Re(z) > 0.

Since the integrand depends holomorphically on z, it follows further that Γ is holomor-
phic in the halfplane H(0) = {z ∈ C : Re(z) > 0}. As in the real case one proves by
partial integration the functional equation

zΓ(z) = Γ(z + 1),

which together with Γ(1) = 1 shows that Γ(n + 1) = n! for all n ∈ N0. Applying the
functional equation n + 1 times yields

Γ(z) =
Γ(z + n + 1)

z(z + 1) · . . . · (z + n)
.

The right hand side of this formula, which was derived for Re(z) > 0, defines a mero-
morphic function in the halfplane H(−n−1) = {z ∈ C : Re(z) > −n−1} having poles
of first order at the points z = −k, k = 0, 1, . . . , n. Therefore we can use this formula
to continue the Gamma function analytically to a meromorphic function in the whole
plane C, with poles of first order at z = −n, n ∈ N0, and holomorphic elsewhere. From
now on, by Gamma function we understand this meromorphic function in C.

The Gamma function can be characterized axiomatically as follows:

9.2. Theorem. Let F be a meromorphic function in C with the following properties:

i) F is holomorphic in the halfplane H(0) = {z ∈ C : Re(z) > 0}.
ii) F satisfies the functional equation zF (z) = F (z + 1).

iii) F is bounded in the strip {z ∈ C : 1 ≤ Re(z) ≤ 2}.
Then there exists a constant c ∈ C such that

F (z) = c Γ(z).

Proof. It is clear that Γ satisfies the properties i) to iii). We set c := F (1) and

Φ(z) := F (z) − c Γ(z).
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Then Φ is also a function satisfying i) to iii) and Φ(1) = 0. From the functional equation
Φ(z) = Φ(z + 1)/z it follows that Φ is holomorphic at z = 0 and that Φ is bounded in
the strip {z ∈ C : 0 ≤ Re(z) ≤ 1}. Therefore the function

ϕ(z) := Φ(z)Φ(1 − z)

is bounded in the same strip. We have

ϕ(z + 1) = Φ(z + 1)Φ(−z) = zΦ(z)Φ(−z) = −Φ(z)Φ(−z + 1) = −ϕ(z).

From this it follows that ϕ is periodic with period 2 and bounded everywhere, hence
holomorphic in C. By the theorem of Liouville ϕ must be constant. Since ϕ(1) = −ϕ(0),
this constant is 0. The equation 0 = Φ(z)Φ(1 − z) shows that also Φ is identically 0,
but this means F (z) = c Γ(z), q.e.d.

9.3. Theorem. a) For every z ∈ C r {n ∈ Z : n ≤ 0} we have

Γ(z) = lim
n→∞

n! nz

z(z + 1) · . . . · (z + n)

(Gauß representation of the Gamma function)

b) 1/Γ is an entire holomorphic function with product representation

1

Γ(z)
= eCzz

∞∏

n=1

(
1 +

z

n

)
e−z/n, (C = Euler-Mascheroni constant).

This product converges normally in C.

Proof.

9.4. Lemma. Let f : C → C be an entire holomorphic function and let ρ, C, R0 ∈ R+

be non-negative constants such that

Re(f(z)) ≤ C|z|ρ for |z| ≥ R0.

Then f is a polynomial of degree ≤ ρ.

Note that no lower bound for Re(f(z)) is required.

Proof. The Taylor series f(z) =
∑∞

n=0 anzn converges for all z ∈ C. Setting z = Reit,
we get Fourier series

f(Reit) =
∞∑

n=0

anR
neint and f(Reit) =

∞∑

n=0

anR
ne−int,

hence

Re(f(Reit)) = Re(a0) + 1
2

∞∑

n=1

Rn(ane
int + ane

−int).
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Multiplying this equation by e−ikt and integrating from 0 to 2π yields

ak =
1

πRk

∫ 2π

0

Re
(
f(Reit)

)
e−iktdt for k > 0

and (for k = 0)

Re(a0) =
1

2π

∫ 2π

0

Re
(
f(Reit)

)
dt.

The hypothesis on the growth of Re(f(z)) implies

|Re(f(z))| ≤ 2C|z|ρ − Re(f(z)) for |z| ≥ R0,

(note this is true also if Re(f(z)) < 0). Therefore we get the estimate

|ak| ≤
1

πRk

∫ 2π

0

∣∣Re(f(reit))
∣∣ dt ≤ 1

Rk
(4CRρ − 2Re(a0)) .

Letting R → ∞, we see that ak = 0 for k > ρ, q.e.d.

9.5. Theorem. The Gamma function satisfies the following relations:

a)
1

Γ(z)Γ(1 − z)
=

sin(πz)

π
,

b) Γ
(z

2

)
Γ
(z + 1

2

)
= 21−z

√
π Γ(z).

Example. Setting z = 1
2

in formula a) yields

Γ(1
2
) =

√
π.

The same result can also be obtained from formula b) for z = 1.

Proof. a) We first consider the meromorphic function

Φ(z) := Γ(z)Γ(1 − z).

It has poles of order 1 at the points z = n, n ∈ Z, and is holomorphic elsewhere. It
satisfies the relations

Φ(z + 1) = −Φ(z) and Φ(−z) = −Φ(z).

Since Γ(z) is bounded on 1 ≤ Re(z) ≤ 2 and

Γ(z) =
Γ(1 + z)

z
, Γ(1 − z) =

Γ(2 − z)

(1 − z)
,
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it follows that Φ is bounded on the set

S1 := {z ∈ C : 0 ≤ Re(z) ≤ 1, |Im(z)| ≥ 1}.

As sin(πz) has zeroes of order 1 at z = n, n ∈ Z, the product

F (z) := sin(πz)Φ(z) = sin(πz)Γ(z)Γ(1 − z)

is holomorphic everywhere in C and without zeroes. We can write

F (z) =
sin(πz)

z
Γ(1 + z)Γ(1 − z),

hence F (0) = π. Furthermore F is periodic with period 1 and an even function, i.e.
F (−z) = F (z). From the boundedness of Φ on S1 we get an estimate

|F (z)| ≤ Ceπ|z| for z ∈ S1 and some constant C > 0.

Since F is continuous and periodic, such an estimate holds in the whole plane C.
We can write F as F (z) = ef(z) with some holomorphic function f : C → C. From
|F (z)| = eRe(z) we get an estimate

Re(f) ≤ C ′|z| for |z| ≥ R0 and some constant C ′ > 0.

By lemma 9.4, f must be a linear polynomial, hence

F (z) = ea+bz, (a, b ∈ C).

Since F is an even function, we have b = 0, so the function F is a constant, which must
be F (0) = π. This proves part a) of the theorem.

b) This is proved by applying theorem 9.2 to the function

F (z) := 2z Γ
(z

2

)
Γ
(z + 1

2

)
.

. . .

9.6. Corollary (Sine product). For all z ∈ C one has

sin(πz) = πz

∞∏

n=1

(
1 − z2

n2

)
.

9.7. Corollary (Wallis product).

a)
π

2
=

∞∏

n=1

(2n)2

(2n − 1)(2n + 1)
,
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b)
√

π = lim
n→∞

1√
n
· 22n(n!)2

(2n)!
.

Proof. Formula a) follows directly from the sine product with z = 1
2
.

To prove formula b), we rewrite a) as

π = 2 lim
n→∞

n∏

k=1

(2k)2

(2k − 1)(2k + 1)

= lim
n→∞

2

2n + 1
· 22n(n!)2

1 · 3 · 3 · 5 · 5 · . . . · (2n − 1)(2n − 1)

hence

√
π = lim

n→∞

√
2

2n + 1
· 2nn!

1 · 3 · 5 · . . . · (2n − 1)

= lim
n→∞

√
2

2n + 1
· 22n(n!)2

(2n)!
.

Since lim
n→∞

√
2n/

√
2n + 1 = 1, the assertion follows.

9.8. Theorem (Stirling formula). We have the following asymptotic relation

n! ∼
√

2πn
(n

e

)n

.

Proof. We apply the Euler-Maclaurin summation formula to

log(n!) =

n∑

k=1

log k

and obtain

log(n!) = 1
2
log n +

∫ n

1

log x dx +

∫ n

1

saw(x)

x
dx

= 1
2
log n + n(log n − 1) + 1 +

∫ n

1

saw(x)

x
dx.

Taking the exponential function of both sides we get

n! =
√

n
(n

e

)n

eαn ,

where

αn = 1 +

∫ n

1

saw(x)

x
dx = 1 +

B2

2
· 1

x

∣∣∣∣
n

1

+

∫ n

1

B̃2(x)

2
· 1

x2
dx.
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This last representation shows that

α := lim
n→∞

αn = 1 +

∫ ∞

1

saw(x)

x
dx

exists and we have the asymptotic relation

n! ∼
√

n
(n

e

)n

eα.

It remains to prove that eα =
√

2π. This can be done as follows. Dividing the asymptotic
relations

(n!)2 ∼ n
(n

e

)2n

e2α and (2n)! ∼
√

2n
(2n

e

)2n

eα

yields

eα = lim
n→∞

(n!)2e2n

n2n+1
· (2n)2n+1/2

(2n)!e2n
= lim

n→∞

(n!)2 · 22n+1/2

(2n)!
√

n
= lim

n→∞

√
2

n
· 22n(n!)2

(2n)!
.

Now corollary 9.7 shows eα =
√

2π, q.e.d.

For later use we note that we have hereby proved

1 +

∫ ∞

1

saw(x)

x
dx = log

√
2π.

9.9. Theorem (Asymptotic expansion of the Gamma function). For every integer
r ≥ 1 and every z ∈ C r {x ∈ R : x ≤ 0} one has

log Γ(z) = (z − 1
2
) log z − z + log

√
2π +

r∑

k=1

B2k

(2k − 1)2k
· 1

z2k−1

+

∫ ∞

0

B̃2r(t)

2r
· 1

(z + t)2r
dt.

Here log Γ(z) and log z are those branches of the logarithm which take real values for
positive real arguments.

Example. For r = 5, the value of the sum is

5∑

k=1

B2k

(2k − 1)2k
· 1

z2k−1
=

1

12z
− 1

360z3
+

1

1260z5
− 1

1680z7
+

1

1188z9

Proof. We use the Gauß representation of the Gamma function (theorem 9.3.a) and
get

log Γ(z) = lim
n→∞

(
z log n +

n∑

k=1

log k −
n∑

k=0

log(z + k)
)
.
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By Euler-Maclaurin (theorem 5.2)

n∑

k=1

log k = 1
2
log n +

∫ n

1

log t dt +

∫ n

1

saw(t)

t
dt

= 1
2
log n + n log n − n + 1 +

∫ n

1

saw(t)

t
dt

and
n∑

k=0

log(z + k) = 1
2
(log z + log(z + n)) +

∫ n

0

log(z + t)dt +

∫ n

0

saw(t)

z + t
dt

= 1
2
(log z + log(z + n)) + (z + n) log(z + n) − z log z − n

+

∫ n

0

saw(t)

z + t
dt.

Therefore

z log n +

n∑

k=1

log k −
n∑

k=0

log(z + k)

= (z − 1
2
) log z − (z + n + 1

2
) log

(
1 +

z

n

)
+ 1

+

∫ n

1

saw(t)

t
dt −

∫ n

0

saw(t)

z + t
dt.

Since

lim
n→∞

(z + n + 1
2
) log

(
1 +

z

n

)
= z

and

lim
n→∞

(
1 +

∫ n

1

saw(t)

t
dt

)
= log

√
2π (see above),

we get

log Γ(z) = (z − 1
2
) log z − z + log

√
2π −

∫ ∞

0

saw(t)

z + t
dt.

The rest is proved as in theorem 5.11.
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