O. Forster: Analytic Number Theory

9. The Gamma Function

9.1. Definition. The Gamma function is defined for complex z with Re(z) > 0 by the
Euler integral

[(z):= / t*~le~tdt.
0

Since with z := Re(z) one has [t*"'e™!| = t*"le™* the convergence of this integral
follows from the corresponding fact in the real case (which we suppose known) and we
have the estimate

IT'(z)| < T'(Re(z)) for Re(z) > 0.

Since the integrand depends holomorphically on z, it follows further that I" is holomor-
phic in the halfplane H(0) = {z € C : Re(z) > 0}. As in the real case one proves by
partial integration the functional equation

2I'(z) =T (24 1),

which together with I'(1) = 1 shows that I'(n + 1) = n! for all n € Ny. Applying the
functional equation n + 1 times yields

M(z+n+1)
z+1)-...-(z4+n)

I'(z) = ;

The right hand side of this formula, which was derived for Re(z) > 0, defines a mero-
morphic function in the halfplane H(—n—1) = {z € C: Re(z) > —n — 1} having poles

of first order at the points z = —k, k = 0,1,...,n. Therefore we can use this formula
to continue the Gamma function analytically to a meromorphic function in the whole
plane C, with poles of first order at 2 = —n, n € Ny, and holomorphic elsewhere. From

now on, by Gamma function we understand this meromorphic function in C.

The Gamma function can be characterized axiomatically as follows:

9.2. Theorem. Let F' be a meromorphic function in C with the following properties:
i) F' is holomorphic in the halfplane H(0) = {z € C: Re(z) > 0}.

ii) F' satisfies the functional equation zF'(z) = F(z + 1).

iii) F' is bounded in the strip {z € C:1 < Re(z) < 2}.

Then there exists a constant c € C such that
F(z) = cI'(2).
Proof. 1t is clear that I satisfies the properties i) to iii). We set ¢ := F'(1) and

O(2) := F(z) —cI'(2).
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Then @ is also a function satisfying i) to iii) and ®(1) = 0. From the functional equation
O(2) = (2 +1)/z it follows that ® is holomorphic at z = 0 and that ® is bounded in
the strip {z € C : 0 < Re(z) < 1}. Therefore the function

o(z) = P(2)P(1 — 2)
is bounded in the same strip. We have
elz+1) =02+ 1)P(—2) = 20(2)P(—2) = —P(2)P(—2 + 1) = —p(2).

From this it follows that ¢ is periodic with period 2 and bounded everywhere, hence
holomorphic in C. By the theorem of Liouville ¢ must be constant. Since ¢(1) = —¢(0),
this constant is 0. The equation 0 = ®(2)®(1 — z) shows that also ® is identically 0,
but this means F(z) = cI'(2), q.e.d.

9.3. Theorem. a) For every z € C~{n € Z:n <0} we have

nln?

r(z):nlggoz(ﬁl)....-(wn)

(Gauf representation of the Gamma function)

b) 1/T" is an entire holomorphic function with product representation
1 c ~ z
—— ="z 1+ —)e_z/ " C = Euler-Mascheroni constant).
I'(2) 1_[1 < n ( )

This product converges normally in C.

Proof.

9.4. Lemma. Let f: C — C be an entire holomorphic function and let p, C, Ry € R
be non-negative constants such that

Re(f(z)) < C|z|” for |z| > Ry.
Then f is a polynomial of degree < p.
Note that no lower bound for Re(f(z)) is required.

Proof. The Taylor series f(z) = Y oo a,2" converges for all z € C. Setting z = Re",
we get Fourier series

f(Re™) = Z anR"e™ and f(Reit) = ZEnR"e_mt,
n=0 n=0

hence

Re(f(Re™)) = Re(ag) + 1 Z R™(a,e™ 4 @,e” ™).

n=1
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—ikt

Multiplying this equation by e and integrating from 0 to 27 yields

1 2

- it fiktdt for k
TR, Re (f(Re")) e or k>0

ag

and (for k = 0)

1

Re(ag) = %/0 7TRe (f(Re™)) dt.

The hypothesis on the growth of Re(f(z)) implies
[Re(f(2))] < 2C[2|” = Re(f(2)) for [2] = R,

(note this is true also if Re(f(z)) < 0). Therefore we get the estimate

2

1 i 1
lag| < o7 ), ‘Re(f(re t))‘ dt < Tk (4CR* — 2Re(ay)) -

Letting R — oo, we see that a; = 0 for k > p, q.e.d.

9.5. Theorem. The Gamma function satisfies the following relations:

2) 1 _ sin(7z)
L(z)(1 - 2) T
b) r(g)r(Z;Fl) — 212 /7 T(2).

1

5 in formula a) yields

Example. Setting z =
I'(3) =r
The same result can also be obtained from formula b) for z = 1.

Proof. a) We first consider the meromorphic function
O(2) =T (2)I'(1 - 2).

It has poles of order 1 at the points z = n, n € Z, and is holomorphic elsewhere. It
satisfies the relations

O(z+1)=—-P(2) and P(—z) = —P(2).
Since I'(2) is bounded on 1 < Re(z) < 2 and

re) == s = TR,
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it follows that ® is bounded on the set
S1:={2€C:0<Re(z) <1, |Im(z)] > 1}.

As sin(7z) has zeroes of order 1 at z = n, n € Z, the product
F(z) :=sin(rz)®(z) = sin(n2)['(2)['(1 — 2)

is holomorphic everywhere in C and without zeroes. We can write

sin(7mz)

F(z) =

ST+ )0 - 2),

hence F(0) = m. Furthermore F' is periodic with period 1 and an even function, i.e.
F(—z) = F(z). From the boundedness of ® on S} we get an estimate

|F(2)] < Ce™ ! for z € S; and some constant C' > 0.

Since F' is continuous and periodic, such an estimate holds in the whole plane C.
We can write F' as F(z) = e/*) with some holomorphic function f : C — C. From
|F(2)] = e®(®) we get an estimate

Re(f) < C'|z| for |z] > Ry and some constant C’ > 0.
By lemma 9.4, f must be a linear polynomial, hence
F(z) = e (a,beC).

Since F'is an even function, we have b = 0, so the function F' is a constant, which must
be F'(0) = w. This proves part a) of the theorem.

b) This is proved by applying theorem 9.2 to the function

P& =21 (G)r(55)

9.6. Corollary (Sine product). For all z € C one has

sin(mz —WZH(l——)

9.7. Corollary (Wallis product).
n)?

2) H 2n—1 2n+1)

n:l
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1 22n !2
b) ﬁzlim_.ﬂ

Proof. Formula a) follows directly from the sine product with z = %

To prove formula b), we rewrite a) as

T (2k)?
=21
m nliﬂlog(zk—l)(zkﬂ)
] 22n(n|)2
= lim .
nooo2n+1 1-3-3-5-5-...-(2n—1)(2n—1)

hence

2 2"
—= 1 N
VT e T s D
9 22n !2
= lim 4/ : (n)

Since lim v2n/v/2n+ 1 =1, the assertion follows.

9.8. Theorem (Stirling formula). We have the following asymptotic relation

n n
nl ~ 27rn(—) )
e

Proof. We apply the Euler-Maclaurin summation formula to

log(n!) = Z log k
k=1

and obtain
L " " saw ()
log(n!) = slogn+ [ logxdr+ — dx
1 1
= 1logn + n(logn — 1)+1+/1 SaWT(x)dx.

Taking the exponential function of both sides we get
n! =+/n (E> e,
e

where
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This last representation shows that

=lma,=1 —|—/ saw(z) dx
1

n—oo €T

exists and we have the asymptotic relation

n! ~ ﬁ(ﬁ)ne“.

e

It remains to prove that e* = /2. This can be done as follows. Dividing the asymptotic
relations

(n!)? ~ n(ﬁ)%em and (2n)! ~ \/%(2—n>2neo‘

e e
yields
. (n')2 2n ‘ (Qn)2n+1/2 . (n!)2 . 92n+1/2 . \/? 22n(n!)2
n—oo p2ntl (2n)le?m  n—oo (2n)ly/n n—oo V' m (2n)!

Now corollary 9.7 shows e* = /27, q.e.d.
For later use we note that we have hereby proved

1+/ de:log\&ﬂ.
1 :L‘

9.9. Theorem (Asymptotic expansion of the Gamma function). For every integer
r>1 and every z € C~ {x € R: 2 <0} one has

1
2k:—1 2%k 22T

logT'(2) = (2 — )logz—z+log\/_+z

BQT( ) 1
. dt.
+ /0 2r (z+t)%r

Here logI'(2) and log z are those branches of the logarithm which take real values for
positive real arqguments.

Example. For r = 5, the value of the sum is

By, 1 1 1 1 1 1

Qk— 12k 21  12: 3605 | 12605 168077 & 11889

Mm

k=1

Proof. We use the Gauf representation of the Gamma function (theorem 9.3.a) and
get

log'(z) = lim (zlognJerogk Zlog z+k:))

n—oo
k=1 =
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By Euler-Maclaurin (theorem 5.2)

Y logh = %logn+/ logtdt+/ Savz(t)dt
k=1 1 1

" t
= %logn+nlogn—n+1—1—/1 %dt

and

Z log(z 4+ k) = +(logz + log(z +n)) + / log(z +t)dt + /

k=0 0 0

= 1(logz +log(z +n)) + (z + n)log(z + n) — zlogz — n
+ / "saw(t) )
o 2+t

Therefore

zlogn + Zlogk Zlog (z+ k)

k=1
=(z—3)logz— (z+n+ )log(l—i— ) +1
+/ saw (¢ )d B / saw(t)dt_
1 t 0o 2+t

Since

lim (z +n+ 1) log (1—1—3) =z

n—oo n
and

. " saw(t)

lim (1 + ; dt) =log V21 (see above),

n—oo 1
we get

logT(z) = (z — 1) logz — 2 + log V/2m — / saw(?

z+t

The rest is proved as in theorem 5.11.
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" saw (t)

z+t

dt



