9. The Gamma Function

9.1. Definition. The Gamma function is defined for complex z with $\operatorname{Re}(z) > 0$ by the Euler integral

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt.$$

Since with $x := \operatorname{Re}(z)$ one has $|t^{z-1}e^{-t}| = t^{x-1}e^{-t}$, the convergence of this integral follows from the corresponding fact in the real case (which we suppose known) and we have the estimate

$$|\Gamma(z)| \le \Gamma(\operatorname{Re}(z))$$
 for $\operatorname{Re}(z) > 0$.

Since the integrand depends holomorphically on z, it follows further that Γ is holomorphic in the halfplane $H(0) = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. As in the real case one proves by partial integration the functional equation

$$z\Gamma(z) = \Gamma(z+1),$$

which together with $\Gamma(1) = 1$ shows that $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}_0$. Applying the functional equation n+1 times yields

$$\Gamma(z) = \frac{\Gamma(z+n+1)}{z(z+1)\cdot\ldots\cdot(z+n)}.$$

The right hand side of this formula, which was derived for $\operatorname{Re}(z) > 0$, defines a meromorphic function in the halfplane $H(-n-1) = \{z \in \mathbb{C} : \operatorname{Re}(z) > -n-1\}$ having poles of first order at the points $z = -k, k = 0, 1, \ldots, n$. Therefore we can use this formula to continue the Gamma function analytically to a meromorphic function in the whole plane \mathbb{C} , with poles of first order at $z = -n, n \in \mathbb{N}_0$, and holomorphic elsewhere. From now on, by Gamma function we understand this meromorphic function in \mathbb{C} .

The Gamma function can be characterized axiomatically as follows:

9.2. Theorem. Let F be a meromorphic function in \mathbb{C} with the following properties:

- i) F is holomorphic in the halfplane $H(0) = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}.$
- ii) F satisfies the functional equation zF(z) = F(z+1).
- iii) F is bounded in the strip $\{z \in \mathbb{C} : 1 \leq \operatorname{Re}(z) \leq 2\}$.

Then there exists a constant $c \in \mathbb{C}$ such that

$$F(z) = c \, \Gamma(z).$$

Proof. It is clear that Γ satisfies the properties i) to iii). We set c := F(1) and

$$\Phi(z) := F(z) - c \,\Gamma(z).$$

Then Φ is also a function satisfying i) to iii) and $\Phi(1) = 0$. From the functional equation $\Phi(z) = \Phi(z+1)/z$ it follows that Φ is holomorphic at z = 0 and that Φ is bounded in the strip $\{z \in \mathbb{C} : 0 \leq \text{Re}(z) \leq 1\}$. Therefore the function

$$\varphi(z) := \Phi(z)\Phi(1-z)$$

is bounded in the same strip. We have

$$\varphi(z+1) = \Phi(z+1)\Phi(-z) = z\Phi(z)\Phi(-z) = -\Phi(z)\Phi(-z+1) = -\varphi(z).$$

From this it follows that φ is periodic with period 2 and bounded everywhere, hence holomorphic in \mathbb{C} . By the theorem of Liouville φ must be constant. Since $\varphi(1) = -\varphi(0)$, this constant is 0. The equation $0 = \Phi(z)\Phi(1-z)$ shows that also Φ is identically 0, but this means $F(z) = c \Gamma(z)$, q.e.d.

9.3. Theorem. a) For every $z \in \mathbb{C} \setminus \{n \in \mathbb{Z} : n \leq 0\}$ we have

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1) \cdot \ldots \cdot (z+n)}$$

(Gauß representation of the Gamma function)

b) $1/\Gamma$ is an entire holomorphic function with product representation

$$\frac{1}{\Gamma(z)} = e^{Cz} z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}, \qquad (C = \text{Euler-Mascheroni constant}).$$

This product converges normally in \mathbb{C} .

Proof.

9.4. Lemma. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function and let $\rho, C, R_0 \in \mathbb{R}_+$ be non-negative constants such that

$$\operatorname{Re}(f(z)) \le C|z|^{\rho} \quad \text{for } |z| \ge R_0.$$

Then f is a polynomial of degree $\leq \rho$.

Note that no lower bound for $\operatorname{Re}(f(z))$ is required.

Proof. The Taylor series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for all $z \in \mathbb{C}$. Setting $z = Re^{it}$, we get Fourier series

$$f(Re^{it}) = \sum_{n=0}^{\infty} a_n R^n e^{int}$$
 and $\overline{f(Re^{it})} = \sum_{n=0}^{\infty} \overline{a}_n R^n e^{-int}$,

hence

$$\operatorname{Re}(f(Re^{it})) = \operatorname{Re}(a_0) + \frac{1}{2}\sum_{n=1}^{\infty} R^n (a_n e^{int} + \overline{a}_n e^{-int}).$$

Multiplying this equation by e^{-ikt} and integrating from 0 to 2π yields

$$a_k = \frac{1}{\pi R^k} \int_0^{2\pi} \operatorname{Re}\left(f(Re^{it})\right) e^{-ikt} dt \quad \text{for } k > 0$$

and (for k = 0)

$$\operatorname{Re}(a_0) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}\left(f(Re^{it})\right) dt.$$

The hypothesis on the growth of $\operatorname{Re}(f(z))$ implies

$$|\operatorname{Re}(f(z))| \le 2C|z|^{\rho} - \operatorname{Re}(f(z)) \quad \text{for } |z| \ge R_0,$$

(note this is true also if $\operatorname{Re}(f(z)) < 0$). Therefore we get the estimate

$$|a_k| \le \frac{1}{\pi R^k} \int_0^{2\pi} \left| \operatorname{Re}(f(re^{it})) \right| dt \le \frac{1}{R^k} \left(4CR^{\rho} - 2\operatorname{Re}(a_0) \right).$$

Letting $R \to \infty$, we see that $a_k = 0$ for $k > \rho$, q.e.d.

9.5. Theorem. The Gamma function satisfies the following relations:

a)
$$\frac{1}{\Gamma(z)\Gamma(1-z)} = \frac{\sin(\pi z)}{\pi},$$

b)
$$\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{z+1}{2}\right) = 2^{1-z}\sqrt{\pi}\,\Gamma(z).$$

Example. Setting $z = \frac{1}{2}$ in formula a) yields

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

The same result can also be obtained from formula b) for z = 1.

Proof. a) We first consider the meromorphic function

$$\Phi(z) := \Gamma(z)\Gamma(1-z).$$

It has poles of order 1 at the points $z = n, n \in \mathbb{Z}$, and is holomorphic elsewhere. It satisfies the relations

$$\Phi(z+1) = -\Phi(z) \quad \text{and} \quad \Phi(-z) = -\Phi(z).$$

Since $\Gamma(z)$ is bounded on $1 \leq \operatorname{Re}(z) \leq 2$ and

$$\Gamma(z) = \frac{\Gamma(1+z)}{z}, \quad \Gamma(1-z) = \frac{\Gamma(2-z)}{(1-z)},$$

it follows that Φ is bounded on the set

$$S_1 := \{ z \in \mathbb{C} : 0 \le \operatorname{Re}(z) \le 1, |\operatorname{Im}(z)| \ge 1 \}.$$

As $\sin(\pi z)$ has zeroes of order 1 at $z = n, n \in \mathbb{Z}$, the product

$$F(z) := \sin(\pi z)\Phi(z) = \sin(\pi z)\Gamma(z)\Gamma(1-z)$$

is holomorphic everywhere in $\mathbb C$ and without zeroes. We can write

$$F(z) = \frac{\sin(\pi z)}{z} \Gamma(1+z)\Gamma(1-z),$$

hence $F(0) = \pi$. Furthermore F is periodic with period 1 and an even function, i.e. F(-z) = F(z). From the boundedness of Φ on S_1 we get an estimate

$$|F(z)| \leq Ce^{\pi |z|}$$
 for $z \in S_1$ and some constant $C > 0$.

Since F is continuous and periodic, such an estimate holds in the whole plane \mathbb{C} . We can write F as $F(z) = e^{f(z)}$ with some holomorphic function $f : \mathbb{C} \to \mathbb{C}$. From $|F(z)| = e^{\operatorname{Re}(z)}$ we get an estimate

$$\operatorname{Re}(f) \leq C'|z|$$
 for $|z| \geq R_0$ and some constant $C' > 0$.

By lemma 9.4, f must be a linear polynomial, hence

$$F(z) = e^{a+bz}, \quad (a, b \in \mathbb{C}).$$

Since F is an even function, we have b = 0, so the function F is a constant, which must be $F(0) = \pi$. This proves part a) of the theorem.

b) This is proved by applying theorem 9.2 to the function

$$F(z) := 2^{z} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right).$$

• • •

9.6. Corollary (Sine product). For all $z \in \mathbb{C}$ one has

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right).$$

9.7. Corollary (Wallis product).

a)
$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{(2n)^2}{(2n-1)(2n+1)},$$

b)
$$\sqrt{\pi} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \cdot \frac{2^{2n} (n!)^2}{(2n)!}$$

Proof. Formula a) follows directly from the sine product with $z = \frac{1}{2}$. To prove formula b), we rewrite a) as

$$\pi = 2 \lim_{n \to \infty} \prod_{k=1}^{n} \frac{(2k)^2}{(2k-1)(2k+1)}$$
$$= \lim_{n \to \infty} \frac{2}{2n+1} \cdot \frac{2^{2n}(n!)^2}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot \dots \cdot (2n-1)(2n-1)}$$

hence

$$\sqrt{\pi} = \lim_{n \to \infty} \sqrt{\frac{2}{2n+1}} \cdot \frac{2^n n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}$$
$$= \lim_{n \to \infty} \sqrt{\frac{2}{2n+1}} \cdot \frac{2^{2n} (n!)^2}{(2n)!}.$$

Since $\lim_{n \to \infty} \sqrt{2n} / \sqrt{2n+1} = 1$, the assertion follows.

9.8. Theorem (Stirling formula). We have the following asymptotic relation

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Proof. We apply the Euler-Maclaurin summation formula to

$$\log(n!) = \sum_{k=1}^{n} \log k$$

and obtain

$$\log(n!) = \frac{1}{2}\log n + \int_{1}^{n}\log x \, dx + \int_{1}^{n} \frac{\operatorname{saw}(x)}{x} \, dx$$
$$= \frac{1}{2}\log n + n(\log n - 1) + 1 + \int_{1}^{n} \frac{\operatorname{saw}(x)}{x} \, dx.$$

Taking the exponential function of both sides we get

$$n! = \sqrt{n} \left(\frac{n}{e}\right)^n e^{\alpha_n},$$

where

$$\alpha_n = 1 + \int_1^n \frac{\operatorname{saw}(x)}{x} \, dx = 1 + \frac{B_2}{2} \cdot \frac{1}{x} \Big|_1^n + \int_1^n \frac{\widetilde{B}_2(x)}{2} \cdot \frac{1}{x^2} \, dx.$$

This last representation shows that

$$\alpha := \lim_{n \to \infty} \alpha_n = 1 + \int_1^\infty \frac{\operatorname{saw}(x)}{x} \, dx$$

exists and we have the asymptotic relation

$$n! \sim \sqrt{n} \left(\frac{n}{e}\right)^n e^{\alpha}.$$

It remains to prove that $e^{\alpha} = \sqrt{2\pi}$. This can be done as follows. Dividing the asymptotic relations

$$(n!)^2 \sim n \left(\frac{n}{e}\right)^{2n} e^{2\alpha}$$
 and $(2n)! \sim \sqrt{2n} \left(\frac{2n}{e}\right)^{2n} e^{\alpha}$

yields

$$e^{\alpha} = \lim_{n \to \infty} \frac{(n!)^2 e^{2n}}{n^{2n+1}} \cdot \frac{(2n)^{2n+1/2}}{(2n)! e^{2n}} = \lim_{n \to \infty} \frac{(n!)^2 \cdot 2^{2n+1/2}}{(2n)! \sqrt{n}} = \lim_{n \to \infty} \sqrt{\frac{2}{n}} \cdot \frac{2^{2n} (n!)^2}{(2n)!}.$$

Now corollary 9.7 shows $e^{\alpha} = \sqrt{2\pi}$, q.e.d.

For later use we note that we have hereby proved

$$1 + \int_{1}^{\infty} \frac{\operatorname{saw}(x)}{x} \, dx = \log \sqrt{2\pi}.$$

9.9. Theorem (Asymptotic expansion of the Gamma function). For every integer $r \ge 1$ and every $z \in \mathbb{C} \setminus \{x \in \mathbb{R} : x \le 0\}$ one has

$$\log \Gamma(z) = (z - \frac{1}{2}) \log z - z + \log \sqrt{2\pi} + \sum_{k=1}^{r} \frac{B_{2k}}{(2k-1)2k} \cdot \frac{1}{z^{2k-1}} + \int_{0}^{\infty} \frac{\widetilde{B}_{2r}(t)}{2r} \cdot \frac{1}{(z+t)^{2r}} dt.$$

Here $\log \Gamma(z)$ and $\log z$ are those branches of the logarithm which take real values for positive real arguments.

Example. For r = 5, the value of the sum is

$$\sum_{k=1}^{5} \frac{B_{2k}}{(2k-1)2k} \cdot \frac{1}{z^{2k-1}} = \frac{1}{12z} - \frac{1}{360z^3} + \frac{1}{1260z^5} - \frac{1}{1680z^7} + \frac{1}{1188z^9}$$

Proof. We use the Gauß representation of the Gamma function (theorem 9.3.a) and get

$$\log \Gamma(z) = \lim_{n \to \infty} \left(z \log n + \sum_{k=1}^n \log k - \sum_{k=0}^n \log(z+k) \right).$$

By Euler-Maclaurin (theorem 5.2)

$$\sum_{k=1}^{n} \log k = \frac{1}{2} \log n + \int_{1}^{n} \log t \, dt + \int_{1}^{n} \frac{\operatorname{saw}(t)}{t} dt$$
$$= \frac{1}{2} \log n + n \log n - n + 1 + \int_{1}^{n} \frac{\operatorname{saw}(t)}{t} dt$$

and

$$\sum_{k=0}^{n} \log(z+k) = \frac{1}{2} (\log z + \log(z+n)) + \int_{0}^{n} \log(z+t) dt + \int_{0}^{n} \frac{\operatorname{saw}(t)}{z+t} dt$$
$$= \frac{1}{2} (\log z + \log(z+n)) + (z+n) \log(z+n) - z \log z - n$$
$$+ \int_{0}^{n} \frac{\operatorname{saw}(t)}{z+t} dt.$$

Therefore

$$z \log n + \sum_{k=1}^{n} \log k - \sum_{k=0}^{n} \log(z+k)$$

= $(z - \frac{1}{2}) \log z - (z+n+\frac{1}{2}) \log \left(1+\frac{z}{n}\right) + 1$
+ $\int_{1}^{n} \frac{\operatorname{saw}(t)}{t} dt - \int_{0}^{n} \frac{\operatorname{saw}(t)}{z+t} dt.$

Since

$$\lim_{n \to \infty} (z + n + \frac{1}{2}) \log\left(1 + \frac{z}{n}\right) = z$$

and

$$\lim_{n \to \infty} \left(1 + \int_1^n \frac{\operatorname{saw}(t)}{t} dt \right) = \log \sqrt{2\pi} \quad \text{(see above)},$$

we get

$$\log \Gamma(z) = (z - \frac{1}{2}) \log z - z + \log \sqrt{2\pi} - \int_0^\infty \frac{\operatorname{saw}(t)}{z + t} dt.$$

The rest is proved as in theorem 5.11.