
O. Forster: Analytic Number Theory

8. Primes in Arithmetic Progressions

8.1. Definition (Dirichlet density). For any subset A ⊂ P of the set P of all primes,
we define the function

PA(s) :=
∑

p∈A

1

ps
.

The sum converges at least for Re(s) > 1 and defines a holomorphic function in the
halfplane H(1) = {s ∈ C : Re(s) > 1}. For A = P we get the prime zeta function P (s)
already discussed in (4.7). If the limit

δDir(A) := lim
σց1

PA(σ)

P (σ)

exists, it is called the Dirichlet density or analytic density of the set A. It is clear that,
if the Dirichlet density of A exists, one has

0 ≤ δDir(A) ≤ 1.

The Dirichlet density of the set of all primes is 1, and any finite set of primes has
density 0. Hence δDir(A) > 0 implies that A is infinite.

An equivalent definition of the Dirichlet density is

δDir(A) = lim
σց1

PA(σ)
/

log
( 1

σ − 1

)
.

This comes from the fact that

lim
σց1

P (σ)/ log ζ(σ) = 1

by theorem 4.7, and

lim
σց1

log ζ(σ)
/

log
( 1

σ − 1

)
= 1,

since ζ(s) = 1/(s− 1) + (holomorphic function).

8.2. Arithmetic progressions. Let m, a be integers, m ≥ 2. The set of all n ∈ N1

with

n ≡ a mod m

is called an arithmetic progression. We want to study the distribution of primes in
arithmetic progressions. Clearly if gcd(a,m) > 1, there exist only finitely many primes
in the arithmetic progression of numbers congruent a mod m. So suppose gcd(a,m) =
1. Dirichlet has proved that there exist infinitely many primes p ≡ a mod m, more
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precisely: The set of all such primes has Dirichlet density 1/ϕ(m), which means that
the Dirichlet density of primes in all arithmetic progressions a mod m, gcd(a,m) = 1,
is the same. To prove this, we have, according to definition 8.1, to study the functions

Pa,m(s) :=
∑

p≡a mod m

1

ps
,

where the sum is extended over all primes ≡ a mod m. It was Dirichlet’s idea to use
instead the functions

P (s, χ) :=
∑

p∈P

χ(p)

ps
,

where χ : N1 → C is a Dirichlet character modulo m. These functions were already
introduced in theorem 7.7. The relation between the functions Pa,m(s) and P (s, χ) is
given by the following lemma.

8.3. Lemma. Let m be an integer ≥ 2 and a an integer coprime to m. Then we have

for all s ∈ C with Re(s) > 1

Pa,m(s) =
1

ϕ(m)

∑

χ

χ(a)P (s, χ).

Here the sum is extended over all Dirichlet charcters χ modulo m and χ(a) denotes the

complex conjugate of χ(a).

Proof. We have

∑

χ

χ(a)P (s, χ) =
∑

p∈P

(∑

χ

χ(a)χ(p)
)
·

1

ps
=

∑

p∈P

αp
ps
,

where

αp :=
∑

χ

χ(a)χ(p).

Since a is coprime to m, there exists an integer b with ab ≡ 1 mod m, hence χ(a)χ(b) =
1. On the other hand |χ(a)| = 1, which implies χ(b) = χ(a). Therefore by theorem 7.3.b)

αp =
∑

χ

χ(b)χ(p) =
∑

χ

χ(bp) =
{
ϕ(m) if bp ≡ 1 mod m,
0 otherwise.

But bp ≡ 1 mod m is equivalent to p ≡ a mod m, hence

∑

p∈P

αp
ps

= ϕ(m)
∑

p≡a mod m

1

ps
,

which proves the lemma.
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In the proof of the Dirichlet theorem on primes in arithmetic progressions, the following
theorem plays an essential role.

8.4. Theorem. Let m be an integer ≥ 2 and χ a non-principal Dirichlet character

modulo m. Then

L(1, χ) 6= 0.

Recall that for a non-principal character χ the function L(s, χ) is holomorphic for
Re(s) > 0 (theorem 7.6.c).

Example. For the non-principal character χ1 modulo 4 one has (cf. 7.4)

L(1, χ1) = 1 −
1

3
+

1

5
+

1

7
−

1

9
± . . . =

π

4
.

Before we prove this theorem, we show how Dirichlet’s theorem can be derived from it.

8.5. Theorem (Dirichlet). Let a,m be coprime integers, m ≥ 2. Then the set of all

primes p ≡ a mod m has Dirichlet density 1/ϕ(m).

Proof. For the principal Dirichlet character χ0m it follows from theorem 7.6.b) that

lim
σց1

logL(σ, χ0m)/ log ζ(σ) = lim
σց1

logL(σ, χ0m)
/

log
( 1

σ − 1

)
= 1.

On the other hand, if χ is a non-principal character, then we have by theorem 8.4

lim
σց1

logL(σ, χ)
/

log
( 1

σ − 1

)
= 0.

By theorem 7.7 this implies

lim
σց1

P (σ, χ0m)
/

log
( 1

σ − 1

)
= 1

and

lim
σց1

P (σ, χ)
/

log
( 1

σ − 1

)
= 0

for all non-principal characters χ. Therefore

lim
σց1

(∑

χ

χ(a)P (σ, χ)
)/

log
( 1

σ − 1

)
= χ0m(a) = 1.

Now using lemma 8.3 we get

lim
σց1

Pa,m(σ)
/

log
( 1

σ − 1

)
=

1

ϕ(m)
,

8.3



8. Primes in arithmetic progressions

which proves our theorem.

8.6. Proof of theorem 8.4. We have to show that

L(1, χ) 6= 0

for every non-principal Dirichlet character χ modulo m.

Assume to the contrary that there exists at least one non-principal character χ with
L(1, χ) = 0. We define the function

ζm(s) :=
∏

χ

L(s, χ),

where the product is extended over all Dirichlet characters modulo m. For the principal
character the function L(s, χ0m) has a pole of order 1 at s = 1. This pole is canceled
by the assumed zero of one of the functions L(s, χ), χ 6= χ0m. Therefore, under the
assumption, ζm would be holomorphic everywhere in the halfplane H(0) = {s ∈ C :
Re(s) > 0}. We will show that this leads to a contradiction.

Using the Euler product for the L-functions (theorem 7.6), we get

ζm(s) =
∏

χ

∏

p∈P

1

1 − χ(p)p−s
=

∏

p∈P

1∏
χ(1 − χ(p)p−s)

.

By lemma 8.7 below, for every p ∤ m there exist integers f(p), g(p) ≥ 1 with f(p)g(p) =
ϕ(m) such that

∏

χ

(1 − χ(p)p−s) = (1 − p−f(p)s)g(p).

Therefore

1∏
χ(1 − χ(p)p−s)

=
( ∞∑

k=0

1

pf(p)ks

)g(p)

is a Dirichlet series with non-negative coefficients and we have

( ∞∑

k=0

1

pf(p)ks

)g(p)
≻

∞∑

k=0

1

pϕ(m)ks
,

where the relation
∑

n an/n
s ≻

∑
n bn/n

s between two Dirichlet series is defined as
an ≥ bn for all n. It follows that ζm(s) is a Dirichlet series with non-negative coefficients
and

ζm(s) ≻
∏

p∤m

( ∞∑

k=0

1

pϕ(m)ks

)
=

∑

gcd(n,m)=1

1

nϕ(m)s
.
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The last Dirichlet series has abscissa of absolute convergence = 1/ϕ(m). Therefore
σa(ζm) ≥ 1/ϕ(m). But by the theorem of Landau (6.8) this contradicts the assumption
that ζm is holomorphic in the halfplane H(0). Therefore the assumption is false, which
proves L(1, χ) 6= 0 for all non-principal characters χ.

8.7. Lemma. Let G be a finite abelian group of order r and let g ∈ G be an element

of order k | r. Then we have the following identity in the polynomial ring C[T ]

∏

χ∈ bG

(1 − χ(g)T ) =
(
1 − T k

)r/k
.

Proof. Let H ⊂ G be the subgroup generated by the element g. H is a cyclic group
of order k. For every character χ ∈ Ĝ, the restriction χ | H is a character of H . Two

characters χ1, χ2 ∈ Ĝ have the same restriction to H iff the character χ := χ1χ
−1
2 is

identically 1 on H , which implies that χ induces a character on the quotient group
G/H . Since G/H has r/k elements, there can be at most r/k characters of G which
restrict to the unit character on H . This means that the restriction of the r characters
of G yield at least k different characters of H . But we know that there are exactly k
characters of H . Hence every character ψ of H is the restriction of a character of G
and there are exactly r/k characters of G which restrict to ψ. Now

∏

ψ∈ bH

(1 − ψ(g)T ) =
k−1∏

ν=0

(1 − e2πiν/kT ) = 1 − T k

and
∏

χ∈ bG

(1 − χ(g)T ) =
( ∏

ψ∈ bH

(1 − ψ(g)T )
)r/k

=
(
1 − T k

)r/k
, q.e.d.
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