O. Forster: Analytic Number Theory

8. Primes in Arithmetic Progressions

8.1. Definition (Dirichlet density). For any subset A C P of the set P of all primes,
we define the function

Pa(s) = Z}%.

pEA

The sum converges at least for Re(s) > 1 and defines a holomorphic function in the
halfplane H(1) = {s € C: Re(s) > 1}. For A = P we get the prime zeta function P(s)
already discussed in (4.7). If the limit

o Palo)
5Dir<A) = }71\m1 P(O’)

exists, it is called the Dirichlet density or analytic density of the set A. It is clear that,
if the Dirichlet density of A exists, one has

0 < dpu(A) < 1.

The Dirichlet density of the set of all primes is 1, and any finite set of primes has
density 0. Hence dp;(A) > 0 implies that A is infinite.

An equivalent definition of the Dirichlet density is

Sore(4) = lim Palcr) o ().

o—1
This comes from the fact that

lim P(0)/log(() = 1

by theorem 4.7, and
lim log (o) / 1 ( ! ) 1
im lo ogl——) =
o g6lo g o—1 )
since ((s) = 1/(s — 1) + (holomorphic function).

8.2. Arithmetic progressions. Let m,a be integers, m > 2. The set of all n € Ny
with

n = a mod m
is called an arithmetic progression. We want to study the distribution of primes in
arithmetic progressions. Clearly if ged(a, m) > 1, there exist only finitely many primes

in the arithmetic progression of numbers congruent a mod m. So suppose ged(a, m) =
1. Dirichlet has proved that there exist infinitely many primes p = a mod m, more
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precisely: The set of all such primes has Dirichlet density 1/¢(m), which means that
the Dirichlet density of primes in all arithmetic progressions a mod m, ged(a,m) = 1,
is the same. To prove this, we have, according to definition 8.1, to study the functions

1
Pa,m<8) = _8 y
pEa%odmp

where the sum is extended over all primes = a mod m. It was Dirichlet’s idea to use
instead the functions

P(s,x) = ZX(f),

peP p

where y : N; — C is a Dirichlet character modulo m. These functions were already
introduced in theorem 7.7. The relation between the functions P, ,(s) and P(s,x) is
given by the following lemma.

8.3. Lemma. Let m be an integer > 2 and a an integer coprime to m. Then we have

for all s € C with Re(s) > 1
Py(s) = @ XXJW)P(& X).

Here the sum is extended over all Dirichlet charcters x modulo m and X (a) denotes the
complex conjugate of x(a).

Proof. We have

S x@) P 0 = (S X)) = 3%,

peEP X pEP

where

ap =y X(a)x(p)-

Since a is coprime to m, there exists an integer b with ab = 1 mod m, hence x(a)x(b) =
1. On the other hand |x(a)| = 1, which implies x(b) = X(a). Therefore by theorem 7.3.b)

a, =Y x()x(p) = x(bp) = {g(m) if bp = 1 mod m,

otherwise.

But bp = 1 mod m is equivalent to p = a mod m, hence

S _om Y 2

s s
peP p p=a mod m p

which proves the lemma.
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In the proof of the Dirichlet theorem on primes in arithmetic progressions, the following
theorem plays an essential role.

8.4. Theorem. Let m be an integer > 2 and x a non-principal Dirichlet character
modulo m. Then

L(1,x) # 0.

Recall that for a non-principal character x the function L(s,x) is holomorphic for

Re(s) > 0 (theorem 7.6.c).
Example. For the non-principal character xy; modulo 4 one has (cf. 7.4)

1 1 1 1 0
L(1 =l—-—-—4+—-4+-—=-+t...=—.
(L) 3757779 1
Before we prove this theorem, we show how Dirichlet’s theorem can be derived from it.

8.5. Theorem (Dirichlet). Let a,m be coprime integers, m > 2. Then the set of all
primes p = a mod m has Dirichlet density 1/¢o(m).

Proof. For the principal Dirichlet character o, it follows from theorem 7.6.b) that
lim log L(c, Xom)/ log C(¢) = lim log L( )ﬁ (1 ) |
im log L(o, Xom)/log (o) = lim log L(o, xom) /log( —— ) = 1.
oo & L\T, Xo & oo & X0 S

On the other hand, if x is a non-principal character, then we have by theorem 8.4
hm logLax/log( 1)—0

By theorem 7.7 this implies

1
lim P( m/l( )—1
lim P(0, xom) /108 ——

and

il\rr%Pax/log< >:0

for all non-principal characters y. Therefore

lin (Y X(@P(e ) 1o (== ) = Fou() = 1

Now using lemma 8.3 we get

lim Py (0 /kg( - ) :(pény
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which proves our theorem.
8.6. Proof of theorem 8.4. We have to show that

L(1,x) #0

for every non-principal Dirichlet character y modulo m.

Assume to the contrary that there exists at least one non-principal character x with
L(1,x) = 0. We define the function

=[] LG, x),

where the product is extended over all Dirichlet characters modulo m. For the principal
character the function L(s, xo,,) has a pole of order 1 at s = 1. This pole is canceled
by the assumed zero of one of the functions L(s,x), X # Xom. Therefore, under the
assumption, (,, would be holomorphic everywhere in the halfplane H(0) = {s € C :
Re(s) > 0}. We will show that this leads to a contradiction.

Using the Euler product for the L-functions (theorem 7.6), we get

HHI— p)p~* HH p*)

x peP peP

By lemma 8.7 below, for every p t m there exist integers f(p), g(p) > 1 with f(p)g(p) =
©(m) such that

[T = xwp) =0~ pf®))3)

X

Therefore

1 - 1 9(p)
[T = xp) (kzzo W)

is a Dirichlet series with non-negative coefficients and we have

(> )

k=0 k=0

e}

where the relation ) a,/n® > > b,/n® between two Dirichlet series is defined as
a, > b, for all n. It follows that (,,(s) is a Dirichlet series with non-negative coefficients
and

T ) = Y o

ptm k= O ged(n,m)=1
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The last Dirichlet series has abscissa of absolute convergence = 1/p(m). Therefore
04(¢m) > 1/p(m). But by the theorem of Landau (6.8) this contradicts the assumption
that (,, is holomorphic in the halfplane H(0). Therefore the assumption is false, which
proves L(1,x) # 0 for all non-principal characters .

8.7. Lemma. Let G be a finite abelian group of order r and let g € G be an element
of order k | r. Then we have the following identity in the polynomial ring C|T]

r/k

[T =xe)1) = (1-T7%)

xe@G

Proof. Let H C G be the subgroup generated by the element g. H is a cyclic group
of order k. For every character y € G, the restriction y | H is a character of H. Two
characters xi, x2 € G have the same restriction to H iff the character X = X1X5 s
identically 1 on H, which implies that x induces a character on the quotient group
G/H. Since G/H has r/k elements, there can be at most r/k characters of G which
restrict to the unit character on H. This means that the restriction of the r characters
of G yield at least k different characters of H. But we know that there are exactly k
characters of H. Hence every character 1) of H is the restriction of a character of G
and there are exactly r/k characters of G which restrict to 1. Now

H (1—v(g)T) = ]j(l _ 62m‘u/kT) _1_Tk
peH v=0
and
[T —x@n) = (110~ w(g)T))r/k —(1-T)"", qed.
xeG veH

8.5



