8. Primes in Arithmetic Progressions

8.1. Definition (Dirichlet density). For any subset $A \subset \mathbb{P}$ of the set \mathbb{P} of all primes, we define the function

$$
P_{A}(s):=\sum_{p \in A} \frac{1}{p^{s}} .
$$

The sum converges at least for $\operatorname{Re}(s)>1$ and defines a holomorphic function in the halfplane $H(1)=\{s \in \mathbb{C}: \operatorname{Re}(s)>1\}$. For $A=\mathbb{P}$ we get the prime zeta function $P(s)$ already discussed in (4.7). If the limit

$$
\delta_{\operatorname{Dir}}(A):=\lim _{\sigma \searrow 1} \frac{P_{A}(\sigma)}{P(\sigma)}
$$

exists, it is called the Dirichlet density or analytic density of the set A. It is clear that, if the Dirichlet density of A exists, one has

$$
0 \leq \delta_{\operatorname{Dir}}(A) \leq 1
$$

The Dirichlet density of the set of all primes is 1 , and any finite set of primes has density 0 . Hence $\delta_{\operatorname{Dir}}(A)>0$ implies that A is infinite.
An equivalent definition of the Dirichlet density is

$$
\delta_{\operatorname{Dir}}(A)=\lim _{\sigma \searrow 1} P_{A}(\sigma) / \log \left(\frac{1}{\sigma-1}\right) .
$$

This comes from the fact that

$$
\lim _{\sigma \searrow 1} P(\sigma) / \log \zeta(\sigma)=1
$$

by theorem 4.7, and

$$
\lim _{\sigma \searrow 1} \log \zeta(\sigma) / \log \left(\frac{1}{\sigma-1}\right)=1
$$

since $\zeta(s)=1 /(s-1)+($ holomorphic function $)$.
8.2. Arithmetic progressions. Let m, a be integers, $m \geq 2$. The set of all $n \in \mathbb{N}_{1}$ with

$$
n \equiv a \bmod m
$$

is called an arithmetic progression. We want to study the distribution of primes in arithmetic progressions. Clearly if $\operatorname{gcd}(a, m)>1$, there exist only finitely many primes in the arithmetic progression of numbers congruent $a \bmod m$. So suppose $\operatorname{gcd}(a, m)=$ 1. Dirichlet has proved that there exist infinitely many primes $p \equiv a \bmod m$, more
precisely: The set of all such primes has Dirichlet density $1 / \varphi(m)$, which means that the Dirichlet density of primes in all arithmetic progressions $a \bmod m, \operatorname{gcd}(a, m)=1$, is the same. To prove this, we have, according to definition 8.1, to study the functions

$$
P_{a, m}(s):=\sum_{p \equiv a \bmod m} \frac{1}{p^{s}},
$$

where the sum is extended over all primes $\equiv a \bmod m$. It was Dirichlet's idea to use instead the functions

$$
P(s, \chi):=\sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^{s}}
$$

where $\chi: \mathbb{N}_{1} \rightarrow \mathbb{C}$ is a Dirichlet character modulo m. These functions were already introduced in theorem 7.7. The relation between the functions $P_{a, m}(s)$ and $P(s, \chi)$ is given by the following lemma.
8.3. Lemma. Let m be an integer ≥ 2 and a an integer coprime to m. Then we have for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$

$$
P_{a, m}(s)=\frac{1}{\varphi(m)} \sum_{\chi} \bar{\chi}(a) P(s, \chi) .
$$

Here the sum is extended over all Dirichlet charcters χ modulo m and $\bar{\chi}(a)$ denotes the complex conjugate of $\chi(a)$.

Proof. We have

$$
\sum_{\chi} \bar{\chi}(a) P(s, \chi)=\sum_{p \in \mathbb{P}}\left(\sum_{\chi} \bar{\chi}(a) \chi(p)\right) \cdot \frac{1}{p^{s}}=\sum_{p \in \mathbb{P}} \frac{\alpha_{p}}{p^{s}},
$$

where

$$
\alpha_{p}:=\sum_{\chi} \bar{\chi}(a) \chi(p) .
$$

Since a is coprime to m, there exists an integer b with $a b \equiv 1 \bmod m$, hence $\chi(a) \chi(b)=$ 1. On the other hand $|\chi(a)|=1$, which implies $\chi(b)=\bar{\chi}(a)$. Therefore by theorem 7.3.b)

$$
\alpha_{p}=\sum_{\chi} \chi(b) \chi(p)=\sum_{\chi} \chi(b p)= \begin{cases}\varphi(m) & \text { if } b p \equiv 1 \bmod m, \\ 0 & \text { otherwise } .\end{cases}
$$

But $b p \equiv 1 \bmod m$ is equivalent to $p \equiv a \bmod m$, hence

$$
\sum_{p \in \mathbb{P}} \frac{\alpha_{p}}{p^{s}}=\varphi(m) \sum_{p \equiv a \bmod m} \frac{1}{p^{s}},
$$

which proves the lemma.

In the proof of the Dirichlet theorem on primes in arithmetic progressions, the following theorem plays an essential role.
8.4. Theorem. Let m be an integer ≥ 2 and χ a non-principal Dirichlet character modulo m. Then

$$
L(1, \chi) \neq 0
$$

Recall that for a non-principal character χ the function $L(s, \chi)$ is holomorphic for $\operatorname{Re}(s)>0$ (theorem 7.6.c).

Example. For the non-principal character χ_{1} modulo 4 one has (cf. 7.4)

$$
L\left(1, \chi_{1}\right)=1-\frac{1}{3}+\frac{1}{5}+\frac{1}{7}-\frac{1}{9} \pm \ldots=\frac{\pi}{4} .
$$

Before we prove this theorem, we show how Dirichlet's theorem can be derived from it.
8.5. Theorem (Dirichlet). Let a, m be coprime integers, $m \geq 2$. Then the set of all primes $p \equiv a \bmod m$ has Dirichlet density $1 / \varphi(m)$.

Proof. For the principal Dirichlet character $\chi_{0 m}$ it follows from theorem 7.6.b) that

$$
\lim _{\sigma \searrow 1} \log L\left(\sigma, \chi_{0 m}\right) / \log \zeta(\sigma)=\lim _{\sigma \searrow 1} \log L\left(\sigma, \chi_{0 m}\right) / \log \left(\frac{1}{\sigma-1}\right)=1
$$

On the other hand, if χ is a non-principal character, then we have by theorem 8.4

$$
\lim _{\sigma \searrow 1} \log L(\sigma, \chi) / \log \left(\frac{1}{\sigma-1}\right)=0
$$

By theorem 7.7 this implies

$$
\lim _{\sigma \searrow 1} P\left(\sigma, \chi_{0 m}\right) / \log \left(\frac{1}{\sigma-1}\right)=1
$$

and

$$
\lim _{\sigma \searrow 1} P(\sigma, \chi) / \log \left(\frac{1}{\sigma-1}\right)=0
$$

for all non-principal characters χ. Therefore

$$
\lim _{\sigma \searrow 1}\left(\sum_{\chi} \bar{\chi}(a) P(\sigma, \chi)\right) / \log \left(\frac{1}{\sigma-1}\right)=\bar{\chi}_{0 m}(a)=1 .
$$

Now using lemma 8.3 we get

$$
\lim _{\sigma \searrow 1} P_{a, m}(\sigma) / \log \left(\frac{1}{\sigma-1}\right)=\frac{1}{\varphi(m)}
$$

which proves our theorem.
8.6. Proof of theorem 8.4. We have to show that

$$
L(1, \chi) \neq 0
$$

for every non-principal Dirichlet character χ modulo m.
Assume to the contrary that there exists at least one non-principal character χ with $L(1, \chi)=0$. We define the function

$$
\zeta_{m}(s):=\prod_{\chi} L(s, \chi)
$$

where the product is extended over all Dirichlet characters modulo m. For the principal character the function $L\left(s, \chi_{0 m}\right)$ has a pole of order 1 at $s=1$. This pole is canceled by the assumed zero of one of the functions $L(s, \chi), \chi \neq \chi_{0 m}$. Therefore, under the assumption, ζ_{m} would be holomorphic everywhere in the halfplane $H(0)=\{s \in \mathbb{C}$: $\operatorname{Re}(s)>0\}$. We will show that this leads to a contradiction.
Using the Euler product for the L-functions (theorem 7.6), we get

$$
\zeta_{m}(s)=\prod_{\chi} \prod_{p \in \mathbb{P}} \frac{1}{1-\chi(p) p^{-s}}=\prod_{p \in \mathbb{P}} \frac{1}{\prod_{\chi}\left(1-\chi(p) p^{-s}\right)} .
$$

By lemma 8.7 below, for every $p \nmid m$ there exist integers $f(p), g(p) \geq 1$ with $f(p) g(p)=$ $\varphi(m)$ such that

$$
\prod_{\chi}\left(1-\chi(p) p^{-s}\right)=\left(1-p^{-f(p) s}\right)^{g(p)} .
$$

Therefore

$$
\frac{1}{\prod_{\chi}\left(1-\chi(p) p^{-s}\right)}=\left(\sum_{k=0}^{\infty} \frac{1}{p^{f(p) k s}}\right)^{g(p)}
$$

is a Dirichlet series with non-negative coefficients and we have

$$
\left(\sum_{k=0}^{\infty} \frac{1}{p^{f(p) k s}}\right)^{g(p)} \succ \sum_{k=0}^{\infty} \frac{1}{p^{\varphi(m) k s}},
$$

where the relation $\sum_{n} a_{n} / n^{s} \succ \sum_{n} b_{n} / n^{s}$ between two Dirichlet series is defined as $a_{n} \geq b_{n}$ for all n. It follows that $\zeta_{m}(s)$ is a Dirichlet series with non-negative coefficients and

$$
\zeta_{m}(s) \succ \prod_{p \nmid m}\left(\sum_{k=0}^{\infty} \frac{1}{p^{\varphi(m) k s}}\right)=\sum_{\operatorname{gcd}(n, m)=1} \frac{1}{n^{\varphi(m) s}} .
$$

The last Dirichlet series has abscissa of absolute convergence $=1 / \varphi(m)$. Therefore $\sigma_{a}\left(\zeta_{m}\right) \geq 1 / \varphi(m)$. But by the theorem of Landau (6.8) this contradicts the assumption that ζ_{m} is holomorphic in the halfplane $H(0)$. Therefore the assumption is false, which proves $L(1, \chi) \neq 0$ for all non-principal characters χ.
8.7. Lemma. Let G be a finite abelian group of order r and let $g \in G$ be an element of order $k \mid r$. Then we have the following identity in the polynomial ring $\mathbb{C}[T]$

$$
\prod_{\chi \in \widehat{G}}(1-\chi(g) T)=\left(1-T^{k}\right)^{r / k}
$$

Proof. Let $H \subset G$ be the subgroup generated by the element g. H is a cyclic group of order k. For every character $\chi \in \widehat{G}$, the restriction $\chi \mid H$ is a character of H. Two characters $\chi_{1}, \chi_{2} \in \widehat{G}$ have the same restriction to H iff the character $\chi:=\chi_{1} \chi_{2}^{-1}$ is identically 1 on H, which implies that χ induces a character on the quotient group G / H. Since G / H has r / k elements, there can be at most r / k characters of G which restrict to the unit character on H. This means that the restriction of the r characters of G yield at least k different characters of H. But we know that there are exactly k characters of H. Hence every character ψ of H is the restriction of a character of G and there are exactly r / k characters of G which restrict to ψ. Now

$$
\prod_{\psi \in \widehat{H}}(1-\psi(g) T)=\prod_{\nu=0}^{k-1}\left(1-e^{2 \pi i \nu / k} T\right)=1-T^{k}
$$

and

$$
\prod_{\chi \in \widehat{G}}(1-\chi(g) T)=\left(\prod_{\psi \in \widehat{H}}(1-\psi(g) T)\right)^{r / k}=\left(1-T^{k}\right)^{r / k}, \quad \text { q.e.d. }
$$

