7. Group Characters. Dirichlet L-series

7.1. Definition (Group characters). Let G be a group. A character of G is a group homomorphism

$$
\chi: G \longrightarrow \mathbb{C}^{*}
$$

If G is a finite group (written multiplicatively), then every element $x \in G$ has finite order, say $r=\operatorname{ord}(x)$. It follows that

$$
\chi(x)^{r}=\chi\left(x^{r}\right)=\chi(e)=1,
$$

hence $\chi(x)$ is a root of unity for all $x \in G$.
Example. Let G be a cyclic group of order r and $g \in G$ a generator of G, i.e.

$$
G=\left\{e=g^{0}, g=g^{1}, g^{2}, g^{3}, \ldots, g^{r-1}\right\}=:\langle g\rangle, \quad\left(g^{r}=e\right)
$$

If $\chi: G \rightarrow \mathbb{C}^{*}$ is a character, $\chi(g)$ is an r-th root of unity, hence there exits an integer $k, 0 \leq k<r$, with $\chi(g)=e^{2 \pi i k / r}$. Conversely, for any such k,

$$
\chi_{k}\left(g^{s}\right):=e^{2 \pi i k s / r}
$$

defines indeed a group character of G.
7.2. Theorem. Let G be a group.
a) The set of all group characters $\chi: G \rightarrow \mathbb{C}^{*}$ is itself a group if one defines the multiplication of two characters χ_{1}, χ_{2} by

$$
\left(\chi_{1} \chi_{2}\right)(x):=\chi_{1}(x) \chi_{2}(x) \quad \text { for all } x \in G .
$$

This group is called the character group of G and is denoted by \widehat{G}.
b) If G is a finite abelian group, then the character group \widehat{G} is isomorphic to G.

Proof. a) The easy verification is left to the reader.
b) Consider first the case when $G=\langle g\rangle$ is a cyclic group of order r. Let

$$
E_{r}:=\left\{e^{2 \pi i k / r}: 0 \leq k<r\right\}
$$

be the group of r-th roots of unity. E_{r} is itself a cyclic group of order r and the map

$$
\widehat{G} \longrightarrow E_{r}, \quad \chi \mapsto \chi(g),
$$

is easily seen to be an isomorphism. To prove the general case, we use the fact that every finite abelian group G is isomorphic to a direct product of cyclic groups:

$$
G \cong C_{1} \times \ldots \times C_{m}
$$

From $\widehat{G} \cong \widehat{C}_{1} \times \ldots \times \widehat{C}_{m}$ the assertion follows.
7.3. Theorem. Let G be a finite abelian group of order r.
a) Let $\chi \in \widehat{G}$ be a fixed character. Then

$$
\sum_{x \in G} \chi(x)= \begin{cases}r, & \text { if } \chi \text { is the unit character } \chi \equiv 1 \\ 0 & \text { else }\end{cases}
$$

b) Let $x \in G$ be a fixed element. Then

$$
\sum_{\chi \in \widehat{G}} \chi(x)= \begin{cases}r, & \text { if } x=e \\ 0 & \text { else. }\end{cases}
$$

Proof. a) The formula is trivial for the unit character. If χ is any group character different from the unit character, there exists an $x_{0} \in G$ with $\chi\left(x_{0}\right) \neq 1$. If x runs through all group elements, also $x_{0} x$ runs through all group elements. Therefore

$$
\sum_{x \in G} \chi(x)=\sum_{x \in G} \chi\left(x_{0} x\right)=\chi\left(x_{0}\right) \sum_{x \in G} \chi(x) .
$$

It follows

$$
\left(1-\chi\left(x_{0}\right)\right) \sum_{x \in G} \chi(x)=0 \quad \Longrightarrow \quad \sum_{x \in G} \chi(x)=0, \quad \text { q.e.d. }
$$

b) The formula is trivial for the unit element e. If x is a group element different from e, there exists a group character $\psi \in \widehat{G}$ with $\psi(x) \neq 1$. Otherwise all group characters would be constant on the subgroup $H \subset G$ generated by x, hence could be regarded as characters of the quotient group G / H, which contradicts theorem 7.2.b). If χ runs through all elements of \widehat{G}, so does $\psi \chi$. Hence

$$
\sum_{\chi \in \widehat{G}} \chi(x)=\sum_{\chi \in \widehat{G}}(\psi \chi)(x)=\psi(x) \sum_{\chi \in \widehat{G}} \chi(x)
$$

It follows

$$
(1-\psi(x)) \sum_{\chi \in \widehat{G}} \chi(x)=0 \quad \Longrightarrow \quad \sum_{\chi \in \widehat{G}} \chi(x)=0, \quad \text { q.e.d. }
$$

7.4. Definition (Dirichlet characters). Let m be an integer ≥ 2. An arithmetical function $\chi: \mathbb{N}_{1} \longrightarrow \mathbb{C}$ is called a Dirichlet character modulo m, if χ is induced by a group character

$$
\tilde{\chi}:(\mathbb{Z} / m)^{*} \longrightarrow \mathbb{C}^{*}
$$

which means that

$$
\chi(n)=\left\{\begin{array}{cl}
\tilde{\chi}(\bar{n}), & \text { if } \operatorname{gcd}(n, m)=1, \\
0, & \text { if } \operatorname{gcd}(n, m)>1
\end{array}\right.
$$

(Here \bar{n} denotes the residue class of n modulo m).
The principal Dirichlet character modulo m is the Dirichlet character induced by the unit character $1:(\mathbb{Z} / m)^{*} \rightarrow \mathbb{C}$. We denote this principal character by $\chi_{0 m}$ or briefly by χ_{0}, if the value of m is clear by the context. Hence we have

$$
\chi_{0 m}(n)= \begin{cases}1, & \text { if } \operatorname{gcd}(n, m)=1 \\ 0, & \text { if } \operatorname{gcd}(n, m)>1\end{cases}
$$

It is clear that a Dirichlet character is completely multiplicative. It is easy to see that an arithmetical function $f: \mathbb{N}_{1} \rightarrow \mathbb{C}$ is a Dirichlet character modulo m iff it has the following properties:
i) $\quad f$ is completely multiplicative.
ii) $\quad f(n)=f\left(n^{\prime}\right)$ whenever $n \equiv n^{\prime} \bmod m$.
iii) $\quad f(n)=0$ for all n with $\operatorname{gcd}(n, m)>1$.
7.5. Definition (Dirichlet L-series). Let $\chi: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be a Dirichlet character. The L-series associated to χ is the Dirichlet series

$$
L(s, \chi):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} .
$$

This series converges absolutely for every $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$.
Examples. Let $m=4$.
i) The principal Dirichlet character modulo 4 has $\chi_{0,4}(n)=1$ for n odd and $\chi_{0,4}(n)=0$ for n even. Therefore

$$
L\left(s, \chi_{0,4}\right)=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{s}}=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
$$

Since $2^{-s} \zeta(s)=\sum_{k=1}^{\infty} \frac{1}{(2 k)^{s}}$, we have

$$
L\left(s, \chi_{0,4}\right)=\left(1-2^{-s}\right) \zeta(s),
$$

which shows that $L\left(s, \chi_{0,4}\right)$ can be analytically continued to the whole plane \mathbb{C} as a meromorphic function with a single pole at $s=1$.
ii) Since $(\mathbb{Z} / 4)^{*}=\{\overline{1}, \overline{3}\}$ has two elements, there is exactly one non-principal Dirichlet character χ_{1} modulo 4 , namely

$$
\chi_{1}(n)= \begin{cases}0 & \text { for } n \text { even, } \\ (-1)^{(n-1) / 2} & \text { for } n \text { odd }\end{cases}
$$

Therefore

$$
L\left(s, \chi_{1}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{s}}=1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\frac{1}{9^{s}}-+\ldots
$$

This Dirichlet series converges to a holomorphic function for $\operatorname{Re}(s)>0$. For $s=1$ one gets the well known Leibniz series, hence

$$
L\left(1, \chi_{1}\right)=\frac{\pi}{4} .
$$

7.6. Theorem. Let $\chi: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be a Dirichlet character modulo m. Then
a) For $\operatorname{Re}(s)>1$ one has a product representation

$$
L(s, \chi)=\prod_{p \in \mathbb{P}} \frac{1}{1-\chi(p) p^{-s}} .
$$

b) If $\chi=\chi_{0 m}$ is the principal character, then

$$
L\left(s, \chi_{0 m}\right)=\left(\prod_{p \mid m}\left(1-p^{-s}\right)\right) \zeta(s),
$$

where the product is extended over all prime divisors of m. Hence $L\left(s, \chi_{0 m}\right)$ can be analytically continued to the whole plane \mathbb{C} as a meromorphic function with a single pole at $s=1$.
c) If χ is not the principal character, the L-series $L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) / n^{s}$ has abscissa of convergence $\sigma_{c}=0$, hence represents a holomorphic function in the halfplane $H(0)$.

Proof. a) This follows directly from theorem 6.11 since χ is completely multiplicative.
b) From part a) and the definition of the principal character one gets

$$
L\left(s, \chi_{0 m}\right)=\prod_{p \nmid m} \frac{1}{1-p^{-s}}=\prod_{p \mid m}\left(1-p^{-s}\right) \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}} .
$$

Since the last product is the Euler product of the zeta function, the assertion follows.
c) By theorem 6.4 it suffices to show that the partial sums $\sum_{n=1}^{N} \chi(n)$ remain bounded as $N \rightarrow \infty$. This can be seen as follows: Write $N=q m+r$ with integers $q, r, 0 \leq r<m$. By theorem 7.3.a) one has $\sum_{n=1}^{q m} \chi(n)=0$, hence

$$
\left|\sum_{n=1}^{N} \chi(n)\right|=\left|\sum_{n=q m+1}^{q m+r} \chi(n)\right| \leq \sum_{n=q m+1}^{q m+r}|\chi(n)| \leq \varphi(m), \quad \text { q.e.d. }
$$

The next theorem is an analogon of theorem 4.7.
7.7. Theorem. Let m be an integer ≥ 2 and $\chi: \mathbb{N}_{1} \rightarrow \mathbb{C}$ a Dirichlet character modulo m. We define the following generalization of the prime zeta function:

$$
P(s, \chi):=\sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^{s}} .
$$

This series converges absolutely in the halfplane $H(1):=\{s \in \mathbb{C}: \operatorname{Re}(s)>1\}$ and one has

$$
P(s, \chi)=\log L(s, \chi)+F_{\chi}(s),
$$

where $F_{\chi}(s)$ is a bounded function in $H(1)$.
Proof. From the Euler product of the L-function we get for $\operatorname{Re}(s)>1$

$$
\begin{aligned}
\log L(s, \chi) & =\sum_{p \in \mathbb{P}} \log \frac{1}{1-\chi(p) p^{-s}}=\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{\chi(p)^{k}}{k p^{k s}} \\
& =\sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^{s}}+\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{\chi(p)^{k}}{p^{k s}} .
\end{aligned}
$$

The theorem follows with

$$
F_{\chi}(s)=-\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{\chi(p)^{k}}{p^{k s}},
$$

since for $\operatorname{Re}(s)>1$ we have

$$
\left|\sum_{p \in \mathbb{P}} \frac{\chi(p)^{k}}{p^{k s}}\right| \leq \sum_{n=2}^{\infty} \frac{1}{n^{k}} \leq \frac{1}{k-1},
$$

hence

$$
\left|F_{\chi}(s)\right| \leq \sum_{k=2}^{\infty} \frac{1}{k(k-1)}=1
$$

