6. Dirichlet Series

6.1. Definition. A Dirichlet series is a series of the form

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad(s \in \mathbb{C})
$$

where $\left(a_{n}\right)_{n \geqslant 1}$ is an arbitrary sequence of complex numbers.
The abscissa of absolute convergence of this series is defined as

$$
\sigma_{a}:=\sigma_{a}(f):=\inf \left\{\sigma \in \mathbb{R}: \sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n^{\sigma}}<\infty\right\} \in \mathbb{R} \cup\{ \pm \infty\}
$$

If $\sum_{n=1}^{\infty}\left(\left|a_{n}\right| / n^{\sigma}\right)$ does not converge for any $\sigma \in \mathbb{R}$, then $\sigma_{a}=+\infty$, if it converges for all $\sigma \in \mathbb{R}$, then $\sigma_{a}=-\infty$.
An analogous argument as in the case of the zeta function shows that a Dirichlet series with abscissa of absolute convergence σ_{a} converges absolutely and uniformly in every halfplane $\overline{H(\sigma)}, \sigma>\sigma_{a}$.

Example. The Dirichlet series

$$
g(s):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}
$$

has $\sigma_{a}(g)=1$. We will see however that the series converges for every $s \in H(0)$. Of course the convergence is only conditional and not absolute if $0<\operatorname{Re}(s) \leq 1$.

We need some preparations.
6.2. Lemma (Abel summation). Let $\left(a_{n}\right)_{n \geqslant 1}$ and $\left(b_{n}\right)_{n \geqslant 1}$ be two sequences of complex numbers and set

$$
A_{n}:=\sum_{k=1}^{n} a_{k}, \quad A_{0}=0(\text { empty sum })
$$

Then we have for all $n \geq m \geq 1$

$$
\sum_{k=m}^{n} a_{k} b_{k}=A_{n} b_{n}-A_{m-1} b_{m}-\sum_{k=m}^{n-1} A_{k}\left(b_{k+1}-b_{k}\right)
$$

Remark. This can be viewed as an analogon of the formula for partial integration

$$
\int_{a}^{b} F^{\prime}(x) g(x) d x=F(b) g(b)-F(a) g(a)-\int_{a}^{b} F(x) g^{\prime}(x) d x \text {. }
$$

Proof.

$$
\begin{aligned}
\sum_{k=m}^{n} a_{k} b_{k} & =\sum_{k=m}^{n}\left(A_{k}-A_{k-1}\right) b_{k}=\sum_{k=m}^{n} A_{k} b_{k}-\sum_{k=m-1}^{n-1} A_{k} b_{k+1} \\
& =A_{n} b_{n}+\sum_{k=m}^{n-1} A_{k} b_{k}-\sum_{k=m}^{n-1} A_{k} b_{k+1}-A_{m-1} b_{m} \\
& =A_{n} b_{n}-A_{m-1} b_{m}-\sum_{k=m}^{n-1} A_{k}\left(b_{k+1}-b_{k}\right), \quad \text { q.e.d. }
\end{aligned}
$$

6.3. Lemma. Let $s \in \mathbb{C}$ with $\sigma:=\operatorname{Re}(s)>0$. Then we have for all $m, n \geq 1$

$$
\left|\frac{1}{n^{s}}-\frac{1}{m^{s}}\right| \leq \frac{|s|}{\sigma} \cdot\left|\frac{1}{n^{\sigma}}-\frac{1}{m^{\sigma}}\right|
$$

Proof. We may assume $n \geq m$. Since $\frac{d}{d x}\left(\frac{1}{x^{s}}\right)=-s \cdot \frac{1}{x^{s+1}}$,

$$
-s \int_{m}^{n} \frac{d x}{x^{s+1}}=\frac{1}{n^{s}}-\frac{1}{m^{s}} .
$$

Taking the absolute values, we get the estimate

$$
\left|\frac{1}{n^{s}}-\frac{1}{m^{s}}\right| \leq|s| \int_{m}^{n} \frac{d x}{x^{\sigma+1}}=\frac{|s|}{\sigma} \cdot\left|\frac{1}{n^{\sigma}}-\frac{1}{m^{\sigma}}\right|, \quad \text { q.e.d. }
$$

Remark. For $s_{0} \in \mathbb{C}$ and an angle α with $0<\alpha<\pi / 2$, we define the angular region

$$
\operatorname{Ang}\left(s_{0}, \alpha\right):=\left\{s_{0}+r e^{i \phi}: r \geq 0 \text { and }|\phi| \leq \alpha\right\}
$$

For any $s \in \operatorname{Ang}\left(s_{0}, \alpha\right) \backslash\left\{s_{0}\right\}$ we have

$$
\frac{\left|s-s_{0}\right|}{\operatorname{Re}\left(s-s_{0}\right)}=\frac{1}{\cos \phi} \leq \frac{1}{\cos \alpha}
$$

hence the estimate in lemma 6.3 can be rewritten as

$$
\left|\frac{1}{n^{s}}-\frac{1}{m^{s}}\right| \leq \frac{1}{\cos \alpha} \cdot\left|\frac{1}{n^{\sigma}}-\frac{1}{m^{\sigma}}\right| \quad \text { for all } s \in \operatorname{Ang}(0, \alpha)
$$

6.4. Theorem. Let

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

be a Dirichlet series such that for some $s_{0} \in \mathbb{C}$ the partial sums $\sum_{n=1}^{N} \frac{a_{n}}{n^{s_{0}}}$ are bounded for $N \rightarrow \infty$. Then the Dirichlet series converges for every $s \in \mathbb{C}$ with

$$
\operatorname{Re}(s)>\sigma_{0}:=\operatorname{Re}\left(s_{0}\right)
$$

The convergence is uniform on every compact subset

$$
K \subset H\left(\sigma_{0}\right)=\left\{s \in \mathbb{C}: \operatorname{Re}(s)>\sigma_{0}\right\} .
$$

Hence f is a holomorphic function in $H\left(\sigma_{0}\right)$.
Proof. Since

$$
f(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s_{0}}} \cdot \frac{a_{n}}{n^{s-s_{0}}}=\sum_{n=1}^{\infty} \frac{\tilde{a}_{n}}{n^{s-s_{0}}} \quad \text { where } \tilde{a}_{n}:=\frac{a_{n}}{n^{s_{0}}}
$$

we may suppose without loss of generality that $s_{0}=0$. By hypothesis there exists a constant $C_{1}>0$ such that

$$
\left|\sum_{n=1}^{N} a_{n}\right| \leq C_{1} \quad \text { for all } N \in \mathbb{N}
$$

The compact set K is contained in some angular region $\operatorname{Ang}(0, \alpha)$ with $0<\alpha<\pi / 2$. We define

$$
C_{\alpha}:=\frac{1}{\cos \alpha} \quad \text { and } \quad \sigma_{*}:=\inf \{\operatorname{Re}(s): s \in K\}>0
$$

Now we apply the Abel summation lemma 6.2 to the sum $\sum a_{n} \cdot\left(1 / n^{s}\right), s \in K$. Setting $A_{N}:=\sum_{n=1}^{N} a_{n}$, we get for $N \geq M \geq 1$

$$
\sum_{n=M}^{N} \frac{a_{n}}{n^{s}}=A_{N} \frac{1}{N^{s}}-A_{M-1} \frac{1}{M^{s}}+\sum_{n=M}^{N-1} A_{n}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)
$$

This leads to the estimate (with $\sigma=\operatorname{Re}(s)$)

$$
\begin{aligned}
\left|\sum_{n=M}^{N} \frac{a_{n}}{n^{s}}\right| & \leq 2 C_{1}\left|\frac{1}{M^{s}}\right|+C_{1} \sum_{n=M}^{N-1}\left|\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right| \\
& \leq 2 C_{1} \frac{1}{M^{\sigma}}+C_{1} C_{\alpha} \sum_{n=M}^{N-1}\left(\frac{1}{n^{\sigma}}-\frac{1}{(n+1)^{\sigma}}\right) \\
& =2 C_{1} \frac{1}{M^{\sigma}}+C_{1} C_{\alpha}\left(\frac{1}{M^{\sigma}}-\frac{1}{N^{\sigma}}\right) \\
& \leq \frac{C_{1}}{M^{\sigma}}\left(2+C_{\alpha}\right) \leq \frac{C_{1}\left(2+C_{\alpha}\right)}{M^{\sigma_{*}}}
\end{aligned}
$$

This becomes arbitrarily small if M is sufficently large. This implies the asserted uniform convergence on K of the Dirichlet series.
6.5. Theorem. Let

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

be a Dirichlet series which converges for some $s_{0} \in \mathbb{C}$. Then the series converges uniformly in every angular region $\operatorname{Ang}\left(s_{0}, \alpha\right), 0<\alpha<\pi / 2$. In particular

$$
\lim _{s \rightarrow s_{0}} f(s)=f\left(s_{0}\right)
$$

when s approaches s_{0} within an angular region $\operatorname{Ang}\left(s_{0}, \alpha\right)$.
Proof. As in the proof of theorem 6.4 we may suppose $s_{0}=0$. Set $C_{\alpha}:=1 / \cos \alpha$. Let $\varepsilon>0$ be given. Since $\sum_{n=1}^{\infty} a_{n}$ converges, there exists an $n_{0} \in \mathbb{N}$, such that

$$
\left|\sum_{n=M}^{N} a_{n}\right|<\varepsilon_{1}:=\frac{\varepsilon}{1+C_{\alpha}} \quad \text { for all } N \geq M \geq n_{0}
$$

With $A_{M n}:=\sum_{k=M}^{n} a_{k}, A_{M, M-1}=0$, we have by the Abel summation formula

$$
\sum_{n=M}^{N} \frac{a_{n}}{n^{s}}=A_{M N} \frac{1}{N^{s}}+\sum_{n=M}^{N-1} A_{M n}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)
$$

From this, we get for all $s \in \operatorname{Ang}(0, \alpha), \sigma:=\operatorname{Re}(s)$, and $N \geq M \geq n_{0}$ the estimate

$$
\begin{aligned}
\left|\sum_{n=M}^{N} \frac{a_{n}}{n^{s}}\right| & \leq \varepsilon_{1} \frac{1}{\left|N^{s}\right|}+\varepsilon_{1} \sum_{n=M}^{N-1}\left|\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right| \\
& \leq \varepsilon_{1}+\varepsilon_{1} C_{\alpha} \sum_{n=M}^{N-1}\left(\frac{1}{n^{\sigma}}-\frac{1}{(n+1)^{\sigma}}\right) \\
& =\varepsilon_{1}+\varepsilon_{1} C_{\alpha}\left(\frac{1}{M^{\sigma}}-\frac{1}{N^{\sigma}}\right) \leq \varepsilon_{1}+\varepsilon_{1} C_{\alpha}=\varepsilon
\end{aligned}
$$

This shows the uniform convergence of the Dirichlet series in $\operatorname{Ang}(0, \alpha)$. Therefore f is continuous in $\operatorname{Ang}(0, \alpha)$, which implies the last assertion of the theorem.
6.6. Definition. Let $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ be a Dirichlet series. The abscissa of convergence of f is defined by

$$
\sigma_{c}:=\sigma_{c}(f):=\inf \left\{\operatorname{Re}(s): \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \text { converges }\right\} .
$$

By theorem 6.4 this is the same as

$$
\sigma_{c}=\inf \left\{\operatorname{Re}(s): \sum_{n=1}^{N} \frac{a_{n}}{n^{s}} \text { is bounded for } N \rightarrow \infty\right\}
$$

and it follows that the series converges to a holomorphic function in the halfplane $H\left(\sigma_{c}\right)$.

Examples. Consider the three Dirichlet series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad g(s):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}, \quad \frac{1}{\zeta}(s)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} .
$$

We have $\sigma_{a}(\zeta)=\sigma_{a}(g)=\sigma_{a}(1 / \zeta)=1$. Clearly $\sigma_{c}(\zeta)=1$ and $\sigma_{c}(g)=0$, since the partial sums $\sum_{n=1}^{N}(-1)^{n-1}$ are bounded. The abscissa of convergence $\sigma_{c}(1 / \zeta)$ is not known; of course $\sigma_{c}(1 / \zeta) \leq 1$. One conjectures that $\sigma_{c}(1 / \zeta)=\frac{1}{2}$, which is equivalent to the Riemann Hypothesis, which we will discuss in a later chapter.

Remark. Multiplying the zeta series by 2^{-s} yields $2^{-s} \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}$. Hence

$$
g(s)=\left(1-2^{1-s}\right) \zeta(s) .
$$

6.7. Theorem. If the Dirichlet series $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ has a finite abscissa of convergence σ_{c}, then for the abscissa of absolute convergence σ_{a} the following estimate holds:

$$
\sigma_{c} \leq \sigma_{a} \leq \sigma_{c}+1
$$

Proof. Without loss of generality we may suppose $\sigma_{c}=0$. Then $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\varepsilon}}$ converges for every $\varepsilon>0$. We have to show that

$$
\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n^{\sigma_{*}}}<\infty \quad \text { for all } \sigma_{*}>1
$$

To see this, write $\sigma_{*}=1+2 \varepsilon, \varepsilon>0$. Then

$$
\frac{\left|a_{n}\right|}{n^{\sigma_{*}}}=\frac{\left|a_{n}\right|}{n^{\varepsilon}} \cdot \frac{1}{n^{1+\varepsilon}}
$$

Since $\left|a_{n}\right| / n^{\varepsilon}$ is bounded for $n \rightarrow \infty$ and $\sum_{n=1}^{\infty} 1 / n^{1+\varepsilon}<\infty$, the assertion follows.
Remarks. a) It can be easily seen that $\sigma_{c}=-\infty$ implies $\sigma_{a}=-\infty$.
b) The above examples show that the cases $\sigma_{a}=\sigma_{c}$ and $\sigma_{a}=\sigma_{c}+1$ do actually occur.
c) That σ_{a} and σ_{c} may be different is quite surprising if one looks at the situation for power series: If a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges for some $z_{0} \neq 0$, it converges absolutely for every z with $|z|<\left|z_{0}\right|$.
6.8. Theorem (Landau). Let

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

be a Dirichlet series with non-negative coefficients $a_{n} \geq 0$ and finite abscissa of absolute convergence $\sigma_{a} \in \mathbb{R}$. Then the function f, which is holomorphic in the halfplane $H\left(\sigma_{a}\right)$, cannot be continued analytically as a holomorphic function to any neighborhood of σ_{a}.

Proof. Assume to the contrary that there exists a small open disk D around σ_{a} such that f can be analytically continued to a holomorphic function in $H\left(\sigma_{a}\right) \cup D$, which we denote again by f. Then the Taylor series of f at the point $\sigma_{1}:=\sigma_{a}+1$ has radius of convergence >1. Since

$$
f^{(k)}\left(\sigma_{1}\right)=\sum_{n=1}^{\infty} \frac{(-\log n)^{k} a_{n}}{n^{\sigma_{1}}}
$$

the Taylor series has the form

$$
f(s)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(\sigma_{1}\right)}{k!}\left(s-\sigma_{1}\right)^{k}=\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{(-\log n)^{k} a_{n}}{k!n^{\sigma_{1}}}\left(s-\sigma_{1}\right)^{k} .
$$

By hypothesis there exists a real $\sigma<\sigma_{a}$ such that the Taylor series converges for $s=\sigma$. We have

$$
f(\sigma)=\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{(\log n)^{k} a_{n}\left(\sigma_{1}-\sigma\right)^{k}}{k!n^{\sigma_{1}}}=\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{(\log n)^{k}\left(\sigma_{1}-\sigma\right)^{k}}{k!} \cdot \frac{a_{n}}{n^{\sigma_{1}}},
$$

where the reordering is allowed since all terms are non-negative. Now

$$
\sum_{k=0}^{\infty} \frac{(\log n)^{k}\left(\sigma_{1}-\sigma\right)^{k}}{k!}=e^{(\log n)\left(\sigma_{1}-\sigma\right)}=\frac{1}{n^{\sigma-\sigma_{1}}}
$$

hence we have a convergent series

$$
f(\sigma)=\sum_{n=1}^{\infty} \frac{1}{n^{\sigma-\sigma_{1}}} \cdot \frac{a_{n}}{n^{\sigma_{1}}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\sigma}} .
$$

Thus the abscissa of absolute convergence is $\leq \sigma<\sigma_{a}$, a contradiction. Hence the assumption is false, which proves the theorem.
6.9. Theorem (Identity theorem for Dirichlet series). Let

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \quad \text { and } \quad g(s)=\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}
$$

be two Dirichlet series that converge in a common halfplane $H\left(\sigma_{0}\right)$. If there exists a sequence $s_{\nu} \in H\left(\sigma_{0}\right), \nu \in \mathbb{N}_{1}$, with $\lim _{\nu \rightarrow \infty} \operatorname{Re}\left(s_{\nu}\right)=\infty$ and

$$
f\left(s_{\nu}\right)=g\left(s_{\nu}\right) \quad \text { for all } \nu \geq 1
$$

then $a_{n}=b_{n}$ for all $n \geq 1$.
Proof. Passing to the difference $f-g$ shows that it suffices to prove the theorem for the case where g is identically zero. So we suppose that

$$
f\left(s_{\nu}\right)=0 \quad \text { for all } \nu \geq 1
$$

If not all $a_{n}=0$, then there exists a minimal k such that $a_{k} \neq 0$. We have

$$
f(s)=\frac{1}{k^{s}}\left(a_{k}+\sum_{n>k} \frac{a_{n}}{(n / k)^{s}}\right) .
$$

It suffices to show that there exists a $\sigma_{*} \in \mathbb{R}$ such that

$$
\left|\sum_{n>k} \frac{a_{n}}{(n / k)^{s}}\right| \leq \frac{\left|a_{k}\right|}{2} \quad \text { for all } s \text { with } \operatorname{Re}(s) \geq \sigma_{*}
$$

for this would imply $f(s) \neq 0$ for $\operatorname{Re}(s) \geq \sigma_{*}$, contradicting $f\left(s_{\nu}\right)=0$ for all ν. The sum $\sum_{n>k} \frac{a_{n}}{(n / k)^{\sigma^{\prime}}}$ converges absolutely for some $\sigma^{\prime} \in \mathbb{R}$. Therefore we can find an $M \geq k$ such that

$$
\sum_{n>M} \frac{\left|a_{n}\right|}{(n / k)^{\sigma^{\prime}}} \leq \frac{\left|a_{k}\right|}{4}
$$

Further there exists a $\sigma^{\prime \prime} \in \mathbb{R}$ such that

$$
\sum_{k<n \leqslant M} \frac{\left|a_{n}\right|}{(n / k)^{\sigma^{\prime \prime}}} \leq \frac{\left|a_{k}\right|}{4}
$$

Combining the last two estimates shows

$$
\left|\sum_{n>k} \frac{a_{n}}{(n / k)^{s}}\right| \leq \frac{\left|a_{k}\right|}{2} \quad \text { for all } s \text { with } \operatorname{Re}(s) \geq \max \left(\sigma^{\prime}, \sigma^{\prime \prime}\right), \quad \text { q.e.d. }
$$

Remark. A similar theorem is not true for arbitrary holomorphic functions in halfplanes. For example, the sine function satisfies

$$
\sin (\pi n)=0 \quad \text { for all integers } n
$$

without being identically zero. This shows also that not every function holomorphic in a halfplane $H(\sigma)$ can be expanded in a Dirichlet series.
6.10. Theorem. Let $a, b: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be two arithmetical functions such that the Dirichlet series

$$
f(s):=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \quad \text { and } \quad g(s):=\sum_{n=1}^{\infty} \frac{b(n)}{n^{s}}
$$

converge absolutely in a common halfplane $H\left(\sigma_{0}\right)$. Then we have for the product

$$
f(s) g(s)=\sum_{n=1}^{\infty} \frac{(a * b)(n)}{n^{s}}
$$

This Dirichlet series converges absolutely in $H\left(\sigma_{0}\right)$.
Proof. Since the series for $f(s)$ and $g(s)$ converge absolutely for $s \in H\left(\sigma_{0}\right)$, they can be multiplied term by term

$$
\begin{aligned}
f(s) g(s) & =\sum_{k=1}^{\infty} \frac{a(k)}{k^{s}} \sum_{\ell=1}^{\infty} \frac{b(\ell)}{\ell^{s}}=\sum_{k, \ell \geqslant 1} a(k) b(\ell) \frac{1}{k^{s} \ell^{s}} \\
& =\sum_{n=1}^{\infty} \sum_{k \ell=n} a(k) b(\ell) \frac{1}{(k \ell)^{s}}=\sum_{n=1}^{\infty} \frac{(a * b)(n)}{n^{s}}
\end{aligned}
$$

and the product series converges absolutely, q.e.d.
Examples. i) The zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is the Dirichlet series associated to the constant arithmetical function $u(n)=1$. Since $u * \mu=\delta_{1}$, it follows

$$
\left(\sum_{n=1}^{\infty} \frac{1}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}\right)=\sum_{n=1}^{\infty} \frac{\delta_{1}(n)}{n^{s}}=1
$$

which gives a new proof of

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \quad \text { (cf. theorem 4.5). }
$$

ii) The Dirichlet series associated to the identity map $\iota: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is

$$
\sum_{n=1}^{\infty} \frac{n}{n^{s}}=\sum_{n=1}^{\infty} \frac{1}{n^{s-1}}=\zeta(s-1),
$$

which converges absolutely for $\operatorname{Re}(s)>2$. For the divisor sum function σ we have $u * \iota=\sigma$, cf. (3.15.iii), which implies

$$
\zeta(s) \zeta(s-1)=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}} \quad \text { for } \operatorname{Re}(s)>2
$$

iii) In a similar way, the formula $\varphi=\mu * \iota$ for the Euler phi function, cf. (3.15.i), yields

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}} \quad \text { for } \operatorname{Re}(s)>2
$$

6.11. Theorem (Euler product for Dirichlet series). Let $a: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be a multiplicative arithmetical function such that the Dirichlet series

$$
f(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

has abscissa of absolute convergence $\sigma_{a}<\infty$.
a) Then we have in $H\left(\sigma_{a}\right)$ the product representation

$$
f(s)=\prod_{p \in \mathbb{P}}\left(\sum_{k=0}^{\infty} \frac{a\left(p^{k}\right)}{p^{k s}}\right)=\prod_{p \in \mathbb{P}}\left(1+\frac{a(p)}{p^{s}}+\frac{a\left(p^{2}\right)}{p^{2 s}}+\frac{a\left(p^{3}\right)}{p^{3 s}}+\cdots\right),
$$

where the product is extended over the set \mathbb{P} of all primes.
b) If the arithmetical function a is completely multiplicative, this can be simplified to

$$
f(s)=\prod_{p \in \mathbb{P}}\left(1-\frac{a(p)}{p^{s}}\right)^{-1}
$$

Proof. Let $\mathcal{P} \subset \mathbb{P}$ be a finite set of primes and $\mathbb{N}(\mathcal{P})$ the set of all positive integers whose prime decomposition contains only primes from the set \mathcal{P}. Since a is multiplicative, we have for an integer n with prime decomposition $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdot \ldots \cdot p_{r}^{k_{r}}$

$$
a(n)=a\left(p_{1}^{k_{1}}\right) a\left(p_{2}^{k_{2}}\right) \cdot \ldots \cdot a\left(p_{r}^{k_{r}}\right) .
$$

It follows by multiplying the infinite series term by term that

$$
\prod_{p \in \mathcal{P}}\left(1+\frac{a(p)}{p^{s}}+\frac{a\left(p^{2}\right)}{p^{2 s}}+\frac{a\left(p^{3}\right)}{p^{3 s}}+\cdots\right)=\sum_{n \in \mathbb{N}(\mathcal{P})} \frac{a(n)}{n^{s}}
$$

Letting $\mathcal{P}=\mathcal{P}_{m}$ be set of all primes $\leq m$ and passing to the limit $m \rightarrow \infty$, we obtain part a) the theorem.

If a is completely multiplicative, then $a\left(p^{k}\right)=a(p)^{k}$, hence

$$
\sum_{k=0}^{\infty} \frac{a\left(p^{k}\right)}{p^{k s}}=\sum_{k=0}^{\infty}\left(\frac{a(p)}{p^{s}}\right)^{k}=\left(1-\frac{a(p)}{p^{s}}\right)^{-1}
$$

proving part b).
Examples. i) The Euler product for the zeta function

$$
\zeta(s)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

is a special case of this theorem.
ii) Since $\mu(p)=-1$ and $\mu\left(p^{k}\right)=0$ for $k \geq 2$, the formula for the inverse of the zeta function

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)=\frac{1}{\zeta(s)}
$$

also follows from this theorem.

