
O. Forster: Analytic Number Theory

6. Dirichlet Series

6.1. Definition. A Dirichlet series is a series of the form

f(s) =
∞

∑

n=1

an

ns
, (s ∈ C),

where (an)n>1 is an arbitrary sequence of complex numbers.

The abscissa of absolute convergence of this series is defined as

σa := σa(f) := inf{σ ∈ R :

∞
∑

n=1

|an|

nσ
< ∞} ∈ R ∪ {±∞}.

If
∑

∞

n=1(|an|/n
σ) does not converge for any σ ∈ R, then σa = +∞, if it converges for

all σ ∈ R, then σa = −∞.

An analogous argument as in the case of the zeta function shows that a Dirichlet series
with abscissa of absolute convergence σa converges absolutely and uniformly in every
halfplane H(σ), σ > σa.

Example. The Dirichlet series

g(s) :=

∞
∑

n=1

(−1)n−1

ns

has σa(g) = 1. We will see however that the series converges for every s ∈ H(0). Of
course the convergence is only conditional and not absolute if 0 < Re(s) ≤ 1.

We need some preparations.

6.2. Lemma (Abel summation). Let (an)n>1 and (bn)n>1 be two sequences of complex

numbers and set

An :=
n

∑

k=1

ak, A0 = 0 (empty sum).

Then we have for all n ≥ m ≥ 1

n
∑

k=m

akbk = Anbn − Am−1bm −
n−1
∑

k=m

Ak(bk+1 − bk).

Remark. This can be viewed as an analogon of the formula for partial integration

∫ b

a

F ′(x)g(x)dx = F (b)g(b) − F (a)g(a) −

∫ b

a

F (x)g′(x)dx.
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Proof.

n
∑

k=m

akbk =
n

∑

k=m

(Ak − Ak−1)bk =
n

∑

k=m

Akbk −
n−1
∑

k=m−1

Akbk+1

= Anbn +
n−1
∑

k=m

Akbk −
n−1
∑

k=m

Akbk+1 − Am−1bm

= Anbn − Am−1bm −
n−1
∑

k=m

Ak(bk+1 − bk), q.e.d.

6.3. Lemma. Let s ∈ C with σ := Re(s) > 0. Then we have for all m, n ≥ 1

∣

∣

∣

1

ns
−

1

ms

∣

∣

∣
≤

|s|

σ
·
∣

∣

∣

1

nσ
−

1

mσ

∣

∣

∣
.

Proof. We may assume n ≥ m. Since
d

dx

( 1

xs

)

= −s ·
1

xs+1
,

−s

∫ n

m

dx

xs+1
=

1

ns
−

1

ms
.

Taking the absolute values, we get the estimate

∣

∣

∣

1

ns
−

1

ms

∣

∣

∣
≤ |s|

∫ n

m

dx

xσ+1
=

|s|

σ
·
∣

∣

∣

1

nσ
−

1

mσ

∣

∣

∣
, q.e.d.

Remark. For s0 ∈ C and an angle α with 0 < α < π/2, we define the angular region

Ang(s0, α) := {s0 + reiφ : r ≥ 0 and |φ| ≤ α}.

For any s ∈ Ang(s0, α) r {s0} we have

|s − s0|

Re(s − s0)
=

1

cos φ
≤

1

cos α
,

hence the estimate in lemma 6.3 can be rewritten as

∣

∣

∣

1

ns
−

1

ms

∣

∣

∣
≤

1

cos α
·
∣

∣

∣

1

nσ
−

1

mσ

∣

∣

∣
for all s ∈ Ang(0, α).

6.4. Theorem. Let

f(s) =

∞
∑

n=1

an

ns
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be a Dirichlet series such that for some s0 ∈ C the partial sums
N
∑

n=1

an

ns0

are bounded

for N → ∞. Then the Dirichlet series converges for every s ∈ C with

Re(s) > σ0 := Re(s0).

The convergence is uniform on every compact subset

K ⊂ H(σ0) = {s ∈ C : Re(s) > σ0}.

Hence f is a holomorphic function in H(σ0).

Proof. Since

f(s) =

∞
∑

n=1

1

ns0

·
an

ns−s0

=

∞
∑

n=1

ãn

ns−s0

where ãn :=
an

ns0

,

we may suppose without loss of generality that s0 = 0. By hypothesis there exists a
constant C1 > 0 such that

∣

∣

∣

N
∑

n=1

an

∣

∣

∣
≤ C1 for all N ∈ N.

The compact set K is contained in some angular region Ang(0, α) with 0 < α < π/2.
We define

Cα :=
1

cos α
and σ∗ := inf{Re(s) : s ∈ K} > 0.

Now we apply the Abel summation lemma 6.2 to the sum
∑

an · (1/n
s), s ∈ K. Setting

AN :=
∑N

n=1 an, we get for N ≥ M ≥ 1

N
∑

n=M

an

ns
= AN

1

N s
− AM−1

1

Ms
+

N−1
∑

n=M

An

( 1

ns
−

1

(n + 1)s

)

.

This leads to the estimate (with σ = Re(s))

∣

∣

∣

N
∑

n=M

an

ns

∣

∣

∣
≤ 2C1

∣

∣

∣

1

Ms

∣

∣

∣
+ C1

N−1
∑

n=M

∣

∣

∣

1

ns
−

1

(n + 1)s

∣

∣

∣

≤ 2C1
1

Mσ
+ C1Cα

N−1
∑

n=M

( 1

nσ
−

1

(n + 1)σ

)

= 2C1
1

Mσ
+ C1Cα

( 1

Mσ
−

1

Nσ

)

≤
C1

Mσ

(

2 + Cα

)

≤
C1(2 + Cα)

Mσ∗

.
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This becomes arbitrarily small if M is sufficently large. This implies the asserted uni-
form convergence on K of the Dirichlet series.

6.5. Theorem. Let

f(s) =
∞

∑

n=1

an

ns

be a Dirichlet series which converges for some s0 ∈ C. Then the series converges

uniformly in every angular region Ang(s0, α), 0 < α < π/2. In particular

lim
s→s0

f(s) = f(s0),

when s approaches s0 within an angular region Ang(s0, α).

Proof. As in the proof of theorem 6.4 we may suppose s0 = 0. Set Cα := 1/ cos α. Let
ε > 0 be given. Since

∑

∞

n=1 an converges, there exists an n0 ∈ N, such that

∣

∣

∣

N
∑

n=M

an

∣

∣

∣
< ε1 :=

ε

1 + Cα

for all N ≥ M ≥ n0.

With AMn :=
∑n

k=M ak, AM,M−1 = 0, we have by the Abel summation formula

N
∑

n=M

an

ns
= AMN

1

N s
+

N−1
∑

n=M

AMn

( 1

ns
−

1

(n + 1)s

)

.

From this, we get for all s ∈ Ang(0, α), σ := Re(s), and N ≥ M ≥ n0 the estimate

∣

∣

∣

N
∑

n=M

an

ns

∣

∣

∣
≤ ε1

1

|N s|
+ ε1

N−1
∑

n=M

∣

∣

∣

1

ns
−

1

(n + 1)s

∣

∣

∣

≤ ε1 + ε1Cα

N−1
∑

n=M

( 1

nσ
−

1

(n + 1)σ

)

= ε1 + ε1Cα

( 1

Mσ
−

1

Nσ

)

≤ ε1 + ε1Cα = ε.

This shows the uniform convergence of the Dirichlet series in Ang(0, α). Therefore f is
continuous in Ang(0, α), which implies the last assertion of the theorem.

6.6. Definition. Let f(s) =
∞
∑

n=1

an

ns
be a Dirichlet series. The abscissa of convergence

of f is defined by

σc := σc(f) := inf {Re(s) :
∞
∑

n=1

an

ns
converges }.
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By theorem 6.4 this is the same as

σc = inf {Re(s) :
N
∑

n=1

an

ns
is bounded for N → ∞}

and it follows that the series converges to a holomorphic function in the halfplane
H(σc).

Examples. Consider the three Dirichlet series

ζ(s) =
∞

∑

n=1

1

ns
, g(s) :=

∞
∑

n=1

(−1)n−1

ns
,

1

ζ
(s) =

∞
∑

n=1

µ(n)

ns
.

We have σa(ζ) = σa(g) = σa(1/ζ) = 1. Clearly σc(ζ) = 1 and σc(g) = 0, since the
partial sums

∑N

n=1(−1)n−1 are bounded. The abscissa of convergence σc(1/ζ) is not
known; of course σc(1/ζ) ≤ 1. One conjectures that σc(1/ζ) = 1

2
, which is equivalent

to the Riemann Hypothesis, which we will discuss in a later chapter.

Remark. Multiplying the zeta series by 2−s yields 2−sζ(s) =
∑

∞

n=1
1

(2n)s
. Hence

g(s) = (1 − 21−s)ζ(s).

6.7. Theorem. If the Dirichlet series f(s) =
∞
∑

n=1

an

ns
has a finite abscissa of con-

vergence σc, then for the abscissa of absolute convergence σa the following estimate

holds:

σc ≤ σa ≤ σc + 1.

Proof. Without loss of generality we may suppose σc = 0. Then
∞
∑

n=1

an

nε
converges for

every ε > 0. We have to show that

∞
∑

n=1

|an|

nσ∗

< ∞ for all σ∗ > 1.

To see this, write σ∗ = 1 + 2ε, ε > 0. Then

|an|

nσ∗

=
|an|

nε
·

1

n1+ε

Since |an|/n
ε is bounded for n → ∞ and

∑

∞

n=1 1/n1+ε < ∞, the assertion follows.

Remarks. a) It can be easily seen that σc = −∞ implies σa = −∞.

b) The above examples show that the cases σa = σc and σa = σc +1 do actually occur.
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c) That σa and σc may be different is quite surprising if one looks at the situation
for power series: If a power series

∑

∞

n=0 anz
n converges for some z0 6= 0, it converges

absolutely for every z with |z| < |z0|.

6.8. Theorem (Landau). Let

f(s) =

∞
∑

n=1

an

ns

be a Dirichlet series with non-negative coefficients an ≥ 0 and finite abscissa of absolute

convergence σa ∈ R. Then the function f , which is holomorphic in the halfplane H(σa),
cannot be continued analytically as a holomorphic function to any neighborhood of σa.

Proof. Assume to the contrary that there exists a small open disk D around σa such
that f can be analytically continued to a holomorphic function in H(σa) ∪ D, which
we denote again by f . Then the Taylor series of f at the point σ1 := σa + 1 has radius
of convergence > 1. Since

f (k)(σ1) =
∞

∑

n=1

(− log n)kan

nσ1

,

the Taylor series has the form

f(s) =

∞
∑

k=0

f (k)(σ1)

k!
(s − σ1)

k =

∞
∑

k=0

∞
∑

n=1

(− log n)kan

k! nσ1

(s − σ1)
k.

By hypothesis there exists a real σ < σa such that the Taylor series converges for s = σ.
We have

f(σ) =

∞
∑

k=0

∞
∑

n=1

(log n)kan(σ1 − σ)k

k! nσ1

=

∞
∑

n=1

∞
∑

k=0

(log n)k(σ1 − σ)k

k!
·

an

nσ1

,

where the reordering is allowed since all terms are non-negative. Now

∞
∑

k=0

(log n)k(σ1 − σ)k

k!
= e(log n)(σ1−σ) =

1

nσ−σ1

,

hence we have a convergent series

f(σ) =

∞
∑

n=1

1

nσ−σ1

·
an

nσ1

=

∞
∑

n=1

an

nσ
.

Thus the abscissa of absolute convergence is ≤ σ < σa, a contradiction. Hence the
assumption is false, which proves the theorem.
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6.9. Theorem (Identity theorem for Dirichlet series). Let

f(s) =

∞
∑

n=1

an

ns
and g(s) =

∞
∑

n=1

bn

ns

be two Dirichlet series that converge in a common halfplane H(σ0). If there exists a

sequence sν ∈ H(σ0), ν ∈ N1, with limν→∞ Re(sν) = ∞ and

f(sν) = g(sν) for all ν ≥ 1,

then an = bn for all n ≥ 1.

Proof. Passing to the difference f − g shows that it suffices to prove the theorem for
the case where g is identically zero. So we suppose that

f(sν) = 0 for all ν ≥ 1.

If not all an = 0, then there exists a minimal k such that ak 6= 0. We have

f(s) =
1

ks

(

ak +
∑

n>k

an

(n/k)s

)

.

It suffices to show that there exists a σ∗ ∈ R such that

∣

∣

∣

∑

n>k

an

(n/k)s

∣

∣

∣
≤

|ak|

2
for all s with Re(s) ≥ σ∗,

for this would imply f(s) 6= 0 for Re(s) ≥ σ∗, contradicting f(sν) = 0 for all ν. The

sum
∑

n>k

an

(n/k)σ′
converges absolutely for some σ′ ∈ R. Therefore we can find an M ≥ k

such that

∑

n>M

|an|

(n/k)σ′
≤

|ak|

4
.

Further there exists a σ′′ ∈ R such that

∑

k<n6M

|an|

(n/k)σ′′
≤

|ak|

4
.

Combining the last two estimates shows

∣

∣

∣

∑

n>k

an

(n/k)s

∣

∣

∣
≤

|ak|

2
for all s with Re(s) ≥ max(σ′, σ′′), q.e.d.

Remark. A similar theorem is not true for arbitrary holomorphic functions in halfplanes.
For example, the sine function satisfies

sin(πn) = 0 for all integers n,
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without being identically zero. This shows also that not every function holomorphic in
a halfplane H(σ) can be expanded in a Dirichlet series.

6.10. Theorem. Let a, b : N1 → C be two arithmetical functions such that the Dirichlet

series

f(s) :=

∞
∑

n=1

a(n)

ns
and g(s) :=

∞
∑

n=1

b(n)

ns

converge absolutely in a common halfplane H(σ0). Then we have for the product

f(s)g(s) =

∞
∑

n=1

(a ∗ b)(n)

ns
.

This Dirichlet series converges absolutely in H(σ0).

Proof. Since the series for f(s) and g(s) converge absolutely for s ∈ H(σ0), they can
be multiplied term by term

f(s)g(s) =
∞

∑

k=1

a(k)

ks

∞
∑

ℓ=1

b(ℓ)

ℓs
=

∑

k,ℓ>1

a(k)b(ℓ)
1

ksℓs

=

∞
∑

n=1

∑

kℓ=n

a(k)b(ℓ)
1

(kℓ)s
=

∞
∑

n=1

(a ∗ b)(n)

ns
,

and the product series converges absolutely, q.e.d.

Examples. i) The zeta function ζ(s) =
∞
∑

n=1

1

ns
is the Dirichlet series associated to the

constant arithmetical function u(n) = 1. Since u ∗ µ = δ1, it follows

(

∞
∑

n=1

1

ns

)(

∞
∑

n=1

µ(n)

ns

)

=
∞

∑

n=1

δ1(n)

ns
= 1,

which gives a new proof of

1

ζ(s)
=

∞
∑

n=1

µ(n)

ns
(cf. theorem 4.5).

ii) The Dirichlet series associated to the identity map ι : N1 → N1 is

∞
∑

n=1

n

ns
=

∞
∑

n=1

1

ns−1
= ζ(s − 1),
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which converges absolutely for Re(s) > 2. For the divisor sum function σ we have
u ∗ ι = σ, cf. (3.15.iii), which implies

ζ(s)ζ(s− 1) =
∞

∑

n=1

σ(n)

ns
for Re(s) > 2.

iii) In a similar way, the formula ϕ = µ ∗ ι for the Euler phi function, cf. (3.15.i), yields

ζ(s − 1)

ζ(s)
=

∞
∑

n=1

ϕ(n)

ns
for Re(s) > 2.

6.11. Theorem (Euler product for Dirichlet series). Let a : N1 → C be a multiplicative
arithmetical function such that the Dirichlet series

f(s) =
∞

∑

n=1

a(n)

ns

has abscissa of absolute convergence σa < ∞.

a) Then we have in H(σa) the product representation

f(s) =
∏

p∈P

( ∞
∑

k=0

a(pk)

pks

)

=
∏

p∈P

(

1 +
a(p)

ps
+

a(p2)

p2s
+

a(p3)

p3s
+ · · ·

)

,

where the product is extended over the set P of all primes.

b) If the arithmetical function a is completely multiplicative, this can be simplified to

f(s) =
∏

p∈P

(

1 −
a(p)

ps

)−1

.

Proof. Let P ⊂ P be a finite set of primes and N(P) the set of all positive integers whose
prime decomposition contains only primes from the set P. Since a is multiplicative, we
have for an integer n with prime decomposition n = pk1

1 pk2

2 · . . . · pkr

r

a(n) = a(pk1

1 )a(pk2

2 ) · . . . · a(pkr

r ).

It follows by multiplying the infinite series term by term that

∏

p∈P

(

1 +
a(p)

ps
+

a(p2)

p2s
+

a(p3)

p3s
+ · · ·

)

=
∑

n∈N(P)

a(n)

ns
.

Letting P = Pm be set of all primes ≤ m and passing to the limit m → ∞, we obtain
part a) the theorem.
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If a is completely multiplicative, then a(pk) = a(p)k, hence

∞
∑

k=0

a(pk)

pks
=

∞
∑

k=0

(a(p)

ps

)k

=
(

1 −
a(p)

ps

)−1

,

proving part b).

Examples. i) The Euler product for the zeta function

ζ(s) =
∏

p∈P

(

1 −
1

ps

)−1

is a special case of this theorem.

ii) Since µ(p) = −1 and µ(pk) = 0 for k ≥ 2, the formula for the inverse of the zeta
function

∞
∑

n=1

µ(n)

ns
=

∏

p∈P

(

1 −
1

ps

)

=
1

ζ(s)

also follows from this theorem.
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