
O. Forster: Analytic Number Theory

4. Riemann Zeta Function. Euler Product

4.1. Definition. For a complex s ∈ C with Re(s) > 1, the Riemann zeta function is
defined by the series

ζ(s) :=

∞
∑

n=1

1

ns
.

Let us first study the convergence of this infinite series. Following an old tradition, we
denote the real and imaginary part of s by σ resp. t, i.e.

s = σ + it, σ, t ∈ R.

We have

1

ns
= n−s = e−s log n = e−σ log(n)−it log n =

1

nσ
e−it log n,

therefore

∣

∣

∣

1

ns

∣

∣

∣
=

1

nσ
.

Since
∞
∑

n=1

1

nσ
converges for all real σ > 1, we see that the zeta series converges absolutely

and uniformly in every halfplane H(σ0), σ0 > 1, where

H(σ0) := {s ∈ C : Re(s) > σ0}.

It follows by a theorem of Weierstrass that ζ is a holomorphic (= regular analytic)
function in the halfplane

H(1) = {s ∈ C : Re(s) > 1}.

We will see later that ζ can be continued analytically to a meromorphic function in
the whole complex plane C, which is holomorphic in C r {1} and has a pole of first
order at s = 1. A weaker statement is

4.2. Proposition. lim
σց1

ζ(σ) = ∞.

Proof. Let R > 0 be any given bound. Since
∑∞

n=1
1
n

= ∞, there exists an N > 1 such
that

N
∑

n=1

1

n
≥ R + 1.
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The function σ 7→
∑N

n=1
1

nσ
is continuous on R, hence there exists an ε > 0 such that

N
∑

n=1

1

nσ
≥ R for all σ with σ < 1 + ε.

A fortiori we have
∑∞

n=1
1

nσ
≥ R for all 1 < σ < 1 + ε. This proves the proposition.

4.3. Theorem (Euler product). For all s ∈ C with Re(s) > 1 one has

ζ(s) =
∏

p∈P

1

1 − p−s
,

where the product is extended over the set P of all primes.

Proof. Since |p−s| < 1/p ≤ 1/2, we can use the geometric series

1

1 − p−s
=

∞
∑

k=0

1

pks
,

which converges absolutely. If P ⊂ P is any finite set of primes, the product

∏

p∈P

( ∞
∑

k=0

1

pks

)

=
∏

p∈P

(

1 +
1

ps
+

1

p2s
+

1

p3s
+ . . .

)

can be calculated by termwise multiplication and we obtain

∏

p∈P

( ∞
∑

k=0

1

pks

)

=
∑

n∈N(P)

1

ns
,

where N(P) is the set of all positive integers n whose prime decomposition contains
only primes from the set P. (Here the unique prime factorization is used.) Letting
P = Pm be set of all primes ≤ m and passing to the limit m → ∞, we obtain the
assertion of the theorem.

Remark. The Euler product can be used to give another proof of the infinitude of
primes. If the set P of all primes were finite, the Euler product

∏

p∈P
(1− p−s)−1 would

be continuous at s = 1, which contradicts the fact that limσց1 ζ(σ) = ∞.

4.4. We recall some facts from the theory of analytic functions of a complex variable
about infinite products. Let G ⊂ C be an open set. For a continuous function f : G → C

and a compact subset K ⊂ G we define the maximum norm

‖f‖K := sup{|f(z)| : z ∈ K} ∈ R+.
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(The supremum is < ∞ since f is continous.) Let now fν : G → C, ν ≥ 1, be a
sequence of holomorphic functions. The infinite product

F (z) :=

∞
∏

ν=1

(1 + fν(z))

is said to be normally convergent on a compact subset K ⊂ G, if

∞
∑

ν=1

‖fν‖K < ∞.

In this case, the product converges absolutely and uniformly on K. (The converse is not
true, as can be seen by taking the constant functions fν = −1

2
for all ν.) The product is

said to be normally convergent in G if it converges normally on any compact subset of
K ⊂ G. The limit F of a normally convergent infinite product of holomorphic functions
1 + fν is again holomorphic and F (z0) = 0 for a particular point z0 ∈ G if and only if
one of the factors vanishes in z0.

4.5. Theorem. The Riemann zeta function has no zeroes in the half plane

H(1) = {s ∈ C : Re(s) > 1}.

For its inverse one has

1

ζ(s)
=

∏

p∈P

(

1 −
1

ps

)

=
∞

∑

n=1

µ(n)

ns
,

where µ is the Möbius function.

Proof. The first assertion follows from the fact that the Euler product for the zeta
function converges normally in H(1) and all factors (1−p−s)−1 have no zeroes in H(1).
Inverting the product representation for 1/ζ(s) yields 1/ζ(s) =

∏

(1 − p−s). To prove
the last equation, let P a finite set of primes and N′(P) the set of all positive integers
n that can be written as a product n = p1p2 · . . . · pr of distinct primes pj ∈ P, (r ≥ 0).
Then, since (−1)r = µ(p1 · . . . · pr),

∏

p∈P

(

1 −
1

ps

)

=
∑

n∈N′(P)

µ(n)

ns
.

Letting P = Pm be set of all primes ≤ m and passing to the limit m → ∞, we obtain
the assertion of the theorem. Note that µ(n) = 0 for all n ∈ N1 r

⋃

m N′(Pm).

4.6. We recall now some facts about the logarithm function. (By logarithm we always
mean the natural logarithm with basis e = 2.718 . . . .) We have the Taylor expansion

log(1 + z) =

∞
∑

n=1

(−1)n−1 zn

n
for all z ∈ C with |z| < 1.
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From this follows

log
( 1

1 − z

)

=

∞
∑

n=1

zn

n
for all z ∈ C with |z| < 1.

(Of course here the principal branch of the logarithm with log(1) = 0 is understood.)

If f : G → C is a holomorphic function without zeroes in a simply connected domain
G ⊂ C, then there exists a holomorphic branch of the logarithm of f , i.e. a holomorphic
function

log f : G → C with e(log f)(z) = f(z) for all z ∈ G.

This function log f is uniquely determined up to an additive constant 2πin, n ∈ Z.

Since the zeta function has no zeroes in the simply connected halfplane H(1), we can
form the logarithm of the zeta function, where we select the branch of log ζ that takes
real values on the real half line ]1,∞[.

4.7. Theorem. For the logarithm of the zeta function in the halfplane H(1), the

following equation holds:

log ζ(s) =
∑

p∈P

1

ps
+

∞
∑

k=2

1

k

∑

p∈P

1

pks
.

The function

F (s) :=

∞
∑

k=2

1

k

∑

p∈P

1

pks

is bounded in H(1).

Remark. If one defines the prime zeta function by

P (s) :=
∑

p∈P

1

ps
for s ∈ H(1),

the formula of the theorem may be written as

log ζ(s) =

∞
∑

k=1

P (ks)

k
= P (s) + F (s), where F (s) =

∞
∑

k=2

P (ks)

k
.

Proof. Using the Euler product we obtain

log ζ(s) =
∑

p∈P

log
( 1

1 − p−s

)

=
∑

p∈P

∞
∑

k=1

1

kpks
=

∞
∑

k=1

∑

p∈P

1

kpks

=
∑

p∈P

1

ps
+

∞
∑

k=2

1

k

∑

p∈P

1

pks
.
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To prove the boundedness of

F (s) =
∞

∑

k=2

1

k

∑

p∈P

1

pks
=

∞
∑

k=2

P (ks)

k

in H(1), we use the estimate (with σ = Re(s) > 1)

|P (ks)| ≤ P (kσ) ≤ P (k) =
∑

p∈P

1

pk
≤

∞
∑

n=2

1

nk

≤

∞
∑

n=2

∫ n

n−1

dx

xk
=

∫ ∞

1

dx

xk
=

1

k − 1

and obtain for all s ∈ H(1)

|F (s)| ≤

∞
∑

k=2

1

k(k − 1)
= 1, q.e.d.

4.8. Corollary (Euler).

∑

p∈P

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ . . . = ∞.

Proof. Since the difference |P (s) − log ζ(s)| is bounded for Re(s) > 1 we get, using
proposition 4.2,

lim
σց1

P (σ) = lim
σց1

(

∑

p∈P

1

pσ

)

= ∞.

This implies the assertion.

Remark. The corollary gives another proof that there are infinitely many primes, but
says more. Comparing with

∞
∑

n=1

1

n2
< ∞,

we can conclude that the density of primes is in some sense greater than the density
of square numbers.

The following theorem is a variant of theorem 4.7 and gives an interesting formula for
the difference between P (s) and log ζ(s).

4.9. Theorem. We have the following representation of the prime zeta function for

Re(s) > 1

P (s) =
∑

p∈P

1

ps
= log ζ(s) +

∞
∑

k=2

µ(k)

k
log ζ(ks).
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Proof. We start from the formula of theorem 4.7

log ζ(s) =
∞

∑

k=1

P (ks)

k
.

We have as in the proof of theorem 4.7 the estimate

|P (ks)| ≤ P (kσ) ≤
1

kσ − 1
≤

2

kσ
, (where σ = Re(s)),

which implies

| log ζ(s)| ≤

∞
∑

k=1

2

k2σ
=

2

σ

∞
∑

k=1

1

k2
=

2ζ(2)

σ
=:

c

σ

with the constant c = 2ζ(2). Therefore the series
∑∞

k=1(µ(k)/k) log ζ(ks) converges
absolutely:

∞
∑

k=1

∣

∣

∣

µ(k)

k
log ζ(ks)

∣

∣

∣
≤

∞
∑

k=1

1

k
·

c

kσ
=

cζ(2)

σ
< ∞.

Substituting log ζ(ks) =
∑∞

ℓ=1 P (kℓs)/ℓ we get

∞
∑

k=1

µ(k)

k
log ζ(ks) =

∞
∑

k,ℓ=1

µ(k)P (kℓs)

kℓ
=

∞
∑

n=1

∑

kℓ=n

µ(k)
P (kℓs)

kℓ

=

∞
∑

n=1

∑

k|n

µ(k)
P (ns)

n
=

∞
∑

n=1

δ1(n)
P (ns)

n

= P (s), q.e.d.

We conclude this chapter with an interesting application of therem 4.5.

4.10. Theorem. The probability that two random numbers m, n ∈ N1 are coprime is

6/π2 ≈ 61%, more precisely: For real x ≥ 1 let

Copr(x) := {(m, n) ∈ N1 × N1 : m, n ≤ x and m, n coprime}.

Then

lim
x→∞

#Copr(x)

x2
=

1

ζ(2)
=

6

π2
.

Proof. Let A(x) be the set of all pairs m, n of integers with 1 ≤ m, n ≤ x and

Ak(x) := {(n, m) ∈ A(x) : gcd(m, n) = k}.
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Then A(x) is the disjoint union of all Ak(x), k = 1, 2, . . . , ⌊x⌋, and for every k we have
a bijection

Copr
(x

k

)

−→ Ak(x), (m, n) 7→ (km, kn).

Therefore

∑

k6x

#Copr
(x

k

)

= ⌊x⌋2.

Now we can apply the inversion formula of theorem 3.16 and obtain

#Copr(x) =
∑

k6x

µ(k)
⌊x

k

⌋2

.

Since 0 ≤ (x/k) − ⌊x/k⌋ < 1, it follows that (x/k)2 − ⌊x/k⌋2 < 2x/k, hence

∣

∣

∣

∣

#Copr(x) −
∑

k6x

µ(k)
(x

k

)2
∣

∣

∣

∣

≤ 2x
∑

k6x

1

k
≤ 2x(1 + log x) = O(x log x),

so we can write

#Copr(x)

x2
=

∑

k6x

µ(k)

k2
+ O

( log x

x

)

.

On the other hand
∑∞

k=1 µ(k)/k2 = 1/ζ(2) by theorem 4.5, hence

∣

∣

∣

∣

∑

k6x

µ(k)

k2
−

1

ζ(2)

∣

∣

∣

∣

≤
∑

k>x

1

k2
= O

(1

x

)

.

Combining this with the previous estimate yields

#Copr(x)

x2
=

1

ζ(2)
+ O

( log x

x

)

,

which implies the assertion of the theorem.

Remark. The fact ζ(2) =
π2

6
will be proven in the next chapter.
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