4. Riemann Zeta Function. Euler Product

4.1. Definition. For a complex $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$, the Riemann zeta function is defined by the series

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Let us first study the convergence of this infinite series. Following an old tradition, we denote the real and imaginary part of s by σ resp. t, i.e.

$$
s=\sigma+i t, \quad \sigma, t \in \mathbb{R}
$$

We have

$$
\frac{1}{n^{s}}=n^{-s}=e^{-s \log n}=e^{-\sigma \log (n)-i t \log n}=\frac{1}{n^{\sigma}} e^{-i t \log n}
$$

therefore

$$
\left|\frac{1}{n^{s}}\right|=\frac{1}{n^{\sigma}} .
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$ converges for all real $\sigma>1$, we see that the zeta series converges absolutely and uniformly in every halfplane $\overline{H\left(\sigma_{0}\right)}, \sigma_{0}>1$, where

$$
H\left(\sigma_{0}\right):=\left\{s \in \mathbb{C}: \operatorname{Re}(s)>\sigma_{0}\right\}
$$

It follows by a theorem of Weierstrass that ζ is a holomorphic (= regular analytic) function in the halfplane

$$
H(1)=\{s \in \mathbb{C}: \operatorname{Re}(s)>1\} .
$$

We will see later that ζ can be continued analytically to a meromorphic function in the whole complex plane \mathbb{C}, which is holomorphic in $\mathbb{C} \backslash\{1\}$ and has a pole of first order at $s=1$. A weaker statement is
4.2. Proposition. $\lim _{\sigma \searrow 1} \zeta(\sigma)=\infty$.

Proof. Let $R>0$ be any given bound. Since $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$, there exists an $N>1$ such that

$$
\sum_{n=1}^{N} \frac{1}{n} \geq R+1
$$

The function $\sigma \mapsto \sum_{n=1}^{N} \frac{1}{n^{\sigma}}$ is continuous on \mathbb{R}, hence there exists an $\varepsilon>0$ such that

$$
\sum_{n=1}^{N} \frac{1}{n^{\sigma}} \geq R \quad \text { for all } \sigma \text { with } \sigma<1+\varepsilon
$$

A fortiori we have $\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \geq R$ for all $1<\sigma<1+\varepsilon$. This proves the proposition.
4.3. Theorem (Euler product). For all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ one has

$$
\zeta(s)=\prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}},
$$

where the product is extended over the set \mathbb{P} of all primes.
Proof. Since $\left|p^{-s}\right|<1 / p \leq 1 / 2$, we can use the geometric series

$$
\frac{1}{1-p^{-s}}=\sum_{k=0}^{\infty} \frac{1}{p^{k s}},
$$

which converges absolutely. If $\mathcal{P} \subset \mathbb{P}$ is any finite set of primes, the product

$$
\prod_{p \in \mathcal{P}}\left(\sum_{k=0}^{\infty} \frac{1}{p^{k s}}\right)=\prod_{p \in \mathcal{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\frac{1}{p^{3 s}}+\ldots\right)
$$

can be calculated by termwise multiplication and we obtain

$$
\prod_{p \in \mathcal{P}}\left(\sum_{k=0}^{\infty} \frac{1}{p^{k s}}\right)=\sum_{n \in \mathbb{N}(\mathcal{P})} \frac{1}{n^{s}},
$$

where $\mathbb{N}(\mathcal{P})$ is the set of all positive integers n whose prime decomposition contains only primes from the set \mathcal{P}. (Here the unique prime factorization is used.) Letting $\mathcal{P}=\mathcal{P}_{m}$ be set of all primes $\leq m$ and passing to the limit $m \rightarrow \infty$, we obtain the assertion of the theorem.

Remark. The Euler product can be used to give another proof of the infinitude of primes. If the set \mathbb{P} of all primes were finite, the Euler product $\prod_{p \in \mathbb{P}}\left(1-p^{-s}\right)^{-1}$ would be continuous at $s=1$, which contradicts the fact that $\lim _{\sigma \backslash 1} \zeta(\sigma)=\infty$.
4.4. We recall some facts from the theory of analytic functions of a complex variable about infinite products. Let $G \subset \mathbb{C}$ be an open set. For a continuous function $f: G \rightarrow \mathbb{C}$ and a compact subset $K \subset G$ we define the maximum norm

$$
\|f\|_{K}:=\sup \{|f(z)|: z \in K\} \in \mathbb{R}_{+}
$$

(The supremum is $<\infty$ since f is continous.) Let now $f_{\nu}: G \rightarrow \mathbb{C}, \nu \geq 1$, be a sequence of holomorphic functions. The infinite product

$$
F(z):=\prod_{\nu=1}^{\infty}\left(1+f_{\nu}(z)\right)
$$

is said to be normally convergent on a compact subset $K \subset G$, if

$$
\sum_{\nu=1}^{\infty}\left\|f_{\nu}\right\|_{K}<\infty
$$

In this case, the product converges absolutely and uniformly on K. (The converse is not true, as can be seen by taking the constant functions $f_{\nu}=-\frac{1}{2}$ for all ν.) The product is said to be normally convergent in G if it converges normally on any compact subset of $K \subset G$. The limit F of a normally convergent infinite product of holomorphic functions $1+f_{\nu}$ is again holomorphic and $F\left(z_{0}\right)=0$ for a particular point $z_{0} \in G$ if and only if one of the factors vanishes in z_{0}.
4.5. Theorem. The Riemann zeta function has no zeroes in the half plane

$$
H(1)=\{s \in \mathbb{C}: \operatorname{Re}(s)>1\} .
$$

For its inverse one has

$$
\frac{1}{\zeta(s)}=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}},
$$

where μ is the Möbius function.
Proof. The first assertion follows from the fact that the Euler product for the zeta function converges normally in $H(1)$ and all factors $\left(1-p^{-s}\right)^{-1}$ have no zeroes in $H(1)$. Inverting the product representation for $1 / \zeta(s)$ yields $1 / \zeta(s)=\Pi\left(1-p^{-s}\right)$. To prove the last equation, let \mathcal{P} a finite set of primes and $\mathbb{N}^{\prime}(\mathcal{P})$ the set of all positive integers n that can be written as a product $n=p_{1} p_{2} \cdot \ldots \cdot p_{r}$ of distinct primes $p_{j} \in \mathcal{P},(r \geq 0)$. Then, since $(-1)^{r}=\mu\left(p_{1} \cdot \ldots \cdot p_{r}\right)$,

$$
\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p^{s}}\right)=\sum_{n \in \mathbb{N}^{\prime}(\mathcal{P})} \frac{\mu(n)}{n^{s}} .
$$

Letting $\mathcal{P}=\mathcal{P}_{m}$ be set of all primes $\leq m$ and passing to the limit $m \rightarrow \infty$, we obtain the assertion of the theorem. Note that $\mu(n)=0$ for all $n \in \mathbb{N}_{1} \backslash \bigcup_{m} \mathbb{N}^{\prime}\left(\mathcal{P}_{m}\right)$.
4.6. We recall now some facts about the logarithm function. (By logarithm we always mean the natural logarithm with basis $e=2.718 \ldots$) We have the Taylor expansion

$$
\log (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n} \quad \text { for all } z \in \mathbb{C} \text { with }|z|<1
$$

From this follows

$$
\log \left(\frac{1}{1-z}\right)=\sum_{n=1}^{\infty} \frac{z^{n}}{n} \quad \text { for all } z \in \mathbb{C} \text { with }|z|<1
$$

(Of course here the principal branch of the logarithm with $\log (1)=0$ is understood.)
If $f: G \rightarrow \mathbb{C}$ is a holomorphic function without zeroes in a simply connected domain $G \subset \mathbb{C}$, then there exists a holomorphic branch of the logarithm of f, i.e. a holomorphic function

$$
\log f: G \rightarrow \mathbb{C} \quad \text { with } \quad e^{(\log f)(z)}=f(z) \text { for all } z \in G
$$

This function $\log f$ is uniquely determined up to an additive constant $2 \pi i n, n \in \mathbb{Z}$.
Since the zeta function has no zeroes in the simply connected halfplane $H(1)$, we can form the logarithm of the zeta function, where we select the branch of $\log \zeta$ that takes real values on the real half line $] 1, \infty[$.
4.7. Theorem. For the logarithm of the zeta function in the halfplane $H(1)$, the following equation holds:

$$
\log \zeta(s)=\sum_{p \in \mathbb{P}} \frac{1}{p^{s}}+\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{1}{p^{k s}} .
$$

The function

$$
F(s):=\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{1}{p^{k s}}
$$

is bounded in $H(1)$.
Remark. If one defines the prime zeta function by

$$
P(s):=\sum_{p \in \mathbb{P}} \frac{1}{p^{s}} \quad \text { for } s \in H(1),
$$

the formula of the theorem may be written as

$$
\log \zeta(s)=\sum_{k=1}^{\infty} \frac{P(k s)}{k}=P(s)+F(s), \quad \text { where } \quad F(s)=\sum_{k=2}^{\infty} \frac{P(k s)}{k} .
$$

Proof. Using the Euler product we obtain

$$
\begin{aligned}
\log \zeta(s) & =\sum_{p \in \mathbb{P}} \log \left(\frac{1}{1-p^{-s}}\right)=\sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{1}{k p^{k s}}=\sum_{k=1}^{\infty} \sum_{p \in \mathbb{P}} \frac{1}{k p^{k s}} \\
& =\sum_{p \in \mathbb{P}} \frac{1}{p^{s}}+\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{1}{p^{k s}} .
\end{aligned}
$$

To prove the boundedness of

$$
F(s)=\sum_{k=2}^{\infty} \frac{1}{k} \sum_{p \in \mathbb{P}} \frac{1}{p^{k s}}=\sum_{k=2}^{\infty} \frac{P(k s)}{k}
$$

in $H(1)$, we use the estimate (with $\sigma=\operatorname{Re}(s)>1$)

$$
\begin{aligned}
|P(k s)| & \leq P(k \sigma) \leq P(k)=\sum_{p \in \mathbb{P}} \frac{1}{p^{k}} \leq \sum_{n=2}^{\infty} \frac{1}{n^{k}} \\
& \leq \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{d x}{x^{k}}=\int_{1}^{\infty} \frac{d x}{x^{k}}=\frac{1}{k-1}
\end{aligned}
$$

and obtain for all $s \in H(1)$

$$
|F(s)| \leq \sum_{k=2}^{\infty} \frac{1}{k(k-1)}=1, \quad \text { q.e.d. }
$$

4.8. Corollary (Euler).

$$
\sum_{p \in \mathbb{P}} \frac{1}{p}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\ldots=\infty
$$

Proof. Since the difference $|P(s)-\log \zeta(s)|$ is bounded for $\operatorname{Re}(s)>1$ we get, using proposition 4.2,

$$
\lim _{\sigma \searrow 1} P(\sigma)=\lim _{\sigma \searrow 1}\left(\sum_{p \in \mathbb{P}} \frac{1}{p^{\sigma}}\right)=\infty .
$$

This implies the assertion.
Remark. The corollary gives another proof that there are infinitely many primes, but says more. Comparing with

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

we can conclude that the density of primes is in some sense greater than the density of square numbers.

The following theorem is a variant of theorem 4.7 and gives an interesting formula for the difference between $P(s)$ and $\log \zeta(s)$.
4.9. Theorem. We have the following representation of the prime zeta function for $\operatorname{Re}(s)>1$

$$
P(s)=\sum_{p \in \mathbb{P}} \frac{1}{p^{s}}=\log \zeta(s)+\sum_{k=2}^{\infty} \frac{\mu(k)}{k} \log \zeta(k s) .
$$

Proof. We start from the formula of theorem 4.7

$$
\log \zeta(s)=\sum_{k=1}^{\infty} \frac{P(k s)}{k} .
$$

We have as in the proof of theorem 4.7 the estimate

$$
|P(k s)| \leq P(k \sigma) \leq \frac{1}{k \sigma-1} \leq \frac{2}{k \sigma}, \quad(\text { where } \sigma=\operatorname{Re}(s))
$$

which implies

$$
|\log \zeta(s)| \leq \sum_{k=1}^{\infty} \frac{2}{k^{2} \sigma}=\frac{2}{\sigma} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{2 \zeta(2)}{\sigma}=: \frac{c}{\sigma}
$$

with the constant $c=2 \zeta(2)$. Therefore the series $\sum_{k=1}^{\infty}(\mu(k) / k) \log \zeta(k s)$ converges absolutely:

$$
\sum_{k=1}^{\infty}\left|\frac{\mu(k)}{k} \log \zeta(k s)\right| \leq \sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{c}{k \sigma}=\frac{c \zeta(2)}{\sigma}<\infty .
$$

Substituting $\log \zeta(k s)=\sum_{\ell=1}^{\infty} P(k \ell s) / \ell$ we get

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log \zeta(k s) & =\sum_{k, \ell=1}^{\infty} \frac{\mu(k) P(k \ell s)}{k \ell}=\sum_{n=1}^{\infty} \sum_{k \ell=n} \mu(k) \frac{P(k \ell s)}{k \ell} \\
& =\sum_{n=1}^{\infty} \sum_{k \mid n} \mu(k) \frac{P(n s)}{n}=\sum_{n=1}^{\infty} \delta_{1}(n) \frac{P(n s)}{n} \\
& =P(s), \quad \text { q.e.d. }
\end{aligned}
$$

We conclude this chapter with an interesting application of therem 4.5.
4.10. Theorem. The probability that two random numbers $m, n \in \mathbb{N}_{1}$ are coprime is $6 / \pi^{2} \approx 61 \%$, more precisely: For real $x \geq 1$ let

$$
\operatorname{Copr}(x):=\left\{(m, n) \in \mathbb{N}_{1} \times \mathbb{N}_{1}: m, n \leq x \text { and } m, n \text { coprime }\right\} .
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{\# \operatorname{Copr}(x)}{x^{2}}=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}} .
$$

Proof. Let $A(x)$ be the set of all pairs m, n of integers with $1 \leq m, n \leq x$ and

$$
A_{k}(x):=\{(n, m) \in A(x): \operatorname{gcd}(m, n)=k\} .
$$

Then $A(x)$ is the disjoint union of all $A_{k}(x), k=1,2, \ldots,\lfloor x\rfloor$, and for every k we have a bijection

$$
\operatorname{Copr}\left(\frac{x}{k}\right) \longrightarrow A_{k}(x), \quad(m, n) \mapsto(k m, k n)
$$

Therefore

$$
\sum_{k \leqslant x} \# \operatorname{Copr}\left(\frac{x}{k}\right)=\lfloor x\rfloor^{2}
$$

Now we can apply the inversion formula of theorem 3.16 and obtain

$$
\# \operatorname{Copr}(x)=\sum_{k \leqslant x} \mu(k)\left\lfloor\frac{x}{k}\right\rfloor^{2}
$$

Since $0 \leq(x / k)-\lfloor x / k\rfloor<1$, it follows that $(x / k)^{2}-\lfloor x / k\rfloor^{2}<2 x / k$, hence

$$
\left|\# \operatorname{Copr}(x)-\sum_{k \leqslant x} \mu(k)\left(\frac{x}{k}\right)^{2}\right| \leq 2 x \sum_{k \leqslant x} \frac{1}{k} \leq 2 x(1+\log x)=O(x \log x)
$$

so we can write

$$
\frac{\# \operatorname{Copr}(x)}{x^{2}}=\sum_{k \leqslant x} \frac{\mu(k)}{k^{2}}+O\left(\frac{\log x}{x}\right)
$$

On the other hand $\sum_{k=1}^{\infty} \mu(k) / k^{2}=1 / \zeta(2)$ by theorem 4.5, hence

$$
\left|\sum_{k \leqslant x} \frac{\mu(k)}{k^{2}}-\frac{1}{\zeta(2)}\right| \leq \sum_{k>x} \frac{1}{k^{2}}=O\left(\frac{1}{x}\right)
$$

Combining this with the previous estimate yields

$$
\frac{\# \operatorname{Copr}(x)}{x^{2}}=\frac{1}{\zeta(2)}+O\left(\frac{\log x}{x}\right)
$$

which implies the assertion of the theorem.
Remark. The fact $\zeta(2)=\frac{\pi^{2}}{6}$ will be proven in the next chapter.

