3. Arithmetical Functions. Möbius Inversion Theorem

3.1. Definition. a) An arithmetical function is a map

$$
f: \mathbb{N}_{1} \longrightarrow \mathbb{C}
$$

b) The function f is called multiplicative if it is not identically zero and

$$
f(n m)=f(n) f(m) \quad \text { for all } n, m \in \mathbb{N}_{1} \text { with } \operatorname{gcd}(n, m)=1
$$

c) The function f is called completely multiplicative or strictly multiplicative if it is not identically zero and

$$
f(n m)=f(n) f(m) \quad \text { for all } n, m \in \mathbb{N}_{1} \text { (without restriction). }
$$

Remark. A multiplicative arithmetical function $a: \mathbb{N}_{1} \rightarrow \mathbb{C}$ satisfies $a(1)=1$. This can be seen as follows: Since $\operatorname{gcd}(1, n)=1$, we have $a(n)=a(1) a(n)$ for all n. Therefore $a(1) \neq 0$, (otherwise a would be identically zero), and $a(1)=a(1) a(1)$ implies $a(1)=1$.

3.2. Examples

i) The Euler phi function $\varphi: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1} \subset \mathbb{C}$, which was defined in (2.9), is a multiplicative arithmetical function. It is not completely multiplicative, since for a prime p we have

$$
\varphi\left(p^{2}\right)=p^{2}-p=(p-1) p \neq \varphi(p)^{2}=(p-1)^{2} .
$$

ii) Let $\alpha \in \mathbb{C}$ be an arbitrary complex number. We define a function

$$
p_{\alpha}: \mathbb{N}_{1} \longrightarrow \mathbb{C}, \quad n \mapsto p_{\alpha}(n):=n^{\alpha}=e^{\alpha \log (n)}
$$

Then p_{α} is a completely multiplicative arithmetical function.
iii) Let $f: \mathbb{N}_{1} \rightarrow \mathbb{Z} \subset \mathbb{C}$ be defined by $f(p):=1$ for primes p and $f(n)=0$ if n is not prime. This is an example of an arithmetical function which is not multiplicative.

Remark. A multiplicative arithmetical function $f: \mathbb{N}_{1} \rightarrow \mathbb{C}$ is completely determined by its values at the prime powers: If $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$ is the canonical prime decomposition of n, then

$$
f(n)=\prod_{i=1}^{r} f\left(p_{i}^{e_{i}}\right)
$$

3.3. Divisor function $\tau: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$. This function is defined by

$$
\tau(n):=\text { number of positive divisors of } n \text {. }
$$

Thus $\tau(p)=2$ and $\tau\left(p^{k}\right)=1+k$ for primes p. (The divisors of p^{k} are $1, p, p^{2}, \ldots, p^{k}$).

The divisor function is multiplicative. This can be seen as follows: Let $m_{1}, m_{2} \in \mathbb{N}_{1}$ be a pair of coprime numbers and $m:=m_{1} m_{2}$. Looking at the prime decompositions one sees that the product $d:=d_{1} d_{2}$ of divisors $d_{1} \mid m_{1}$ and $d_{2} \mid m_{2}$ is a divisor of m and conversely every divisor $d \mid m$ can be uniquely decomposed in this way. This can be also expressed by saying that the map

$$
\operatorname{Div}\left(m_{1}\right) \times \operatorname{Div}\left(m_{2}\right) \longrightarrow \operatorname{Div}\left(m_{1} m_{2}\right), \quad\left(d_{1}, d_{2}\right) \mapsto d_{1} d_{2}
$$

is bijective, where $\operatorname{Div}(n)$ denotes the set of positive divisors of n. This implies immediately the multiplicativity of τ.
3.4. Divisor sum function $\sigma: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$. This function is defined by

$$
\sigma(n):=\text { sum of all positive divisors of } n \text {. }
$$

Thus for a prime p we have $\sigma(p)=1+p$ and

$$
\sigma\left(p^{k}\right)=1+p+p^{2}+\ldots+p^{k}=\frac{p^{k+1}-1}{p-1} .
$$

The divisor sum function is also multiplicative.
Proof. Let $m_{1}, m_{2} \in N_{1}$ be coprime numbers. Then

$$
\begin{aligned}
\sigma\left(m_{1} m_{2}\right) & =\sum_{d \mid m_{1} m_{2}} d=\sum_{d_{1}\left|m_{1}, d_{2}\right| m_{2}} d_{1} d_{2}=\left(\sum_{d_{1} \mid m_{1}} d_{1}\right)\left(\sum_{d_{2} \mid m_{2}} d_{2}\right) \\
& =\sigma\left(m_{1}\right) \sigma\left(m_{2}\right) .
\end{aligned}
$$

3.5. Definition. A perfect number (G. vollkommene Zahl) is a number $n \in \mathbb{N}_{1}$ such that $\sigma(n)=2 n$.
The condition $\sigma(n)=2 n$ can also be expressed as

$$
\sum_{d \mid n, d<n} d=n,
$$

i.e. a number n is perfect if the sum of its proper divisors equals n. The smallest perfect numbers are

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14
\end{aligned}
$$

The next perfect numbers are 496,8128 . The even perfect numbers are characterized by the following theorem.

Theorem. a) (Euclid) If q is a prime such that $2^{q}-1$ is prime, then $n:=2^{q-1}\left(2^{q}-1\right)$ is a perfect number.
b) (Euler) Conversely, every even perfect number n may be obtained by the construction in a).
The prove is left as an exercise.
The above examples correspond to $q=2,3,5,7$. For $q=11,2^{11}-1=2047=23 \cdot 89$ is not prime.
It is not known whether there exist odd perfect numbers.
3.6. Möbius function $\mu: \mathbb{N}_{1} \rightarrow \mathbb{Z}$. This rather strange looking, but important function is defined by

$$
\mu(n):=\left\{\begin{aligned}
1, & \text { for } n=1, \\
0, & \text { if there exists a prime } p \text { with } p^{2} \mid n \\
(-1)^{r}, & \text { if } n \text { is a product of } r \text { different primes }
\end{aligned}\right.
$$

This leads to the following table

n	1	2	3	4	5	6	7	8	9	10
$\mu(n)$	1	-1	-1	0	-1	1	-1	0	0	1

It follows directly from the definition that μ is multiplicative.
3.7. Definition. Let $f: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be an arithmetical function. The summatory function of f is the function $F: \mathbb{N}_{1} \rightarrow \mathbb{C}$ defined by

$$
F(n):=\sum_{d \mid n} f(d)
$$

where the sum is extended over all positive divisors d of n.
3.8. Examples. i) The divisor sum function

$$
\sigma(n)=\sum_{d \mid n} d
$$

is the summatory function of the identity map

$$
\iota: \mathbb{N}_{1} \longrightarrow \mathbb{N}_{1}, \quad \iota(n):=n .
$$

ii) The divisor function $\tau: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ can be written as

$$
\tau(n)=\sum_{d \mid n} 1
$$

Therefore τ is the summatory function of the constant function

$$
u: \mathbb{N}_{1} \longrightarrow \mathbb{N}_{1}, \quad u(n):=1 \text { for all } n
$$

3.9. Theorem (Summatory function of the Euler phi function). For all $n \in N_{1}$

$$
\sum_{d \mid n} \varphi(d)=n
$$

This means that the summatory function of the Euler phi function is the identity map $\iota: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$.

Proof. The set $M_{n}:=\{1,2, \ldots, n\}$ is the disjoint union of the sets

$$
A_{d}:=\left\{m \in M_{n}: \operatorname{gcd}(m, n)=d\right\}, \quad d \mid n .
$$

Therefore $n=\sum_{d \mid n} \# A_{d}$. We have $\operatorname{gcd}(m, n)=d$ iff $d|m, d| n$ and $\operatorname{gcd}(m / d, n / d)=1$. It follows that $\# A_{d}=\varphi(n / d)$, hence

$$
n=\sum_{d \mid n} \# A_{d}=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d), \quad \text { q.e.d. }
$$

3.10. Theorem (Summatory function of the Möbius function).

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { for } n=1 \\ 0 & \text { for all } n>1\end{cases}
$$

Therefore the summatory function of the Möbius function is the function

$$
\delta_{1}: \mathbb{N}_{1} \longrightarrow \mathbb{Z}, \quad \delta_{1}(n):= \begin{cases}1 & \text { for } n=1 \\ 0 & \text { for all } n>1\end{cases}
$$

Proof. The case $n=1$ is trival.
Now suppose $n \geq 2$ and let $n=\prod_{j=1}^{r} p_{j}^{e_{j}}$ be the canonical prime factorization of n. For $0 \leq s \leq r$ we denote by D_{s} the set of all divisors $d \mid n$ which are the product of s different primes $\in\left\{p_{1}, \ldots, p_{r}\right\},\left(D_{0}=\{1\}\right)$. For all $d \in D_{s}$ we have $\mu(d)=(-1)^{s}$; but $\mu(d)=0$ for all divisors of n that do not belong to any of the D_{s}. Therefore

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) & =\sum_{s=0}^{r} \sum_{d \in D_{s}} \mu(d)=\sum_{s=0}^{r}(-1)^{s} \# D_{s}=\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} \\
& =(1+(-1))^{r}=0
\end{aligned}
$$

where we have used the binomial theorem. This proves our theorem.
3.11. Definition (Dirichlet product). For two arithmetical functions $f, g: \mathbb{N}_{1} \rightarrow \mathbb{C}$ one defines their Dirichlet product (or Dirichlet convolution) $f * g: \mathbb{N}_{1} \rightarrow \mathbb{C}$ by

$$
(f * g)(n):=\sum_{d \mid n} f(d) g(n / d) .
$$

This can be written in a symmetric way as

$$
(f * g)(n)=\sum_{k \ell=n} f(k) g(\ell),
$$

where the sum extends over all pairs $k, \ell \in \mathbb{N}_{1}$ with $k \ell=n$. This shows that $f * g=g * f$ and $(f * g)(n)=\sum_{d \mid n} f(n / d) g(d)$.

Example. $\quad(f * g)(6)=f(1) g(6)+f(2) g(3)+f(3) g(2)+f(6) g(1)$.
Remark. Let f be an arbitrary arithmetical function and u the constant function $u(n)=$ 1 for all $n \in \mathbb{N}_{1}$. Then

$$
(u * f)(n)=\sum_{d \mid n} u(n / d) f(d)=\sum_{d \mid n} f(d) .
$$

Thus the summatory function of an arithmetical function f is nothing else than the Dirichlet product $u * f$.
3.12. Theorem. If the arithmetical functions $f, g: \mathbb{N}_{1} \rightarrow \mathbb{C}$ are multiplicative, their Dirichlet product $f * g$ is again multiplicative.
Example. Since the constant function $u(n)=1$ is clearly multiplicative, the summatory function of every multiplicative arithmetical function is multiplicative.

Proof. Let $m_{1}, m_{2} \in \mathbb{N}_{1}$ be two coprime numbers. Then

$$
\begin{aligned}
(f * g)\left(m_{1} m_{2}\right) & =\sum_{d \mid m_{1} m_{2}} f(d) g\left(\frac{m_{1} m_{2}}{d}\right)=\sum_{d_{1}\left|m_{1}, d_{2}\right| m_{2}} f\left(d_{1} d_{2}\right) g\left(\frac{m_{1} m_{2}}{d_{1} d_{2}}\right) \\
& =\sum_{d_{1} \mid m_{1}} \sum_{d_{2} \mid m_{2}} f\left(d_{1}\right) f\left(d_{2}\right) g\left(\frac{m_{1}}{d_{1}}\right) g\left(\frac{m_{2}}{d_{2}}\right) \\
& =\sum_{d_{1} \mid m_{1}} f\left(d_{1}\right) g\left(\frac{m_{1}}{d_{1}}\right) \sum_{d_{2} \mid m_{2}} f\left(d_{2}\right) g\left(\frac{m_{2}}{d_{2}}\right) \\
& =(f * g)\left(m_{1}\right)(f * g)\left(m_{2}\right), \quad \text { q.e.d. }
\end{aligned}
$$

3.13. Theorem. The set $\mathcal{F}\left(\mathbb{N}_{1}, \mathbb{C}\right)$ of all arithmetical functions $f: \mathbb{N}_{1} \rightarrow \mathbb{C}$ is a commutative ring with unit element when addition is defined by

$$
(f+g)(n):=f(n)+g(n) \quad \text { for all } n \in \mathbb{N}_{1}
$$

and multiplication is the Dirichlet product. The unit element is the function $\delta_{1}: \mathbb{N}_{1} \rightarrow \mathbb{C}$ defined by

$$
\delta_{1}(1):=1, \quad \delta_{1}(n)=0 \quad \text { for all } n>1 .
$$

Remark. The notation δ_{1} is motivated by the Kronecker δ-symbol

$$
\delta_{i j}= \begin{cases}1 & \text { for } i=j, \\ 0 & \text { otherwise. }\end{cases}
$$

Using this, one can write $\delta_{1}(n)=\delta_{1 n}$.
Proof. That δ_{1} is the unit element is seen as follows

$$
\left(\delta_{1} * f\right)(n)=\sum_{d \mid n} \delta_{1}(d) f\left(\frac{n}{d}\right)=\delta_{1}(1) f\left(\frac{n}{1}\right)=f(n) .
$$

All ring axioms with exception of the associative law for multiplication are easily verified. Proof of associativity:

$$
\begin{aligned}
((f * g) * h)(n) & =\sum_{\substack{k, \ell \\
k \ell=n}}(f * g)(k) h(\ell)=\sum_{\substack{k, \ell \\
k \ell, j, j \\
k \ell=n}} \sum_{\substack{i, j \\
i j=k}} f(i) g(j) h(\ell) \\
& =\sum_{\substack{i, j, \ell \\
i j=\ell}} f(i) g(j) h(\ell)=\sum_{\substack{i, m \\
i m=n \\
i m=n}} \sum_{\substack{j, \ell \\
j \in t=m}} f(i) g(j) h(\ell) \\
& =\sum_{\substack{i, m \\
i m=n}} f(i)(g * h)(m)=(f *(g * h))(n), \quad \text { q.e.d. }
\end{aligned}
$$

3.14. Theorem (Möbius inversion formula). Let $f: \mathbb{N}_{1} \rightarrow \mathbb{C}$ be an arithmetical function and $F: \mathbb{N}_{1} \rightarrow \mathbb{C}$ its summatory function,

$$
\begin{equation*}
F(n)=\sum_{d \mid n} f(d) \quad \text { for all } n \in \mathbb{N}_{1} . \tag{*}
\end{equation*}
$$

Then f can be reconstructed from F by the formula

$$
\begin{equation*}
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d) \quad \text { for all } n \in \mathbb{N}_{1} . \tag{**}
\end{equation*}
$$

Conversely, (**) implies (*).
Proof. The formula (*) can be written as

$$
F=u * f
$$

where u is the constant function $u(n)=1$ for all n. Theorem 3.10 says that u is the Dirichlet inverse of the Möbius function:

$$
u * \mu=\mu * u=\delta_{1} .
$$

Therefore

$$
\mu * F=\mu *(u * f)=(\mu * u) * f=\delta_{1} * f=f
$$

which is formula ($* *$). Conversely, from $f=\mu * F$ one obtains

$$
u * f=u *(\mu * F)=(u * \mu) * F=\delta_{1} * F=F
$$

that is formula (*), q.e.d.
3.15. Examples. i) Applying the Möbius inversion formula to the summatory function of the Euler phi function (theorem 3.9)

$$
n=\iota(n)=\sum_{d \mid n} \varphi(d)
$$

yields $\varphi=\mu * \iota$, i.e.

$$
\varphi(n)=\sum_{d \mid n} \mu(d) \iota\left(\frac{n}{d}\right)=\sum_{d \mid n} \frac{n}{d} \mu(d) .
$$

This can also be written as

$$
\frac{\varphi(n)}{n}=\sum_{d \mid n} \frac{\mu(d)}{d}
$$

ii) Example 3.8.i) says $u * \iota=\sigma$ which implies $\iota=\mu * \sigma$, i.e.

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d)=n
$$

iii) Example 3.8.ii) says $u * u=\tau$, hence $u=\mu * \tau$, i.e.

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d)=1 \quad \text { for all } n \geq 1
$$

We now state a second Möbius inversion formula for functions defined on the real interval

$$
I_{1}:=\{x \in \mathbb{R}: x \geq 1\}
$$

3.16. Theorem. For a function $f: I_{1} \rightarrow \mathbb{C}$ define $F: I_{1} \rightarrow \mathbb{C}$ by

$$
F(x)=\sum_{k \leqslant x} f\left(\frac{x}{k}\right) \quad \text { for all } x \geq 1
$$

where the sum extends over all positive integers $k \leq x$. Then

$$
f(x)=\sum_{k \leqslant x} \mu(k) F\left(\frac{x}{k}\right) \quad \text { for all } x \geq 1
$$

Conversely, $(\diamond \diamond)$ implies (\diamond).

Example. If f is the constant function $f(x)=1$ for all $x \geq 1$, then $F(x)=\lfloor x\rfloor=$ greatest integer $\leq x$. The theorem implies the remarkable formula

$$
\sum_{k \leqslant x} \mu(k)\left\lfloor\frac{x}{k}\right\rfloor=1 \quad \text { for all } x \geq 1
$$

E.g. for $x=5$ this reads

$$
5 \mu(1)+2 \mu(2)+\mu(3)+\mu(4)+\mu(5)=1 .
$$

To prove theorem 3.16, we put it first into an abstract context.
3.17. Let $\mathcal{F}\left(I_{1}, \mathbb{C}\right)$ denote the vector space of all functions $f: I_{1}=[1, \infty[\rightarrow \mathbb{C}$. We define an operation of the ring of all arithmetical functions on this vector space

$$
\mathcal{F}\left(\mathbb{N}_{1}, \mathbb{C}\right) \times \mathcal{F}\left(I_{1}, \mathbb{C}\right) \longrightarrow \mathcal{F}\left(I_{1}, \mathbb{C}\right), \quad(\alpha, f) \mapsto \alpha \triangleright f
$$

where

$$
(\alpha \triangleright f)(x):=\sum_{k \leqslant x} \alpha(k) f\left(\frac{x}{k}\right) .
$$

3.18. Theorem. With the above operation, $\mathcal{F}\left(I_{1}, \mathbb{C}\right)$ becomes a module over the ring $\mathcal{F}\left(\mathbb{N}_{1}, \mathbb{C}\right)$.

Proof. It is clear that $\mathcal{F}\left(I_{1}, \mathbb{C}\right)$ is an abelian group with respect to pointwise addition $(f+g)(x)=f(x)+g(x)$. So it remains to verify the following laws (for $\alpha, \beta \in \mathcal{F}\left(\mathbb{N}_{1}, \mathbb{C}\right)$ and $\left.f, g \in \mathcal{F}\left(I_{1}, \mathbb{C}\right)\right)$.
i) $\alpha \triangleright(f+g)=\alpha \triangleright f+\alpha \triangleright g$,
ii) $(\alpha+\beta) \triangleright f=\alpha \triangleright f+\beta \triangleright f$,
iii) $\quad \alpha \triangleright(\beta \triangleright f)=(\alpha * \beta) \triangleright f$,
iv) $\delta_{1} \triangleright f=f$.

The assertions i) and ii) are trivial. The associative law iii) can be seen as follows

$$
\begin{aligned}
(\alpha \triangleright(\beta \triangleright f))(x) & =\sum_{k \leqslant x} \alpha(k)(\beta \triangleright f)\left(\frac{x}{k}\right)=\sum_{k \leqslant x} \alpha(k) \sum_{\ell \leqslant x / k} \beta(\ell) f\left(\frac{x}{k \ell}\right) \\
& =\sum_{k \ell \leqslant x} \alpha(k) \beta(\ell) f\left(\frac{x}{k \ell}\right) \\
& =\sum_{n \leqslant x} \sum_{k \ell=n} \alpha(k) \beta(\ell) f\left(\frac{x}{n}\right) \\
& =\sum_{n \leqslant x}(\alpha * \beta)(n) f\left(\frac{x}{n}\right)=((\alpha * \beta) \triangleright f)(x) .
\end{aligned}
$$

Proof of iv):

$$
\left(\delta_{1} \triangleright f\right)(x)=\sum_{k \leqslant x} \delta_{1}(k) f\left(\frac{x}{k}\right)=\delta_{1}(1) f\left(\frac{x}{1}\right)=f(x), \quad \text { q.e.d. }
$$

3.19. Now we take up the proof of theorem 3.16. Equation (\diamond) can be written as

$$
F=u \triangleright f
$$

with the constant function $u(n)=1$. Multiplying this equation by the Möbius function yields

$$
\mu \triangleright F=\mu \triangleright(u \triangleright F)=(\mu * u) \triangleright f=\delta_{1} \triangleright f=f,
$$

which is equation (\diamond). Conversly, from $f=\mu \triangleright F$ it follows

$$
u \triangleright f=u \triangleright(\mu \triangleright F)=(u * \mu) \triangleright F=\delta_{1} \triangleright F=F,
$$

which is equation (\diamond), q.e.d.

