O. Forster: Analytic Number Theory

3. Arithmetical Functions. Mobius Inversion Theorem

3.1. Definition. a) An arithmetical function is a map
f:Ny —C.

b) The function f is called multiplicative if it is not identically zero and
f(nm) = f(n)f(m) for all n,m € Ny with ged(n,m) = 1.

¢) The function f is called completely multiplicative or strictly multiplicative if it is
not identically zero and

f(nm) = f(n)f(m) for all n,m € N; (without restriction).

Remark. A multiplicative arithmetical function a : N; — C satisfies a(1) = 1. This can
be seen as follows: Since ged(1,n) = 1, we have a(n) = a(1)a(n) for all n. Therefore
a(1) # 0, (otherwise a would be identically zero), and a(1) = a(1)a(1) implies a(1) = 1.

3.2. Examples

i) The Euler phi function ¢ : N; — N; C C, which was defined in (2.9), is a multi-
plicative arithmetical function. It is not completely multiplicative, since for a prime p
we have

p(p") =p"—p=(p—Dp # op)*=(p—1)"
ii) Let o € C be an arbitrary complex number. We define a function
o alog(n)

Pa: Ny — C, nr—py(n)=n*=e

Then p,, is a completely multiplicative arithmetical function.

iii) Let f : Ny — Z C C be defined by f(p) := 1 for primes p and f(n) = 0 if n is not
prime. This is an example of an arithmetical function which is not multiplicative.

Remark. A multiplicative arithmetical function f : Ny — C is completely determined
by its values at the prime powers: If n = []'_, p{* is the canonical prime decomposition
of n, then

£ = [T 7).

3.3. Divisor function 7 : N; — Nj. This function is defined by
7(n) := number of positive divisors of n.

Thus 7(p) = 2 and 7(p*) = 1 + k for primes p. (The divisors of p* are 1,p,p?,...,p").
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3. Arithmetical functions

The divisor function is multiplicative. This can be seen as follows: Let mq, ms € Ny be
a pair of coprime numbers and m := m;ms. Looking at the prime decompositions one
sees that the product d := dydy of divisors d; | my and ds | my is a divisor of m and
conversely every divisor d | m can be uniquely decomposed in this way. This can be
also expressed by saying that the map

Div(ml) X DlV(mg) — Div(mlmg), (dl, dg) — d1d2

is bijective, where Div(n) denotes the set of positive divisors of n. This implies imme-
diately the multiplicativity of 7.

3.4. Divisor sum function ¢ : N; — Nj. This function is defined by
o(n) := sum of all positive divisors of n.

Thus for a prime p we have o(p) = 1+ p and

L ) L pk-i—l_l
a(p):1+p+p +...+p :ﬁ

The divisor sum function is also multiplicative.

Proof. Let mq, my € N1 be coprime numbers. Then

olmmg) = Y d= Y @@:(E:dg(gj@)

dlmima dy|m1,da|ma di|m da|ma

= o(my)o(ms).

3.5. Definition. A perfect number (G. vollkommene Zahl) is a number n € Ny such
that o(n) = 2n.

The condition o(n) = 2n can also be expressed as
Y a-n
dln,d<n

i.e. a number n is perfect if the sum of its proper divisors equals n. The smallest perfect
numbers are

6=1+2+3,
28 =14+2+4+7+14.

The next perfect numbers are 496, 8128. The even perfect numbers are characterized
by the following theorem.

Theorem. a) (Euclid) If ¢ is a prime such that 29 —1 is prime, then n := 2971(29 —1)
is a perfect number.
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b) (Euler) Conversely, every even perfect number n may be obtained by the construction
ina).

The prove is left as an exercise.

The above examples correspond to g = 2,3,5,7. For ¢ = 11, 211 — 1 = 2047 = 23 - 89
is not prime.

It is not known whether there exist odd perfect numbers.

3.6. Mobius function i : Ny — 7Z. This rather strange looking, but important
function is defined by

1, forn=1,
pu(n) == 0, if there exists a prime p with p? | n,
(—=1)7, if n is a product of r different primes.

This leads to the following table

n 1] 2|3 |4]5]6]7|8]9]10]
plo) [ 1] 1] =1]0]-1]1[-1[0]0] 1|

It follows directly from the definition that p is multiplicative.

3.7. Definition. Let f : N; — C be an arithmetical function. The summatory function
of f is the function F': Ny — C defined by

F(n):=Y_ f(d),
dln

where the sum is extended over all positive divisors d of n.

3.8. Examples. i) The divisor sum function

o(n) = Zd

din
is the summatory function of the identity map

t: Ny — Ny, u(n):=n.

ii) The divisor function 7 : N; — Nj can be written as

T(n) = Z 1.

din
Therefore 7 is the summatory function of the constant function

u:N;y — Ny, wu(n) =1 for all n.
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3. Arithmetical functions

3.9. Theorem (Summatory function of the Euler phi function). For alln € Ny
> pld) =
din

This means that the summatory function of the Euler phi function is the identity map
t: Ny — Nj.

Proof. The set M,, :={1,2,...,n} is the disjoint union of the sets
Ag:={m e M, : gcd(m,n) =d}, d|n.

Thereforen = 3, #Aq. We have ged(m,n) = diff d | m,d [ n and ged(m/d, n/d) = 1.
It follows that #A44 = ¢(n/d), hence

n—Z#Ad—Zgo n/d) = Z(p(d), q.e.d.
dln

din

3.10. Theorem (Summatory function of the Mébius function).

(1 forn=1,
dzlz'u(d)_{o for all n > 1.

Therefore the summatory function of the Mobius function is the function

1 forn=1,

0 : Ny —Z, 6(n):= {() for all n > 1.

Proof. The case n =1 is trival.

Now suppose n > 2 and let n = H§:1 pjj be the canonical prime factorization of n.
For 0 < s < r we denote by D; the set of all divisors d | n which are the product of s
different primes € {p1,...,p}, (Do = {1}). For all d € D, we have u(d) = (—1)%; but
p(d) = 0 for all divisors of n that do not belong to any of the Dg. Therefore

St = 32 57 =3 -r#0. = 37 ()
T

where we have used the binomial theorem. This proves our theorem.

3.11. Definition (Dirichlet product). For two arithmetical functions f,¢g : Ny — C
one defines their Dirichlet product (or Dirichlet convolution) f * g : Ny — C by

(f*g)(n Zf g(n/d).
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This can be written in a symmetric way as

(fxg)(n) =Y _ f(k)g

kl=n

where the sum extends over all pairs k, ¢ € Ny with k¢ = n. This shows that fxg = gx* f
and (f * g)(n) = >y, f(n/d)g(d).
Example.  (f * g)(6) = f(1)g(6) + f(2)g(3) + f(3)g(2) + f(6)g(1).

Remark. Let f be an arbitrary arithmetical function and u the constant function u(n) =
1 for all n € N;. Then

(ws f)(n) = > u(n/d)f Zf

dn

Thus the summatory function of an arithmetical function f is nothing else than the
Dirichlet product u * f.

3.12. Theorem. If the arithmetical functions f, g : Ny — C are multiplicative, their
Dirichlet product f * g is again multiplicative.

Example. Since the constant function u(n) = 1 is clearly multiplicative, the summatory
function of every multiplicative arithmetical function is multiplicative.

Proof. Let mq, my € Ny be two coprime numbers. Then

Uradmms) = 32 r@a(MF) = X saa(g)

dlmima dyi|m1,d2|me

= 3 3 sanfe(G)e(3)

di|m1 d2|ma

> st (2) ¥ i)

d1 m1 2|m2

= (fxg)(m1)(f*g)(ms2), q.ed.

3.13. Theorem. The set F(Ny,C) of all arithmetical functions f : Ny — C is a
commutative ring with unit element when addition is defined by

(f +9)(n) := f(n) +g(n) foralln € Ny

and multiplication is the Dirichlet product. The unit element is the function §; : Ny — C

defined by

0(1):=1, 6(n)=0 foralln>1.
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3. Arithmetical functions

Remark. The notation ¢; is motivated by the Kronecker d-symbol

5@']':{1 for ¢ = 7,

0 otherwise.
Using this, one can write d1(n) = d1,.

Proof. That d; is the unit element is seen as follows
n
(6% f)(n Zal 1(5) =0 (3) = f).

All ring axioms with exception of the associative law for multiplication are easily veri-
fied. Proof of associativity:

(fxg)xh)(n) = > (f*g)(k ZZf

k.0

= Z f(i)g(5) Z Z £i)
- Zf )(g % h)(m (f*(g*h))(n), q.e.d.

3.14. Theorem (Mobius inversion formula). Let f : Ny — C be an arithmetical
function and F : Ny — C its summatory function,

- Z f(d) forall n € Ny. (*)

din

Then f can be reconstructed from F by the formula

f(n) = Zﬂ(g)md) for all n € N,. (%)

din
Conversely, (xx) implies ().

Proof. The formula (x) can be written as

F=uxf,

where u is the constant function u(n) = 1 for all n. Theorem 3.10 says that u is the
Dirichlet inverse of the Mobius function:

Uk = pku = 0.
Therefore
px F=px(uxf)=(uxu)xf=0*f=f

3.6



O. Forster: Analytic Number Theory

which is formula (xx). Conversely, from f = p * F' one obtains
uxf=ux(pxF)=(uxp)*F=0%F=F,
that is formula (x), g.e.d.

3.15. Examples. i) Applying the M&bius inversion formula to the summatory function
of the Euler phi function (theorem 3.9)

n=un)=) »d
dln

yields ¢ = p* ¢, i.e.
p(n) =Y p(d)i(5) = Zuld).
dln din

This can also be written as
p(n) < pld)
no Z d -’
dln
ii) Example 3.8.1) says u * ¢ = ¢ which implies ¢t = p % o, i.e.
Z,u(g) o(d) =n.
din
iii) Example 3.8.ii) says u % u = 7, hence u = pu* 7, i.e.
n
Z,LL(E) 7(d)=1 foralln > 1.
din

We now state a second Mobius inversion formula for functions defined on the real
interval

I ={xeR:z>1}
3.16. Theorem. For a function f: 1, — C define F': I — C by

F(:U):Zf(%) for all z > 1, ()

k<z

where the sum extends over all positive integers k < x. Then

flz) = Zu(k)F(%) for all z > 1. (00)

k<z

Conversely, (oo) implies (©).
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Example. If f is the constant function f(z) = 1 for all z > 1, then F(x) = |z| =
greatest integer < x. The theorem implies the remarkable formula

Z,u(k) L%J =1 forallx > 1.

k<z

E.g. for x = 5 this reads
Su(1) 4 200(2) + u(3) + p(4) + pu(5) = 1.

To prove theorem 3.16, we put it first into an abstract context.

3.17. Let F(I;,C) denote the vector space of all functions f : I} = [1,00[ — C. We
define an operation of the ring of all arithmetical functions on this vector space

f<N17©)Xf<[17(C)Hf<[1vc>v (Oz,f)'—>ozl>f,

where

3.18. Theorem. With the above operation, F(I;,C) becomes a module over the ring
F(Ny, C).

Proof. 1t is clear that F([;,C) is an abelian group with respect to pointwise addition
(f+9)(z) = f(z)+g(z). So it remains to verify the following laws (for «, 5 € F(N;, C)
and f,g € F(I, C)).

i) ar(f+g)=arft+arg,
i) (a+pB)rf=avf+08>f,
i) ac(B>f)=(axp)>f,
)

e f=f.

1v

The assertions i) and ii) are trivial. The associative law iii) can be seen as follows

(@ (B> @) = Y a®)BeN(T) =D ak) 3 807 ()
(<a/k

k<z k<z

= Y amB0f ()

ki<

=20 " ahBOf(
)
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Proof of iv):

X i

(61> f)(z) = Zcﬁ(k:)f(E) — 51(1)f(1) — flz), qed.
k<z

3.19. Now we take up the proof of theorem 3.16. Equation (¢) can be written as
F=u» f

with the constant function u(n) = 1. Multiplying this equation by the M&bius function
yields

po F=po (us F) = (uxu)> f = 61> f = f,
which is equation (¢¢). Conversly, from f = p» F' it follows
ubf:ub(lubF):(u*u)pF:éle:F’

which is equation (¢), q.e.d.
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