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3. Arithmetical Functions. Möbius Inversion Theorem

3.1. Definition. a) An arithmetical function is a map

f : N1 −→ C.

b) The function f is called multiplicative if it is not identically zero and

f(nm) = f(n)f(m) for all n, m ∈ N1 with gcd(n, m) = 1.

c) The function f is called completely multiplicative or strictly multiplicative if it is
not identically zero and

f(nm) = f(n)f(m) for all n, m ∈ N1 (without restriction).

Remark. A multiplicative arithmetical function a : N1 → C satisfies a(1) = 1. This can
be seen as follows: Since gcd(1, n) = 1, we have a(n) = a(1)a(n) for all n. Therefore
a(1) 6= 0, (otherwise a would be identically zero), and a(1) = a(1)a(1) implies a(1) = 1.

3.2. Examples

i) The Euler phi function ϕ : N1 → N1 ⊂ C, which was defined in (2.9), is a multi-
plicative arithmetical function. It is not completely multiplicative, since for a prime p
we have

ϕ(p2) = p2 − p = (p − 1)p 6= ϕ(p)2 = (p − 1)2.

ii) Let α ∈ C be an arbitrary complex number. We define a function

pα : N1 −→ C, n 7→ pα(n) := nα = eα log(n).

Then pα is a completely multiplicative arithmetical function.

iii) Let f : N1 → Z ⊂ C be defined by f(p) := 1 for primes p and f(n) = 0 if n is not
prime. This is an example of an arithmetical function which is not multiplicative.

Remark. A multiplicative arithmetical function f : N1 → C is completely determined
by its values at the prime powers: If n =

∏r
i=1 pei

i is the canonical prime decomposition
of n, then

f(n) =

r
∏

i=1

f(pei

i ).

3.3. Divisor function τ : N1 → N1. This function is defined by

τ(n) := number of positive divisors of n.

Thus τ(p) = 2 and τ(pk) = 1 + k for primes p. (The divisors of pk are 1, p, p2, . . . , pk).
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3. Arithmetical functions

The divisor function is multiplicative. This can be seen as follows: Let m1, m2 ∈ N1 be
a pair of coprime numbers and m := m1m2. Looking at the prime decompositions one
sees that the product d := d1d2 of divisors d1 | m1 and d2 | m2 is a divisor of m and
conversely every divisor d | m can be uniquely decomposed in this way. This can be
also expressed by saying that the map

Div(m1) × Div(m2) −→ Div(m1m2), (d1, d2) 7→ d1d2

is bijective, where Div(n) denotes the set of positive divisors of n. This implies imme-
diately the multiplicativity of τ .

3.4. Divisor sum function σ : N1 → N1. This function is defined by

σ(n) := sum of all positive divisors of n.

Thus for a prime p we have σ(p) = 1 + p and

σ(pk) = 1 + p + p2 + . . . + pk =
pk+1 − 1

p − 1
.

The divisor sum function is also multiplicative.

Proof. Let m1, m2 ∈ N1 be coprime numbers. Then

σ(m1m2) =
∑

d|m1m2

d =
∑

d1|m1,d2|m2

d1d2 =
(

∑

d1|m1

d1

)(

∑

d2|m2

d2

)

= σ(m1)σ(m2).

3.5. Definition. A perfect number (G. vollkommene Zahl) is a number n ∈ N1 such
that σ(n) = 2n.

The condition σ(n) = 2n can also be expressed as

∑

d|n,d<n

d = n,

i.e. a number n is perfect if the sum of its proper divisors equals n. The smallest perfect
numbers are

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

The next perfect numbers are 496, 8128. The even perfect numbers are characterized
by the following theorem.

Theorem. a) (Euclid) If q is a prime such that 2q −1 is prime, then n := 2q−1(2q −1)
is a perfect number.
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b) (Euler) Conversely, every even perfect number n may be obtained by the construction

in a).

The prove is left as an exercise.

The above examples correspond to q = 2, 3, 5, 7. For q = 11, 211 − 1 = 2047 = 23 · 89
is not prime.

It is not known whether there exist odd perfect numbers.

3.6. Möbius function µ : N1 → Z. This rather strange looking, but important
function is defined by

µ(n) :=







1, for n = 1,
0, if there exists a prime p with p2 | n,

(−1)r, if n is a product of r different primes.

This leads to the following table

n 1 2 3 4 5 6 7 8 9 10
µ(n) 1 −1 −1 0 −1 1 −1 0 0 1

It follows directly from the definition that µ is multiplicative.

3.7. Definition. Let f : N1 → C be an arithmetical function. The summatory function

of f is the function F : N1 → C defined by

F (n) :=
∑

d|n

f(d),

where the sum is extended over all positive divisors d of n.

3.8. Examples. i) The divisor sum function

σ(n) =
∑

d|n

d

is the summatory function of the identity map

ι : N1 −→ N1, ι(n) := n.

ii) The divisor function τ : N1 → N1 can be written as

τ(n) =
∑

d|n

1.

Therefore τ is the summatory function of the constant function

u : N1 −→ N1, u(n) := 1 for all n.
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3. Arithmetical functions

3.9. Theorem (Summatory function of the Euler phi function). For all n ∈ N1

∑

d|n

ϕ(d) = n.

This means that the summatory function of the Euler phi function is the identity map
ι : N1 → N1.

Proof. The set Mn := {1, 2, . . . , n} is the disjoint union of the sets

Ad := {m ∈ Mn : gcd(m, n) = d}, d | n.

Therefore n =
∑

d|n #Ad. We have gcd(m, n) = d iff d | m, d | n and gcd(m/d, n/d) = 1.

It follows that #Ad = ϕ(n/d), hence

n =
∑

d|n

#Ad =
∑

d|n

ϕ(n/d) =
∑

d|n

ϕ(d), q.e.d.

3.10. Theorem (Summatory function of the Möbius function).

∑

d|n

µ(d) =
{

1 for n = 1,
0 for all n > 1.

Therefore the summatory function of the Möbius function is the function

δ1 : N1 −→ Z, δ1(n) :=
{

1 for n = 1,
0 for all n > 1.

Proof. The case n = 1 is trival.

Now suppose n ≥ 2 and let n =
∏r

j=1 p
ej

j be the canonical prime factorization of n.
For 0 ≤ s ≤ r we denote by Ds the set of all divisors d | n which are the product of s
different primes ∈ {p1, . . . , pr}, (D0 = {1}). For all d ∈ Ds we have µ(d) = (−1)s; but
µ(d) = 0 for all divisors of n that do not belong to any of the Ds. Therefore

∑

d|n

µ(d) =

r
∑

s=0

∑

d∈Ds

µ(d) =

r
∑

s=0

(−1)s#Ds =

r
∑

s=0

(−1)s

(

r

s

)

= (1 + (−1))r = 0,

where we have used the binomial theorem. This proves our theorem.

3.11. Definition (Dirichlet product). For two arithmetical functions f, g : N1 → C

one defines their Dirichlet product (or Dirichlet convolution) f ∗ g : N1 → C by

(f ∗ g)(n) :=
∑

d|n

f(d)g(n/d).

3.4



O. Forster: Analytic Number Theory

This can be written in a symmetric way as

(f ∗ g)(n) =
∑

kℓ=n

f(k)g(ℓ),

where the sum extends over all pairs k, ℓ ∈ N1 with kℓ = n. This shows that f ∗g = g∗f
and (f ∗ g)(n) =

∑

d|n f(n/d)g(d).

Example. (f ∗ g)(6) = f(1)g(6) + f(2)g(3) + f(3)g(2) + f(6)g(1).

Remark. Let f be an arbitrary arithmetical function and u the constant function u(n) =
1 for all n ∈ N1. Then

(u ∗ f)(n) =
∑

d|n

u(n/d)f(d) =
∑

d|n

f(d).

Thus the summatory function of an arithmetical function f is nothing else than the
Dirichlet product u ∗ f .

3.12. Theorem. If the arithmetical functions f, g : N1 → C are multiplicative, their

Dirichlet product f ∗ g is again multiplicative.

Example. Since the constant function u(n) = 1 is clearly multiplicative, the summatory
function of every multiplicative arithmetical function is multiplicative.

Proof. Let m1, m2 ∈ N1 be two coprime numbers. Then

(f ∗ g)(m1m2) =
∑

d|m1m2

f(d)g
(m1m2

d

)

=
∑

d1|m1,d2|m2

f(d1d2)g
(m1m2

d1d2

)

=
∑

d1|m1

∑

d2|m2

f(d1)f(d2)g
(m1

d1

)

g
(m2

d2

)

=
∑

d1|m1

f(d1)g
(m1

d1

)

∑

d2|m2

f(d2)g
(m2

d2

)

= (f ∗ g)(m1)(f ∗ g)(m2), q.e.d.

3.13. Theorem. The set F(N1, C) of all arithmetical functions f : N1 → C is a

commutative ring with unit element when addition is defined by

(f + g)(n) := f(n) + g(n) for all n ∈ N1

and multiplication is the Dirichlet product. The unit element is the function δ1 : N1 → C

defined by

δ1(1) := 1, δ1(n) = 0 for all n > 1.
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3. Arithmetical functions

Remark. The notation δ1 is motivated by the Kronecker δ-symbol

δij =
{

1 for i = j,
0 otherwise.

Using this, one can write δ1(n) = δ1n.

Proof. That δ1 is the unit element is seen as follows

(δ1 ∗ f)(n) =
∑

d|n

δ1(d)f
(n

d

)

= δ1(1)f
(n

1

)

= f(n).

All ring axioms with exception of the associative law for multiplication are easily veri-
fied. Proof of associativity:

((f ∗ g) ∗ h)(n) =
∑

k,ℓ
kℓ=n

(f ∗ g)(k)h(ℓ) =
∑

k,ℓ
kℓ=n

∑

i,j

ij=k

f(i)g(j)h(ℓ)

=
∑

i,j,ℓ

ijℓ=n

f(i)g(j)h(ℓ) =
∑

i,m
im=n

∑

j,ℓ

jℓ=m

f(i)g(j)h(ℓ)

=
∑

i,m

im=n

f(i)(g ∗ h)(m) = (f ∗ (g ∗ h))(n), q.e.d.

3.14. Theorem (Möbius inversion formula). Let f : N1 → C be an arithmetical

function and F : N1 → C its summatory function,

F (n) =
∑

d|n

f(d) for all n ∈ N1. (∗)

Then f can be reconstructed from F by the formula

f(n) =
∑

d|n

µ
(n

d

)

F (d) for all n ∈ N1. (∗∗)

Conversely, (∗∗) implies (∗).

Proof. The formula (∗) can be written as

F = u ∗ f,

where u is the constant function u(n) = 1 for all n. Theorem 3.10 says that u is the
Dirichlet inverse of the Möbius function:

u ∗ µ = µ ∗ u = δ1.

Therefore

µ ∗ F = µ ∗ (u ∗ f) = (µ ∗ u) ∗ f = δ1 ∗ f = f,
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which is formula (∗∗). Conversely, from f = µ ∗ F one obtains

u ∗ f = u ∗ (µ ∗ F ) = (u ∗ µ) ∗ F = δ1 ∗ F = F,

that is formula (∗), q.e.d.

3.15. Examples. i) Applying the Möbius inversion formula to the summatory function
of the Euler phi function (theorem 3.9)

n = ι(n) =
∑

d|n

ϕ(d)

yields ϕ = µ ∗ ι, i.e.

ϕ(n) =
∑

d|n

µ(d) ι
(n

d

)

=
∑

d|n

n

d
µ(d).

This can also be written as

ϕ(n)

n
=

∑

d|n

µ(d)

d
.

ii) Example 3.8.i) says u ∗ ι = σ which implies ι = µ ∗ σ, i.e.

∑

d|n

µ
(n

d

)

σ(d) = n.

iii) Example 3.8.ii) says u ∗ u = τ , hence u = µ ∗ τ , i.e.

∑

d|n

µ
(n

d

)

τ(d) = 1 for all n ≥ 1.

We now state a second Möbius inversion formula for functions defined on the real
interval

I1 := {x ∈ R : x ≥ 1}.

3.16. Theorem. For a function f : I1 → C define F : I1 → C by

F (x) =
∑

k6x

f
(x

k

)

for all x ≥ 1, (⋄)

where the sum extends over all positive integers k ≤ x. Then

f(x) =
∑

k6x

µ(k)F
(x

k

)

for all x ≥ 1. (⋄⋄)

Conversely, (⋄⋄) implies (⋄).
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3. Arithmetical functions

Example. If f is the constant function f(x) = 1 for all x ≥ 1, then F (x) = ⌊x⌋ =
greatest integer ≤ x. The theorem implies the remarkable formula

∑

k6x

µ(k)
⌊x

k

⌋

= 1 for all x ≥ 1.

E.g. for x = 5 this reads

5µ(1) + 2µ(2) + µ(3) + µ(4) + µ(5) = 1.

To prove theorem 3.16, we put it first into an abstract context.

3.17. Let F(I1, C) denote the vector space of all functions f : I1 = [1,∞[ → C. We
define an operation of the ring of all arithmetical functions on this vector space

F(N1, C) ×F(I1, C) −→ F(I1, C), (α, f) 7→ α ⊲ f,

where

(α ⊲ f)(x) :=
∑

k6x

α(k)f
(x

k

)

.

3.18. Theorem. With the above operation, F(I1, C) becomes a module over the ring

F(N1, C).

Proof. It is clear that F(I1, C) is an abelian group with respect to pointwise addition
(f +g)(x) = f(x)+g(x). So it remains to verify the following laws (for α, β ∈ F(N1, C)
and f, g ∈ F(I1, C)).

i) α ⊲ (f + g) = α ⊲ f + α ⊲ g,

ii) (α + β) ⊲ f = α ⊲ f + β ⊲ f ,

iii) α ⊲ (β ⊲ f) = (α ∗ β) ⊲ f ,

iv) δ1 ⊲ f = f .

The assertions i) and ii) are trivial. The associative law iii) can be seen as follows

(α ⊲ (β ⊲ f))(x) =
∑

k6x

α(k)(β ⊲ f)
(x

k

)

=
∑

k6x

α(k)
∑

ℓ6x/k

β(ℓ)f
( x

kℓ

)

=
∑

kℓ6x

α(k)β(ℓ)f
( x

kℓ

)

=
∑

n6x

∑

kℓ=n

α(k)β(ℓ)f
(x

n

)

=
∑

n6x

(α ∗ β)(n)f
(x

n

)

= ((α ∗ β) ⊲ f)(x).
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Proof of iv):

(δ1 ⊲ f)(x) =
∑

k6x

δ1(k)f
(x

k

)

= δ1(1)f
(x

1

)

= f(x), q.e.d.

3.19. Now we take up the proof of theorem 3.16. Equation (⋄) can be written as

F = u ⊲ f

with the constant function u(n) = 1. Multiplying this equation by the Möbius function
yields

µ ⊲ F = µ ⊲ (u ⊲ F ) = (µ ∗ u) ⊲ f = δ1 ⊲ f = f,

which is equation (⋄⋄). Conversly, from f = µ ⊲ F it follows

u ⊲ f = u ⊲ (µ ⊲ F ) = (u ∗ µ) ⊲ F = δ1 ⊲ F = F,

which is equation (⋄), q.e.d.
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