2. Congruences. Chinese Remainder Theorem

2.1. Definition. Let $m \in \mathbb{Z}$. Two integers x, y are called congruent modulo m, in symbols

$$
x \equiv y \bmod m
$$

if m divides the difference $x-y$, i.e. $x-y \in m \mathbb{Z}$.
Examples. $20 \equiv 0 \bmod 5, \quad 3 \equiv 10 \bmod 7, \quad-4 \equiv 10 \bmod 7$.
$x \equiv 0 \bmod 2$ is equivalent to " x is even",
$x \equiv 1 \bmod 2$ is equivalent to " x is odd".
Remarks. a) x, y are congruent modulo m iff they are congruent modulo $-m$.
b) $x \equiv y \bmod 0$ iff $x=y$.
c) $x \equiv y \bmod 1$ for all $x, y \in \mathbb{Z}$.

Therefore the only interesting case is $m \geq 2$.
2.2. Proposition. The congruence modulo m is an equivalence relation, i.e. the following properties hold:
i) (Reflexivity) $x \equiv x \bmod m$ for all $x \in \mathbb{Z}$
ii) (Symmetry) $x \equiv y \bmod m \Longrightarrow y \equiv x \bmod m$.
iii) (Transitivity) $(x \equiv y \bmod m) \wedge(y \equiv z \bmod m) \Longrightarrow x \equiv z \bmod m$.
2.3. Lemma (Division with rest). Let $x, m \in \mathbb{Z}, m \geq 2$. Then there exist uniquely determined integers q, r satisfying

$$
x=q m+r, \quad 0 \leq r<m .
$$

Remark. The equation $x=q m+r$ implies that $x \equiv r \bmod m$. Therefore every integer $x \in \mathbb{Z}$ is equivalent modulo m to one and only one element of

$$
\{0,1, \ldots, m-1\}
$$

2.4. Definition. Let m be a positive integer. The set of all equivalence classes of \mathbb{Z} modulo m is denoted by $\mathbb{Z} / m \mathbb{Z}$ or briefly by \mathbb{Z} / m.
From the above remark we see that

$$
\mathbb{Z} / m \mathbb{Z}=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}
$$

where $\bar{x}=x \bmod m$ is the equivalence class of x modulo m. If there is no danger of confusion, we will often write simply x instead of \bar{x}.

Equivalence modulo m is compatible with addition and multiplication, i.e.

$$
\begin{aligned}
x \equiv x^{\prime} \bmod m & \text { and } y \equiv y^{\prime} \bmod m \\
x+y \equiv x^{\prime}+y^{\prime} \bmod m & \text { and } x y \equiv x^{\prime} y^{\prime} \bmod m .
\end{aligned}
$$

Therefore addition and multiplication in \mathbb{Z} induces an addition and multiplication in \mathbb{Z} / m such that \mathbb{Z} / m becomes a commutative ring and the canonical surjection

$$
\mathbb{Z} \longrightarrow \mathbb{Z} / m, \quad x \mapsto x \bmod m
$$

is a ring homomorphism.
Example. In $\mathbb{Z} / 7$ one has

$$
\overline{3}+\overline{4}=\overline{7}=\overline{0}, \quad \overline{3}+\overline{5}=\overline{8}=\overline{1}, \quad \overline{3} \cdot \overline{5}=\overline{15}=\overline{1} .
$$

The following are the complete addition and multiplication tables of $\mathbb{Z} / 7$.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	2	2
6	0	6	5	4	3	2	1

2.5. Theorem. Let m be a positive integer. An element $\bar{x} \in \mathbb{Z} / m$ is invertible iff $\operatorname{gcd}(x, m)=1$.
Proof. " \Leftarrow " Suppose $\operatorname{gcd}(x, m)=1$. By theorem 1.6 there exist integers ξ, μ such that

$$
\xi x+\mu m=1 .
$$

This implies $\xi x \equiv 1 \bmod m$, hence $\bar{\xi}$ is an inverse of \bar{x} in \mathbb{Z} / m.
" \Rightarrow " Suppose that \bar{x} is invertible, i.e. $\bar{x} \cdot \bar{y}=\overline{1}$ for some $\bar{y} \in \mathbb{Z} / m$. Then $x y \equiv 1 \bmod m$, hence there exists an integer k such that $x y-1=k m$. Therefore $y x-k m=1$, which means by theorem 1.6 that x and m are coprime, q.e.d.
2.6. Corollary. Let m be a positive integer. The ring \mathbb{Z} / m is a field iff m is a prime.

Notation. If p is a prime, the field \mathbb{Z} / p is also denoted by \mathbb{F}_{p}.
For any ring A with unit element we denote its multiplicative group of invertible elements by A^{*}. In particular we use the notations $(\mathbb{Z} / m)^{*}$ and \mathbb{F}_{p}^{*}.

Example. For $p=7$ we have the field $\mathbb{F}_{7}=\mathbb{Z} / 7$ with 7 elements. From the above multiplication table we can read off the inverses of the elements of $\mathbb{F}_{7}^{*}=\mathbb{F}_{7} \backslash\{0\}$.

x	1	2	3	4	5	6
x^{-1}	1	4	5	2	3	6

2.7. Direct Products. For two rings (resp. groups) A_{1} and A_{2}, the cartesian product $A_{1} \times A_{2}$ becomes a ring (resp. a group) with component-wise defined operations:

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right) & :=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right) & :=\left(x_{1} y_{1}, x_{2} y_{2}\right)
\end{aligned}
$$

If A_{1}, A_{2} are two rings with unit element, then $(0,0)$ is the zero element and $(1,1)$ the unit element of $A_{1} \times A_{2}$. For the group of invertible elements the following equation holds:

$$
\left(A_{1} \times A_{2}\right)^{*}=A_{1}^{*} \times A_{2}^{*}
$$

Note that if A_{1} and A_{2} are fields, the direct product $A_{1} \times A_{2}$ is a ring, but not a field, since there are zero divisors:

$$
(1,0) \cdot(0,1)=(0,0) .
$$

2.8. Theorem (Chinese remainder theorem). Let m_{1}, m_{2} be two positive coprime integers. Then the map

$$
\phi: \mathbb{Z} / m_{1} m_{2} \longrightarrow \mathbb{Z} / m_{1} \times \mathbb{Z} / m_{2}, \quad \bar{x} \mapsto\left(x \bmod m_{1}, x \bmod m_{2}\right)
$$

is an isomorphism of rings.
Proof. It is clear that ϕ is a ring homomorphism. Since $\mathbb{Z} / m_{1} m_{2}$ and $\mathbb{Z} / m_{1} \times \mathbb{Z} / m_{2}$ have the same number of elements (namely $m_{1} m_{2}$), it suffices to prove that ϕ is injective.
Suppose $\phi(\bar{x})=0$. This means that $x \equiv 0 \bmod m_{1}$ and $x \equiv 0 \bmod m_{1}$, i.e. $m_{1} \mid x$ and $m_{2} \mid x$. Since m_{1} and m_{2} are coprime, it follows that $m_{1} m_{2} \mid x$, hence $\bar{x}=0$ in $\mathbb{Z} / m_{1} m_{2}$, q.e.d.

Remark. The classical formulation of the Chinese remainder theorem is the following (which is contained in theorem 2.8):
Let m_{1}, m_{2} be two positive coprime integers. Then for every pair a_{1}, a_{2} of integers there exists an integer a such that

$$
a \equiv a_{i} \bmod m_{i} \quad \text { for } i=1,2
$$

This integer a is uniquely determined modulo $m_{1} m_{2}$.
2.9. Definition (Euler phi function). Let m be a positive integer. Then $\varphi(m)$ is defined as the number of integers $k \in\{0,1, \ldots, m-1\}$ which are coprime to m. Using theorem 2.5 , this can also be expressed as

$$
\varphi(m):=\#(\mathbb{Z} / m)^{*},
$$

where $\# S$ denotes the number of elements of a set S.
For small m, the φ-function takes the following values

$$
\begin{array}{c|cccccccccc}
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \varphi(m) & 1 & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{array}
$$

It is obvious that for a prime p one has $\varphi(p)=p-1$. More generally, for a prime power p^{k} it is easy to see that

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right) .
$$

If m and n are coprime, it follows from theorem 2.8 that

$$
(\mathbb{Z} / m n)^{*} \cong(\mathbb{Z} / m)^{*} \times(\mathbb{Z} / n)^{*},
$$

hence $\varphi(m n)=\varphi(n) \varphi(m)$. Using this, we can derive
2.10. Theorem. For every positive integer n the following formula holds:

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product is extended over all prime divisors p of n.
Proof. Let $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$ be the canonical prime decomposition of n. Then

$$
\varphi(n)=\prod_{i=1}^{r} \varphi\left(p_{i}^{e_{i}}\right)=\prod_{i=1}^{r} p_{i}^{e_{i}}\left(1-\frac{1}{p_{i}}\right)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right), \quad \text { q.e.d. }
$$

2.11. Theorem (Euler). Let m be an integer ≥ 2 and a an integer with $\operatorname{gcd}(a, m)=1$. Then

$$
a^{\varphi(m)} \equiv 1 \bmod m .
$$

Proof. We use some notions and elementary facts from group theory. Let G be a finite group, written multiplicatively, with unit element e. The order of an element $a \in G$ is defined as

$$
\operatorname{ord}(a):=\min \left\{k \in \mathbb{N}_{1}: a^{k}=e\right\} .
$$

The order of the group is defined as the number of its elements,

$$
\operatorname{ord}(G):=\# G .
$$

Then, as a special case of a theorem of Lagrange, one has

$$
\operatorname{ord}(a) \mid \operatorname{ord}(G) \quad \text { for all } a \in G .
$$

We apply this to the group $G=(\mathbb{Z} / m)^{*}$. By definition $\operatorname{ord}\left((\mathbb{Z} / m)^{*}\right)=\varphi(m)$. Let r be the order of $\bar{a} \in(\mathbb{Z} / m)^{*}$. Then $\varphi(m)=r s$ with an integer s and we have in $(\mathbb{Z} / m)^{*}$

$$
\bar{a}^{\varphi(m)}=\bar{a}^{r s}=\left(\bar{a}^{r}\right)^{s}=\overline{1}^{s}=\overline{1}, \quad \text { q.e.d. }
$$

2.12. Corollary (Little Theorem of Fermat). Let p be a prime and a an integer with $p \nmid a$. Then

$$
a^{p-1} \equiv 1 \bmod p .
$$

