
O. Forster: Analytic Number Theory

2. Congruences. Chinese Remainder Theorem

2.1. Definition. Let m ∈ Z. Two integers x, y are called congruent modulo m, in
symbols

x ≡ y mod m,

if m divides the difference x − y, i.e. x − y ∈ mZ.

Examples. 20 ≡ 0 mod 5, 3 ≡ 10 mod 7, −4 ≡ 10 mod 7.

x ≡ 0 mod 2 is equivalent to “x is even”,

x ≡ 1 mod 2 is equivalent to “x is odd”.

Remarks. a) x, y are congruent modulo m iff they are congruent modulo −m.

b) x ≡ y mod 0 iff x = y.

c) x ≡ y mod 1 for all x, y ∈ Z.

Therefore the only interesting case is m ≥ 2.

2.2. Proposition. The congruence modulo m is an equivalence relation, i.e. the fol-
lowing properties hold:

i) (Reflexivity) x ≡ x mod m for all x ∈ Z

ii) (Symmetry) x ≡ y mod m =⇒ y ≡ x mod m.

iii) (Transitivity) (x ≡ y mod m) ∧ (y ≡ z mod m) =⇒ x ≡ z mod m.

2.3. Lemma (Division with rest). Let x, m ∈ Z, m ≥ 2. Then there exist uniquely
determined integers q, r satisfying

x = qm + r, 0 ≤ r < m.

Remark. The equation x = qm + r implies that x ≡ r mod m. Therefore every integer
x ∈ Z is equivalent modulo m to one and only one element of

{0, 1, . . . , m − 1}.

2.4. Definition. Let m be a positive integer. The set of all equivalence classes of Z
modulo m is denoted by Z/mZ or briefly by Z/m.

From the above remark we see that

Z/mZ = {0, 1, . . . , m − 1},

where x = x mod m is the equivalence class of x modulo m. If there is no danger of
confusion, we will often write simply x instead of x.
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Equivalence modulo m is compatible with addition and multiplication, i.e.

x ≡ x′ mod m and y ≡ y′ mod m =⇒

x + y ≡ x′ + y′ mod m and xy ≡ x′y′ mod m.

Therefore addition and multiplication in Z induces an addition and multiplication in
Z/m such that Z/m becomes a commutative ring and the canonical surjection

Z −→ Z/m, x 7→ x mod m,

is a ring homomorphism.

Example. In Z/7 one has

3 + 4 = 7 = 0, 3 + 5 = 8 = 1, 3 · 5 = 15 = 1.

The following are the complete addition and multiplication tables of Z/7.

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 2 2
6 0 6 5 4 3 2 1

2.5. Theorem. Let m be a positive integer. An element x ∈ Z/m is invertible iff
gcd(x, m) = 1.

Proof. “⇐” Suppose gcd(x, m) = 1. By theorem 1.6 there exist integers ξ, µ such that

ξx + µm = 1.

This implies ξx ≡ 1 mod m, hence ξ is an inverse of x in Z/m.

“⇒” Suppose that x is invertible, i.e. x ·y = 1 for some y ∈ Z/m. Then xy ≡ 1 mod m,
hence there exists an integer k such that xy − 1 = km. Therefore yx− km = 1, which
means by theorem 1.6 that x and m are coprime, q.e.d.

2.6. Corollary. Let m be a positive integer. The ring Z/m is a field iff m is a prime.

Notation. If p is a prime, the field Z/p is also denoted by Fp.

For any ring A with unit element we denote its multiplicative group of invertible ele-
ments by A∗. In particular we use the notations (Z/m)∗ and F∗

p.

Example. For p = 7 we have the field F7 = Z/7 with 7 elements. From the above
multiplication table we can read off the inverses of the elements of F∗

7 = F7 r {0}.
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x 1 2 3 4 5 6
x−1 1 4 5 2 3 6

2.7. Direct Products. For two rings (resp. groups) A1 and A2, the cartesian product
A1 × A2 becomes a ring (resp. a group) with component-wise defined operations:

(x1, x2) + (y1, y2) := (x1 + y1, x2 + y2)

(x1, x2) · (y1, y2) := (x1y1, x2y2).

If A1, A2 are two rings with unit element, then (0, 0) is the zero element and (1, 1) the
unit element of A1 × A2. For the group of invertible elements the following equation
holds:

(A1 × A2)
∗ = A∗

1 × A∗
2.

Note that if A1 and A2 are fields, the direct product A1 ×A2 is a ring, but not a field,
since there are zero divisors:

(1, 0) · (0, 1) = (0, 0).

2.8. Theorem (Chinese remainder theorem). Let m1, m2 be two positive coprime
integers. Then the map

φ : Z/m1m2 −→ Z/m1 × Z/m2, x 7→ (x mod m1, x mod m2)

is an isomorphism of rings.

Proof. It is clear that φ is a ring homomorphism. Since Z/m1m2 and Z/m1×Z/m2 have
the same number of elements (namely m1m2), it suffices to prove that φ is injective.

Suppose φ(x) = 0. This means that x ≡ 0 mod m1 and x ≡ 0 mod m1, i.e. m1 | x
and m2 | x. Since m1 and m2 are coprime, it follows that m1m2 | x, hence x = 0 in
Z/m1m2, q.e.d.

Remark. The classical formulation of the Chinese remainder theorem is the following
(which is contained in theorem 2.8):

Let m1, m2 be two positive coprime integers. Then for every pair a1, a2 of integers there
exists an integer a such that

a ≡ ai mod mi for i = 1, 2.

This integer a is uniquely determined modulo m1m2.

2.9. Definition (Euler phi function). Let m be a positive integer. Then ϕ(m) is defined
as the number of integers k ∈ {0, 1, . . . , m−1} which are coprime to m. Using theorem
2.5, this can also be expressed as

ϕ(m) := #(Z/m)∗,

where #S denotes the number of elements of a set S.

For small m, the ϕ-function takes the following values
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m 1 2 3 4 5 6 7 8 9 10
ϕ(m) 1 1 2 2 4 2 6 4 6 4

It is obvious that for a prime p one has ϕ(p) = p−1. More generally, for a prime power
pk it is easy to see that

ϕ(pk) = pk − pk−1 = pk
(

1 −
1

p

)

.

If m and n are coprime, it follows from theorem 2.8 that

(Z/mn)∗ ∼= (Z/m)∗ × (Z/n)∗,

hence ϕ(mn) = ϕ(n)ϕ(m). Using this, we can derive

2.10. Theorem. For every positive integer n the following formula holds:

ϕ(n) = n
∏

p|n

(

1 −
1

p

)

,

where the product is extended over all prime divisors p of n.

Proof. Let n =
∏r

i=1 pei

i be the canonical prime decomposition of n. Then

ϕ(n) =
r

∏

i=1

ϕ(pei

i ) =
r

∏

i=1

pei

i

(

1 −
1

pi

)

= n
r

∏

i=1

(

1 −
1

pi

)

, q.e.d.

2.11. Theorem (Euler). Let m be an integer ≥ 2 and a an integer with gcd(a, m) = 1.
Then

aϕ(m) ≡ 1 mod m.

Proof. We use some notions and elementary facts from group theory. Let G be a finite
group, written multiplicatively, with unit element e. The order of an element a ∈ G is
defined as

ord(a) := min{k ∈ N1 : ak = e}.

The order of the group is defined as the number of its elements,

ord(G) := #G.

Then, as a special case of a theorem of Lagrange, one has

ord(a) | ord(G) for all a ∈ G.

We apply this to the group G = (Z/m)∗. By definition ord((Z/m)∗) = ϕ(m). Let r be
the order of a ∈ (Z/m)∗. Then ϕ(m) = rs with an integer s and we have in (Z/m)∗

aϕ(m) = ars = (ar)s = 1
s
= 1, q.e.d.

2.12. Corollary (Little Theorem of Fermat). Let p be a prime and a an integer with
p ∤ a. Then

ap−1 ≡ 1 mod p.
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