O. Forster: Analytic Number Theory

2. Congruences. Chinese Remainder Theorem

2.1. Definition. Let m € Z. Two integers x,y are called congruent modulo m, in
symbols

x =y mod m,

if m divides the difference x — y, i.e. z — y € mZ.

Examples. 20=0mod5, 3=10mod7, —4=10mod?7.
r =0 mod 2 is equivalent to “x is even”,

x = 1mod 2 is equivalent to “x is odd”.

Remarks. a) x,y are congruent modulo m iff they are congruent modulo —m.
b) z=ymod0 iff z =y.
c)zx=ymod1 forall z,y € Z.

Therefore the only interesting case is m > 2.

2.2. Proposition. The congruence modulo m is an equivalence relation, i.e. the fol-
lowing properties hold:

i) (Reflexivity) = =x mod m for allx € Z
ii) (Symmetry) = =y modm = y =z mod m.
iii) (Transitivity) (r =y modm) A (y =zmodm) = x =z modm.

2.3. Lemma (Division with rest). Let z,m € Z, m > 2. Then there exist uniquely
determined integers q,r satisfying

r=qgm+r, 0<r<m.

Remark. The equation x = ¢gm + r implies that x = r mod m. Therefore every integer
x € Z is equivalent modulo m to one and only one element of

{0,1,...,m—1}.

2.4. Definition. Let m be a positive integer. The set of all equivalence classes of Z
modulo m is denoted by Z/mZ or briefly by Z/m.

From the above remark we see that
Z)mZ =1{0,1,...,m — 1},

where T = x mod m is the equivalence class of x modulo m. If there is no danger of
confusion, we will often write simply x instead of 7.
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Equivalence modulo m is compatible with addition and multiplication, i.e.

r=2' modm and y =9y modm —

r+y=2"+9y modm and zy= 2’y mod m.

Therefore addition and multiplication in Z induces an addition and multiplication in
Z/m such that Z/m becomes a commutative ring and the canonical surjection

Z — Z/m, x+— x modm,

is a ring homomorphism.

Example. In Z/7 one has

3+5=8=1, 3:-5=15=1.

3+4=T7=0,

The following are the complete addition and multiplication tables of Z /7.
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2.5. Theorem. Let m be a positive integer. An element T € Z/m is invertible iff
ged(xz,m) = 1.

Proof. “<” Suppose ged(z, m) = 1. By theorem 1.6 there exist integers £, i such that
Ex 4+ pum = 1.

This implies £x = 1 mod m, hence £ is an inverse of T in Z/m.

“=” Suppose that 7 is invertible, i.e. T-7 = 1 for some ¥ € Z/m. Then zy = 1 mod m,
hence there exists an integer k£ such that xy — 1 = km. Therefore yx — km = 1, which
means by theorem 1.6 that z and m are coprime, q.e.d.

2.6. Corollary. Let m be a positive integer. The ring Z/m is a field iff m is a prime.

Notation. If p is a prime, the field Z/p is also denoted by F,,.

For any ring A with unit element we denote its multiplicative group of invertible ele-
ments by A*. In particular we use the notations (Z/m)* and F;.

Example. For p = 7 we have the field F; = Z/7 with 7 elements. From the above
multiplication table we can read off the inverses of the elements of Fi = F; ~\ {0}.
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z |1 2
x*1‘1 4

3 4 5 6
5 2 3 6
2.7. Direct Products. For two rings (resp. groups) A; and A,, the cartesian product
A X Ay becomes a ring (resp. a group) with component-wise defined operations:

(x1,22) + (Y1, ¥2) == (X1 + Y1, T2 + Y2)
(1, 22) - (Y1, 92) = (T1Y1, T2Y2).

If Ay, A are two rings with unit element, then (0, 0) is the zero element and (1, 1) the
unit element of A; x As. For the group of invertible elements the following equation
holds:

(Ay x Ag)* = AT x AL

Note that if A; and A, are fields, the direct product A; x A, is a ring, but not a field,
since there are zero divisors:

(1,0) - (0,1) = (0,0).

2.8. Theorem (Chinese remainder theorem). Let mq,my be two positive coprime
integers. Then the map

¢ L/mymy — Z/mq X Z/ms, T+ (x mod my,x mod my)

s an isomorphism of rings.

Proof. 1t is clear that ¢ is a ring homomorphism. Since Z/m;ms and Z/mq X Z/ms have
the same number of elements (namely mims,), it suffices to prove that ¢ is injective.

Suppose ¢(Z) = 0. This means that + = 0 mod m; and z = 0 mod mq, i.e. my | x
and my | x. Since my and my are coprime, it follows that m;ms | x, hence T = 0 in
Z/mlTYlg, qed

Remark. The classical formulation of the Chinese remainder theorem is the following
(which is contained in theorem 2.8):

Let mq, ms be two positive coprime integers. Then for every pair aq, as of integers there
exists an integer a such that

a=a; modm; fori=1,2.
This integer a is uniquely determined modulo mi;ms;.

2.9. Definition (Euler phi function). Let m be a positive integer. Then ¢(m) is defined
as the number of integers k € {0, 1,...,m — 1} which are coprime to m. Using theorem
2.5, this can also be expressed as

p(m) = ##(Z/m)",
where #S5 denotes the number of elements of a set .S.

For small m, the ¢-function takes the following values
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It is obvious that for a prime p one has ¢(p) = p— 1. More generally, for a prime power
p" it is easy to see that

_ 1
p(p*) =p* —p zp’“(l - —)-
p
If m and n are coprime, it follows from theorem 2.8 that
(Z/mn)* = (Z/m)" x (Z/n)",
hence ¢(mn) = ¢(n)e(m). Using this, we can derive
2.10. Theorem. For every positive integer n the following formula holds:

o) =nJT(1- ).

pln
where the product is extended over all prime divisors p of n.

Proof. Let n = [],_, p;* be the canonical prime decomposition of n. Then

T o) =TT (1 L : 1
o) =[Tew) =TIr(1-—) =n]I(1-=). aed
i=1 i=1 Di i1 Pi
2.11. Theorem (Euler). Letm be an integer > 2 and a an integer with ged(a, m) = 1.
Then
a?™ =1 mod m.

Proof. We use some notions and elementary facts from group theory. Let G be a finite
group, written multiplicatively, with unit element e. The order of an element a € G is
defined as

ord(a) := min{k € N; : a* = ¢}.

The order of the group is defined as the number of its elements,
ord(G) := #G.

Then, as a special case of a theorem of Lagrange, one has
ord(a) | ord(G) for all a € G.

We apply this to the group G = (Z/m)*. By definition ord((Z/m)*) = ¢(m). Let r be
the order of @ € (Z/m)*. Then p(m) = rs with an integer s and we have in (Z/m)*

agp(m) —q' = (67")5 = TS = _’ qed

2.12. Corollary (Little Theorem of Fermat). Let p be a prime and a an integer with
pta. Then

a® ' =1 mod p.
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