Otto Forster: Analytic Number Theory

Lecture notes of a course given in the Winter Semester 2001/02 at the Department of Mathematics, LMU Munich, Germany

Contents

- 0. Notations and Conventions
- 1. Divisibility. Unique Factorization Theorem
- 2. Congruences. Chinese Remainder Theorem
- 3. Arithmetical Functions. Möbius Inversion Theorem
- 4. Riemann Zeta Function. Euler Product
- 5. The Euler-Maclaurin Summation Formula
- 6. Dirichlet Series
- 7. Group Characters. Dirichlet L-series
- 8. Primes in Arithmetic Progressions
- 9. The Gamma Function
- 10. Functional Equation of the Zeta Function
- 11. The Chebyshev Functions Theta and Psi
- 13. Proof of the Prime Number Theorem

0. Notations and Conventions

Standard notations for sets

- \mathbb{Z} ring of all integers
- \mathbb{N}_0 set of all integers ≥ 0
- \mathbb{N}_1 set of all integers ≥ 1

 $\mathbb{P} \quad \text{set of all primes} = \{2, 3, 5, 7, 11, \ldots\}$

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the fields of rational, real and complex numbers respectively

 A^* multiplicative group of invertible elements of a ring A

[a, b],]a, b[, [a, b[,]a, b] denote closed, open and half-open intervals of \mathbb{R}

 $\mathbb{R}_+ = [0, \infty[$ set of non-negative real numbers

 $\mathbb{R}^*_+ = \mathbb{R}_+ \cap \mathbb{R}^*$ multiplicative group of positive real numbers

 $\lfloor x \rfloor$ greatest integer $\leq x \in \mathbb{R}$

Landau symbols O, o

For two functions $f, g : [a, \infty[\to \mathbb{C}, \text{ one writes}]$

$$f(x) = O(g(x)) \text{ for } x \to \infty,$$

if there exist constants C > 0 and $x_0 \ge a$ such that

$$|f(x)| \le C|g(x)|$$
 for all $x \ge x_0$.

Similarly,

$$f(x) = o(g(x)) \text{ for } x \to \infty$$

means that for every $\varepsilon > 0$ there exists $R \geq a$ such that

$$|f(x)| \le \varepsilon |g(x)|$$
 for all $x \ge R$.

For functions $f, g :]a, b[\to \mathbb{C}$ the notions

$$f(x) = O(g(x))$$
 for $x \searrow a$,

and

$$f(x) = o(g(x))$$
 for $x \searrow a$,

are defined analogously.

$$f(x) = f_0(x) + O(g(x))$$

is defined as $f(x) - f_0(x) = O(g(x))$.

Asymptotic equality

Two functions $f, g : [a, \infty[\to \mathbb{C} \text{ are said to be asymptotically equal for } x \to \infty, \text{ in symbols}$

$$f(x) \sim g(x) \quad \text{for } x \to \infty,$$

if $g(x) \neq 0$ for $x \geq x_0$ and

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

Analogously, for two sequences $(a_n)_{n \ge n_0}$ and $(b_n)_{n \ge n_0}$,

$$a_n \sim b_n$$

means $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. A famous example for asymptotic equality is the Stirling formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n,$$

which we will prove in Chap. 9.

Miscellaneous

We sometimes write 'iff' as an abbreviation for 'if and only if'.