
Otto Forster:

Analytic Number Theory

Lecture notes of a course given in the Winter Semester 2001/02
at the Department of Mathematics, LMU Munich, Germany



O. Forster: Analytic Number Theory

Contents

0. Notations and Conventions

1. Divisibility. Unique Factorization Theorem

2. Congruences. Chinese Remainder Theorem

3. Arithmetical Functions. Möbius Inversion Theorem
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0. Notations and Conventions

Standard notations for sets

Z ring of all integers

N0 set of all integers ≥ 0

N1 set of all integers ≥ 1

P set of all primes = {2, 3, 5, 7, 11, . . .}
Q, R, C denote the fields of rational, real and complex numbers respectively

A∗ multiplicative group of invertible elements of a ring A

[a, b], ]a, b[ , [a, b[ , ]a, b] denote closed, open and half-open intervals of R

R+ = [0,∞[ set of non-negative real numbers

R∗

+ = R+ ∩ R∗ multiplicative group of positive real numbers

$x% greatest integer ≤ x ∈ R

Landau symbols O, o

For two functions f, g : [a,∞[ → C, one writes

f(x) = O(g(x)) for x → ∞,

if there exist constants C > 0 and x0 ≥ a such that

|f(x)| ≤ C|g(x)| for all x ≥ x0.

Similarily,

f(x) = o(g(x)) for x → ∞

means that for every ε > 0 there exists R ≥ a such that

|f(x)| ≤ ε|g(x)| for all x ≥ R.

For functions f, g : ]a, b[ → C the notions

f(x) = O(g(x)) for x ↘ a,

and

f(x) = o(g(x)) for x ↘ a,

are defined analogously.

f(x) = f0(x) + O(g(x))
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is defined as f(x) − f0(x) = O(g(x)).

Asymptotic equality

Two functions f, g : [a,∞[ → C are said to be asymptotically equal for x → ∞, in
symbols

f(x) ∼ g(x) for x → ∞,

if g(x) ,= 0 for x ≥ x0 and

lim
x→∞

f(x)

g(x)
= 1.

Analogously, for two sequences (an)n!n0
and (bn)n!n0

,

an ∼ bn

means lim
n→∞

an

bn

= 1. A famous example for asymptotic equality is the Stirling formula

n! ∼
√

2πn
(n

e

)

n

,

which we will prove in Chap. 9.

Miscellaneous

We sometimes write ‘iff’ as an abbreviation for ‘if and only if’.
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