Otto Forster: Analytic Number Theory

Lecture notes of a course given in the Winter Semester 2001/02 at the Department of Mathematics, LMU Munich, Germany

Contents

0 . Notations and Conventions

1. Divisibility. Unique Factorization Theorem
2. Congruences. Chinese Remainder Theorem
3. Arithmetical Functions. Möbius Inversion Theorem
4. Riemann Zeta Function. Euler Product
5. The Euler-Maclaurin Summation Formula
6. Dirichlet Series
7. Group Characters. Dirichlet L-series
8. Primes in Arithmetic Progressions
9. The Gamma Function
10. Functional Equation of the Zeta Function
11. The Chebyshev Functions Theta and Psi
12. Proof of the Prime Number Theorem

0. Notations and Conventions

Standard notations for sets

$\mathbb{Z} \quad$ ring of all integers
$\mathbb{N}_{0} \quad$ set of all integers ≥ 0
$\mathbb{N}_{1} \quad$ set of all integers ≥ 1
$\mathbb{P} \quad$ set of all primes $=\{2,3,5,7,11, \ldots\}$
$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the fields of rational, real and complex numbers respectively
$A^{*} \quad$ multiplicative group of invertible elements of a ring A
$[a, b],] a, b[,[a, b[] a, b$,$] \quad denote closed, open and half-open intervals of \mathbb{R}$
$\mathbb{R}_{+}=[0, \infty[$ set of non-negative real numbers
$\mathbb{R}_{+}^{*}=\mathbb{R}_{+} \cap \mathbb{R}^{*}$ multiplicative group of positive real numbers
$\lfloor x\rfloor$ greatest integer $\leq x \in \mathbb{R}$

Landau symbols O, o

For two functions $f, g:[a, \infty[\rightarrow \mathbb{C}$, one writes

$$
f(x)=O(g(x)) \quad \text { for } x \rightarrow \infty,
$$

if there exist constants $C>0$ and $x_{0} \geq a$ such that

$$
|f(x)| \leq C|g(x)| \quad \text { for all } x \geq x_{0}
$$

Similarily,

$$
f(x)=o(g(x)) \quad \text { for } x \rightarrow \infty
$$

means that for every $\varepsilon>0$ there exists $R \geq a$ such that

$$
|f(x)| \leq \varepsilon|g(x)| \quad \text { for all } x \geq R
$$

For functions $f, g:] a, b[\rightarrow \mathbb{C}$ the notions

$$
f(x)=O(g(x)) \quad \text { for } x \searrow a \text {, }
$$

and

$$
f(x)=o(g(x)) \quad \text { for } x \searrow a,
$$

are defined analogously.

$$
f(x)=f_{0}(x)+O(g(x))
$$

is defined as $f(x)-f_{0}(x)=O(g(x))$.

Asymptotic equality

Two functions $f, g:[a, \infty[\rightarrow \mathbb{C}$ are said to be asymptotically equal for $x \rightarrow \infty$, in symbols

$$
f(x) \sim g(x) \quad \text { for } x \rightarrow \infty
$$

if $g(x) \neq 0$ for $x \geq x_{0}$ and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1
$$

Analogously, for two sequences $\left(a_{n}\right)_{n \geqslant n_{0}}$ and $\left(b_{n}\right)_{n \geqslant n_{0}}$,

$$
a_{n} \sim b_{n}
$$

means $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. A famous example for asymptotic equality is the Stirling formula

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

which we will prove in Chap. 9.

Miscellaneous

We sometimes write 'iff' as an abbreviation for 'if and only if'.

