Selected Topics from Number Theory Problem sheet #7

Problem 25

- a) Determine all units of the ring $\mathbb{Z}[\sqrt{2}]$.
- b) Determine all units of the ring $\mathbb{Z}[\sqrt{3}]$.

Problem 26

a) Prove that there are infinitely many integers $n \ge 1$ such that the sum

$$1+2+\ldots+n=\sum_{k=1}^n k$$

is a square.

Hint. Problem 25a) may be useful,

b)* (Unsolved problem: Erdös-Moser equation)

Do there exist solutions of the Diophantine equation

 $1^k + 2^k + \ldots + (n-1)^k = n^k$

apart from the trivial case (n, k) = (3, 1)?

Problem 27 Let $\mathcal{C}^{\infty}(\mathbb{R}^*_+)$ be the vector space of all infinitely differentiable functions $f: \mathbb{R}^*_+ \to \mathbb{R}$. For $p \in \mathbb{R}$, define linear operators

$$S_p, T_p, B_p : \mathcal{C}^{\infty}(\mathbb{R}^*_+) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R}^*_+)$$

by

$$(S_p f)(x) := f'(x) - \frac{p}{x} f(x),$$

$$(T_p f)(x) := f'(x) + \frac{p}{x} f(x),$$

$$(B_p f)(x) := f''(x) + \frac{1}{x} f'(x) - \left(1 + \frac{p^2}{x^2}\right) f(x).$$

Remark.

$$B_p y = y'' + \frac{1}{x}y' - \left(1 + \frac{p^2}{x^2}\right)y = 0$$

is the *modified Bessel differential equation*, it's solutions are called modified Bessel functions.

a) Prove the following formulas

- i) $T_{p+1}S_pf = B_pf + f,$
- $ii) \qquad S_{p-1}T_pf = B_pf + f,$
- iii) $S_p B_p f = B_{p+1} S_p f,$
- iv) $T_p B_p f = B_{p-1} T_p f.$

b) Let $V_p := \{ f \in \mathcal{C}^{\infty}(\mathbb{R}^*_+) : B_p f = 0 \}.$ Prove that S_p resp T_{p+1} define isomorphisms

$$S_p: V_p \longrightarrow V_{p+1}, \qquad T_{p+1}: V_{p+1} \longrightarrow V_p,$$

which are inverses of each other.

Problem 28 (Continuation of Problem 27) If p is not a negative integer, define

$$I_p(x) := \left(\frac{x}{2}\right)^p \sum_{k=0}^{\infty} \frac{1}{k! \, \Gamma(p+k+1)} \left(\frac{x}{2}\right)^{2k}$$

a) Prove

$$(S_p I_p)(x) = I_{p+1}(x), \text{ and } (T_p I_p)(x) = I_{p-1}(x)$$

and concude that $B_p I_p = 0$, i.e. I_p is a modified Bessel function.

b) Prove the formulas

$$I_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cosh x$$
 and $I_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sinh x$

These problems will be discussed Wednesday, July 10, 2024