Selected Topics from Number Theory Problem sheet #5

Problem 17

Let $I := [0, 1] \subset \mathbb{R}$ be the open unit interval. The coefficients of the CF expansion of $x \in I$,

 $x = \operatorname{cfrac}(0, a_1, a_2, \ldots)$

can be viewed as functions $a_k(x)$ of the variable $x \in I$.

For k = 1 and k = 2 determine the points $t \in I$, where the function $a_k(x)$ is not continuous. (In this context a rational number $\xi \in I$ is considered as a point of discontinuity of $a_k(x)$, if the CF expansion of ξ ends before the index k).

Problem 18 (cf. Problem 9)

Let f_n be the Fibonacci numbers.

a) Prove that

$$\sum_{n=1}^{\infty} \frac{1}{f_n f_{n+2}} = 1.$$

b) Calculate the sum

$$A := \sum_{k=0}^{\infty} \frac{1}{f_{2^k}}$$

Problem 19

a) Prove: If the Mersenne number $M_k := 2^k - 1$ is prime, then k is a prime number.

b) Find the smallest prime number p such that M_p is not prime.

Problem 20 (Continuation of Problem 19)

Let $p \ge 3$ be a prime number and q be a prime divisor of M_p ,

 $q \mid 2^p - 1.$

Prove:

- a) There exists a positive integer k such that q = 2kp + 1,
- b) $q \equiv \pm 1 \mod 8$.

These problems will be discussed Wednesday, June 19, 2024