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Problem 9 The sequence (fν)ν>0 of Fibonacci numbers is recursively defined by

f0 := 0, f1 := 1, fn+1 := fn + fn−1, (n > 1).

Show that the limit lim
n→∞

fn+1

fn
exists and equals the golden ratio

φ :=
1 +

√
5

2
.

Solution. To get a solution of the recurrence relation fn+1 := fn + fn−1, we try an ‘Ansatz’

fn = λn.

The recurrence relation will be satisfied for all n if

λ2 + λ + 1 = 0 ⇐⇒ λ = λ1/2 =
1 ±

√
5

2
,

i.e.

λ1 =
1 +

√
5

2
= φ ≈ 1.618 . . . , λ2 =

1 −
√

5

2
= 1 − φ = −φ−1.

Of course also every linear combination c1λ
n
1 + c2λ

n
2 will satisfy the recurrence relation.

To meet the initial conditions, we have to find coefficients c1, c2 ∈ R such that

f0 = 0 = c1λ
0

1 + c2λ
0

2 = c1 + c2

f1 = 1 = c1λ1 + c2λ2.

One finds c1 = −c2 =
1√
5
, therefore

fn =
1√
5

(

φn − (−1)nφ−n
)

(Formula of Moivre-Binet)

Now

fn+1

fn
=

φn+1 − (−1)n+1φ−n−1

φn − (−1)nφ−n
= φ ·

1 − (−1)n+1φ−2n−2

1 − (−1)nφ−2n

Since lim
k→∞

φ−k = 0, we get lim
n→∞

fn+1/fn = φ, q.e.d.
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Problem 10 (Continuation of Problem 9)

a) Show that the CF expansion of φ is

φ = cfrac(1, 1, 1, 1, 1, . . .)

and that the n-th convergent
pn

qn
of this continued fraction equals

fn+2

fn+1

.

b) Prove that for every constant c >
√

5 the inequality

∣

∣

∣
φ −

p

q

∣

∣

∣
<

1

cq2
, p, q positive integers,

has only a finite number of solutions.

Solution. a) Since φ ≈ 1.618, the CF expansion begins with

φ = 1 +
1

ξ1

,

where

ξ1 =
1

φ − 1
=

2

−1 +
√

5
=

2(1 +
√

5)

(
√

5)2 − 1
=

2(1 +
√

5)

4
=

1 +
√

5

2
= φ

So we have already reached periodicity after one step, which implies

φ = cfrac(1, 1, 1, 1, 1, . . .)

The recurrence relations for the numerator and denominator of the convergents pn/qn of
the continued are the same as for the Fibonacci numbers

pn = 1 · pn−1 + pn−2,

qn = 1 · qn−1 + qn−1.

However the initial conditions are different:
(p0

q0

p
−1

q
−1

)

=
(1

1

1

0

)

Therefore

p0 = 1 = f2, p1 = 2 = f3 ⇒ pn = fn+2

and

q0 = 1 = f1, q1 = 1 = f2 ⇒ qn = fn+1.

b) Let c >
√

5. We have to show that

∣

∣

∣
φ −

fn+1

fn

∣

∣

∣
<

1

c
·

1

f 2
n

is satisfied for at most finitely many n ∈ N.
Multiplying by f 2

n, this inequality is equivalent to
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∣

∣f 2

nφ − fnfn+1

∣

∣ <
1

c
(∗)

Now

fn =
1√
5
(φn − εφ−n), fn+1 =

1√
5
(φn+1 + εφ−n−1), with ε = (−1)n.

From this we get

f 2

nφ =
1

5

(

φn − εφ−n
)2

φ =
1

5

(

φ2n+1 − 2εφ + φ−2n+1
)

,

fnfn+1 =
1

5

(

φn − εφ−n
) (

φn+1 + εφ−n−1
)

=
1

5

(

φ2n+1 − εφ + εφ−1 − φ−2n−1
)

and, using φ + φ−1 =
√

5,

f 2

nφ − fnfn+1 =
1

5

(

−εφ − εφ−1
)

+ O
(

φ−2n+1
)

= −
(−1)n

√
5

+ O
(

φ−2n+1
)

.

But this contradicts (∗), if n is sufficienty large.

Problem 11 Sylvester’s sequence (Sn)n>0 is recursively defined by

S0 := 2, Sn := 1 +
n−1
∏

ν=0

Sν , (n > 1).

Hence the series begins with (2, 3, 7, 43, 1807, 3263443, . . .).

a) Show that the series can also be defined by

S0 := 2, Sn+1 := S2

n − Sn + 1, (n > 0).

b) Prove that

∞
∑

n=0

1

Sn

= 1.

Hint. Show that for every m > 1 one has

1 =

m−1
∑

ν=0

1

Sν
+

1

Sm − 1
.

Problem 12 (Continuation of Problem 11)

Cahen’s constant is defined by

C :=
∞

∑

ν=0

(−1)ν

Sν − 1

a) Show that another way to define C is

C :=

∞
∑

ν=0

1

S2ν
.
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b) Consider the CF expansion C = cfrac(a0, a1, a2, a3, . . .) and prove that all coefficients
aν are squares, in fact

C = cfrac(0, 1, 1, 1, 4, 9, 196, 16641, . . .).

Solution.

a) Since Sn+1 − 1 = S2
n − Sn = Sn(Sn − 1), one has

1

Sn − 1
−

1

Sn+1 − 1
=

1

Sn − 1
−

1

Sn(Sn − 1)
=

Sn − 1

Sn(Sn − 1)
=

1

Sn

.

Therefore

C =

∞
∑

n=0

(−1)n

Sn − 1
=

∞
∑

k=0

( 1

S2k − 1
−

1

S2k+1 − 1

)

=

∞
∑

k=0

1

S2k
, q.e.d.

b) Define a0 := 0, a1 := 1, a2 := 1, and

C0 := cfrac(a0) =
p0

q0

=
0

1
,

C1 := cfrac(a0, a1) =
p1

q1

=
1

1
,

C2 := cfrac(a0, a1, a2) =
p2

q2

=
1

2

For k > 2 we define by induction

ak := q2

k−2, Ck := cfrac(a0, . . . , ak) =
pk

qk
.

By the recursion formulas for pk, qk

pk = akpk−1 + pk−2 = q2

k−2pk−1 + pk−2,

qk = akqk−1 + qk−2 = q2

k−2qk−1 + qk−2.

Now we assert that

Sn − 1 = qnqn+1 for all n > 0.

For n = 0 this is true since S0 = 2 and q0 = q1 = 1.

Induction step n → n + 1.

Sn+1 − 1 = S2

n − Sn = Sn(Sn − 1)

= (qnqn+1 + 1)qnqn+1

= q2

nq2

n+1 + qnqn+1

= qn+1(q
2

nqn+1 + qn)

= qn+1qn+2, q.e.d.
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To complete the proof, we use the general fact

cfrac(a0, . . . , an) = a0 +
n−1
∑

k=0

(−1)k

qkqk+1

.

In our case this yields

cfrac(a0, . . . , an) =
n−1
∑

k=0

(−1)k

Sk − 1
.

Passing to the limit n → ∞ we get

cfrac(a0, a1, a2, a3, . . .) =
∞

∑

k=0

(−1)k

Sk − 1
= C,

and by definition all ak are squares.
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