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Problem 9 The sequence (f,),>o of Fibonacci numbers is recursively defined by
fO = 07 fl = 17 fn+1 = fn_'_fnfh <n> 1)

Show that the limit lim Jnin

n—oo fn

exists and equals the golden ratio
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Solution. To get a solution of the recurrence relation f, 1 := f, + fn_1, we try an ‘Ansatz’
fo=2A"

The recurrence relation will be satisfied for all n if

1++5
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N4+A4+1=0 <= A=Xp=

1.e.

B

1+ 1-V5
AL = =¢p~1618... Ao =
1 9 gb ) 2 9
Of course also every linear combination c; A} + coAj will satisty the recurrence relation.

To meet the initial conditions, we have to find coefficients ¢, ¢ € R such that

=l—¢=—¢"".

fo =0= Cl)\?"—CQ)\g =C +C
fi=1=cA + ).

1
One finds ¢; = —cy = —, therefore

V5

(¢" — (—1)”¢_") (Formula of Moivre-Binet)

Now

fn+1 B ¢n+1 _ (_1)n+1¢—n—1 . 1 — (_1)n+1¢—2n_2
fn - or — (—1)”(;5*” 1 — <_1)n¢72n

Since klim ¢F =0, we get lim fn,,1/fn = ¢, qed.
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Problem 10 (Continuation of Problem 9)
a) Show that the CF expansion of ¢ is

¢ = cfrac(1,1,1,1,1,...)

fn+2

and that the n-th convergent Pn o this continued fraction equals
dn n+1

b) Prove that for every constant ¢ > v/5 the inequality

1
’qg — B’ < —5, D,q positive integers,
q cq

has only a finite number of solutions.
Solution. a) Since ¢ = 1.618, the CF expansion begins with
1
¢p=1+ &
where
12 201+vE) 200+VE) 1+Vh
¢—1 —1++v5 (VB)2-1 4 2

So we have already reached periodicity after one step, which implies

& =

¢

¢ = cfrac(1,1,1,1,1,...)

The recurrence relations for the numerator and denominator of the convergents p, /¢, of
the continued are the same as for the Fibonacci numbers

Pn = 1- Prn—1 +pn—27
dn = 1- Qn—1 + Qn—1-
However the initial conditions are different:
(po p71> _ <1 1)
do q-1 10
Therefore
po=1=fy, p=2=1 = Pn = fni2

and
w=1=fi, a=1=f = ¢ = for1

b) Let ¢ > /5. We have to show that
1 1
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is satisfied for at most finitely many n € N.
Multiplying by f2, this inequality is equivalent to
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‘fsgb_fnfn-i-l‘ <% (*)
Now
_ 1
VB

From this we get

In (¢" —ep™™), frg1 = %@"H +ep "), with e = (=1)".

fio= £ (" —co) o= ¢ (7 — 20+ 67",
1 1

Jnfns1 = = (¢n — 8(?7") ((b"“ + 5(;5’”*1) = (¢2"+1 epted — ¢72n71)

and, using ¢ + ¢! = /5,

2 I e Congry (D))" —on+1
fn¢_fnfn+1—5( £Q—e¢ )+O(¢ +)— NG +O((b +).

But this contradicts (x), if n is sufficienty large.

Problem 11 Sylvester’s sequence (.Sy,),>o is recursively defined by
n—1
So = 2, Sh ::1+HSV, (n>1).
v=0

Hence the series begins with (2,3,7,43,1807,3263443, . . .).
a) Show that the series can also be defined by

Sp:=2, Sy =82-5,+1, (n=0).

b) Prove that

o0

Problem 12 (Continuation of Problem 11)
Cahen’s constant is defined by
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b) Consider the CF expansion C' = cfrac(ag, a1, as, as, ...) and prove that all coefficients
a, are squares, in fact

C = cfrac(0,1,1,1,4,9,196, 16641, . . .).

Solution.
a) Since S,,1 —1= 52— S5, =5,(S, — 1), one has
1111 8-1 1
Sp—1 Spi—1 Sp—1 Su(S,—1) Su(Sp,—1) S,
Therefore
C = i (=1)" i( ) i L q.e.d.
= Sn — =\ Sy — 1 52k+1 -1 “— Soi’
b) Define ag := 0, a; := 1, ay := 1, and
po 0
Cy = cfrac(ag) = — = -,
’ (a0) o 1
1
C) := cfrac(ag, a1) = % =7
pa 1

Cy = cfrac(ag, ar,a3) = — = =

For k > 2 we define by induction

ar == qi_,, Oy :=cfrac(ay,...,a;) = %

By the recursion formulas for pg, g
Pk = QkPr-1 + Ph-2 = Gp—oPe—1 + Di—2,
Gk = Q-1 + Qo-2 = Gj_sk—1 + Q2.
Now we assert that
Sp— 1= quqni1 for all n > 0.

For n = 0 this is true since Sy =2 and ¢y = ¢; = 1.

Induction step n — n + 1.

Spi1—1=82-S8,=5,(S,—1)
= (@nGn+1 + 1)nGn+1
= ¢adni1 + Gnlnnt
= Qn+1(QZQn+1 + qn)
= Qni1Qn+2, q.e.d.



To complete the proof, we use the general fact

n—1
—1)k

cfrac(ag, .. .,a,) = ap + (=1)

oo Dkdk+1

In our case this yields
n—1
(=1)*
f NI

cfrac(ag, . . ., a,) S 1

cfrac(ag, ai, as, as,...) = =C,
k=

=]

and by definition all a; are squares.




