Zetafunktion und Riemannsche Vermutung Übungsblatt 9

Aufgabe 33

Sei saw : $\mathbb{R} \to \mathbb{R}$, saw $(x) := x - \lfloor x \rfloor - \frac{1}{2}$, die in der Euler-Maclaurinschen Summations-Formel vorkommende Sägezahn-Funktion. Man zeige:

a)
$$1 + \int_{1}^{\infty} \frac{\text{saw}(x)}{x} dx = \log \sqrt{2\pi} = -\zeta'(0),$$

b)
$$\frac{1}{2} - \int_{1}^{\infty} \frac{\operatorname{saw}(x)}{x^{2}} dx = \gamma = \lim_{\varepsilon \searrow 0} \left(\zeta(1 + \varepsilon) - \frac{1}{\varepsilon} \right),$$

c)
$$\frac{3}{2} - 2 \int_{1}^{\infty} \frac{\operatorname{saw}(x)}{x^3} dx = \frac{\pi^2}{6} = \zeta(2).$$

Aufgabe 34

Man beweise: Für Re(s) > 1 gilt

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx.$$

Aufgabe 35

a) Man zeige: Für alle $\sigma \in \mathbb{R}$ mit $-2 < \sigma < 1$ gilt $\zeta(\sigma) < 0$.

b)
$$\zeta'(-2) = -\frac{\zeta(3)}{(2\pi)^2}$$
.

Aufgabe 36

Seien $\varrho_n = \beta_n + i\gamma_n$, $n \geqslant 1$, die nicht-trivialen Nullstellen der Zetafunktion in der oberen Halbebene, nach wachsendem Imaginärteil geordnet: $0 < \gamma_1 \leqslant \gamma_2 \leqslant \gamma_3 \leqslant \gamma_4 \leqslant \dots$. Man beweise die asymptotische Beziehung

$$\gamma_n \sim \frac{2\pi n}{\log n}$$
 für $n \to \infty$.