Zetafunktion und Riemannsche Vermutung Übungsblatt 1

Aufgabe 1

a) Man beweise

$$\lim_{x \to \infty} \prod_{p \leqslant x} \left(1 - \frac{1}{p} \right) = 0.$$

b) Für $x \geqslant 1$ sei $P_x := \prod_{p \leqslant x} p$. Man zeige

$$\prod_{p \leqslant x} \left(1 - \frac{1}{p}\right) = \sum_{n \mid P_x} \frac{\mu(n)}{n}$$

Dabei wird über alle Teiler von P_x summiert und $\mu: \mathbb{N}_1 \to \mathbb{Z}$ ist die Möbiusfunktion

$$\mu(n) := \begin{cases} 1 & \text{für } n = 1, \\ 0, & \text{falls } n \text{ nicht quadratfrei,} \\ (-1)^r, & \text{falls } n \text{ Produkt von } r \text{ verschiedenen Primzahlen.} \end{cases}$$

Aufgabe 2

Man beweise folgende Formel für die Euler-Mascheronische Konstante

$$\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta(k) - 1}{k}.$$

Aufgabe 3

a) Für $x\in\mathbb{R}_+$ und $t\in\mathbb{R}$ sei $S(x,t):=\sum_{1\leqslant n\leqslant x}e^{int}$. Man zeige: Zu jedem δ mit $0<\delta<\pi$ existiert eine Konstante $K=K(\delta)>0$, so dass $|S(x,t)| \le K$ fur alle x > 0 und alle $t \in [\delta, 2\pi - \delta]$.

b) Man beweise mittels Abelscher partieller Summation: Die Reihe

$$\sum_{n=1}^{\infty} \frac{e^{int}}{n}$$

konvergiert gleichmäßig auf jedem Intervall $[\delta, 2\pi - \delta], 0 < \delta < \pi.$

Aufgabe 4

Man beweise:

a) Für jedes $t \in \mathbb{R}$ divergiert die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+it}} = \sum_{n=1}^{\infty} \frac{e^{-it \log n}}{n}$$

b)* Für jedes $t \in \mathbb{R}^*$ konvergiert die Reihe

$$\sum_{p} \frac{1}{p^{1+it}}$$