Riemann Surfaces

Problem sheet #8

Problem 29

Suppose p_1, \ldots, p_n are pairwise distinct points of $\mathbb C$ and let

$$X := \mathbb{C} \setminus \{p_1, \dots, p_n\}.$$

Prove that $H^1(X,\mathbb{Z}) \cong \mathbb{Z}^n$.

Hint. Construct an open covering $\mathfrak{U} = (U_1, U_2)$ of X such that the U_{ν} are connected and simply connected and $U_1 \cap U_2$ has n+1 connected components.

Problem 30

- a) Show that $\mathfrak{U}=(\mathbb{P}^1\smallsetminus\{\infty\},\mathbb{P}^1\smallsetminus\{0\})$ is a Leray covering of \mathbb{P}^1 for the sheaf Ω of holomorphic 1-forms on \mathbb{P}^1 .
- b) Prove that

$$H^1(\mathbb{P}^1,\Omega) \cong H^1(\mathfrak{U},\Omega) \cong \mathbb{C}$$

and that the cohomology class of $\frac{dz}{z} \in \Omega(U_1 \cap U_2) \cong Z^1(\mathfrak{U}, \Omega)$ is a basis of $H^1(\mathbb{P}^1, \Omega)$.

Problem 31

Let X be the annulus $X := \{z \in \mathbb{C} : r < |z| < R\}, \ 0 \leqslant r < R \leqslant \infty.$

a) Prove that for every $g \in \mathcal{E}(X)$ there exists an $f \in \mathcal{E}(X)$ such that

$$\frac{\partial f}{\partial \bar{z}} = g.$$

b) Conclude that $H^1(X, \mathcal{O}) = 0$.

Problem 32

Let $\Lambda := \mathbb{Z} + \mathbb{Z}\tau \subset \mathbb{C}$ be a lattice where $\tau \in \mathbb{C}$ with $T := \operatorname{Im}(\tau) > 0$. Let $X := \mathbb{C}/\Lambda$ be the associated torus and $p : \mathbb{C} \to X$ the canonical projection.

For real numbers $t_1 < t_2$ with $t_2 - t_1 \leqslant T$ define

$$Y(t_1, t_2) := \{ z \in \mathbb{C} : t_1 < \text{Im}(z) < t_2 \}$$

and

$$U(t_1, t_2) := p(Y(t_1, t_2)) \subset X.$$

a) Show that

$$\Phi: Y(t_1, t_2) \longrightarrow \mathbb{C}, \quad z \mapsto e^{2\pi i z},$$

maps $Y(t_1, t_2)$ onto the annulus

$$A(e^{-2\pi t_2}, e^{-2\pi t_1}) := \{ z \in \mathbb{C} : e^{-2\pi t_2} < |z| < e^{-2\pi t_1} \}$$

and that there is a biholomorphic mapping $\varphi: U(t_1, t_2) \longrightarrow A(e^{-2\pi t_2}, e^{-2\pi t_1})$ which makes the following diagram commutative.

- b) Set $U_1 := U(0,T)$ and $U_2 := U(-T/2,T/2)$. Show that $\mathfrak{U} := (U_1,U_2)$ is a Leray covering of X for the sheaf \mathcal{O} and that the intersection $U_1 \cap U_2$ consists of two connected components W_0 and W_1 .
- c) Prove that

$$H^1(X,\mathcal{O})\cong\mathbb{C}$$

and that the function

$$f_0 \in \mathcal{O}(U_1 \cap U_2) \cong Z^1(\mathfrak{U}, \mathcal{O})$$
 with $f_0 \mid W_0 = 0$ and $f_0 \mid W_1 = 1$

represents a basis of $H^1(\mathfrak{U}, \mathcal{O}) \cong H^1(X, \mathcal{O})$.